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Abstract

Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche-
space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history.
Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of homoplasy, and many
convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent
genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct
the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on
somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our
results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and
burrowing/nesting taxa with structurally-modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche,
in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa
inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same
behavioral niche often more similar morphologically than more closely-related but behaviorally-divergent taxa, and we were able
to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings
in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the
mygalomorph adaptive landscape relative to other spiders.
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RUNNING HEAD: Morphological convergence in mygalomorph spiders

Abstract

Understanding the drivers of morphological convergence requires investigation into its relationship with
behavior and niche-space, and such investigations in turn provide insights into evolutionary dynamics, func-
tional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been
associated with high levels of homoplasy, and many convergent features can be intuitively associated with
different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly as-
sembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution
of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history
on somatic morphology, and test hypotheses of correlated evolution between specific morphological features
and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic,
web-building taxa at one end, and burrowing/nesting taxa with structurally-modified burrow entrances (e.g.,
a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary
history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes.
Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often
more similar morphologically than more closely-related but behaviorally-divergent taxa, and we were able
to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We
discuss these findings in light of the function of particular morphological features, niche dynamics within the
Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.

KEYWORDS: adaptive landscape, niche dynamics, morphological parallelism, comparative
phylogenetic methods, supertree, chronogram, phylogram.

1 | INTRODUCTION

Convergent evolution, the independent evolution of similar phenotypes, has long fascinated biologists because
it represents natural replicates of the evolutionary process (Darwin, 1859; McGhee, 2011). It is traditionally
seen as straightforward evidence of adaptation to similar environmental pressures (Mayr, 2013; Simpson,
1953), yet recent studies have highlighted other contributing factors and encouraged a more nuanced view
(Conway Morris, 2010; Losos, 2011; Stayton, 2015). Firstly, the important role of evolutionary constraints
has been emphasized (Conway Morris, 2010; McGhee, 2011). Without constraints on the adaptive landscape
of an organism, the same niches need never arise, and even when they do, lineages may evolve different
traits to overcome the same niche-specific function (Losos, 2011). Furthermore, when constraints are strong
enough, morphological convergence may occur for reasons other than adaptation to environmental pressures,
or simply by chance (Losos, 2011; Stayton, 2008). Understanding the drivers of morphological convergence
in a group therefore requires not only identification of the phenomenon itself, but further investigation into
its relationship with behavior and niche-space. Such broad, combined analyses of morphology and behavior
in turn provide insights into the evolutionary dynamics, functional morphology, and life history of the study
group, as demonstrated in recent analyses on birds (Pigot et al., 2020), mammals (Sansalone et al., 2020),
and marine tetrapods (Kelley & Motani, 2015), yet equivalent studies on invertebrates are few (Ceccarelli
et al., 2019).

The spider infraorder Mygalomorphae, often called ‘primitive spiders’, currently contains 31 families of
relatively large, robust spiders that generally live sedentary lives in permanent retreats or burrows (Bond et
al., 2012; Opatova et al., 2020; Raven, 1985). It includes species commonly known as tarantulas, trapdoor
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spiders, and funnel-web spiders. The group has a tumultuous taxonomic history, but the first major work,
bringing some order to the chaos, was that of Raven (1985). This exhaustive morphological review, and
the accompanying cladistics-based phylogeny, served as the foundation of mygalomorph systematics for
two decades and remains the most complete synopsis of mygalomorph morphology available. However, the
implementation of molecular methods has revealed phylogenetic relationships in stark discordance with those
deduced from morphology: over half the traditional families were revealed to be paraphyletic and accepted
interfamilial relationships have changed dramatically (Bond et al., 2012; Hedin et al., 2018, 2019; Hedin
& Bond, 2006; Montes de Oca et al., 2022; Opatova et al., 2020). With the recent taxon-rich, genomic
phylogeny of Opatova et al. (2020), accepted mygalomorph relationships have largely stabilized. What is still
required, however, is a reconciliation of mygalomorph morphology and behavior with this new phylogeny, to
understand the broad evolutionary patterns in the group that were previously obscured by taxonomic and
phylogenetic uncertainty and instability.

One pattern that is often proposed to explain the discordance between morphological and molecular hy-
potheses of mygalomorph relationships is convergence in somatic morphology associated with life history
characteristics (Hedin et al., 2019; Hedin & Bond, 2006; Opatova et al., 2020). The retreats of these spiders
come in a diversity of forms including, among many others: funnel-like silken retreats built in crevices with
extensive capture webs; burrows in the ground with or without a trapdoor entrance; and short nests con-
structed against tree trunks (Coyle, 1986). Reconstructions of these ‘behavioral niches’ on new molecular
phylogenies have consistently found that each has evolved several times across mygalomorphs (Hedin et al.,
2019; Opatova et al., 2020). Intuitive associations between particular niches and somatic characters have long
been recognized, for example, between elongate posterior lateral spinnerets and the construction of capture
webs (Chamberlin & Ivie, 1945; Eskov & Zonshtein, 1990) and between strong lateral ‘digging spines’ on the
anterior legs and the construction of burrows (Goloboff, 1993; Raven, 1985). However, to date neither the
overarching influence of convergence on mygalomorph morphology, nor specific patterns of correlation with
behavior of any morphological feature, have ever been specifically tested.

The aim of this study is to characterize what is potentially a major evolutionary trend in the Mygalomorphae
– the adaptive convergence of somatic morphology in correlation with the behavioral niches inhabited by
the group. Using a selection of recent, robust genomic phylogenies available in the literature, we construct
a genus-level phylogram and chronogram, and a taxon-rich supertree. Next, we score all genera in these
trees for a discrete dataset of two behavioral and 55 somatic-morphological characters. We then perform the
most detailed reconstruction of behavioral niche in the Mygalomorphae to date, to understand patterns of
convergence in behavioral niche and the association between retreat type and retreat-entrance type. Next,
to compare the influence of behavioral niche and evolutionary history on general somatic morphology we
perform non-metric multidimensional scaling on the full morphological dataset, visualizing somatic variation
in morpho-space. Finally, we test for correlation between a subset of morphological features and particular
behavioral niches to shed light on the function of these features and the drivers of adaptive convergence in
the Mygalomorphae.

2 | MATERIAL AND METHODS

2.1 | Phylogeny selection and supertree construction

We constructed three genus-level phylogenies using publicly-available data. For analyses requiring informative
branch lengths, we used the RAxML (Stamatakis, 2014) phylogram and treePL (Smith & O’Meara, 2012)
chronogram of Opatova et al. (2020) both generated using an anchored hybrid enrichment (AHE) dataset
consisting of 472 loci. We used the R-package ape (Paradis et al., 2004) to prune these trees down to a
single representative per genus and a single outgroup (Liphistius : Liphistiidae), resulting in an 89-taxon
genus-level chronogram and phylogram.

For analyses not requiring informative branch lengths, we constructed a more inclusive supertree using several
recent mygalomorph-focused genomic phylogenies. We downloaded the maximum-likelihood phylogenies of
Opatova et al. (2020) – Mygalomorphae-focused (AHE data); Hedin et al. (2018) – Atracidae-, Actinopodidae-
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, and Hexathelidae-focused (ultra-conserved elements [UCE]); Hedin et al. (2019) – Atypoidea-focused (UCE);
and Montes de Oca et al. (2022) – Nemesoidina-focused (AHE). For the latter, the raw tree file was not
available, so we generated a new maximum-likelihood phylogeny using IQtree (Nguyen et al., 2015) using
the alignment and partition files from the study (Appendix A). We pruned these phylogenies down to a single
representative per genus, rooted them, and used them as input trees for supertree construction using matrix
representation with parsimony (MRP) in the R-package phangorn (Schliep, 2011), resulting in a 110-taxon
final supertree (Fig. 1). The supertree topology was uncontroversial except in the position of the Venom
Clade + Stasimopidae (from here on referred to as the Venom Clade+), which was recovered as either sister
to the Domiothelina or of the clade including the Domiothelina and Crassitarsae. We chose to use the first
of these topologies as it agrees with Opatova et al. (2020), which represents the most robust mygalomorph
phylogeny currently available.

