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Abstract

The steady states of an isotone electric system are described by an isotone function with respect to the componentwise order.

When there are steady states, we highlight a dominant steady state and we study its domain of attraction for the fixed point

iteration method.
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1 Introduction

Many practical situations involve the use of electrical systems with external sources
furnishing constant power to the loads. The studies of electrical systems with constant
power loads (CPLs) use a wide range of mathematical techniques, see [10]. A significant
part of the mathematical representations of these systems is represented by the dynamical
systems. In these situations the determination of the steady states and their study is of
great importance.

As is presented in the paper [1], a linear time invariant DC system with CPLs is
described as

Y(s) = G(s)U(s) + k, (1.1)

where s is the Laplace variable, G(s) ∈Mn(R), Y(s) = L{y(t)} ∈ Rn, U(s) = L{u(t)} ∈
Rn, and k ∈ Rn. The port variables y,u ∈ Rn, with the components y1, . . . , yn and
u1, . . . , un, are connected to CPLs by

−yi(t)ui(t) = Pi, i ∈ {1, . . . , n}, t ≥ 0. (1.2)

A steady state (y,u) ∈ Rn × Rn, see [1], is a solution of the problem{
y = Mu + k

yiui = −Pi, i ∈ {1, . . . , n},
(1.3)
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where M = G(0) and P1, . . . , Pn ∈ R. This problem has the equivalent description

y = k−M
(

P ◦ 1

y

)
, (1.4)

where the vector 1
y
∈ Rn has the components 1

y1
, . . . , 1

yn
, P has the components P1, . . . , Pn,

and ”◦” is the Hadamard product1. When M is an invertible matrix we can write

Ay +

(
P ◦ 1

y

)
= Ak, (1.5)

with A = M
−1

. This is the form of the problem studied in [8].
In the papers [10] and [1] it is considered as a reasonable physical assumption the

positive definiteness of the symmetric part of M . In [8] it is assumed that A = M
−1

is a symmetric positive definite matrix and the off-diagonal elements are nonpositive
(Stieltjes matrix, see [9]). In this case M is a symmetric nonnegative matrix.

In many practical situations the unknown vector y has all components with same
sign. Possibly making a change of variable we can assume that y is positive (see [8]).

In the paper [8], under the assumption that A = M
−1

is a Stieltjes matrix, it was
proven that if positive steady states exist, then there it is a distinguished one which
dominates - componentwise - all the other ones.

By using the notation M = Mdiag(P), the equation (1.4) can be written

y = k−M 1

y
. (1.6)

In this paper we study the positive solutions of the isotone electric system (1.6)
using the assumption that M is a nonnegative matrix. The positive solutions of (1.6)
are the fixed points of the function Tk,M :

(
R∗+
)n → Rn, Tk,M(y) = k−M 1

y
. This is an

isotone function with respect to the componentwise order2 ≤ on Rn; for y,y ∈
(
R∗+
)n

with y ≤ y we have Tk,M(y) ≤ Tk,M(y).
In Section 2 we highlight some properties of the fixed points of a continuous, isotone

function T :
(
R∗+
)n → Rn. When T is bounded from above and the set of the fixed points

is nonempty, we have the dominant fixed point of T which dominates all other fixed
point. Moreover, it dominates the ω-limit set of T for the fixed point iteration method.
Also, we present a subset of the domain of attraction of the dominant fixed point of T
for the fixed point iteration method.

In Section 3 we study the case when T verifies the matrix condition (3.1). Such a
function is a generalization of the functions Tk,M .

The Section 4 is dedicated to the study of the fixed points of the functions Tk,M .
We pay special attention to a function defined by an irreducible matrix. We apply our

1If y, z ∈ Rn have the components y1, . . . , yn and z1, . . . , zn, then the Hadamard product (or the
Schur product, [3]) y ◦ z ∈ Rn has the components y1z1, . . . , ynzn (see [7]).

2x ≤ y ↔ xi ≤ yi ∀i ∈ {1, . . . , n} (see [5]).
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methods and results to the study of the steady states of a DC linear circuit with two
CPLs which was studied, with other objectives and methods, in [1] and [8].

