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Abstract

1. Animal abundance estimation is increasingly based on drone or aerial survey photography. Manual post-processing has

been used extensively, however volumes of such data are increasing, necessitating some level of automation, either for complete

counting, or as a labour-saving tool. Any automated processing can be challenging when using the tools on species that nest in

close formation such as Pygoscelid penguins. 2. We present here an adaptation of state-of-the-art crowd-counting methodologies

for counting of penguins from aerial photography. 3. The crowd-counting model performed significantly better in terms of model

performance and computational efficiency than standard Faster RCNN deep-learning approaches and gave an error rate of only

0.8 percent. 4. Crowd-counting techniques as demonstrated here have the ability to vastly improve our ability to count animals

in tight aggregations, which will demonstrably improve monitoring efforts from aerial imagery.
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Abstract13

14

1. Animal abundance estimation is increasingly based on drone or aerial survey photog-15

raphy. Manual post-processing has been used extensively, however volumes of such data16

are increasing, necessitating some level of automation, either for complete counting, or as a17

labour-saving tool. Any automated processing can be challenging when using the tools on18

species that nest in close formation such as Pygoscelid penguins.19

2. We present here an adaptation of state-of-the-art crowd-counting methodologies for20

counting of penguins from aerial photography.21

3. The crowd-counting model performed significantly better in terms of model performance22

and computational e�ciency than standard Faster RCNN deep-learning approaches and23

gave an error rate of only 0.8 percent.24
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4. Crowd-counting techniques as demonstrated here have the ability to vastly improve our25

ability to count animals in tight aggregations, which will demonstrably improve monitoring26

e↵orts from aerial imagery.27

Keywords: crowd-counting, machine-learning, image-processing, abundance estimation28
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1 Introduction29

Aerial imagery has become the principal surveying method for many animal populations (But-30

ler and Muller-Schwarze, 1977; Fraser et al., 1999; Philip N. Trathan, 2004; P. N. Trathan,31

Ratcli↵e, and Masden, 2012). While manned aircraft have been been used for several decades,32

the increased use of Unmanned Aerial Vehicles (UAVs) is further accelerating this form of data33

in ecology, due to favourable e�ciency, cost, and accuracy compared to ‘traditional’ methods34

(J. Hodgson et al., 2016). UAVs have already been applied to monitor a wide variety of ani-35

mals such as green sea turtles (Dunstan et al., 2020), birds (Lee, Park, and Hyun, 2019) and36

elephants (Vermeulen et al., 2013). While this is a very e�cient way to collect large amounts37

of data, it also creates a large post-processing burden that is frequently borne by humans -38

typically consisting of laborious manual scanning of photos or videos to locate, identify, and39

count individual animals (Torney, Dobson, et al., 2016). Volume aside, this can be a challenging40

task due variously to small object sizes, complex backgrounds, and varying illuminations (see41

Figure 1).42

To alleviate these problems, there has been extensive work to integrate computer-based im-43

age processing to assist in, or fully automate, abundance estimation. J. Hodgson et al., 201644

and J. C. Hodgson et al., 2018 o↵er recent examples of computer-assisted animal counting,45

where a combination of Fourier analysis and support vector machines are used to exclude back-46

ground pixels, making the subsequent manual counting of animals easier. For fully automated47

estimation of animal numbers, Convolutional Neural Networks (CNNs) are commonly adopted,48

which are a type of deep-learning neural network with components particularly directed to-49

wards images. Their use in image-processing has been transformative, with robustness proved50

in classification, detection and segmentation (Simonyan and Zisserman, 2015).51

Automated counting of animals within images usually involves the location, and subsequent52

classification, of objects within a frame. In terms of CNNs, this gives rise to two broad ap-53
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Figure 1: Selected data samples with (a) small object size, (b) complex background, and (c) varying illumi-
nations are shown. The study object - penguins are marked with red dots.

proaches: one- and two-stage algorithms. Two-stage algorithms first propose bounding boxes54

for locations where objects are likely to exist, and then do the classification, where Region-based55