2.2 | Behavioral and morphological character scoring

By combining a semi-exhaustive literature review with exemplar cross-checking, we then scored two behavi-
oral characters and 55 morphological characters (see Appendix B for character information, Wilson et al.,
2022a for character matrix, dataset references and exemplar information) for all 110 genera in the supertree.
Behavioral characters relate to retreat construction method and retreat-entrance type and are defined below.
To score these characters we made extensive use of Coyle (1986), which remains the most thorough review of
mygalomorph burrowing behavior to date, and then cross-checked this with taxon-specific literature (Wilson
et al., 2022a). The 55 morphological characters are all somatic, macro-morphological features (Appendix B).
These were scored exclusively from adult females because adult male morphology is at least partially adapted
for the terrestrial dispersal phase that they undergo, whereas female morphology is more representative of
the general morphology of the species (in that juveniles of both sexes resemble adult females) and is pre-
sumably adapted to the sedentary lifestyle of the species. Most of our morphological characters correspond
closely with those scored in previous morphological analyses of the Mygalomorphae (Bond et al., 2012; Bond
& Opell, 2002; Goloboff, 1993, 1995; Raven, 1985), but we have restructured characters following the logic
for character/state structure outlined by Sereno (2007) and modified character and state definitions to de-
crease ambiguity. These previous studies were used extensively during character scoring, with taxon-specific
literature and exemplar specimens then cross-checked when available (Wilson et al., 2022a).

BEHAVIORAL CHARACTERS

Retreat construction method: Opportunist – taxa that usually inhabit existing spaces (e.g., cracks and
overhangs in embankments, spaces under rocks and within logs) rather than digging/constructing a retreat
= 0; obligate burrower – taxa that usually dig their own tubular burrow directly into the substrate = 1;
nest-builder – taxa that construct short, silken nests, which are attached directly to the substrate (often on
trees, cave walls, or sometimes directly to the ground) = 2.

Retreat entrance, type: web – extensive use of silk outside the entrance to the retreat to form a flat sheet,
a funnel, or a space/curtain web = 0; open – an unmodified, circular opening to the retreat (which may
temporarily be covered with silk or soil by the spider) = 1; turret – an entrance that is open, but modified
to extend from the substrate through the use of silk and/or soil = 2; collar – an entrance that is closable
through the use of a silken collar that collapses inward = 3; trapdoor– an entrance that is closed with a ‘door’
constituting an asymmetrical extension of the burrow lining (often mixed with soil and/or humus fragments),
allowing the demarcation of one side of the burrow as the ‘hinge’ side = 4; purse – an extension of the burrow
lining that lies along the substrate or is attached vertically to a surface, is rough and camouflaged, through
which the spider ambushes prey = 5.

2.3 | Analyses

To understand the evolution of behavioral niche in the Mygalomorphae and identify cases of niche conver-
gence, we conducted ancestral state reconstruction (ASR) on our two behavioral characters. We compared
the results of two methods: we conducted a maximum-likelihood (ML) approach (Pagel, 1999) on the genus-
level phylogram and chronogram using thecorHMM R package (Beaulieu et al., 2021), and the Maximum
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Parsimony (MP) approach (Swofford & Maddison, 1987) on the supertree using Mesquite v3.51 (Maddison,
2008). For the ML reconstructions, we compared AICc scores across both alternate branch length sets (i.e.,
the chronogram and phylogram, see Wilson et al., 2022b) and across alternate state-transition models, and
chose the branch-length set and model that minimized AICc (Appendix C).

Next, to visualize how mygalomorph somatic morphology relates to the behavioral niches that they inhabit,
we conducted non-metric multi-dimensional scaling (NMDS) using the complete 55-character morphological
dataset, revealing the position in two dimensional ‘morpho-space’ of all genera included in the study and
the behavioral/ecological optima present in the infraorder. This analysis involved first calculating the Gower
similarity coefficient (Gower, 1971) between all pairs of taxa based on the morphological characters, using
the Claddis R-package (Lloyd, 2016) before using the resultant pairwise-similarity matrix to conduct the
NMDS analysis, using the R-package vegan (Oksanen et al., 2013).

Finally, to identify the specific morphological features associated with different behavioral niches, and thereby
better understand their function, we conducted a series of phylogenetic tests for correlated evolution between
morphological features and behavior (Table 1). A morphological feature was tested for correlation with
behavior if: (i) an association between the feature and behavior has been proposed previously in the literature;
(ii) the function of the feature is known and is tied with a particular behavior; or (iii) a strong association
between a feature and behavior was perceived while scoring characters for this study. We tested all selected
morphological features for correlation with five key behaviors, all of which have evolved multiple times in
mygalomorphs: (a) construction of a web (sheet, funnel, or curtain) at the entrance to the retreat; (b)
opportunistic retreat construction (as opposed to construction of a burrow or nest); (c) construction of a
burrow; (d) structural modification of the retreat entrance (with a purse, collar, turret, or trapdoor); and
(e) construction of a hinged trapdoor at the retreat entrance.

We tested hypotheses in two steps. Firstly, we used the pairwise comparisons method (Maddison, 2000; Read
& Nee, 1995) to test correlation between each morphological feature and all five behaviors. This method was
applied as a stringent first pass because it is relatively robust to the ‘pseudoreplication problem’ that causes
many other phylogenetic correlation tests to identify significant correlation in questionable scenarios (see
Maddison & FitzJohn, 2015). Because this method does not consider branch lengths, it was conducted using
the supertree to benefit from the additional taxa. The analysis was performed twice for each character,
the first time using only pairs that contrasted in both characters (i.e., morphology and behavior), and the
second time using pairs that varied in at least one of the two characters (i.e., morphology and/or behavior)
(Maddison, 2000; Read & Nee, 1995). For each approach we identified 1000 alternative pairing schemes, and
from these we took the highest possible P -value as our significance threshold, thereby reducing the chance
of type-1 error.

After using this first step to identify significant cases of correlation, we then analysed these cases using
Maximum Likelihood methods (sensu Pagel, 1994). For each case, we generated likelihood values using four
different structured-Markov models: a model of independence (i.e., no correlation), and of morphological
dependence on behavior, behavioral dependence on morphology, and morphological/behavioral interdepen-
dence (i.e., three alternate models of correlated evolution). We then estimated the delta-AICc for these four
models to assess their relative strength. This allowed us not only to compare the aforementioned models
of independence and dependence for each particular case (the best model will have a delta-AICc of 0), but
also provided a way to compare hypotheses of correlation between a particular morphological feature and
alternate behaviors, with the expectation that the strongest hypothesis will return the highest delta-AICc
value for the independent model (indicating the relative weakness of this model compared to the strongest
model of correlation for that feature/behavioral combination).

Table 1. Morphological features tested for correlation with behavior, with a justification for
their inclusion. C-numbers listed after each feature denote the relevant character in the mor-
phological character matrix (Appendices S1, 2). See Fig. 3 for representations of these features
on spider schematics.
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Features Justification
Spinnerets: Elongate posterior lateral spinnerets
(C11) Widely-separated spinnerets (C2)
Pseudo-segmented apical segment of posterior
lateral spinnerets (C10) Short apical segment of
posterior lateral spinnerets (C9)

An association between “Dipluridae type” posterior
lateral spinnerets, which are elongate and widely
separated, and the construction of webs (sheet,
funnel or curtain) has been proposed previously
(Chamberlin & Ivie, 1945; Coyle, 1971; Eskov &
Zonshtein, 1990). In some taxa with this spinneret
type (and none without it) the spinnerets are
pseudo-segmented, so this is also presumably
associated with the same behavioral niche. At the
opposite end of the spectrum, spinnerets with very
short apical segments (traditionally called ‘domed’
or ‘triangular’ apical segments) show a clear
pattern of association with burrowing spiders,
many of which modify their burrow entrance.

Chelicerae and mouthparts: Presence of a rastellum
(C51) Presence of a serrula (C43)

Observations of burrowing behavior indicate that
the rastellum is used during burrow excavation
and/or for modifying the burrow entrance (Coyle,
1971, 1981; Nascimento et al., 2021). Although the
function of the serrula in Mygalomorphae is not
well-established, we observed a potential
association with spiders that construct
opportunistic retreats and/or that do not construct
a burrow. This is perhaps most evident in the
Atypoidea, where the serrula is present in all
species that show opportunistic
retreat-construction habits (Hexurella,
Mecicobothrium, Megahexura, and Hexura), and is
absent in all genera that burrow (all Atypidae,
Aliatypus, Atypoides, and Antrodiaetus).