At the end of the paper we present some notions and results used in the main sections.

2 The fixed points of a continuous, isotone function

In this section we work with T :
(
R∗+
)n → Rn a continuous, isotone function. We pay a

special attention to the case when T is bounded from above.
First, we present some properties of the ω-limit set of T for the fixed point iteration

method (see Appendix B). We note by FitT,y0 the sequence generated by the fixed point
iteration method which start from y0. The ω-limit set of FitT,y0 is ωT (y0). When the
ω-limit set of FitT,y0 has an element we also note this element by ωT (y0).

Lemma 2.1. Let be y0,y0 ∈ D∞T such that y0 ≤ y0.

(i) If FitT,y0
is bounded from above3, y ∈ ωT (y0), then there exists y ∈ ωT (y0) such

that y ≤ y. If FitT,y0
is convergent, then ωT (y0) ⊂ b0, ωT (y0)e := {y ∈ Rn |0 ≤

y ≤ ωT (y0)}.

(ii) If y ∈ ωT (y0), then there exists y ∈ ωT (y0) such that y ≤ y. If FitT,y0 is conver-
gent, then ωT (y0) ⊂ bωT (y0),∞d:= {y ∈ Rn |ωT (y0) ≤ y}.

(iii) If FitT,y0, FitT,y0
are convergent, then ωT (y0) ≤ ωT (y0).

(iv) If FitT,y0 is convergent and ωT (y0) ∈ (R∗+)n, then ωT (y0)is a fixed point of T .

Proof. Between the terms of FitT,y0 and FitT,y0
we have yr ≤ yr, for all r ∈ N (see

Lemma B.1).

(i) There exists the subsequence (yrq)q∈N of FitT,y0 such that yrq
q→∞−→ y. The subse-

quence (yrq)q∈N of FitT,y0
is included in the compact set b0,we where FitT,y0

is bounded

from above by w ∈
(
R∗+
)n

. We can extract a subsequence of (yrq)q∈N with the limit y.
We deduce that y ∈ ω(y0) and y ≤ y.

(ii) There exists the subsequence (yrq)q∈N of FitT,y0
such that yrq

q→∞−→ y. This
subsequence is bounded from above by w. The subsequence (ykq)q∈N of FitT,y0 is included
in the compact set b0,we. We can extract a subsequence of (yrq)q∈N with the limit y.
We deduce that y ∈ ωT (y0) and y ≤ y.

For (iii) we apply (ii) and for (iv) we use the continuity of T .

By using the notations

S+
T := {y ∈ (R∗+)n |y ≤ T (y)}, S−T := {y ∈ (R∗+)n |T (y) ≤ y}

we observe that the set of the fixed points of T is ΦT = S+
T

⋂
S−T . In what follows we

present some properties of the above sets.

3There exists w ∈
(
R∗+
)n

such that for all r ∈ N we have yr ≤ w.
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Lemma 2.2. (i) S+
T is invariant under T (i.e. y ∈ S+

T ⇒ T (y) ∈ S+
T ) and S+

T ⊂ D∞T .

(ii) If y ∈ S+
T , then by,∞d is invariant under T and by,∞d⊂ D∞T .

(iii) If y ∈ S+
T is a maximal element4 of (S+

T ,≤), then y ∈ ΦT .

(iv) If y0 ∈ S+
T , then the fixed point iteration sequence FitT,y0 is an isotone sequence. If

this sequence is bounded from above, then it is convergent and y0 ≤ ωT (y0) ∈ ΦT .

(v) If T is bounded from above5, then S+
T is bounded from above6.

Proof. (i) If y ∈ S+
T , then y ≤ T (y), T (y) ∈

(
R∗+
)n

, and T (y) ≤ T (T (y)).
(ii) For y ≤ y we have y ≤ T (y) ≤ T (y).
(iii) From (i) we obtain T (y) ∈ S+

T . From hypothesis y ≤ T (y) and y is a maximal
element of S+

T . We deduce that y = T (y).
(iv) The monotonicity of FitT,y0 can be proved by induction. We apply Lemma 2.1.
(v) If T is bounded from above by k and y ∈ S+

T , then y ≤ T (y) ≤ k.

