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Abstract: 

Of central importance to evaluate the suitability of ionic liquids (ILs) for a specific 

process is the accurate estimation of IL properties related to the target performance. In 

the present work, a versatile deep learning method for predicting various properties of 

ILs is developed. Molecular fingerprints are derived from the encoder state of a 

Transformer model pre-trained on the PubChem database, which allows transfer 

learning from large-scale unlabeled data and significantly improves generalization 

performance for developing models with small datasets. Employing the pre-trained 

molecular fingerprints, convolutional neural network (CNN) models for IL properties 

prediction are trained and tested on 11 different databases. The obtained Transformer-

CNN models present superior performance to state-of-the-art models in all these cases 

and enable the property prediction of millions of ILs in a short time. The application of 

the proposed models is exemplified by extensively searching CO2 absorbent from a 

huge database of 8,333,096 synthetically feasible ILs, which is by far the most high-

throughput IL screening in literature. 

Keywords: IL properties prediction, deep learning, Transformer, convolutional neural 

network, high-throughput IL screening, CO2 capture 



1 INTRODUCTION 

Ionic liquids (ILs) are molten salts comprised of cations and anions which remain 

in liquid state around ambient temperature. In recent years, ILs have attracted 

considerable attention in various applications due to their unique physicochemical 

properties such as negligible volatility, high thermal and electrochemical stability, and 

wide liquidus range.1,2 More importantly, ILs also offer the potential to tune their 

physical and chemical properties by judicious selection of their cations and anions. Due 

to this tunable character, ILs can be designed to offer favorable properties to meet 

specific requirements for a given application. The challenge, however, is to evaluate 

various IL properties related to the target performance and identify optimal ILs from 

the near-infinite combinations of the possible ions and functional groups.3,4 

So far, IL selection toward a specific process mainly relies on laborious trial-and-

error experiments and experiences. However, such approaches are not only very time-

consuming but also limited to a small IL chemical space, leaving many potentially 

promising structures unexplored. Alternatively, thermodynamic, transport, and EHS 

(environment, health, and safety) related properties of ILs can be estimated by 

computational methods,5 following which targeted IL design/screening can be 

performed. Traditional thermodynamic models, such as Equations of State (EoSs)6 and 

group contribution models (GCMs)7,8 are commonly used for estimating IL properties. 

Nevertheless, both the two schemes are prone to inherent weakness of limited predictive 

power and/or insufficient accuracy.7 Another computational method for IL property 

prediction is the quantitative structure-property relationship (QSPR) approach, wherein 

the property of interest is quantitatively correlated with certain structural descriptors of 

molecules.8,9 However, the databases used to correlate the properties of ILs are often 

small and the molecular descriptors used to represent ILs are often diverse, making 



many developed QSPR models only cover a limited applicability domain and not easily 

integrable with each other in IL design/screening framework. As a quantum mechanics 

based predictive approach, the conductor-like screening model for real solvents 

(COSMO-RS)10 has been shown to be a relatively robust predictive method for IL-

involved mixture properties such as activity coefficients of molecular solutes,11,12 gas 

absorption capacity,13,14 and lignin and cellulose solubilities.15 However, the COSMO-

RS approach requires computationally expensive (especially for complex IL structures) 

density functional theory calculations and has been proven to be qualitative rather than 

quantitative for some IL-involved systems.16 

In addition to the above methods, machine learning (ML) techniques for molecular 

property prediction have recently gained in popularity in cheminformatics and 

promoted broad applications of data-driven models in chemical engineering studies.17–

21 With the availability of IL property databases such as the ILThermo22, there has been 

a sharp rise in the use of data-driven methods for modelling IL properties.23–30 Among 

these ML models, different types of molecular descriptors have been used for IL 

representation. For example, Paduszyński has developed ML based models for 

estimating density (ρ)31 and dynamic viscosity (η)32 of pure ILs by group contribution 

(GC) descriptors; Song et al. have modeled CO2 solubility in ILs by artificial neural 

network (ANN) and support vector machine (SVM) algorithm, both adopting GC 

descriptors of ILs.26 Despite the notably improved accuracy, these models still suffer 

from the inherent weaknesses of GC approach while covering only a small number of 

functional groups due to the limitation of the IL properties database for model 

development. Zhu et al.33 and Peng et al.27 utilized the screening charge density 

distribution area (Sσ) of the COSMO-RS approach as an a priori quantum chemistry 

descriptor for modeling cytotoxicity of ILs towards the leukemia rat cell line IPC-81. 



Although the COSMO-based descriptor can be theoretically used for any IL, the 

computational cost of such descriptor for complex ILs could be very high, which is 

contrary to the goal of quickly predicting IL properties by ML to a certain extent. Two 

structural descriptors, the ECFP4 circular fingerprints and the Coulomb matrix have 

been chosen by Low et al.24 for melting point prediction of ILs. Although such structural 

descriptors are easy to calculate and can theoretically be used for any IL, the prediction 

accuracy of the kernel ridge regression (KRR) model is not satisfactory. Beyond these 

structural descriptors, one eventually needs to add descriptors obtained by quantum 

mechanical calculations (e.g., molecular orbital energies and/or σ-profiles of ILs) to 

obtain higher model prediction accuracy.24 To sum up, almost all currently reported ML 

models for IL property prediction employ manually designed IL descriptors, which 

usually require expert knowledge for the types of ILs and the properties to be modeled. 