6
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Chaetotaxy of the anterior legs: Digging spines on
legs I-II (C18) Presence of scopulae on the anterior
tarsi/metatarsi (C20)

Strong lateral spines on at least metatarsi I-II, but
usually also the tarsi and tibiae (previously called
‘digging spines’) have previously been associated
with burrowing and/or trapdoor construction, and
potentially prey capture (Raven, 1985). However,
we observed that even in burrowing spiders, species
with scopulae rarely possess these spines. We
therefore hypothesized a positive correlation
between digging spines and burrowing behaviors,
but only when scopulae were not present. Scopulae
have been studied extensively (Pérez-Miles et al.,
2017; Wolff et al., 2013; Wolff & Gorb, 2012), with
their major functions proposed as prey capture and
locomotion. Pérez-Miles et al., (2017) identified an
association between scopulae and particular
burrowing behaviors, so we also tested this feature
for correlation here as well. Characters of the tarsal
extremities were not analyzed, as most showed no
obvious association with behavioral niche (e.g.,
claw tufts and biserially dentate paired claws
appear to have few or single origins and have rarely
been lost despite the groups in which they are
found inhabiting a range of behavioral niches) and
we believe more subtle characters of claw dentition
deserve more detailed attention prior to tests of
association with behavior.

Chaetotaxy of the posterior legs: Leg III thicker
and at least as long as leg II (C13) Spines of leg III
mostly dorsal (C14) Patella III with pro-dorsal
patch of >3 thorn-like setae (C15)

Behavioral observations have shown that in
burrowing spiders leg III, and the posterior legs
more generally, are used to anchor the spider in
place in the burrow and for propulsion (presumably
during prey capture) (Bond & Coyle, 1995; Coyle,
1981; Decae & Bosmans, 2014). We have observed
that in burrowing spiders the posterior legs are
generally larger relative to the anterior legs, have
spines positioned mostly dorsally, and may be
modified in other ways, either possessing a tibial
saddle (a concave, asetose section of cuticle) or a
patch of thorn-like spines on pro-dorsal patella III
(and sometimes also on patella IV). We
hypothesized that these characters are probably
correlated with burrowing or entrance modification
of some kind, and tested all of them except the
tibial saddle, because this character is rare and
restricted to relatively closely related taxa.

7
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Eye group: Presence of a common tubercle C25) A
compact, rectangular eye group (C22–23) A wide
eye group (C22) Anterior lateral eyes in an
advanced position relative to anterior median eyes
(C23)

If we consider the ‘standard’ eye group to be a
compact rectangle on a common tubercle, then this
is modified in several ways within the
Mygalomorphae. Firstly, the tubercle may be
absent. Secondly, the formation of the eyes may be
modified, with two common modifications being a
widening of the eye group (e.g., in Actinopodidae
and Migidae) or the anterior lateral eyes being
positioned far advanced of the others (e.g., in
Barychelidae and some Idiopidae). We observed
that all modifications mentioned above are more
common in spiders that modify the burrow
entrance, and virtually never occur in
non-burrowers, and therefore tested these
characters for correlation with behavior.

3 | RESULTS

3.1 | Reconstruction of behavioral niche

Ancestral state reconstructions of retreat type and entrance type resulted in largely consistent and comple-
mentary evolutionary patterns (Fig. 1), and there are clear associations between the two: web-building taxa
are almost all opportunists, taxa that modify their burrow entrance with a purse, turret, collar, or trapdoor
are almost always burrowers or nest-builders, and nest-builders always have a trapdoor.

In the MP analyses, the ancestral mygalomorph and the ancestors of both the Atypoidea and the Avicular-
ioidea were recovered as opportunists with web entrances (funnel, sheet, or space webs). The ML analyses
contrasted with this in recovering the most likely state for the ancestral mygalomorph as a burrower, and the
ancestral atypoid as a burrower with a purse-web entrance. However, these differences are likely due to the
absence of several opportunist, web-building atypoid taxa from the ML analysis (Hexurella , Mecicobothrium
, Megahexura ) and we therefore prefer the hypothesis of the more taxon-rich MP analysis.

Assuming an opportunist ancestor, obligate burrowing has arisen at least four times independently in the
Mygalomorphae: in the Atypoidea (Atypidae and Antrodiaetidae), the Euagridae (some Cethegus ), the
Hexathelidae (Mediothele , Plesiothele , and someScotinoecus and Hexathele ), and in the ancestor of the
Bipectina (-Paratropididae). Most of the early branching avicularioid families have opportunistic, web-
building ancestors, however the ancestral hexathelid was recovered as ambiguous in the MP analysis (which
has several additional hexathelid taxa) being either an opportunist with a web entrance, or a burrower with
an open entrance.

We recovered the ancestor of the Bipectina (-Paratropididae) as a burrower with a trapdoor entrance, and
this behavior was retained in the ancestor of three of the four major bipectine clades: the Venom Clade+,
the Domiothelina, and the Theraphosoidina. The ancestor of the Nemesioidina, however, was recovered as
a burrower with an open entrance. In the Venom Clade+ , burrowing and trapdoor-building have both
been lost in the Atracidae, most of which are opportunists with web-entrances (Atrax and many Hadronyche
). In the Domiothelina, the burrowing and trapdoor-building combination is largely conserved, but the
trapdoor has been lost several times independently in favor of an open entrance or another type of entrance
modification (collar or turret). Nest-building has also evolved at least three times independently in the
Domiothelina (in the Idiopidae, Halonoproctidae and Migidae), always from burrowing, trapdoor-building
ancestors, and all nest-builders retain the trapdoor. This nest-building + trapdoor niche evolved in the
same way in the Theraphosoidina, in the Barychelidae. Although our analysis includes only a fraction of
theraphosid diversity, we recovered the ancestral tarantula as a burrower with an open hole. Finally, in
the Nemesioidina almost the full spectrum of behaviors has evolved from the burrowing + open-entrance
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ancestor: trapdoors and other entrance modifications have evolved several times, as has opportunism, and
the ancestral mygalomorph niche of opportunism + web-construction has evolved in the Dipluridae.

Overall, behavioral niche-space in the Mygalomorphae can be described in terms of two extremes: at one
end are opportunists that build webs at the entrance to the burrow, and at the other are burrowers and
nest-builders that structurally modify their burrow entrance. Intermediate taxa usually burrow, but neither
construct a web nor structurally modify their entrance. Shifts across this niche space in both directions
have been common in mygalomorph evolution, with almost all major clades including representatives of
several/most behavioral niches, despite disparate evolutionary histories (Fig. 1).

Figure 1. Evolution of behavioral niche in the Mygalomorphae. The top panels show ancestral
state reconstructions of retreat construction method (left) and retreat-entrance type (right)
with the key to states below the reconstructions. Complete cladograms show reconstructions
using Maximum Parsimony (MP) on our supertree, and partial phylograms and pie charts
show relevant sections of the Maximum Likelihood (ML) reconstructions, conducted on the
genus-level phylogeny. The bottom panel shows examples of different behavioral niches, with
the genus, niche, and photographer as follows (clockwise from top left):Namirea (Euagridae),
opportunist + web entrance, J. Wilson;Sphodros (Atypidae), burrower + purse-web entrance,
R. Deans;Hadronyche (Atracidae), opportunist + web entrance, M. Rix;Euoplos (Idiopidae),
burrower + trapdoor entrance, J. Wilson;Atypoides (Antrodiaetidae), burrower + turret en-
trance, C. Raspet; Linothele (Dipluridae), opportunist + web entrance, K. Venegas Valancia;
Kwonkan (Anamidae), burrower + collar entrance, T. Barbin; Migas (Migidae), nest-builder

9
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+ trapdoor entrance, G. Walter; Arbanitis (Idiopidae), burrower + open entrance, J. Wilson.

3.2 | Variation in somatic morphology and its relationship with behavioral niche

The NMDS ordination shows the heavy influence of behavioral niche on mygalomorph somatic morphology,
although evolutionary history also plays a role (Figure 2). A clear behavioral gradient can be seen, with
opportunistic, web-building taxa representing one extreme of the morphological/behavioral spectrum in
the bottom-left of the ordination, and burrowers and nest-builders with a trapdoor entrance representing
the other, on the right. Between these two extremes lies opportunists and burrowers with open entrances
(generally clustering slightly left of center), and burrowers with other entrance modifications besides a
trapdoor (slightly right of center).

Clearly, many aspects of somatic morphology are strongly influenced by evolutionary history, as many
major phylogenetic clades do not overlap, and the proximity of these clades to one-another is generally
reflective of their phylogenetic relationships (Figure 2). For example, the Atypoidea are at the bottom of the
ordination, separate from the Avicularioidea (all other Mygalomorphae), and the Crassitarsi (Nemesioidina
+ Theraphosoidina) and Venom Clade+ and Domiothelina form clusters. However, many of these clades are
spread widely across morpho-space from left to right, reflecting the diversity of behavioral niches that their
species inhabit.