Convolutional Neural Network (RCNNs, Girshick et al., 2014) and Faster-RCNN (Ren et al.,56

2016) are representative examples. One-stage methods such as You Only Look Once (YOLO)57

(Redmon et al., 2016) and Single Shot multibox Detector (SSD) (Liu et al., 2016) process these58

two tasks simultaneously. In general, one-stage methods have the advantage of computing speed59

while two-stage methods have better accuracy.60

Both methods have been previously adopted for ecological studies. Torney, Lloyd-Jones,61

et al. (2019) built a YOLO v3 model to detect wildebeest in aerial images, which displayed62

accuracy similar to manual processing whilst being quick to compute. Kellenberger, Volpi, and63

Tuia (2017) used a Faster-RCNN model to detect di↵erent animals in UAV images surveyed in64

Kuzikus Wildlife Reserve park. S.-J. Hong et al. (2019) compared the performance of di↵erent65

deep learning-based detection methods on a UAV aerial image dataset of wild birds and showed66

the potential of these techniques in monitoring wild animals. Although these detection methods67

work well in many cases there are constraints on object size, where objects smaller than 40 pixels68

will show degraded performance (S.-J. Hong et al., 2019).69

Recently, Hoekendijk et al. (2021) proposed a deep CNN model to regress the count objects70

of interest in the image. Their model is composed of a ResNet (He et al., 2016) and two71
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fully-connected layers. Although showing good performance, their model has a size limit on72

the input images, which means for a large image, it has to be cropped into the required size of73

patches before passing into the model. This may result in issues like replicated counts across the74

boundary of these image patches. Also, their results show the model only performs well up to a75

certain count level - when the count is out of this scope, the model exhibits poor performance.76

Here we adopt a fundamentally di↵erent method for counting animals, where the detection77

of individual animals are avoided, with focus being the estimation of a density map - a concept78

initially introduced by Lempitsky and Zisserman (2010). Estimated counts are instead obtained79

by the subsequent integration of this density map, rather than explicit counting of objects. The80

density map approach has been further integrated into the deep learning framework and widely81

applied in crowd counting (Ma, Wei, X. Hong, and Gong, 2019; Ma, Wei, X. Hong, Lin, et al.,82

2021; Lin et al., 2021), where crowds are usually humans.83

In this work, we create a density map estimation model based on CNNs for counting objects84

in aerial images. Whatever the size of objects, our model shows high accuracy in counting85

compared with the Faster R-CNN method which would typically be used. This is particularly86

relevant for our exemplar penguin data, where the objects of interest are small in terms of87

pixels, and detection methods are expected to show degraded performance. Our model also88

shows robustness when handling images of di↵erent density levels.89

2 Materials and Methods90

2.1 Data91

2.1.1 Data collection92

British Antarctic Survey currently holds an archive of colour digital aerial photography from93

the Antarctic Peninsula and South Shetland Islands acquired between November and December94

2013, and partially re-flown in November 2015. The archive contains images from approximately95
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140 Pygoscelis penguin colonies selected for a range of species, population sizes and topographic96

settings. The images were acquired using a large-format Intergraph DMC mapping camera, with97

a resolution of about 12 cm or better. The images each have a footprint of about 1600 m ⇥98

1000 m and were flown with 60% overlap to allow stereo-cover. For the images to be useful as99

part of an automated penguin counting process they needed at least significant pre-processing100

to geolocate them and remove terrain distortions inherent to the perspective view of a camera101

image. This processing comprised: 1) the stereo-images were used to extract a Digital Elevation102

Model (DEM); 2) the images were ortho-rectified to the DEM to remove terrain e↵ects; 3) the103

processed images were mosaicked; and then, 4) cut into standard-sized (448 ⇥ 448 pixels) tiles104

for counting. This process ensures that the images are accurately located and scaled to enable105

accurate ground area measurements and hence penguin density estimates. Without the DEM106

and orth-rectification pre-processing, the counts would not have a reliable ground area estimate.107