This kind of IL descriptors and the ML models developed thereon could work well for 

specific tasks, but may not generalize well for others.34 

In very recent years, ML methods, especially deep neural networks (DNN), have 

evolved rapidly. DNN-based ML systems have aroused great interest by overcoming 

obstacles of conventional models and obtaining high prediction quality for complex 

tasks.35–38 The growth of deep learning (DL) has provided excellent flexibility and 

performance to learn molecular fingerprints from data, without explicit guides from 

experts.39–41 In our previous work, a DNN based recommender system (RS) for 

predicting the solute-in-IL infinite dilution activity coefficient (γ∞) was developed 

without any manually designed fingerprint. Instead, neural network embeddings were 

employed for mapping each IL and solute, which can be learned automatically as part 

of the neural network for γ∞ prediction.42 The γ∞ prediction accuracy of this model 

exceeds all ML models that use manually designed fingerprints. However, due to the 



matrix completion essence of the selected method,43 the developed RS model mainly 

applies to already covered ILs and solutes in the database. 

To develop DL approaches with strong extrapolation performance, a sufficiently 

large labeled training database is desirable. In many areas (e.g., image classification), 

the labeled sample number could easily reach several millions or even more. However, 

it is not the case for IL properties prediction, for which the available databases (i.e., 

experimental or theoretically calculated IL properties) are far smaller than such a scale 

and do not always cover a wide range of functionalities. This challenge of developing 

strong extrapolative model based on a small dataset is also originally encountered in 

natural language processing (NLP), which has almost unlimited unlabeled data while 

only a tiny portion of labeled data.44 To address this challenge in NLP, extensive efforts 

have been devoted by researchers, among which the pre-training and fine-tuning 

approach45 is very encouraging. In this approach, word representations are derived from 

statistics gathered from large unlabeled corpus of text data by pre-training; these pre-

trained representations provide distributional information about words that typically 

improve the generalization of models learned on a limited amount of data by fine-tuning. 

The structure of molecule sequences is shown to be very similar to the structure 

of natural language sentences when molecules are represented by the simplified 

molecular-input line-entry system (SMILES)46,47 sequence. There are already several 

millions of molecules (including ILs) that have been synthesized in laboratory, which 

can be readily retrieved from online databases such as the PubChem and ChEMBL. 

Pre-training can also exploit such large-scale unlabeled databases to learn the 

representations of molecules or molecular fragments, and then the pre-trained model 

can be fine-tuned to downstream molecular property prediction tasks using a relatively 

smaller set of labeled data. Winter et al.48 developed a pre-trained sequence-to-sequence 

https://www.powerthesaurus.org/encouraging/synonyms


(seq2seq) model for predicting molecular properties based on recurrent neural networks 

(RNNs) by translating equivalent chemical representations. Gómez-Bombarelli et al.39 

used variational autoencoders (VAE) to get continuous representation of molecules in 

a latent space, and molecular properties were then predicted by decoding SMILES from 

the learned representations. The Transformer model49 that comprises an encoder-

decoder architecture (more parallelizable and superior as opposed to seq2seq) have also 

been used in the cheminformatics field for molecular properties prediction50,51 and 

reaction prediction52,53, achieving better model performance based on small databases 

when comparing with other pre-training approaches.34 Our recent work on quickly 

predicting surface charge density profiles (σ-profile) and cavity volumes (VCOSMO) of 

molecules also utilized a pre-trained SMILES Transformer as molecular fingerprints.54 

These studies have demonstrated the success of pre-training methods for predicting 

various molecular properties including physical properties (melting point, aqueous 

solubility), QM calculated properties (σ-profile, VCOSMO), molecular orbital properties 

(HOMO, LUMO), and EHS related properties (mutagenicity, toxicity). Therefore, it 

could be highly expected that the predictive modeling of IL properties based on small 

databases can also be achieved in a similar manner. 

With these observations, we propose a pre-training and fine-tuning two-stage 

framework for IL properties prediction as outlined in Figure 1. Importantly, our model 

does not make use of any manually designed or selected molecular fingerprint. Instead, 

a self-attention mechanism is deployed to learn the high-dimensional structure of an IL 

from a given raw sequence, that is, the SMILES. The large unlabeled IL SMILES 

database is first taken for the unsupervised pre-training of the self-attention mechanism 

(Molecular Transformer model), to obtain the encoder-decoder architecture that can 

well capture the complex structure of a molecule from its canonical SMILES. 



Following that, the encoder of the Transformer is integrated with a convolutional neural 

network (CNN) architecture for supervised training of predictive models of IL 

properties. By simply switching the labeled IL property dataset (and adding other inputs 

such as temperature and pressure if needed), predictive models for various IL properties 

can be developed based on the proposed framework. 

 

Figure 1. Schematic outline of the Transformer-CNN framework for IL properties prediction. 

The rest of the paper is organized as follows: Section 2 provides an overview of 

the pre-training and IL properties datasets, the prediction problem, and the two-stage 

modelling framework. Section 3 briefly introduces the Transformer architecture used 

for molecular representation learning and the CNN architecture used for supervised 

learning of IL properties. In Section 4, we present the modeling results on both IL 

representation learning and different IL properties datasets, and comparisons are made 

with reference works. In Section 5, the developed IL properties prediction models are 

applied in a high-throughput IL screening task for CO2 capture. Finally, a summary of 

this work is given in Section 6. 