Members of different clades with similar burrowing behaviors are often closer together in morpho-space
than members of the same clade that behave differently, presumably reflecting the convergent evolution of
morphological characters that are adapted to particular behavioral niches (e.g., see Table 2). For example,
those members of the Antrodiaetidae, Actinopodidae, Stasimopidae, and Bemmeridae that are burrowers
with structurally-modified burrow entrances all cluster closer to the Domiothelina than to other more closely
related taxa that behave differently. Indeed, the position of taxa in morphospace often mirrors previous
phylogenetic hypotheses based on morphology, for exampleAtrax (Venom clade), which has independently
evolved opportunistic habits and a web-entrance, is recovered close to the Hexathelidae, the Actinopodidae
(Venom Clade) cluster within the Domiothelina, and the bemmerid genera Spiroctenus andHomostola cluster
closest to nemesioid and euctenizid genera respectively, mirroring their previous taxonomic positions.
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Figure 2. Results of the non-metric multidimensional scaling analysis (NMDS) of mygalomorph
somatic morphology. Colors indicate major phylogenetic clades (corresponding to Figure 1),
symbols indicate burrow-entrance type, and the grey lines roughly divide taxa into oppor-
tunists (left), burrowers and non-burrowers with an open entrance (centre) and burrowers
and nest-builders with structurally modified burrow entrances (right). Genera and photogra-
phers of the habitus shots are as follows (from left to right): Linothele (Dipluridae) = M.
Ramirez; Mecicobothrium (Mecicobothriidae) = N. Ferretti;Selenocosmia (Theraphosidae)
= J. Wilson; Namirea(Euagridae) = J. Wilson; Namea (Anamidae) = M. Rix;Hadronyche
(Atracidae) = E. Yoeman; Homostola (Bemmeridae) = J. Bond; Missulena (Actinopodidae)
= J. Wilson;Antrodiaetus (Antrodiaetidae) = J. Bond; Calethotarsus = M. Ramirez. Burrow
type illustrations by J. Wilson.

3.3 | Correlated evolution of morphology and behavior

Of the morphological features that we tested for correlation with behavior (see Table 1), we identified
significant patterns of correlation in eleven (Table 2, Fig. 3). Analysis using Pairwise Comparisons (PC)
and Maximum Likelihood (ML) were largely corroborative, with strongest hypotheses of correlation returning
the strongest significance values in the PC analysis, and the highest delta-AICc values for the independent
model in the ML analysis (indicating the poor performance of this model relative to models of correlation).
Because only cases that returned significant correlation in the PC analysis were reanalyzed using ML, in
the ML analysis the independent (uncorrelated) model always performed the worst, returning the highest
delta-AICc values. Delta-AICc values were usually low for all dependent models, signifying little difference
in model-fit between different dynamics of correlation.

Patterns of correlation between the spinnerets and behavior were as expected: elongate posterior lateral spin-
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nerets, widely-spaced spinnerets, and pseudo-segmented apical segments of the posterior lateral spinnerets
were strongly positively correlated with the construction of a web at the retreat entrance and to a lesser
extent with opportunist retreat construction (almost all web-builders are opportunists), and were negatively
correlated with burrowing and entrance modification. In contrast, short apical segments of the posterior
lateral spinnerets were most strongly correlated with structural modification to the burrow entrance, and
negatively correlated with opportunism and web-building (opportunists virtually never structurally modify
their retreat entrance). The rastellum returned strong positive correlation with both burrowing and entrance-
modification, however the second pairwise comparison analysis (PC2) revealed many cases of ‘neutral change’
with respect to the rastellum and both of these behaviors. The serrula returned the opposite pattern to the
rastellum, being positively correlated with web-building and opportunism, and negatively correlated with
burrowing and entrance modification, with negative correlation with burrowing returning the strongest cor-
relation. ‘Digging spines’ did not return a significant correlation with burrowing, but instead with entrance
modification (positive). The presence of scopulae showed no correlation with any of the behaviors tested. All
modifications to the posterior legs – enlargement relative to the anterior legs, dorsal bias in macrosetation,
and presence of a thorn patch on prodorsal patella III – showed a strong positive correlation with both
burrowing and burrow-entrance modification. Finally, the presence of a common eye tubercle was positively
correlated with opportunistic burrowing (although there are many cases of neutral change, see PC2), and
a compact rectangular eye group was negatively correlated with burrow-entrance modification, however the
two specific modifications to the eye group that were tested for correlation (widening of the eye group and
anteriorly-positioned anterior lateral eyes) did not return significant correlation, despite each only occurring
in taxa with modified burrow entrances.

Table 2. Results of the correlation analysis between morphological features (Table 1) and key
behavioral traits. Significant positive correlations are indicated in green, negative in red, and
the behavior(s) most strongly correlated with a morphological feature, is in bold. Results
of PC1 follow the format: P-value (positive pairs: negative pairs). Results of PC2 follow
the format: P-value (positive pairs: negative pairs: neutral pairs). Positive pairs represent
phylogenetically independent pairs of taxa that contrast in both the morphological feature and
the behavior in a pattern indicating paired loss or paired gain of this feature and behavior.
Negative pairs show the opposite pattern, indicating that when one character is lost the other
is gained, or vice-versa. In neutral pairs, the phylogenetically independent taxa vary in just
one of the two characters (neutral pairs are not included in PC1). In the ML analysis, a
delta-AICc of 0 indicates the best-fitting model for that hypothesis, and in alternate models,
the larger the delta-AICc value, the worse that model performs relative to the best model.
Greater delta-AICc values in the independent model indicate stronger cases of correlation
(because this indicates the relatively poor fit of the uncorrelated/independent model).

Morphological feature [y] Behaviour [x] Pairwise Comparison Analyses Pairwise Comparison Analyses Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc)

PC1 PC2 Indep x-dep y-dep Interdep
Elongate posterior lateral spinnerets (C11) Web-building 0.016 (6:0) 0.016 (6:0:1) 29.4 0.8 0.0 2.0

Opportunist 0.016 (6:0) 0.031 (5:0:4) 27.8 0.0 2.5 2.3
Burrowing 0.016 (0:6) 0.031 (0:5:7) 21.6 0.0 6.1 2.1
Entrance modification 0.03 (0:5) 0.063 (0:4:10) 24.5 0.0 13.0 2.0
Trapdoor entrance 0.125 (0:3) 0.5 (0:1:9) – – – –

Widely-separated spinneret pairs (C2) Web-building 0.016 (6:0) 0.016 (6:0:1) 29.4 0.3 0.0 2.0
Opportunist 0.016 (6:0) 0.031 (5:0:5) 27.8 0.0 2.5 2.3
Burrowing 0.016 (0:6) 0.06 (0:4:9) 21.6 0.0 6.1 2.1
Entrance modification 0.03 (0:5) 0.13 (0:3:11) 24.5 0.0 13.0 2.0
Trapdoor entrance 0.13 (0:3) 0.5 (0:1:9) – – – –

Pseudo-segmented apical segment of posterior lateral spinnerets (C10) Web-building 0.063 (4:0) 0.063 (4:0:4) – – – –
Opportunist 0.063 (4:0) 0.063 (4:0:7) – – – –
Burrowing 0.063 (0:4) 0.063 (0:4:10) – – – –
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Morphological feature [y] Behaviour [x] Pairwise Comparison Analyses Pairwise Comparison Analyses Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc)

Entrance modification 0.063 (0:4) 0.063 (0:4:10) – – – –
Trapdoor entrance 0.25 (0:2) 0.5 (0:1:9) – – – –

Short apical segment of posterior lateral spinnerets (C9) Web-building 0.125 (0:3) 0.5 (0:1:5) – – – –
Opportunist 0.03 (0:5) 0.25 (0:2:7) 20.5 3.1 1.0 0.0
Burrowing 0.34 (4:2) 0.31 (3:1:8) – – – –
Entrance modification 0.008 (7:0) 0.016 (6:0:5) 48.5 4.0 11.9 0.0
Trapdoor-building 0.008 (7:0) 0.031 (5:0:4) 38.5 5.2 0.0 1.5