Analogously we obtain the following results.

Lemma 2.3. (i) If y0 ∈ S−T , then FitT,y0 is antitone. If y0 ∈ S−T ∩D∞T , then FitT,y0

is convergent and ωT (y0) ∈ Rn+.

(ii) If y0 ∈ S−T ∩D∞T and ωT (y0) ∈
(
R∗+
)n

, then ωT (y0) ∈ ΦT .

In what follows we present an important result about the existence of the fixed points
of T and about the structure of the set ΦT .

Theorem 2.4. Suppose that S+
T 6= ∅ and it is bounded from above.

(i) The vector y2
T = ( sup

y∈S+
T

y1, . . . , sup
y∈S+

T

yn)t is a maximal element of (S+
T ,≤). It is an

element of ΦT and it dominates all the other elements of ΦT .

(ii) If y0 ∈ S−T ∩ by2
T ,∞d, then FitT,y0 is convergent and ωT (y0) = y2

T .

Proof. (i) We observe that y2
T ∈

(
R∗+
)n

and for y ∈ S+
T we have y ≤ y2

T . First,
we prove that by2

T ,∞d=
⋂

y∈S+
T
by,∞d. We deduce that by2

T ,∞d⊂
⋂

y∈S+
T
by,∞d. If

y ∈
⋂

y∈S+
T
by,∞d, then for all y ∈ S+

T we have y ≤ y and we deduce that y2
T ≤ y. We

obtain
⋂

y∈S+
T
by,∞d⊂ by2

T ,∞d.
By using Lemma 2.2 we obtain that by2

T ,∞d is an invariant set under T and conse-
quently, y2

T ∈ S+
T . By definition of y2

T we have that it is a maximal element of (S+
T ,≤).

From Lemma 2.2 we obtain that y2
T is an element of ΦT and it dominates all the other

element of ΦT .

4If y ≤ y with y ∈ S+
T , then y = y.

5There exists k ∈ Rn such that for all y ∈
(
R∗+
)n

we have T (y) ≤ k.
6there exists k ∈

(
R∗+
)n

such that y ∈ S+
T ⇒ y ≤ k.
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(ii) Because by2
T ,∞d is invariant under T we deduce that FitT,y0 ⊂ by2

T ,∞d, y0 ∈
D∞T . From Lemma 2.2 the sequence is convergent and ωT (y0) ∈ by2

T ,∞d. The unique
element of S+

T in by2
T ,∞d is y2

T .

When S+
T 6= ∅ and it is bounded from above, the fixed point y2

T is called the domi-
nant fixed point of T .

The set of the points y0 ∈ D∞T for which FitT,y0 is convergent with the limit ωT (y0) =
y ∈ ΦT is often called the domain of attraction of y (for the fixed point iteration method).
We find an ordered segment containing the ω-limit set of T and we present some results
about the domain of attraction of the dominant fixed point of T .

Theorem 2.5. Suppose that T is bounded from above by k ∈
(
R∗+
)n

and ΦT 6= ∅.

(i) S+
T 6= ∅, it is bounded from above, and y2

T = ( sup
y∈ΦT

y1, . . . , sup
y∈ΦT

yn)t.

(ii) If y0 ∈ bk,∞d, then FitT,y0 is antitone and convergent and we have ωT (y0) = y2
T .

(iii) If y0 ∈
(
R∗+
)n

, then ωT (y0) ⊂ b0,y2
T e. The ω-limit set of T verifies ΩT ⊂ b0,y2

T e.

(iv) If y0,y0 ∈
(
R∗+
)n

such that y0 ≤ y0, FitT,y0
is convergent, and ωT (y0) = y2

T , then
FitT,y0 is convergent and ωT (y0) = y2

T .

(v) If y0 ∈ by2
T ,∞d, then FitT,y0 is a convergent sequence and its limit is ωT (y0) = y2

T .

Proof. (ii) We observe that bk,∞d⊂ S−T ∩ by2
T ,∞d and we apply Theorem 2.4.