2 OVERVIEW OF DATASETS AND MODELLING PROBLEM 

2.1 Pre-training dataset 

To get the SMILES Transformer model for IL encoding, the PubChem55 compound 

database is used. The original dataset (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/) 

contains a total of 108,923,995 molecules as well as their canonical SMILES 

representations. Due to the limited memory size of the computer used, we cannot train 

the Transformer model on the entire PubChem compound database. Therefore, 

considering the aim of predicting IL properties, the molecules containing ‘+’ and/or ‘-’ 

symbols in the SMILES are first screened to form a subset of IL-like molecules, 

retaining 10,243,410 molecules. As summarized in Figure 2, the length of 92.10% of 

the SMILES strings in the subset of IL-like molecules is below 100 characters. To make 

the input length of the model not too large, molecules with SMILES string length less 

than or equal to 100 characters (9,434,070 molecules) are kept to form the pre-training 

dataset. This pre-training dataset is augmented 10 times (an optimal value reported by 

Tetko et al.56) up to 94,340,700 non-canonical SMILES strings using the SMILES 

enumerator to increase the performance of DNN models that can be developed.57 

 

Figure 2. Length distribution of canonical SMILES representations of molecules in IL-liked subset. 



2.2 IL properties datasets 

The IL properties datasets used in this work are derived from several recently 

published scientific works as listed in Table 1. From these datasets, only ILs with 

SMILES string length less than or equal to 100 characters (consistent with the pre-

training dataset) are kept. The involved properties of ILs can be divided into two types. 

One type is the properties related only to IL molecular structure, such as melting point, 

glass transition temperature, thermal decomposition temperature, and cytotoxicity. The 

other type relates to not only IL molecular structure but also conditions such as 

temperature and pressure, including heat capacity, refractive index, density, viscosity, 

surface tension, CO2 solubility, and thermal conductivity. When dealing with the latter 

type of IL properties, as the random splitting of the entire dataset may cause 

overestimation of models by separating data points of the same ILs (with only 

difference in temperature and/or pressure) into both the training and test sets, a more 

rigorous IL-based dataset splitting strategy as used in our previous study is adopted42. 

By using this method, data points of the same IL at different temperatures and pressures 

only enter the same subset during the splitting of training and test sets, which can avoid 

data leakage and give a more reliable test score. 

Table 1. IL properties involved in this work. 

Property 
Number of 

data points 

Number 

of ILs 
Data Source 

melting point 𝑇𝑚(𝐾) 2,212 2,212 Low et al.24 

glass 

transition temperature 𝑇𝑔(℃) 
609 609 Venkatraman et al.29 

thermal decomposition 

temperature 𝑇𝑑(℃) 
1,223 1,223 Venkatraman et al.29 

heat capacity ln(𝐶𝑝) 9,083 236 Venkatraman et al.29 

refractive index 𝑛𝐷 3,009 464 Venkatraman et al.29 

density 𝜌 31,167 2,257 Paduszyński25 

viscosity ln(𝜂) 15,368 1,964 Paduszyński28 



surface tension 𝛾 2,972 331 Venkatraman et al.29 

CO2 solubility 𝑥𝐶𝑂2
 10,116 124 Song et al.26 

cytotoxicity towards the leukemia 

rat cell line IPC-81 𝑙𝑜𝑔10(𝐸𝐶50) 
326 326 Wang et al.58 

thermal conductivity 𝜆 454 73 Venkatraman et al.30 

2.3 Prediction problem formulation 

The objective of this work is to predict the properties of ILs only from its structure 

represented by SMILES (and the temperature and/or pressure if needed). However, it 

can be seen from Table 1 that although there is a considerable amount of data points 

(hundreds to tens of thousands) on the properties of ILs, the number of ILs involved 

(dozens to thousands) is not enough for many properties. With such small datasets, the 

application of traditional ML methods and conventional molecular descriptors for 

property prediction may be largely limited. To introduce additional molecular 

representation information to solve the problem of small datasets, this work formulates 

the IL properties prediction problem as a pre-training and fine-tuning two-stage 

framework. The motivations of this method are two-folded: (i) to build a powerful semi-

supervised framework utilizing the essential information in unlimited unlabeled data to 

improve the prediction performance with limited labeled data; (ii) to enable the 

proposed model framework to predict various properties of ILs only by replacing the 

database used for supervised training. 

To accurately predict IL properties from relatively small labeled datasets, we first 

perform an auxiliary text translation task based on sequence to sequence learning59 with 

SMILES as text representations of millions of molecular structures to get molecular 

fingerprints of ILs. Employing the pre-trained molecular fingerprints (as well as 

temperature and/or pressure if needed) as inputs, models for predicting IL properties 

can be trained on small labeled datasets as listed in Table 1. 



3 METHODS 

3.1 Transformers 

The SMILES Transformer model used in this work is based on the Transformer 

architecture originally constructed by Vaswani et al.49 for neural machine translation 

(NMT) tasks. Similar to the seq2seq model used for molecular property prediction48,60 

and reaction prediction61,62, Transformer is also based on the encoder-decoder 

architecture63. The main architectural difference from seq2seq models is that the RNN 

component is completely removed, and it is fully based on the attention mechanism 

combined with positional embedding for encoding sequential information. In the 

following, a brief description of the encoder-decoder architecture, attention mechanism, 

and positional encoding that comprise the building blocks of a Transformer is given. 

3.1.1 Encoder–decoder architecture 

As an instance of the encoder-decoder architecture, the overall architecture of the 

transformer is presented in Figure. 3. The encoder maps an input sequence of symbol 

representations (𝑥1, … , 𝑥𝑛)  to a sequence of continuous representations  𝐳 =

(𝑧1, … , 𝑧𝑛). Given z, the decoder then generates an output sequence (𝑦1, … , 𝑦𝑚) of 

symbols, one element at a time. At each step, the model is auto-regressive, consuming 

the previously generated symbols as additional input when generating the next. In the 

encoder, the multi-head attention layers attend the input sequence and encode it into a 

hidden representation carrying the essential information, namely encoder state. The 

decoder consists of two types of multi-head attention layers: the first type is masked 

and attends only the preceding outputs of the decoder, while the second type multi-head 

attention layer attends encoder states as well as the output of the first decoder attention 

layer. It basically combines the information of the source sequence with the target 

sequence that has been produced so far. The SMILES Transformer model in this work 



utilized 3 Transformer blocks for both encoder and decoder, that is, N is 3 in Figure 3. 