Stages 3) and 4) also ensure that each penguin only appears once in the dataset. The process to108

create the DEM is relatively complex, and utilized BAE Systems Socet GXP photogrammetry109

software to generate DEMs, ortho-rectify the images and prepare geo-referenced mosaics for110

each colony.111

2.1.2 Density map generation112

Our objective was to estimate the number of penguins in an image, here approached by density113

map estimation. The density maps are an intermediate representation generated from point114

annotations, with the integration of any region on these maps providing the count of target115

objects. The generation process is detailed here.116

Given an image I with M pixels and a set of 2D annotated points P = {p1, p2, ..., pn}, its117

ground-truth density map Dgt can be obtained by118

Dgt(Im) =
NX

n=1

N (Im; pn,�
2
n) (1)
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where Im denotes a two-dimensional pixel location, m = 1, 2, ...M and N (Im; pn,�2
n) represents119

the nth annotated two-dimensional Gaussian distribution, pn is the coordinate of nth point120

annotation and �2
n indicates the isotropic variance. The setting of �2

n is flexible and often dataset121

dependent. It can be either fixed (Lempitsky and Zisserman, 2010) or adaptive (distance to122

nearest neighbours) (Zhang et al., 2016). When using the kernel with fixed bandwith, we are123

assuming objects are independently distributed on the image plane, while the adaptive bandwith124

is normally used to characterize the geometry distortion led by the perspective e↵ect.125

The choice of �2
n is crucial for generating density maps, and using an improperly generated126

density map as a learning target may compromise the model’s counting performance (Wan and127

Chan, 2019). Ideally, the pixels with density values should reflect consistent features, which in128

our case means only pixels belonging to a penguin will have density values. However, this is129

hard to achieve, given the typical size of a penguin is only about 4 ⇥ 4 pixels, while using a130

very small Gaussian kernel will lead to a very unbalanced sparse matrix with most values of131

0, and will make the network hard to train (B. Wang et al., 2020). To achieve the balance,132

our generation method is given as follows: given the penguins are almost identical in size and133

shape in aerial images, the Gaussian kernel with fixed bandwidth is applied to the centre point134

of each penguin and the value of � is set as 4. An example of these density maps is given in135

Figure 2. Although we don’t give the location of each penguin, these density maps still retain136

some location information, which can indicate the region where the penguin may exist.137

2.2 Specification of the density map estimation model138

2.2.1 Model structure139

The overall model structure is shown in Figure 3. It is a simple structure with only a back-140

bone network and two branches. Since VGG-19 (Simonyan and Zisserman, 2015) has good141

performance in most computer vision tasks, such as detection and classification, and consumes142

relatively few computing resources, we adopt it as the backbone. However, VGG-19 learns143
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Figure 2: The left is a random image (penguins are labelled with red dots) picked from the dataset and its
corresponding density map is on the right.

salient features by gradually downsampling the feature maps. To maintain high resolution of144

the output density map, we remove its last max pooling layer and all subsequent layers. Addi-145

tionally, an up-sampling layer is added to keep the final size of the output at 1/8 of the original146

input. Here, bi-linear interpolation is used as the up-sampling method.147

The model are designed to process two tasks: density map estimation and segmentation.148

Density map estimation can be seen as a two-step problem by nature, firstly is to locate regions149

that contains objects of interest and then regress the density values. While segmentation is to150

classify if a pixel belongs to the object of interest. These two tasks are interrelated and can assist151

the backbone to learn robust intermediate features for each other. Further, the segmentation152

result is used to further guide the density regression. Specifically, to prevent background features153

from misleading the regressor, the weights of these features are reduced before being fed into154

the regressor. To achieve this, we generate a mask Md based on the predicted segmentation155

map Spred:156

Md = (Spred � 0.5) + ↵ (Spred < 0.5), (2)

where ↵ is the dampening factor and is the indicator function. We set ↵ as 0.1. The generated157
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Figure 3: This figure shows the overall structure of our density map estimation model. The backbone extracts
features from the input image and these intermediate features are further fed to two branches to predict density
map and segmentation map.