(iii) There exists y0 ∈ Rn such that y0 ≤ y0 and k ≤ y0. From (ii) we have that
FitT,y0

is convergent and ωT (y0) = y2
T . From Lemma 2.1 we obtain ωT (y0) ⊂ b0,y2

T e.
(iv) There exists y0 ∈ Rn such that y0 ≤ y0 and k ≤ y0. By induction we obtain that

yr ≤ yr ≤ yr, r ∈ N. FitT,y0
is convergent and ωT (y0) = y2

T . From Squeeze Theorem
we deduce the announced result.

(v) FitT,y2
T

is convergent and its limit is ωT (y2
T ) = y2

T . We apply (iv).

In more restrictive conditions for T , we find new subsets of domain of attraction of
the dominant fixed point of T .

Theorem 2.6. Suppose that T is bounded from above, it is a concave function7, ΦT

has at least two elements, and there are no chain8 with three elements in ΦT . If 9

y0 ∈
⋃

y∈ΦT \{y2
T }
cy,∞d, then FitT,y0 is convergent and its limit is ωT (y0) = y2

T .

7T is a concave function with respect to ≤ if λT (y) + (1 − λ)T (y) ≤ T (λy + (1 − λ)y), when
y,y ∈

(
R∗+
)n

and λ ∈ (0, 1).
8A subset of a partially ordered set is a chain if it is totally ordered with respect to the induced

order.
9cy,∞e := {y ∈ Rn |y < y}
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Proof. Let be y ∈ ΦT\{y2
T } such that y < y0. We have y � y2

T . There exists λy ∈ (0, 1)
such that λyy + (1− λy)y2

T < y0.
For y,y ∈ S+

T and λ ∈ [0, 1] we have λy + (1−λ)y ≤ λT (y) + (1−λ)T (y) ≤ T (λy +
(1−λ)y). We obtain that S+

T is a convex set and λyy + (1−λy)y2
T ∈ S+

T . Consequently,
FitT,λyy+(1−λy)y2

T
is isotone, it is convergent and y � ωT (λyy + (1− λy)y2

T ) ≤ y2
T . These

vectors form a fixed point chain. We deduce that ωT (λyy + (1−λy)y2
T ) = y2

T . We apply
Theorem 2.5.

We present some necessary and sufficient conditions for the existence of fixed points.

Theorem 2.7. Suppose that T is bounded from above by k ∈ Rn. The following state-
ments are equivalent:

(i) ΦT 6= ∅.

(ii) ΩT ∩
(
R∗+
)n 6= ∅.

(iii) For all y0 with k ≤ y0 we have y0 ∈ D∞T , FitT,y0 is convergent and ωT (y0) ∈
(
R∗+
)n

.

Proof. (i) ⇒ (iii) is obtained from Theorem 2.5. For (iii) ⇒ (ii) we observe that
ωT (y0) ∈ ΩT ∩

(
R∗+
)n

, k ≤ y0.

(ii) ⇒ (i). Let be y ∈ ΩT ∩
(
R∗+
)n

. There exists y0 ∈ D∞T such that y ∈ ωT (y0).
We consider y0 with the properties y0 ≤ y0 and k ≤ y0. From Lemma B.1 we obtain
that y0 ∈ D∞T . From Lemma 2.1 we have y ∈ ωT (y0) with y ≤ y. From Lemma 2.3 we
deduce that FitT,y0

is convergent and ωT (y0) = y ∈ ΦT .

Theorem 2.8. Suppose that T is bounded from above and there are ymin,ymax ∈
(
R∗+
)n

so ymin ≤ ymax, ΦT ⊂ bymin,ymaxe, and bymax,∞d⊂ S−T . The following statements are
equivalent:

(i) ΦT 6= ∅.

(ii) For all y0 with ymax ≤ y0 we have T (FitT,y0) ⊂ bymin,∞d.

Proof. (i)⇒ (ii). Let be y∗ ∈ ΦT and let be y0 with ymax ≤ y0. Because y∗ ∈ D∞T , from
Lemma B.1, we obtain that y0 ∈ D∞T . Because y0 ∈ S−T , by using Lemma 2.2, we have
that FitT,y0 is convergent and it is contained in by∗,∞d. We deduce that ωT (y0) ∈ ΦT .
By hypotheses, ymin ≤ ωT (y0) ≤ T (yr) for all r.