Presence of a rastellum (C51) Web-building 0.03 (0:5) 0.13 (0:3:4) 12.2 7.6 0.0 2.3
Opportunist 0.008 (0:7) 0.063 (0:4:6) 14.9 4.2 0.0 1.5
Burrowing 0.004 (8:0) 0.016 (6:0:6) 23.4 2.6 0.0 1.3
Entrance modification 0.01 (9:1) 0.0078 (7:0:5) 28.6 1.3 10.2 0.0
Trapdoor-building 0.035 (7:1) 0.063 (5:0:5) 18.3 0.5 7.4 0.0

Presence of a serrula (C43) Web-building 0.016 (6:0) 0.063(4:0:4) 27.2 5.3 0.0 2.1
Opportunist 0.004 (8:0) 0.016 (6:0:5) 34.4 1.6 0.0 2.1
Burrowing 0.002 (0:9) 0.004 (0:8:6) 38.4 0.0 5.1 0.0
Entrance modification 0.001 (0:7) 0.008 (0:7:6) 26.9 0.0 1.7 0.0
Trapdoor-building 0.008 (0:7) 0.25 (0:2:8) 11.6 8.8 0.0 0.0

Digging spines on legs I-II (C18) Web-building 0.03 (0:5) 0.125 (0:3:5) 8.0 5.3 0.0 2.1
Opportunist 0.03 (0:5) 0.125 (0:3:8) 7.9 0.6 0.0 1.4
Burrowing 0.11 (5:1) 0.063 (4:0:10) – – – –
Entrance modification 0.03 (5:0) 0.063 (4:0:10) 15.5 3.1 0.0 1.5
Trapdoor-building 0.063 (4:0) 0.5 (1:0:9) – – – –

Presence of scopulae on the anterior tarsi/metatarsi (C20) Web-building 0.5 (1:2) 0.5 (1:2:5) – – – –
Opportunist 0.5 (1:2) 0.5 (1:2:8) – – – –
Burrowing 0.5 (2:1) 0.25 (2:0:12) – – – –
Entrance modification 0.125 (3:0) 0.5 (1:0:13) – – – –
Trapdoor-building 0.31 (3:1) 0.5 (1:0:9) – – – –

Leg III thicker and at least as long as leg II (C13) Web-building 0.016 (0:6) 0.063 (0:4:4) 11.4 8.8 0.0 2.2
Opportunist 0.004 (0:8) 0.063 (0:4:7) 14.4 4.7 0.0 2.0
Burrowing 0.002 (9:0) 0.031 (5:0:8) 23.0 0.0 0.6 0.1
Entrance modification 0.004 (8:0) 0.0039 (8:0:5) 27.2 1.4 0.0 1.2
Trapdoor-building 0.109 (5:1) 0.063 (4:0:4) – – – –

Spines of leg III mostly dorsal (C14) Web-building 0.016 (0:6) 0.063 (0:4:4) 7.3 3.9 1.0 0.0
Opportunist 0.004 (0:8) 0.031 (0:5:6) 11.5 2.5 3.0 0.0
Burrowing 0.002 (9:0) 0.016 (6:0:8) 20.1 0.0 5.5 0.7
Entrance modification 0.063 (6:1) 0.031 (5:0:9) 21.0 0.0 3.4 1.9
Trapdoor-building 0.23 (5:2) 0.19 (4:1:3) – – – –

Patella III with pro-dorsal patch of >3 thorn-like setae (C15) Web-building 0.016 (0:6) 0.063 (0:4:3) 9.1 9.1 0.0 2.2
Opportunist 0.008 (0:7) 0.063 (0:4:6) 9.8 4.0 0.0 1.5
Burrowing 0.004 (8:0) 0.031 (5:0:7) 16.3 0.0 2.0 0.3
Entrance modification 0.109 (5:1) 0.031 (5:0:8) 21.6 0.0 5.7 2.1
Trapdoor-building 0.69 (2:2) 0.75 (1:1:7) – – – –

Presence of a common tubercle (C35) Web-building 0.03 (5:0) 0.25 (2:0:6) 7.9 9.5 0.0 0.9
Opportunist 0.008 (7:0) 0.5 (2:1:8) 9.7 9.7 0.0 1.8
Burrowing 0.036 (1:7) 0.13 (0:3:11) 9.0 8.1 0.0 0.8
Entrance modification 0.063 (1:6) 0.31 (1:3:10) – – – –
Trapdoor-building 0.11 (1:5) 1 (0:0:10) – – – –

A compact, rectangular eye group (C32–34) Web-building 0.063 (4:0) 0.5 (1:0:7) – – – –
Opportunist 0.03 (5:0) 0.5 (1:0:10) 5.3 4.0 1.4 0.0
Burrowing 0.34 (2:4) 0.25 (2:0:12) – – – –
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Morphological feature [y] Behaviour [x] Pairwise Comparison Analyses Pairwise Comparison Analyses Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc) Maximum Likelihood (delta-AICc)

Entrance modification 0.03 (0:5) 0.06 (0:4:10) 10.8 0.0 2.0 1.0
Trapdoor-building 0.19 (1:4) 0.25 (2:0:8) – – – –

A wide eye group (C22) Web-building 0.063 (0:4) 1 (0:0:8) – – – –
Opportunist 0.063 (0:4) 1 (0:0:11) – – – –
Burrowing 0.19 (4:1) 0.5 (1:0:13) – – – –
Entrance modification 0.063 (4:0) 0.25 (2:0:12) – – – –
Trapdoor-building 0.31 (3:1) 0.5 (1:0:9) – – – –

Anterior lateral eyes in an advanced position relative to anterior median eyes (C23) Web-building 0.25 (0:2) 1 (0:0:8) – – – –
Opportunist 0.25 (0:2) 1 (0:0:11) – – – –
Burrowing 0.75 (1:1) 1 (0:0:14) – – – –
Entrance modification 0.25 (2:0) 0.5 (1:0:13) – – – –
Trapdoor-building 0.25 (2:0) 0.5 (1:0:9) – – – –

Figure 3. Schematic representations of somatic morphology at each extreme of the mygalo-
morph adaptive landscape: an opportunist with a web entrance (left) and a burrower/nest-
builder with a structurally modified burrow entrance (right). Red highlights and labels are
representations of the 11 morphological features found to be correlated with key behaviors
(see Table 2 for specifics of correlation).

4 | DISCUSSION

The convergent evolution of phenotype in correlation with behavioral niche is clearly a pervasive trend in
the evolution of mygalomorph spiders. Their adaptive landscape is simple and constrained at two extremes:
at one end are opportunistic taxa that inhabit existing spaces and construct capture webs, and at the other
are taxa that construct their own burrow or nest, and structurally modify the entrance, for example with a
trapdoor (Fig. 2). A spectrum exists between these extremes, but most intermediate taxa still burrow, or
show facultative burrowing habits, but do not structurally modify the entrance. Within these constraints,
changes in the niche occupied have been common in the evolution of the infraorder, and have occurred in
both directions (Fig. 1). For example, the general trend in both the Atypoidea and the Avicularioidea
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is that burrowing, trapdoor-building taxa have evolved from opportunistic, web-building ancestors, yet in
(at least) the Venom Clade and the Nemesioidea, the opportunistic, web-building niche has evolved again,
independently (Fig. 1). Adaptation to different optima in this narrow adaptive landscape is one of the
primary forces shaping somatic morphology in the Mygalomorphae, and this trend is clear in both overall
morphology (Fig. 2) and in those morphological features that are intuitively adaptive (Tables 1,2; Fig.
3). The historical use of these characters to infer phylogenetic relationships explains, at least in part, the
conflict between traditional morphological hypotheses and new molecular ones. Indeed, it is now clear that
the “Dipluridae”sensu lato and the previous higher classification “Rastelloidina” are both artificial groups
lumping together taxa from either end of the mygalomorph adaptive landscape (Raven, 1985).

4.1 | Insights into the function of convergent morphological features

This study is the first to quantify the strong correlation between behavioral niches and a suite of convergent
morphological features within the Mygalomorphae. In particular, features of the spinnerets, leg chaetotaxy,
and eye group, as well as the rastellum and serrula, exhibit strong patterns of correlation with behavior, and
an examination of their likely function provides insights into the potential drivers of convergent evolution
within the group.