 

Figure 3. Architecture of the SMILES Transformer model used in this work. The left-half 

corresponds to the encoder while the right-half corresponds to the decoder. 

3.1.2 Multi-head Attention 

As the most important part of the Transformer architecture, the attention 

mechanism allows the model to focus on different tokens in the sequence at different 

stages of the network, enabling it to discover multiple relationships between groups of 

tokens. The attention function used here is called Scaled-Dot Product Attention49 and 

can be described as mapping a query and a set of key-value pairs to an output, where 

the query, keys, values, and output are all vectors. The output is computed as a weighted 

sum of the values, where the weight assigned to each value is computed by a 

compatibility function of the query with the corresponding key. The input consists of 

queries and keys of dimension 𝑑𝑘, and values of dimension 𝑑𝑣. The dot products of the 

query with all keys are computed, and then divided by √𝑑𝑘. A Softmax function is then 



applied to obtain the weights on the values. In practice, the attention function is 

computed on a set of queries simultaneously, packed together into a matrix Q. The keys 

and values are also packed together into matrices K and V. The matrix of outputs is: 

Attention (𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

The attention score as computed above determines the importance that should be given 

to different parts of an input sequence in the current context. In order to allow the model 

to jointly factor in information from different representation subspaces at different 

positions, multi-headed attention is used. Multiple attention scores are first calculated 

in parallel and then concatenated and projected using a linear transformation as: 

MultiHead (𝑄, 𝐾, 𝑉) = Concat (head1, … , headh)𝑊𝑂

where headi =  Attention (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉)

 

where the projections are parameter matrix  𝑊𝑖
𝑄 ∈ ℝ𝑑model ×𝑑𝑘 ,  𝑊𝑖

𝐾 ∈

ℝ𝑑model ×𝑑𝑘 ,  𝑊𝑖
𝑉 ∈ ℝ𝑑model ×𝑑𝑣  and 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑model. 

3.1.3 Positional encoding 

Unlike RNNs that recurrently process tokens of a sequence one by one, self-

attention ditches sequential operations in favor of parallel computation. To use the 

sequence order information, absolute or relative positional information is injected by 

adding positional encoding to the input representations. Positional encodings can be 

either learned or fixed. In the following, a fixed positional encoding based on sine and 

cosine functions is described. 

Suppose that the input representation 𝑋 ∈ ℝ𝑛×𝑑  contains the d-dimensional 

embeddings for n tokens of a sequence. The positional encoding outputs X+P using a 

positional embedding matrix 𝑃 ∈ ℝ𝑛×𝑑 of the same shape, whose element on the 𝑖th 

row and the (2𝑗)th and the (2𝑗 + 1)th column is: 



𝑝𝑖,2𝑗 = sin (
𝑖

100002𝑗/𝑑
)

𝑝𝑖,2𝑗+1 = cos (
𝑖

100002𝑗/𝑑
)

 

In the positional embedding matrix P, rows correspond to positions within a sequence 

and columns represent different positional encoding dimensions. 

3.2 CNN for IL properties prediction 

The core of CNN is to capture local features. For ILs (represented by SMILES), 

local features are sliding windows composed of several symbols (representing atoms, 

bonds, charges, etc.), similar to N-gram64. The advantage of CNN is that it can 

automatically combine and filter N-gram features to obtain molecular information at 

different levels of abstraction. In this section, a CNN based neural network is built to 

predict IL properties with input embedding from the pre-trained IL SMILES 

Transformer. To be specific, the encoder part of the pre-trained IL SMILES Transformer 

model is utilized for generating latent representations of input ILs (as molecule 

fingerprints). For example, for an IL with n symbols in its SMILES string, the encoder 

produces the latent representation matrix with dimensions n (output size). Since 

different ILs have different length of SMILES, the input size of the downstream model 

can vary from case to case. Therefore, the Text-CNN structure64 originally developed 

for sentence classification is used for the downstream IL properties prediction model as 

such structure can deal with distinct input lengths. 

As shown in Figure. 4, after taking the encoder state of the pre-trained IL SMILES 

Transformer, the CNN mainly uses a one-dimensional convolutional layer and a max-

over-time pooling layer64. The input of the CNN model is a matrix of 𝑛 × 𝑘, where n is 

the number of symbols in an IL SMILES and k is the dimension of the vector 

corresponding to each symbol. 𝑥𝑖 ∈ ℝ𝑘  is used here to represent the k dimension 

embedding of the ith symbol in the IL SMILES string. On the input matrix 𝑛 × 𝑘, a 



kernel w ∈ ℝℎ𝑘 and a window 𝑥𝑖:𝑖+ℎ−1 are used to perform convolution operation to 

generate a feature 𝑐𝑖 , that is to say, 𝑐𝑖 = 𝑓(𝑤 ⋅ 𝑥𝑖:𝑖+ℎ−1 + 𝑏) . Here, 𝑥𝑖:𝑖+ℎ−1 

represents a window of ℎ × 𝑘 formed by row i to row i+h-1 of the input matrix, which 

is formed by splicing 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+ℎ−1 ; h denotes the number of symbols in the 

window; w is a ℎ × 𝑘-dimensional weight matrix (so the number of parameters that a 

filter needs to learn is hk); b is the offset parameter and f is a non-linear function; 𝑤 ⋅

𝑥𝑖:𝑖+ℎ−1  is the dot product operation. The filter is applied to the SMILES string, 

moving from top to bottom one step at a time (𝑖 = 1 … 𝑛 − ℎ + 1). For example, 𝑐1 is 

obtained by convolution operation on 𝑥1:ℎ, 𝑐2 is obtained by convolution operation 

on 𝑥2:ℎ , etc., and c = [𝑐1, 𝑐2, … , 𝑐𝑛−ℎ+1]  obtained by splicing them together is the 

feature map of the CNN model. Each convolution operation is equivalent to a feature 

vector extraction. By defining different windows, different feature vectors can be 

extracted to form the output of the convolutional layer. 