(ii) ⇒ (i). FitT,y0 is antitone and it is contained in bymin,∞d. We deduce that
y0 ∈ D∞T , the sequence is convergent and ωT (y0) ∈ ΦT .

Remark 2.1. If FitT,y0 has a finite number of terms, then c0,y0e ∩ ΦT = ∅. This
observation can be used to delimit the set ΦT .
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3 A matrix condition

In this section we suppose that the function T :
(
R∗+
)n → Rn satisfies the equality

T (y)− T (y) = M(y,y)(y − y), y,y ∈
(
R∗+
)n
, (3.1)

where M :
(
R∗+
)n× (R∗+)n →Mn(R+) is a continuous, nonnegative matrix function and

∀y,y ∈
(
R∗+
)n

we have M(y,y) = M(y,y). We observe that T is a continuous function.
We present some monotonicity properties of T and some monotonicity properties of

the fixed point iteration sequences generated by T .

Lemma 3.1. (i) T is a isotone function with respect to ≤.

(ii) If ∀y,y ∈
(
R∗+
)n

the matrix M(y,y) has on each row at least a positive element,
then the following results hold.

(a) T is strongly isotone10.

(b) If y0 < T (y0) (respectively T (y0) < y0), then FitT,y0 is strongly isotone11

(respectively strongly antitone).

The spectral radius12 is a useful tool in the study of fixed points of T .

Theorem 3.2. Let be y0 ∈ D∞T such that FitT,y0is strongly monotone13, convergent, and
ωT (y0) ∈

(
R∗+
)n

. Then,

(i) ρ (M (y0, ωT (y0))) < 1.

(ii) ρ (M (ωT (y0), ωT (y0))) ≤ 1.

Proof. We consider the case when FitT,y0 is strongly isotone. For r ∈ N we have

ω(y0)− yr+1 = T (ω(y0))− T (yk) = M(ω(y0),yr)(ω(y0)− yr).

Because ω(y0)−yr+1 < ω(y0)−yr we deduce that M(ω(y0),yr)(ω(y0)−yr) < ω(y0)−yr.
The vector ω(y0)− yr is positive. From Corollary 8.1.29, [7], we obtain that

ρ (M (yr, ωT (y0))) < 1. (3.2)

When FitT,y0 is strongly antitone the proof is analogous and (3.2) remains valid.
(ii) From (3.2) and by using the continuity of the spectral radius, see [7], 5.6.P19,

we obtain the announced result.

10T is strongly isotone if y < y⇒ T (y) < T (y).
11(yk)k∈N is strongly isotone (respectively strongly antitone) with respect to ≤ if for all k we have

yk < yk+1 (respectively yk+1 < yk).
12In this paper, for a matrix M ∈Mn(R), we denote by ρ(M) the spectral radius of M .
13A sequence is strongly monotone if it is strongly isotone or it is strongly antitone.
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A consequence of the above result gives us an upper bound of ρ (M (y2
T ,y

2
T )).

Theorem 3.3. If ΦT 6= ∅, T is bounded from above, and for all y,y ∈
(
R∗+
)n

the matrix
M(y,y) has on each row at least a positive element, then ρ (M (y2

T ,y
2
T )) ≤ 1.

Proof. Let k ∈ Rn be such that T (y) ≤ k for all y ∈
(
R∗+
)n

. Let be the vector y0 such
that k < y0. We have T (y0) ≤ k < y0. FitT,y0 is convergent, strongly antitone (Lemma
3.1), and, from Theorem 2.5, its limit is the dominant fixed point y2

T . The inequality
from the statement is the consequence of Theorem 3.2.

We present some results about the spectral radius of the matrix M (y,y) when y and
y are different fixed points of T .

Theorem 3.4. Let be y,y ∈ ΦT such that y 6= y.

(i) ρ (M(y,y)) ≥ 1.

(ii) If y ∈ ΦT is not an isolated fixed point of T , then ρ (M(y,y)) ≥ 1.