mask Md is then applied on the intermediate features by point-wise multiplication.158

We downsample the Dgt by aggregating the density values to match the output size. The re-159

sulted learning target Dtarget is further used in the generation of the ground-truth segmentation160

map (Sgt):161

Sgt = (Dtarget > ✏), (3)

where ✏ is a density threshold and is set as 1⇥ 10�3 here.162

Density branch & Segmentation branch163

The two branches in the model share a similar structure. They both consist of three convolu-164

tional layers, the first two have a kernel size of 3 while the last one has a kernel size of 1. These165

layers gradually reduce the number of channels of the extracted features from 512 to 1. The166

Rectified Linear Unit (ReLU) (Zeiler et al., 2013) is used as the activation function for the first167

two layers, with the activation function for the last layer of the two branches being di↵erent.168

The density branch is activated with the ReLU function to make sure every point on the output169
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is non-negative, whereas for the segmentation branch, the sigmoid (Han and Moraga, 1995)170

function is used to limit the range to between 0 and 1.171

2.2.2 Loss function172

Our overall loss function consists of two parts. Firstly, we adopt the structural loss (SL)173

proposed by Rong and Li (2021) to supervise the density branch, defined as:174

SL =
1

N

NX

i=1

(1� SSIM(Pooli(Dpred), Pooli(Dtarget))), (4)

where Dpred represents the predicted density map, and Pool stands for average pooling175

which down-samples the map by a factor of 1
2i�1 . SSIM is short for the Structural Similarity176

Index Measures (Z. Wang et al., 2004) that can describe the similarity of two images, expressed177

as:178

SSIM(X,Y ) = 1� (2µXµY + C1)(2�XY + C2)

(µ2
X + µ2

Y + C1)(�2
X + �2

Y + C2)
, (5)

where µ and � denote mean and variance while �XY represents the covariance of X and Y .179

C1 and C2 are constants, set to 0.01 and 0.03 by default. The higher the SSIM index, the more180

similar the two images are. N is set as 3 following Z. Wang et al.’ s work.181

The SL function improves the structural similarity between the prediction and the target by182

SSIM of high-resolution maps, and the count accuracy is ensured by SSIM of the pooled density183

maps. Further, we make a minor change on the original loss function to improve counting184

accuracy, expressed as:185

SL⇤ =
1

N

NX

i=1

(1� SSIM(Pooli(Dpred � Sgt), Pooli(Dtarget � Sgt))), (6)

where � denotes point-wise multiplication. This change eliminates the contribution to186

the loss value from points which have negligible values on the density maps. The original SL187

10



function pushes the value of each pixel on the predicted density map as close to the corresponding188

value on the target map as possible. However, in aerial images, if points are classfied into two189

categories based on whether they have non-zero density values, the two classes are imbalanced.190

Most of the points are with small values or even zero and since they are in large quantities,191

the regressor will compromise and tend to estimate them correctly, meanwhile underestimate192

points with large density values. But in fact, large density values contribute greatest to the193

count, so the counting accuracy will be harmed in unduly accommodating low density regions.194

By masking points with small values, the regressor focus is on large density values and reduces195

their influence. During the inference stage, integrated with the result of segmentation, we can196

safely discard the regressor’s predictions on these points with small values and set them to 0.197

The segmentation branch is supervised by the cross-entropy (CE) loss function. We adjust198

it to minimize the impact of the imbalance in the number of positive and negative samples in199

the dataset:200

CE =
1

M

MX

m=1

�(ym log(pm) + h ⇤ (1� ym) log(1� pm)) (7)

where ym and pm is the corresponding value of the location m in the image on the ground-201

truth segmentation map and the predicted probability map. h is a constant, used for balancing202

the contribution of positive and negative samples to the loss value and is set as 0.5 in our203

experiments.204

The final loss function is a weighted sum of the above two loss functions:205

Loss = SL⇤ + �CE (8)

with � set to 0.1 since the density estimation is the main task of the model.206
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2.2.3 Model inference207