For the pooling layer, this work uses max-over-time pooling, which is to filter out 

the largest feature from the feature vector generated by each sliding window, and then 

these features are spliced together to form a fixed-length vector representation. 

Therefore, the input of the max-over-time pooling layer can have different time steps 

on each dimension, namely deal with variable input lengths from the IL SMILES 

Transformer encoder. After a dropout layer to deal with overfitting, the pooling result 

is then concatenated with other inputs (e.g., temperature and pressure if necessary) for 

IL properties prediction. Finally, the data go through fully connected layers and convert 

to the output layer that contains one neuron for prediction of IL properties. It is worth 

noting that as the prediction of the 11 different IL properties involved in this work are 

all regression problems, only one neuron is needed in the output layer here; if there are 

IL related classification or multiple regression problems, one can also easily set the 



output layer neurons to the required number. 

 

Figure 4. Architecture of the Transformer-CNN model for IL properties prediction. The model is 

mainly composed of two parts. The left side is the pre-trained IL SMILES Transformer, which takes 

the input IL SMILES and output the encoder state as representation of IL. Then, this IL 

representation enters the CNN model as input for IL properties prediction. 

3.3 Implementation details 

This work takes RDKit (http://www.rdkit.org) for processing IL SMILES and for 

the generation of canonical SMILES used in pre-training. For the implementation and 

training of the proposed IL SMILES Transformer-CNN model, the MXNet library65 

with GPU acceleration (on a single RTX2080Ti and CUDA 10.1) and GluonNLP 

toolkit66 is employed. 

3.3.1 Pre-training IL SMILES Transformer 

To use the SMILES representations as the input and output of the Transformer 

model, the SMILES strings are tokenized into characters and then encoded in a one-hot 

vector representation (values are zero everywhere except the position of the current 

token that is set to one). In this work, the character-level tokenization40,42 where every 

single character appears in SMILES is tokenized separately is used. The vocabulary is 

http://www.rdkit.org/


built by using the MXNet library55 and the GluonNLP toolkit56, which contain all 71 

possible characters in the SMILES of 9,434,070 molecules in the pre-training dataset. 

The characters as well as their indexes in the vocabulary are: [('<unk>', 0), ('<pad>', 1), 

('<bos>', 2), ('<eos>', 3), ('c', 4), ('C', 5), ('(', 6), (')', 7), ('O', 8), ('1', 9), ('=', 10), ('N', 11), 

('[', 12), (']', 13), ('2', 14), ('-', 15), ('+', 16), ('n', 17), ('3', 18), ('H', 19), ('@', 20), ('F', 21), 

('S', 22), ('.', 23), ('l', 24), ('/', 25), ('4', 26), ('s', 27), ('B', 28), ('#', 29), ('r', 30), ('o', 31), 

('\', 32), ('P', 33), ('I', 34), ('5', 35), ('i', 36), ('a', 37), ('K', 38), ('e', 39), ('Z', 40), ('L', 41), 

('U', 42), ('Y', 43), ('6', 44), ('u', 45), ('R', 46), ('T', 47), ('M', 48), ('A', 49), ('g', 50), ('t', 

51), ('b', 52), ('W', 53), ('d', 54), ('f', 55), ('V', 56), ('h', 57), ('7', 58), ('G', 59), ('p', 60), 

('8', 61), ('m', 62), ('9', 63), ('E', 64), ('D', 65), ('%', 66), ('y', 67), ('0', 68), ('*', 69), ('X', 

70), ('k', 71)]. The meaning of each character in SMILES can be found in the original 

literature35. The non-canonical SMILES and canonical SMILES share the same 

vocabulary in this work. 

Similar to NMT tasks, the SMILES Transformer model is trained on a translation 

task of non-canonical SMILES to canonical SMILES. Considering the much smaller 

size of the vocabulary used here (71 different characters for all involved SMILES 

strings) than common NMT tasks (several thousands of different words) and the less 

complicacy of SMILES canonicalization task, the numbers of Transformer block, heads 

in multi-head attention and units for the output is decreased from 6, 8 and 512 to 3, 4 

and 128, respectively, with reference to the original paper39. A dropout rate of 0.1 (the 

same as the original paper) is used for model regularization. The Transformer model is 

trained for 10 epochs by Adam optimizer57 with a base learning rate of 0.001. The 

learning rate is multiplied by a factor of 0.5 for each epoch after four epochs of training. 

The Masked Softmax Cross Entropy Loss49 is used as the loss function for pre-

training and is implemented by the gluonnlp.loss.MaskedSoftmaxCELoss() function. To 



validate the pre-training model, 100,000 and 100,000 SMILES are randomly split from 

the pre-training dataset after augmentation (contains 94,340,700 SMILES) to form the 

validation set and test set, respectively, while the rest of the pre-training dataset is kept 

as model training set. 