Spinnerets. Elongate, widely spaced posterior lateral spinnerets are correlated with web-building (Table
2; Fig. 3). Their length presumably allows for the efficient application of wide swathes of silk during the
construction and repair of capture webs, as has been observed in Linothele (Eberhard & Hazzi, 2013; Nicolás
Paz, 1988). Their widely separated position likely also aids in the independent, unilateral or asymmetrical
use of each spinneret during web-construction, for example during the attachment of individual silk sheets
(as observed in Linothele macrothelifera (Eberhard & Hazzi, 2013). In contrast, very short apical segments of
the PLS (and short spinnerets in general), are correlated with structural modification of the retreat entrance
(Table 2; Fig. 3) and are probably better for the precise application of strong, thin bands of silk (as observed
in Ummidia : Coyle, 1981). The precise application of silk may be important for the integrity of these
entrance structures, for example in the construction of a trapdoor hinge, or in the substrate/silk-matrix of a
trapdoor or turret (Coyle, 1981; Coyle et al., 1992). During burrow and burrow-entrance construction, these
short spinnerets have been observed to work together synchronously and/or rhythmically, usually applying
silk to the same area, explaining their position close together on the abdomen in these species (Coyle et al.,
1992; Mayo, 1988).

Rastellum and serrula . The rastellum is strongly correlated with both burrowing and door construction
(Table 2; Fig. 3). Observations of burrowing taxa indicate that it is used for compaction of the burrow shaft
and entrance structures (Coyle, 1981; Coyle et al., 1992) plus excavation (Gertsch, 1949; Nascimento et al.,
2021). However, both burrowing and entrance modification occur in taxa that don’t possess a rastellum
(e.g., Theraphosidae and Migidae, respectively), suggesting that other factors may also influence whether
the structure is necessary, for example the substrate in which the spider burrows. The function of the serrula
in spiders is generally assumed to involve manipulation of prey items (Jocqué & Dippenaar-Schoeman,
2006). We found that it was positively correlated with opportunistic retreats, and negatively correlated with
burrowing (Table 2; Fig. 3). The functional reasons for this are unclear, although a speculative explanation
for the negative correlation of the serrula with burrowing could be a tendency for it to become clogged
with substrate while burrowing, because substrate is carried using the chelicerae/pedipalps during burrow
construction, and so would likely come into contact with the serrula (Coyle, 1974, 1981; Mayo, 1988).

Leg chaetotaxy. Surprisingly, the so-called ‘digging spines’ – strong lateral spines on the anterior legs and
pedipalps, did not show a positive correlation with digging, but only with burrow-entrance modification
(Table 2; Fig. 3). That digging is not the primary role of these spines is supported by behavioral studies of
burrowing taxa that observed that the chelicerae and fangs are used for substrate excavation, not the legs
(Coyle, 1981; Coyle et al., 1992; Mayo, 1988; Nascimento et al., 2021). Furthermore, some taxa that do not
burrow (e.g., many Migidae) still possess these spines, although they have lost other features associated with
burrowing (e.g., pro-dorsal spine patches on patella III). We suggest that these spines function primarily
during prey capture in species with modified burrow entrances, which tend to have smaller foraging areas
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(Main, 1982) and hunt by lunging from the burrow entrance and restraining prey with the anterior legs and
pedipalps (Coyle, 1981, 1986; Hils & Hembree, 2015). Although no correlation was found between scopulae
and behavior, in taxa that modify the burrow entrance scopulae clearly replace the function of digging
spines because the only entrance-modifying taxa without digging spines possess scopulae, adding to the well-
supported hypothesis that a function of both structures is to restrain prey (e.g., see Eggs et al., 2015; Pekár
et al., 2011; Wolff & Gorb, 2016).

Enlarged posterior legs, a dorsal bias in spine position on the posterior legs, and the presence of pro-dorsal
thorn patches on patella III are all correlated with both burrowing and burrow entrance modification (Table
2; Fig. 3). Behavioral studies on several burrowing species indicate that the posterior legs are braced against
the burrow wall to anchor the spider (Bond & Coyle, 1995; Coyle, 1981; Decae & Bosmans, 2014; Hils and
Hembree, 2015). This is done during routine movement, but also serves a defensive function in species that
hold their burrow entrance shut when disturbed. Larger, stronger posterior legs and dorsal spines likely
enhance this bracing function.

Eye group. The eye tubercle was found to be positively correlated with opportunistic burrowing, and a
standard, compact, rectangular eye group was found to be negatively correlated with burrow entrance mo-
dification (indicating that change from this state generally occurs in taxa with modified entrances) (Table 2;
Fig. 3). It seems most probable that these changes in the eye group relate to the amount and direction of light
exposure (and therefore visual information) in different retreat types, for example, almost all opportunist
taxa have relatively open retreat entrances, and when foraging at the retreat entrance, would be exposed to
light from all directions. In contrast, burrowing taxa with modified entrances would be exposed to light from
only one direction (the entrance), and to far less light in general. This is, however, in contrast to several
previous studies which indicate that vision is not important for foraging in a range of mygalomorph species
(see Coyle, 1986 for a list of relevant literature).

4.2 | Niche dynamics within the Mygalomorphae

That niche evolution has occurred in both directions several times across the mygalomorph adaptive lands-
cape (Fig. 1, 2) indicates that the ‘optimal’ niche changes depending on environmental conditions due to
trade-offs in niche dynamics (Winemiller et al., 2015). Aspects that show patterns of variation across the
adaptive landscape include prey-capture area and method, predator defense, microhabitat, and microclimate
regulation.

If we consider the two extremes of the mygalomorph adaptive landscape, we see strategies that vary across
all four of the dimensions mentioned above. Mygalomorph spiders rely heavily on substrate-borne vibrations
to detect prey, and their silken constructions (and the objects directly attached to them) determine the
size of their foraging area (Coyle, 1986; Main, 1982). Opportunistic, web-building taxa have extensive prey-
capture areas because they detect prey across the entire capture web, which also helps to slow/entangle
prey, decreasing the spider’s need to physically restrain it (Coyle, 1986, 1995). Web-building taxa construct
no clearly-defensive structures except for the web itself and tend to escape disturbance by retreating up
fissures in the substrate (JDW, pers. obs.), thus taking advantage of the complex microhabitats in which
they live, which must have adequate crevices under rocks, in or around vegetation or under embankments
for retreat construction (Coyle, 1995; Eberhard & Hazzi, 2013; Raven, 1983). As these spiders generally do
not burrow, they probably have less ability to regulate the microclimate of their retreat and less protection
against natural disasters such as floods, although the retreats of some species will follow natural crevices deep
into embankments or under rocks, which may serve a similar regulatory function to a burrow and explain the
occurrence of some opportunistic, web-building taxa in quite arid environments (e.g., Cethegus in Australia,
Raven, 1983;Euagrus in North and Central America, Coyle, 1988).

At the other end of the spectrum are burrowing and/or nesting taxa that modify their entrance with a
trapdoor. Observations suggest that some trapdoor spiders will not strike at prey unless it touches the
burrow entrance or comes within millimeters of it, indicating a comparatively tiny foraging area (Bond &
Coyle, 1995; Coyle et al., 1992). Within this tiny foraging area, they rely entirely on physicality and the
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element of surprise to restrain prey, and this probably explains adaptations such as the strong lateral spines
found in many species with trapdoors or other entrance modifications. Further evidence that a trapdoor
entrance reduces foraging area is provided by the multitude of modifications that trapdoor-building species
construct to extend their sensory radius, including radiating silk- or twig-lines (Main, 1957; Rix et al., 2017),
soil tabs (Coyle & Icenogle, 1994), and foliage ‘moustaches’ (Rix et al., 2017) among others (Coyle, 1986).
Open burrows and/or burrows with other types of modification besides a trapdoor probably increase the
prey-capture radius relative to a trapdoor entrance, as evidenced by Coyle (1986), who demonstrated that
collar-building Antrodiaetus enjoy a larger prey-capture area than trapdoor-building Aliatypus (both family
Antrodiaetidae), primarily because strikes in the ‘dorsal sector’ are restricted in the latter by the trapdoor
hinge. Regarding predator/parasite defense, the burrow is a double-edged sword, providing both camouflage
and a means of protection, but also limiting avenues of escape. Certain fungi, buthid scorpions, pompilid
wasps and acrocerid flies are known to specialize on burrowing mygalomorph spiders (Kurczewski et al.,
2021; Pérez-Miles & Perafán, 2017), and predators such as centipedes (MGR, pers. obs.) and even other
araneophagic spiders may target them (Dippenaar-Schoeman, 2002). This has led to the evolution of myriad
defensive strategies in burrowing taxa, including secondary escape shafts (Harvey et al., 2018), false bottoms
(Main, 1985), spherical pellets used to block the entrance (Leroy & Leroy, 2005), phragmotic abdomens
(Rix et al., 2018), urticating setae (Bertani & Guadanucci, 2013), and of course, entrance modifications
which camouflage the burrow and can be held closed against intruders. Finally, the construction of a burrow
allows access to relatively bare habitats without natural crevices, and may also allow greater regulation of
the microclimate in the burrow (primarily temperature and humidity), and resistance to natural disasters
like droughts and floods (Cloudsley-Thompson, 1983; Coyle, 1986). This regulatory function may be further
increased by modifications that allow the burrow entrance to be closed, for example a trapdoor, which may
explain why, in families containing both trapdoor-builders and species that utilize a more open entrance
type, the trapdoor-builders are often those that have spread into arid environments (e.g., in the Australian
Idiopidae, Rix et al., 2017, and the North American Antrodiaetidae, Coyle, 1986). Although, there are also
burrowing species with an open entrance that have adapted and radiated in arid environments (e.g., the
theraphosid genus Aphonopelma , Hamilton et al., 2011, and the anamid genus Aname , Rix et al., 2021),
and direct experiments on a trapdoor-building lycosid found that the trapdoor provides negligible difference
to conditions at the bottom of the burrow, indicating that it may primarily serve other functions such as
predator defense or flood avoidance (Steves et al., 2021).