(iii) If y < y, then ρ (M(y,y)) = 1.

(iv) If y � y and M(y,y) is an irreducible matrix, then y < y and ρ (M(y,y)) = 1.

Proof. (i) From (3.1) we have y−y = M(y,y) (y − y) . We deduce that 1 is an eigenvalue
of M(y,y). By definition of the spectral radius we obtain the result.

(ii) There exists the sequence (yr)r∈N of fixed points of T such that yr 6= y, r ∈ N,
and yr → y. Using ρ (M(yr,y)) ≥ 1 and the continuity of the spectral radius we deduce
that ρ (M(y,y)) ≥ 1.

(iii) By using Corollary 8.1.30 from [7] and the fact that y − y is a positive vector
we deduce that ρ (M(y,y)) = 1.

(iv) y−y is a nonnegative eigenvector of the nonnegative irreducible matrix M(y,y).
Consequently, y− y is a positive eigenvector (see 8.4.P15 from [7]). We apply (iii).

In what follows we study the situation in which the matrix function M is strictly
antitone and irreducible.

Theorem 3.5. Suppose that the matrix function M is strictly antitone14 with respect to
≤ and that for all y,y ∈

(
R∗+
)n

the matrix M(y,y) is irreducible.

(i) There is no chain with three elements in ΦT .

(ii) If T is bounded from above and y,y ∈ ΦT such that y, y, and y2
T are different two

by two, then y and y are not comparable (with respect to ≤).

(iii) Suppose that T is bounded from above and ΦT has at least two distinct elements.

(a) ρ (M(y2
T ,y

2
T )) < 1 and for y ∈ ΦT\{y2

T } we have ρ (M(y,y)) > 1 .

14M is strictly antitone if (y,y) � (z, z)⇒M(z, z) �M(y,y).
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(b) If T is a concave function and15 y0 ∈
⋃

y∈ΦT \{y2
T }
cy,∞d, then FitT,y0 is con-

vergent and its limit is ωT (y0) = y2
T .

Proof. (i) Suppose that y � y � y is a chain of fixed points of T . We have (y,y) �
(y,y) � (y,y) and M(y,y) � M(y,y) � M(y,y). These matrices are nonnegative
and irreducible. Consequently, ρ(M(y,y)) < ρ(M(y,y)) < ρ(M(y,y)), see [7], 8.4.P15.
From Theorem 3.4 we obtain a contradiction.

(ii) From Theorem 2.5 we have that y � y2
T and y � y2

T . From (i) we have that
{y,y,y2

T } is not a chain and we deduce that y and y are not comparable.
(iii) − (a) Let be y2

T ,y ∈ ΦT with y � y2
T . We have M(y2

T ,y
2
T ) � M(y2

T ,y) �
M(y,y). Because these matrices are nonnegative and irreducible, using Theorem 3.4,
we obtain that ρ (M(y2

T ,y
2
T )) < 1 < ρ (M(y,y)).

For (iii)− (b) we use (i) and we apply Theorem 2.6.

4 The isotone electric systems

In this section we study the fixed points of the function Tk,M :
(
R∗+
)n → Rn given by

Tk,M(y) = k−M 1
y
, M ∈ Mn(R) is a nonnegative matrix and k ∈ Rn. A fixed point of

Tk,M is a positive solution of the isotone electric system (1.6). The function Tk,M has
the following properties that are easy to notice.

Lemma 4.1. (i) Tk,M is bounded from above by k.

(ii) If P is a permutation matrix16 and y ∈
(
R∗+
)n

, then TPTk,PTMP (P Ty) = P TTk,M(y).

For y,y ∈
(
R∗+
)n

we have the equality

Tk,M(y)− Tk,M(y) = Mdiag
1

y ◦ y
(y − y). (4.1)

We introduce M(·, ·) :
(
R∗+
)n × (R∗+)n →Mn(R+) given by M(y,y) = Mdiag 1

y◦y .

Lemma 4.2. The above matrix function has the following properties:

(i) M(y,y) = M(y,y), ∀y,y ∈
(
R∗+
)n

.