3.3.2 Fine-tuning using CNN for IL properties prediction 

To train the Transformer-CNN model for IL properties prediction, the 11 IL 

property datasets are utilized to train 11 sets of weights of the same CNN structure, 

while the weights of the IL SMILES Transformer encoder are pre-trained on the 

PubChem dataset and frozen in all the 11 models. For the model development, 10-fold 

cross-validations (CVs) on each of the 11 IL property datasets are first performed to 

determine the model hyper parameters (dropout rate and the size of fully connected 

layers). The mean squared error (MSE) function (L2 loss) is used as the loss function 

for all the 11 IL properties. Optimal values of the hyper parameters are obtained by 

performing an extensive grid search (output size of fully connected layer: 128, 256, 512, 

1024; dropout rate: 0.05, 0.1, 0.3, 0.5, 0.7). 

4 RESULTS AND DISCUSSION 

4.1 Performance of the IL SMILES Transformer model 

To assess the performance of the IL SMILES Transformer model, two measures 

that capture different aspects of the model performance are considered. One is the 

BLEU (Bilingual Evaluation Understudy) score67, which is a standard metric used for 

the evaluation of a given translation (the output canonical SMILES of the SMILES 

Transformer) against the reference translation (the original canonical SMILES). As 

shown in Figure 5, both the validation and test BLEU scores evolve with the training 

epochs and become stable at nearly 99.5 after the eighth epoch. The second measure is 

the translation accuracy computed by the perfect matches between the predicted and 



the actual canonical SMILES. From Table 2, over 94% correctly canonicalized 

SMILES are achieved by the model for both the validation and test set. Even for 

molecules with stereo- or cis/trans conformers, the translation accuracy for both sets is 

still higher than 84% and 90%, respectively. Moreover, although 6% of the predicted 

SMILES is not a perfect match with the actual canonical SMILES, the average 

similarity (calculated using the SequenceMatcher routine in python that matches the 

longest continuous matching sub-sequence) between these 6% predicted SMILES and 

their canonical SMILES is 89.75% on the test set and 89.94% on the validation set. 

This similarity value shows that even 6% of the predicted SMILES do not match 

perfectly, they are still very close to the actual canonical SMILES. These results well 

demonstrate the high performance of the pre-trained SMILES Transformer model in 

capturing molecular features from IL SMILES. 

Table 2. Number of perfect matches between the predicted and the actual canonical SMILES on the 

test and validation set. 

Strings All Correctly canonicalized 

All on test set 100,000 94,329 (94.33%) 

All on validation set 100,000 94,243 (94.24%) 

Stereo (with @) on test set 14,777 12,668 (85.73%) 

Stereo (with @) on validation set 14,945 12,679 (84.84%) 

Cis/trans (with / or \) on test set 9,226 8,426 (91.33%) 

Cis/trans (with / or \) on validation set 4,123 3,750 (90.95%) 

 



 

Figure. 5. Learning curves: learning rate (axes bottom and right) and BLEU score (axes bottom 

and left) on the validation and test set. 

4.2 Performance on IL properties modeling 

To prove the performance of the proposed IL SMILES Transformer-CNN model 

for predicting IL properties, state-of-the-art models in recent literature24–26,28–30,58 are 

chosen for comparison. For the sake of a fair comparison, this work trains all the IL 

SMILES Transformer-CNN models on the same IL property databases as in the 

corresponding references. Moreover, two different test set split strategies are also 

compared for IL properties related to temperature and/or pressure. One is the direct split 

of all data points as used in the references and the other is the more rigorous split by 

different ILs. 

The comparative results for the 11 IL properties are summarized in Table 3. As can 

be seen, for the properties only related to the molecular structure of ILs (namely melting 

point, glass transition temperature, thermal decomposition temperature, and 

cytotoxicity towards the leukemia rat cell line IPC-81), the prediction error (mean 

absolute error, MAE) of the models proposed in this paper is overall lower than that of 

the reference models reported in literature. These results indicate that the pretrained 



SMILES Transformer can extract the structural features of ILs better than the various 

descriptors used in literature, especially when the database of IL properties is small (e.g., 

toxicity and thermal conductivity). In this sense, the adopted pre-training and fine-

tuning method in this paper is a good way to solve the problem of insufficient 

experimental data in predictive property modelling. For properties also related to 

temperature and/or pressure (namely heat capacity, refractive index, density, viscosity, 

surface tension, CO2 solubility, and thermal conductivity), the Transformer-CNN 

models outperform all the reference models on the test set split by data points. Notably, 

the Transformer-CNN models still have comparable and even lower MAE (for the 

properties of density, viscosity, and thermal conductivity) on the test set rigorously split 

by ILs than the reference models do on the test set split non-rigorously by data points. 

This comparison proves that it can achieve higher prediction accuracy by using CNN 

structure to handle different types of input than the non-neural network reference 

methods. 

It should be mentioned that some of the above references have also tried to use 

neural network based methods in their model development; however, the neural 

network methods constructed in these references cannot achieve better prediction 

accuracy compared with the models listed in Table 3. The reason is that the database 

size of most of such IL properties database is not large enough to train a neural network 

model with a high enough prediction accuracy, leading to the selection of other 

statistical ML methods instead. The results here prove that pre-training on unlabeled 

datasets can solve the problem of insufficient labeled data, and the predictive model 

constructed thereon by neural network based methods can obtain higher accuracy than 

statistical ML methods and can better handle multiple types of input features. 

 



Table 3. Comparison of the models reported in literature with the Transformer-CNN method proposed in this work for estimating the 11 IL properties. 