The evolution of nest retreats deserves specific discussion. Our results indicate that nests have always evolved
from burrowing, trapdoor-building ancestors. As nests are short and presumably less well-insulated than a
burrow, these taxa probably lose some degree of microclimate regulation, which explains why most nest-
building taxa occur in mesic environments (e.g., Migidae, Griswold & Ledford, 2001,Sason , Raven, 1986).
However, Coyle (1986) points out a likely benefit of nesting, which is that the spider can sense prey over
the entire exposed surface of the nest, expanding the foraging area relative to a burrow. Many nests have
two trapdoor entrances, one at each end, and this probably allows greater exploitation of this expanded
prey-capture area and provides a second escape route from predators. Nests also allow the exploitation of
new microhabitats, as they are often constructed off the ground, on tree trunks or cave walls (Decae et al.,
2021; Griswold & Ledford, 2001; Raven, 1986). In this way, evolution from a burrow to a nest represents
an evolutionary pathway with similar trade-offs to the opportunistic, web-building niche: the sacrifice of
microclimate regulation for an expanded foraging area and exploitation of a different microhabitat.

Patterns of niche trade-offs in the Mygalomorphae are clearly complex and cannot be explained with reference
to a single environmental variable. Climate and weather, environmental complexity and niche availability,
and the abundance of predators and prey probably all play a role in determining the success of a particular
behavioral niche in an environment. Furthermore, microhabitat differences mean that in optimal conditions,
species inhabiting different niches often occur together, for example in sub-tropical eastern Australia many
areas exist where several burrowing (e.g., Idiopidae, Anamidae), nesting (Barychelidae, Migidae) and op-
portunistic (Euagridae, Hexathelidae and Atracidae) taxa occur in direct sympatry. In general, burrowing
taxa probably have the highest resilience to environmental extremes and are also able to exploit relatively
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bare microhabitats. In contrast, web-building and nest-building taxa probably require milder environmental
conditions but allow the spider to expand its foraging area and exploit new microhabitats: existing spaces
under logs, embankments and foliage for opportunists, and hard substrates off the ground for nest-builders.

4.3 | Constraints on the mygalomorph evolutionary landscape

Despite differences in the niche dimensions mentioned above, overall, mygalomorph life histories are remar-
kably homogeneous: all are long-lived, sedentary spiders that live in permanent retreats on or within the
substrate or foliage (Raven, 1985). Because extant members of the suborder Mesothelae also live this way,
it is often assumed to represent the ancestral life history of extant spiders. In contrast, the Araneomorphae
occupy an incredibly diverse array of niches, and include aerial-web builders, burrowers, cursorial hunters,
and ambush-specialists living in all types of microhabitats both on and off the ground (Foelix, 2011). We can
therefore gain insight into the constraints on the mygalomorph adaptive landscape by understanding how
the Araneomorphae have broken free from it.

Key morphological innovations allowing the Araneomorphae to inhabit new niche space were probably the
piriform + ampullate gland-spigot system (P+A system), and tracheal posterior respiratory systems (Levi,
1967; Ramı́rez et al., 2021). The P+A system allows the attachment of individual silk strands to the substrate
or to each other and is crucial for the use of drag-lines and the construction of complex silk structures away
from the substrate, such as aerial webs (Coddington & Levi, 1991; Ramı́rez et al., 2021; Wolff et al., 2019).
It is present in almost all araneomorph spiders, and ancestral state reconstructions have now confirmed its
origins in the ancestor of the group (Ramı́rez et al., 2021). Silk glands and spigots of the Mygalomorphae
deserve more attention, but presently, no mygalomorph is known to possess an equivalent silk-attachment
system (Palmer, 1991). This probably means that, despite their extensive use of silk, they cannot create
complex, load-bearing silk structures away from the substrate.

Tracheal respiratory systems, which have only evolved in the Araneomorphae, allow oxygen to be directed to
muscles where it is needed most, facilitating localized, energy demanding activities (Levi, 1967; Ramı́rez et
al., 2021). In their recent study of respiratory system evolution in spiders, Ramı́rez et al. (2021) showed that
tracheal systems evolved several times independently and proposed that their original benefit was directing
oxygen to the spinneret muscles to facilitate the new, energy-expensive spinning procedures associated with
the P+A system. Tracheal systems have, however, been co-opted to direct oxygen into the prosoma in
highly active, hunting groups such as the Dionycha (Ramı́rez et al., 2021). Because of their small spiracle
openings, tracheal systems probably also reduce susceptibility to desiccation and are therefore likely to be
adaptive in active, cursorial niches, especially in small spiders (Levi, 1967). Mygalomorphae possess the
symplesiomorphic posterior respiratory system consisting of a pair of booklungs. These allow only localized
oxygen exchange and have larger more exposed openings, and this is probably a major constraint limiting
the evolution of active, cursorial niches in the Mygalomorphae.

A final consideration is the ecological constraint of niche availability. Both the aerial web-building niche, and
active, cursorial niches were inhabited early in araneomorph evolution (Kallal et al., 2020), and therefore op-
portunity for mygalomorph ancestors to exploit these niches would have been limited by direct competition
with their araneomorph relatives. The mygalomorph adaptive landscape is narrow, but they are well-adapted
to their sedentary lifestyle. The substrate-bound, retreat-building niche has revolved in many araneomorph
families (e.g., members of the Segestriidae, Filistatidae, Eresidae, Zodoriidae, Udubidae, Lycosidae, Sparas-
sidae), yet the Mygalomorphae must be thought of as the masters of this niche space, having remained a
major faunal component within it for over 350 million years (Opatova et al., 2020).
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Figure 4. Maximum likelihood tree generated using IQtree (Nguyen et al., 2015) with the
alignment and partition files of Montes de Oca et al. (2022). This was then used as one of the
input trees for supertree construction.

APPENDIX B: MORPHOLOGICAL CHARACTERS AND STATES

1. Spinning field, position relative to anal tubercle:widely separated = 0; close = 1.
2. Spinnerets, degree of separation: close, distance between PMS bases less than or roughly even

with width of anal tubercle = 0; separated, distance between PMS distinctly wider than width of anal
tubercle = 1.Remarks: We differ from past analyses by discretizing this character based specifically
on the distance between the PMS relative to the anal tubercle, to decrease ambiguity between states.

3. Anterior lateral spinnerets: absent = 0; present = 1.
4. Anterior lateral spinnerets, number of segments: two = 0; one = 1.
5. Anterior lateral spinnerets, size relative to posterior median spinnerets: smaller = 0; sub-

equal = 1; larger = 2.
6. Posterior median spinnerets: absent = 0; present = 1.
7. Posterior median spinnerets, shape: digitiform = 0; wide, obliquely triangular tips = 1.
8. Posterior median spinnerets, australotheline crescent:absent = 0; present = 1.Remarks: The

australotheline crescent is a crescent of hard cuticle present in the soft, flexible tissue at the base of
the posterior median spinnerets, present in the Australian euagrinae andMasteria .