(ii) The matrix function M(·, ·) is antitone with respect to ≤.

(iii) If M is reducible, then ∀y,y ∈
(
R∗+
)n

the matrix M(y,y) is reducible.

(iv) If M is irreducible, then ∀y,y ∈
(
R∗+
)n

the matrix M(y,y) is irreducible and the
matrix function M(·, ·) is strictly antitone.

15cy,∞d= {y|y < y}.
16A permutation matrix is a square matrix that has exactly one entry of 1 in each row and each

column and 0’s elsewhere.
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(v) If M has on each row at least a positive element, then ∀y,y ∈
(
R∗+
)n

the matrix
M(y,y) has on each row at least a positive element.

Proof. For (iv) see Lemma A.1.

Lemma 4.3. The function which defines the isotone electric system has the properties:

(i) Tk,M is a isotone function with respect to ≤. If M has on each row a positive
element, then Tk,M is a strongly isotone function.

(ii) Tk,M is a concave function with respect to ≤.

Proof. (i) If y ≤ y, then M(y,y) is a nonnegative and y − y is a nonnegative vector.
For y < y, from Lemma 4.2, then M(y,y)(y − y) is a positive vector.

(ii) For λ ∈ (0, 1) we can write

Tk,M(λy + (1− λ)y)− λTk,M(y)− (1− λ)Tk,M(y) = λ(1− λ)M
(y − y) ◦ (y − y)

y ◦ y ◦ (λy + (1− λ)y)
.

We observe that λ(1− λ) > 0 and (y−y)◦(y−y)
y◦y◦(λy+(1−λ)y)

is a nonnegative vector.

In order to delimit the set ΦTk,M we introduce the vector ∆ ∈ Rn with the components

∆i = k2
i − 4Mii, i ∈ {1, . . . , n}. When 0 ≤ ∆ we use the vector

√
∆, with the

components
√

∆i, to introduce the vectors

ymin :=
1

2
(k−

√
∆), ymax :=

1

2
(k +

√
∆).

We present a necessary condition for the existence of the fixed points of Tk,M . Also,
we give a closed ordered interval containing all the fixed points.

Proposition 4.4. (i) A necessary condition for the existence of a fixed point of ΦTk,M

is 0 < k and 0 ≤∆.

(ii) If the above condition is satisfied, then 0 ≤ ymin, 0 < ymax, and we have the
inclusions ΦTk,M ⊂ bymin,ymaxe ⊂ b0,ke.

Proof. Let be y ∈ ΦTk,M . The component i verifies 0 < yi = ki−
n∑
j=1

Mij
1
yj
≤ ki−Mii

yi
≤ ki.

We obtain ki > 0 and ∆i ≥ 0. The previous inequalities imply ymin
i ≤ yi ≤ ymax

i .

Remark 4.1. For 0 < k the following statements are equivalent:

(i) M is a diagonal matrix with all diagonal entries being positive and ∆ ∈
(
R∗+
)n

.

(ii) ymin,ymax ∈ ΦTk,M .

By using the values of ymax, ymin and the fixed point iteration sequences we can give
necessary and sufficient conditions for the existence of fixed points.
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Theorem 4.5. Suppose that M is a matrix with all diagonal entries being positive,
0 < k, and 0 ≤∆. The following statements are equivalent:

(i) ΦTk,M 6= ∅.

(ii) For all y0 with ymax ≤ y0 we have T (FitTk,M ,y0) ⊂ bymin,∞d.

Proof. We observe that 0 < ymin and we prove that bymax,∞d⊂ S−Tk,M . For ymax ≤ y

we have (Tk,M(y))i = ki −
n∑
j=1

Mij
1
yj
≤ ki −Mii

1
yi
≤ yi. From Proposition 4.4 we have

ΦTk,M ⊂ bymin,ymaxe. We apply Theorem 2.8.

From Theorem 2.5 we obtain the following result.