Property 
Number of data 

points 
Number of ILs Descriptor Method 

Test MAE (split 

by data points) 

Test MAE 

(split by ILs) 
Source 

𝑇𝑚(𝐾) 2212 2212 ECFP4 and CM KRR \ 29.78 Low et.al.24 

 T-CNN \ 11.15 This work 

𝑇𝑔(℃) 609 609 charge distributions and 

geometrical indices 

Cubist \ 12 Venkatraman et.al.29 

 T-CNN \ 6.77 This work 

𝑇𝑑(℃) 1223 1223 charge distributions and 

geometrical indices 

RF \ 25 Venkatraman et.al.29 

 T-CNN \ 19.19 This work 

ln(𝜂) 15368 1964 group contributions LSSVM 0.42 \ Paduszyński28 

 T-CNN 0.17 0.35 This work 

𝜌 31167 2257 group contributions LSSVM 29.76 \ Paduszyński25 

 T-CNN 12.31 16.46 This work 

ln (𝐶𝑝) 9083 236 charge distributions and 
geometrical indices 

GBM 0.19 \ Venkatraman et.al.29 

 T-CNN 0.18 0.28 This work 

𝛾 2972 331 charge distributions and 

geometrical indices 

GBM 0.0027 \ Venkatraman et.al.29 

 T-CNN 0.0014 0.0030 This work 

𝑛𝐷 3009 464 charge distributions and 

geometrical indices 

GBM 0.011 \ Venkatraman et.al.29 

 T-CNN 0.0047 0.015 This work 

𝑥𝐶𝑂2
 10116 124 group contributions SVM 0.024 \ Song et.al.26 

 T-CNN 0.022 0.057 This work 

𝑙𝑜𝑔10(𝐸𝐶50) 326 326 structural descriptors SVM \ 0.1935 Wang et.al.58 

 T-CNN \ 0.1126 This work 

𝜆 454 73 charge distributions and 
geometrical indices 

GBM 0.009 \ Venkatraman et.al.30 

 T-CNN 0.0034 0.0061 This work 

  



To more vividly show the predictive performance of the Transformer-CNN models 

proposed in this paper, the density, viscosity, and cytotoxicity of ILs are taken as 

examples to inspect the test results in more detail. As seen in Figure 6, the test set points 

of each fold in the 10-fold cross-validation for the density, viscosity, and cytotoxicity 

are distributed almost evenly in a close region around the diagonal. These examples 

prove that the CNN model can well predict different types of IL properties by fine-

tuning on the corresponding IL properties dataset based on the IL features obtained by 

the pre-trained Transformer encoder. The detailed 10-fold-cross-validation results for 

all 11 IL properties can be seen in Table S1-S18 (Supporting Information), which also 

agree with this conclusion. 

 

 



 

Figure. 6. Parity plots of predicted versus experimental data with the proposed Transformer-CNN 

method. Each color representants the test set results of one fold in 10-fold-cross validation. (a) 

Density, (b) Viscosity, (c) Cytotoxicity. 

       

 

Figure. 7. Predicted versus experimental density (a) and viscosity (b) of 1-hexyl-3-

methylimidazolium bistriflamide as a function of temperature and/or pressure. 



To further demonstrate that the Transformer-CNN model can well handle different 

inputs for property prediction, 1-hexyl-3-methylimidazolium bistriflamide 

([C6C1Im][NTf2]) is selected as a representative to examine its predicted η-T and ρ-T-

P relationship. As seen in Figure 7a, the predicted viscosity by the Transformer-CNN 

model well resembles the experimental data over a wide range of temperature. As for 

the density of [C6C1Im][NTf2], the Transformer-CNN model also provides very 

satisfactory prediction as compared to the experimental data over a wide range of 

temperature and pressure (up to T = 450 K and P = 200 MPa, respectively). These two 

examples clearly show that different types of inputs namely the IL molecular structure 

and temperature and/or pressure are properly handled by the Transformer-CNN model. 

It is worth mentioning that very few previously reported ML models have scrutinized 

whether the temperature and/or pressure dependence of such IL properties could be 

correctly captured. 

To provide a more detailed insight into the performance of the Transformer-CNN 

model, IL density is again selected as a representative property to analyze the model 

predictions for each possible combination of cationic and anionic families. The 

corresponding AARE values are obtained by averaging the test set results in 10-fold 

cross-validation. As shown in Figure 8, the AAREs for most of the involved anionic 

and cationic combinations are below 5%, which again prove that the model has a high 

prediction accuracy for IL density. Moreover, such a prediction accuracy model is found 

to be dependent on the moieties forming IL. For instance, the AAREs for the 

imidazolium-based ILs are all lower than 5%, with 13 of the 15 anionic families below 

3%; low AAREs are also observed for carboxylates ILs, except when the paired cationic 

moiety is guanidinium. The highest AARE of 15.4% is obtained for cyclic sulfonium 

cations combined with common inorganics, as such a combination only appears once 



in the entire dataset (the density prediction in this case is fully extrapolated in cross-

validation). To wrap up, the detailed analyses of the density prediction well demonstrate 

that the Transformer-CNN model could reasonably predict IL properties for different 

IL families. 

 

Figure. 8. Average absolute relative errors (AAREs) between Transformer-CNN predicted and 

experimental density for different combinations of cationic and anionic families of ILs. Empty 

cell means that the experimental data have been not available yet. 

5. Model application case study: CO2 absorbent screening 

From the IL SMILES Transformer-CNN models obtained above, the 11 IL 

properties can be reliably and quickly predicted, allowing for many applications such 

as the high-throughput IL screening toward different processes. Herein, the screening 

of ILs as CO2 absorbent is presented as an illustrative case study. 

When screening ILs for CO2 capture processes, the following IL properties are of 

great importance: (1) The capacity of IL to absorb CO2 can be evaluated by the gas 

solubility in ILs at the desired absorption temperature, while the desorption 

performance of IL can be estimated by the difference in the CO2 solubility at the desired 



absorption temperature and desorption temperature, respectively. (2) The melting point, 

viscosity, thermal decomposition temperature, toxicity, and heat capacity of ILs should 

be considered as constraints because all these properties determine the feasibility and 

suitability of ILs as absorbent.68–70 To be specific, the melting point limits the lowest 

absorption temperature of ILs as liquid CO2 absorbents; the thermal decomposition 

temperature limits the highest temperature for CO2 desorption; the energy consumption 

of solvent regeneration can be assessed from the heat capacity of IL; the toxicity is a 

key factor related to the potential EHS impacts of ILs. All the above properties can be 

calculated by the Transformer-CNN models developed in this work. 