9. Posterior lateral spinnerets, apical segment, shape:domed/triangular (length <1.5x width) =
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0; digitiform (length > 1.5–3x width) = 1.Remarks: We differ from past analyses by discretizing this
character based specifically on the length/width ratio of the segment to decrease ambiguity between
states. Some previous researchers have separated “domed” and “triangular” spinnerets however we found
the boundary between these states ambiguous. If a genus is scored as polymorphic, that indicates that
it either includes species that fall into each state (e.g., Aliatypus ), or that it falls on the threshold
between states (e.g., Illawarra ).

10. Posterior lateral spinnerets, apical segment, pseudosegmentation: absent = 0; present = 1.
11. Posterior lateral spinnerets, total length: short, not extending far behind abdomen, generally only

apical segment visible from dorsal view = 0; long, extending behind or curving dorsally around abdomen,
both apical and medial segments generally visible from dorsal view = 1.Remarks: If a genus is scored
as polymorphic, that indicates that it either includes species that fall into each state (e.g.,Scotinoecus
), or that it falls on the threshold between states (e.g., Entypesa ).

12. Posterior lateral spinnerets, spigot distribution:spigots present on all three segments = 0; spigots
absent from basal segment = 1; spigots present only on apical segment = 2.

13. Leg III, size relative to leg II: subequal = 0; leg III thicker and equal or greater in length.Remarks:
This is a modified version of the character previously used by several authors relating to the larger
size of the posterior legs relative to the anterior legs in many burrowing spiders. In practice, we found
that this was ambiguous unless discretized further.

14. Leg III, tibia and metatarsus, spines: spines in ventral series on both segments, almost as many
ventral spines as on other faces combined = 0; many more spines dorsally, on tibia ventral spines
absent or bristle-like, sometimes with few strong apical spines = 1.

15. Leg III, patella, thorn patch (>3 prodorsal spines): absent = 0; present = 1.
16. Leg III, tibia, excavation: absent = 0; present = 1.
17. Leg III, tibia, excavation type: proximal excavation only = 0; strongly sclerotised “saddle” =

1.Remarks: The ‘saddle’ is a strongly sclerotized, concave, setae-less section of cuticle, positioned
on proximal tibia III and occupying over half the length of dorsal tibia III when present. This state
is only present in some halonoproctid genera (Conothele ,Ummidia , Hebestatis ). A demi-saddle is
a much less pronounced concavity at the proximal end of tibia III that is not strongly sclerotized for
descriptions and images of both the saddle and demi-saddle states).

18. Legs I and II, metatarsi, chaetotaxy type: only bristle-like spines present, if strong spines are
present they are positioned ventrally = 0; with one or more series of strong “digging spines” positioned
laterally = 1.

19. Legs I and/or II, chaetotaxy, strong, stiff spines, type: relatively long, stiff lateral spines = 0;
short, thorn-like lateral spines = 1.Remarks: Most taxa have state 0, state 1 is markedly different,
with far more numerous, thorn-like spines, and is present only in Halonoproctidae and Stasimopidae.

20. Legs I and/or II, scopulae: absent = 0; present = 1.
21. Legs I and/or II, tarsal spines: absent = 0; present = 1.
22. Legs III and/or IV, scopulae: absent = 0; present = 1.
23. Legs III and/or IV, tarsal spines: absent = 0; present = 1.
24. Tarsus I, claw tufts: absent = 0; present = 1.
25. Tarsus I, superior tarsal claws, dentition reduction:claws with normal teeth = 0; claws with

small teeth or denticles only = 1; claws edentate = 2.
26. Tarsus I, superior tarsal claws, teeth rows: one = 0; two = 1.
27. Tarsus I, superior tarsal claws, dentition type:several teeth in a row = 0; one proximal tooth,

sometimes with denticles = 1.Remarks: Not scored in taxa with reduced dentition (Barychelidae).
28. Tarsus I, inferior tarsal claw: absent = 0; present = 1.
29. Tarsus I, inferior tarsal claw, dentition: edentate = 0; dentate = 1.
30. Tarsus I, tarsal organ, shape: flattened = 0; protruding, distally lobed = 1.Remarks: Not scored

in taxa with reduced dentition (Barychelidae).
31. Legs, cuticle, pustules: absent = 0; present = 1.
32. Eye group, maximum width: about 1/3 caput width = 0; about 1/2 caput width or wider = 1.
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33. Eye group, AME and ALE relative position: AME advanced of ALE = 0; AME and ALE roughly
in line = 1; ALE advanced of AME = 2.

34. Eye group, advanced ALE, type: ALEs only slightly to moderately advanced, not contiguous = 0;
ALEs far advanced and contiguous = 1.

35. Eye group, eye tubercle: absent = 0; present = 1.Remarks: We consider an eye tubercle to be a
demarcated raised section of the caput falling underneath at least two pairs of eyes (i.e., not all eyes
have to sit on the tubercle).

36. Fovea, type: closed, longitudinal = 0; pit-like or narrowly transverse and open = 1; closed, transverse
= 2.Remarks: A closed longitudinal fovea is a simple longitudinal crack, and is only present in some
Atypoidea, and inMicrohexura . A closed transverse fovea is a closed crack running laterally and is
present in most genera. Some taxa have a narrow, pit-like fovea that is difficult to place in either state
0 or 2, which we classify as state 1. In these taxa it is also generally difficult to assess the curvature of
the fovea (e.g., recurved, straight, procurved).

37. Fovea, closed and transverse, curvature: recurved = 0; straight to procurved = 1.
38. Sternum, shape: sternum edge in line with second coxa parallel = 0; sternum edge in line with second

coxa narrowing anteriorly = 1.
39. Sternum, posterior sigilla: absent = 0; present = 1.
40. Sternum, posterior sigilla, position: inner-most point of sigilla closer to sternum edge than median

line = 0; inner-most point of sigilla equidistant from sternum edge and median line = 1; inner-most
point of sigilla closer to median line than sternum edge = 2.

41. Sternum, sigilla, fused: absent = 0; present = 1.
42. Sternum, lateral sigilla: absent = 0; present = 1.
43. Maxillae, serrula: absent = 0; present = 1.
44. Maxillae, anterior lobe: unmodified or small = 0; anteriorly produced and sharp = 1.Remarks: We

found this character very difficult to discretize but have included it due to its consistent use in previous
datasets. We scored several taxa not traditionally considered to possess a lobe as state 1 or ambiguous
if their lobe seemed comparable in size and shape to those seen in Theraphosidae – a family consistently
scored as possessing produced lobes in previous datasets.

45. Maxillae, cuspules: absent = 0; present = 1.
46. Maxillae, cuspules, posterior extent: not extending onto posterior heel = 0; extending onto pos-

terior heel = 1.
47. Maxillae, cuspules, lateral extent: confined to inner quarter of maxilla length = 0; extending

laterally beyond this = 1.
48. Labium, shape: short (length/width <0.6) = 0; intermediate (length/width between 0.6 and 0.9) =

1; long (length/width >0.9) = 2.
49. Labium, cuspules: absent = 0; present = 1.
50. Labium, cuspules, number: few (<10); many ([?]10).
51. Chelicerae, rastellum: absent = 0; present = 1.
52. Chelicerae, rastellum, type: sessile = 0; on pronounced mound = 1.
53. Chelicerae, retrolateral row of teeth sub-equal in size to teeth in prolateral row: absent =

0; present = 1.
54. Chelicerae, fang, keels: absent = 0; present = 1.Remarks: Keels are two longitudinal ridges that

run longitudinally down the outer surface of the fangs.
55. Abdomen, tergite(s): absent = 0; present = 1.

APPENDIX C: ANCESTRAL STATE RECONSTRUCTIONS – BRANCH-LENGTH SET
AND MODEL COMPARISON

Table 3. Comparison of AICc scores for different branch-length sets and model combinations
when performing ancestral state reconstruction of retreat construction method.
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Branch-length set State transition model AICc

Chronogram Equal rates 106.94
Chronogram Symmetrical rates 109.74
Chronogram Different rates 122.93
Phylogram Equal rates 106.47
Phylogram Symmetrical rates 109.41
Phylogram Different rates 119.99

Table 4. Comparison of AICc scores for different branch-length sets and model combinations
when performing ancestral state reconstruction of retreat-entrance type.

Branch-length set State transition model AICc

Chronogram Equal rates 145.35
Chronogram Symmetrical rates 163.21
Chronogram Different rates 211.69
Phylogram Equal rates 143.78
Phylogram Symmetrical rates 162.86
Phylogram Different rates 207.37
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