Our model adopts a fully convolutional design, which means it has no strict size constraints208

on the input image. However, there are four max-pooling layers with kernel size of 2 in the209

backbone structure, which may result in pixel dropout. To prevent this, the input image has210

to be enlarged to the smallest size divisible by 16. The output density map Dout integrates the211

predictions from both branches and can be obtained by:212

Dout = Dpred � (Spred � 0.5) (9)

2.2.4 Experiments213

We randomly split our dataset into three parts in a ratio of 3:1:1. The largest part serves214

as the training set and the remaining parts are used for the purpose of validation and test,215

respectively. The detailed statistics of these three datasets are shown in the Table 1. Notably,216

these datasets show drastic change in density distribution and all contain a few samples that217

are only backgrounds.218

Table 1: The statistics of the training, validation and test set. L0, L1, L2, L3 and L4 represent the number
of images containing 0, 1-100, 101-500, 501-1000 and 1000+ penguins. Total gives the total number of penguins
in the dataset, while Max and Average show the maximum and average number of penguins in one image in the
dataset, respectively.

Dataset Number of images L0 L1 L2 L3 L4 Total Max Average

Training set 446 118 140 137 34 17 87654 2682 196
Validation set 146 35 61 34 14 2 23918 1361 164
Test set 146 39 59 36 6 6 23707 1580 162

In our experiments, we adopt random cropping and random horizontal flipping as data219

augmentation strategies for training the model. The cropping size is set as 256 ⇥ 256. The220

parameters of the backbone are initialized with the VGG-19 pre-trained on ImageNet (Deng221

et al., 2009) and others are randomly initialised from a Gaussian distribution with a standard222

deviation of 0.01. We train the network for 600 epochs with a batch size of 16 using the Adam223

optimizer (Kingma and Ba, 2015). We fix the learning rate as 1e-5 and the weight decay as224
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1e-4. The validation starts after the 100th epoch. The model with the best performance on the225

validation set is used to report the final result on the test set.226

For comparison, we also implement a Faster-RCNN model, the detailed training process is227

provided in the supplementary materials.228

All experiments are carried on a single 16 GB Tesla P100 GPU, with methods implemented229

with Pytorch. The whole training process takes approximately 3 hours.230

3 Results231

To evaluate our method, we use the mean absolute error (MAE) and root mean squared error232

(RMSE) metrics, defined as:233

MAE =
1

N

NX

i=1

|Cpred
i � Cgt

i | (10)

RMSE =

vuut 1

N

NX

i=1

(Cpred
i � Cgt

i )2 (11)

where N is the total number of the images, Cpred
i and Cgt

i is the predicted count and the234

ground-truth count of i-th image, respectively.235

We define the model which has the lowest sum of MAE and MSE on the validation data as the236

best model. This model’s performance on the test set is shown in Table 2. To better illustrate237

our model’s performance we provide the results from a Faster-RCNN model for comparison.238

In addition, separate average performance on images with di↵erent count levels, L0 (0), L1 (1-239

100), L2 (101-500), L3 (501-1000), L4 (1000+), are also calculated. Overall, our model has an240

outstanding performance on this task, and outperforms the Faster-RCNN model in all aspects.241

It is also worth mentioning that the count error at the dataset level for our model is +186.6242

(+0.8%) while for Faster-RCNN is 4741 (+20.2%).243

Some of the estimated density maps are presented in Fig 4. Although the prediction’s244
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Table 2: The evaluation result of our model and the Faster-RCNN on the test set.