In this case study, a virtual library of 8,333,096 (219,216 cations combined with 

38 anions) synthetically feasible ILs as suggested by Venkatraman et al.30 is used as the 

initial candidate database. By using the Transformer-CNN models, the CO2 solubility 

of ILs at 298 K and 328 K (P = 1 bar) are calculated for evaluating the absorption and 

desorption performance of ILs; the heat capacity (𝐶𝑝 (J/K)), and viscosity (η (mPa·s)), 

under 1 bar and 298 K, as well as the melting point ( 𝑇𝑚 (𝐾) ), cytotoxicity 

(𝑙𝑜𝑔10(𝐸𝐶50)), and thermal decomposition temperature (𝑇𝑑 (𝐾)) are also predicted. As 

the calculation speed of the Transformer-CNN model for IL properties is very fast, a 

database of the seven properties for all the 8,333,096 candidate ILs is obtained in 

around 14 hours (2 hours per property) on a laptop equipped with a RTX3070 GPU. 

Apply the following constraints namely 𝑇𝑚< 298 K, 𝑇𝑑> 150 ℃, 𝑙𝑜𝑔10(𝐸𝐶50)> 3, 

and η< 100 mPa·s, a high-throughput screening over the entire IL database is performed, 

which retains 18 ILs meeting all the four constraints (as illustrated in Figure 9, see 

detailed information of these ILs in the Supporting information Table S19). Among 

them, 8 ILs are basically located on the pseudo pareto front of all the candidate ILs in 

terms of the potential absorption and desorption performance. It should be noted that 



the four ILs in the lower right corner of Figure 9 are excluded due to too small solubility 

of CO2 at the absorption temperature. Of course, the selected constraints could be 

properly relaxed if one would like to keep a larger set of ILs for further study. 

 

Figure 9. Illustration of the high-throughput IL screening in terms of the potential absorption 

and desorption performance. 

The predicted properties of the 8 retained ILs are listed in Table 4 and their 

molecular structures are shown in Figure 10. These 8 ILs are highly worth investigating 

by experiment in future studies as they are survivals from 8,333,096 candidates. It is 

worth mentioning that this case study is for the first time that such a huge database of 

ILs is considered for a high-throughput solvent screening toward a specific process, 

which benefits from both the high prediction accuracy and fast calculation speed of the 

proposed Transformer-CNN models. 

Table 4. Predicted properties of the 8 retained ILs from high-throughput IL screening. 

IL ID 𝑪𝒑(J/K) 𝑻𝒎(𝑲) 𝒍𝒐𝒈𝟏𝟎(𝑬𝑪𝟓𝟎) 𝑿𝑪𝑶𝟐,𝟐𝟗𝟖𝑲 𝑿𝑪𝑶𝟐,𝟑𝟐𝟖𝑲 η(mPa·s) 𝑻𝒅(𝑲) 

3219685 539.04 296.92 3.48 0.0704 0.0175 76.85 212.54 

3252213 630.81 292.92 3.41 0.0360 0.0006 94.40 263.32 

3257267 487.29 285.92 3.14 0.0485 0.0056 48.70 169.71 

3257305 541.49 262.31 3.11 0.0465 0.0045 59.35 185.38 

3257343 577.75 262.85 3.21 0.0367 0.0008 74.32 183.15 

3257533 623.95 294.67 3.40 0.0431 0.0030 74.57 171.23 

3258445 521.51 284.80 3.40 0.0397 0.0017 52.46 201.99 



3259535 803.36 275.87 3.21 0.1089 0.0545 86.40 191.64 

 

Figure 10. Molecular structures of the 8 retained ILs from high-throughput IL screening. 

6 Conclusion 

In this work, a novel pre-training and fine-tuning two-stage framework is proposed 

to better exploit numerous unlabeled molecular data and overcome problems caused by 

limited training data in IL properties modelling. The pre-trained SMILES Transformer 

utilizes the power of unlabeled molecular data through a large-scale (9,434,070 

molecules) pre-training through a translation task of non-canonical SMILES to 

canonical SMILES. The labeled IL properties datasets could be easily fine-tuned using 

CNN architecture with the pre-trained SMILES Transformer as IL feature extractor. It 

is found that the proposed neural networks can also handle multiple types of input 

features very well. In experiments on 11 diverse benchmark datasets, the proposed 

Transformer-CNN method surpasses various state-of-the-art methods reported in 

literature. Moreover, the prediction of IL properties by the proposed Transformer-CNN 

model is very computationally efficient, which enables high-throughput IL screening 

toward a specific task. As a case study, a large virtual library of 8,333,096 synthetically 

feasible ILs is used for CO2 absorbent screening. Seven IL properties closely related to 

CO2 capture process performance are calculated using the proposed Transformer-CNN 



model for all the 8,333,096 ILs, finally retaining 8 ILs that meet all desired constraints. 

The model proposed in this work provides a one-stop solution for IL researchers, 

that is to use the same Transformer-CNN model structure to predict all IL properties 

with good prediction accuracy. With the support of the reported models, high-

throughput IL screening could be applied to other chemical engineering processes in 

future work. Besides, the Transformer-CNN approach could also be extended to 

develop other important molecular property models, which are currently limited by 

small available databases. 
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