Models
Overall MAE RMSE

MAE RMSE L0 L1 L2 L3 L4 L0 L1 L2 L3 L4

Our model 19.9 39.4 7.2 10.8 31.1 65.6 78.8 32.4 16.2 43.0 70.4 111.3
Faster RCNN 54.8 78.9 20.0 51.7 74.4 89.7 158.2 44.0 64.4 95.2 110.6 177.9

resolution is only one-eighth the resolution of the generated ground-true density map, it exhibits245

similar characteristics at the image level.246

4 Discussion247

The algorithmic counting of objects in aerial images in ecological studies was previously dom-248

inated by detection algorithms. In this section, we will discuss our model’s advantages over249

these traditional detection methods.250

Overall, our model has four main advantages over detection methods. First and foremost,251

our method is able to count extremely small objects. In the case of aerial images, the object252

of interest in an image is likely to be very small, especially for ecological surveys - in our253

case, only about 5 ⇥ 5 pixels. Our experiments show even the two-staged detection algorithm254

Faster-RCNN fails to detect most of the penguins. The reason is as follows: no matter what255

detection methods, a backbone structure is essential for extracting features. However, the256

current mainstream deep network structure, often used as the backbone, will downsample the257

image to a certain extent, for example, the downsampling ratio of VGG series is 16, while 32 for258

ResNet series (He et al., 2016). With a high downsampling ratio, the representation of a small259

object on the final feature maps may not be abundant enough for subsequent neural networks260

to predict the location and classification simultaneously. In contrast, our density estimation261

model only focuses on the counting of locations on the feature map instead of individuals,262

which provides better count accuracy.263

Secondly, our model only requires point annotation, which means annotators need only to264

mark the same part of each object with a dot, quite similar to the way human counts. This265
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Figure 4: Some visualization results of the estimated density maps. The three images in each row, from left
to right is the input, the Gaussian-smoothed ground-truth density map and the prediction. The corresponding
count is given in the lower right corner of the density map. The di↵erence between the ground-truth and the
estimated counts is highlighted.
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reduces markedly the labelling e↵ort, compared to bounding box annotations required by the266

detection methods, where annotation consists of drawing a rectangle around the object, closely267

matching the object’s edges, which is laborious.268

Thirdly, the density map estimation method can better handle objects located at the edge269

of the image. It’s often the case that the images taken by UAV are of large size, and consid-270

ering GPU memory constraints, researchers have to crop them into digestible pieces for the271

deep learning networks. It’s inevitable that some objects are also split into pieces, scattering272

them over several image patches. Such a situation results in a complex detection result whether273

objects are undetected due to incomplete feature representations, or are repeatedly detected274

across multiple image patches. However, this will not pose a problem to the density estimation275

model, where the count of an object is not necessarily integer, thanks to the Gaussian smooth-276

ing. Hence, there will not produce redundant counts when summing up two non-overlapping277

neighbouring image patches.278

Last but not least, our model can utilise negative samples (images with zero count) dur-279

ing training phase, which makes it more robust than the detection model when dealing with280

background. For drone footage, there will be many images that are completely background i.e.281

no objects. However, detection algorithms can not use them since they require every training282

sample to contain at least one object of interest. This is a fundamental short-coming of the283

detection algorithms. Meanwhile, our model can fully use these images to improve its abil-284

ity to di↵erentiate the foreground and background. This also explains the large di↵erence in285

performance of these two models on images of count level, L0.286

In this work, we propose a CNN-based density map estimation model to count extremely287

small penguins in aerial images, especially those acquired by UAV systems. Compared to the288

traditional two-staged detection method, Faster RCNN, our model shows a significant improve-289

ment in counting accuracy when faced wtih small objects. Although the precise location of each290

object is not given, the model still indicates areas where objects may exist. Another potential291
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advantage of our model is through reducing the labour in image annotation. In some studies,292

the object counting needs to be as precise as possible, necessitating a human counter despite293

the labour. In this case our model can aid the process by excluding regions that do not need294

detailed consideration. Overall, we hope our research can help researchers who use drones in295

ecological surveys.296

5 Data Availability297

The dataset will be archived and in the UK Polar Data Centre and available to public at the time298

of publication. The code is available here: https://github.com/cha15yq/Counting-penguins-in-299

aerial-images300
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