Theorem 4.6. If ΦTk,M 6= ∅, then y2
Tk,M

= ( sup
y∈ΦTk,M

y1, . . . , sup
y∈ΦTk,M

yn)t ∈ ΦTk,M . The

dominant fixed point y2
Tk,M

dominates all the fixed points of Tk,M . Also, it dominates the

ω-limit set of T (ΩTk,M ⊂ b0,y2
Tk,M
e). For y0, with y2

Tk,M
≤ y0, the sequence FitTk,M ,y0

is convergent and its limit is ωTk,M (y0) = y2
Tk,M

.

Remark 4.2. For P a permutation matrix, we have P Ty2
Tk,M

= y2
T
PT k,PTMP

.

Theorem 4.7. If ΦTk,M 6= ∅, then ρ

(
Mdiag 1

y2
Tk,M

◦y2
Tk,M

)
≤ 1.

Proof. When M has on each row a positive element we apply Theorem 3.3, Lemma 4.1,
and Lemma 4.2.

Next, we consider the case when some rows have all elements equal to zero. There ex-

ists P a permutation matrix such that P TMP =

(
Os×s Os×(n−s)
A B

)
, A ∈M(n−s)×s(R+),

B ∈ M(n−s)×(n−s)(R+), and on each row of the matrix
(
A B

)
we have a positive ele-

ment. The vector y = (y1,y2)t, y1 ∈ Rs, y2 ∈ Rn−s is a fixed point of TPTk,PTMP if and
only if y1 = k1 and y2 ∈ ΦT

k2−A 1
k1

,B
with P Tk = (k1,k2)t. We deduce that y2

T
PT k,PTMP

=

(k1,y
2

k2−A 1
k1

,B
)t. From Remark 4.2 we have17 1

y2
T
PT k,PTMP

◦y2
T
PT k,PTMP

= 1
PTy2

Tk,M
◦PTy2

Tk,M

=

P T 1
y2
Tk,M

◦y2
Tk,M

and18 P TMPdiag 1
y2
T
PT k,PTMP

◦y2
T
PT k,PTMP

= P TMdiag 1
y2
Tk,M

◦y2
Tk,M

P. We

deduce that ρ

(
P TMPdiag 1

y2
T
PT k,PTMP

◦y2
T
PT k,PTMP

)
= ρ

(
Mdiag 1

y2
Tk,M

◦y2
Tk,M

)
. We ob-

tain that ρ

(
Mdiag 1

y2
Tk,M

◦y2
Tk,M

)
= ρ

(
Bdiag 1

y2

k2−A 1
k1

,B
◦y2

k2−A 1
k1

,B

)
. In the case when

B = O(n−s)×(n−s) we obtain that the spectral radius is 0 < 1.
In the case when B has on each row a positive element we apply the above result.

17PTy ◦ PTy = PT (y ◦ y), PT 1
y = 1

PTy
18diag(PTy) = PT diag(y)P .
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In the case when B has a row with all elements equal to zero we repeat the above
reduction. After a finite number of steps we obtain a matrix ”B” which is the zero
matrix or it is a matrix with a positive element on each row.

Remark 4.3. We observe that the Jacobian matrix of Tk,M is JTk,M (y) = Mdiag 1
y◦y .

When ΦTk,M 6= ∅ and ρ

(
Mdiag 1

y2
Tk,M

◦y2
Tk,M

)
< 1 we have that the matrix JTk,M (y2

Tk,M
)

has all the eigenvalues with the modulus < 1. From the theory of discrete dynamical
systems we have that y2

Tk,M
is asymptotically stable (see [6]) for the fixed point iteration

method.

Using Theorem 3.4, Theorem 2.5, and the fact that M is antitone, when Tk,M have
at least two fixed points, we have the following inequalities involving spectral radius.

Theorem 4.8. Let be y,y ∈ ΦTk,M such that y 6= y. The following results hold.

(i) ρ
(
Mdiag 1

y◦y

)
≥ 1.

(ii) If y < y, then ρ
(
Mdiag 1

y◦y

)
= 1.

(iii) If y 6= y2
Tk,M

, then ρ
(
Mdiag 1

y◦y

)
≥ 1.

In what follows we study the case when the matrix M is irreducible.

Theorem 4.9. Suppose that n > 1, M is an irreducible matrix and ΦTk,M 6= ∅.

(i) If y ∈ ΦTk,M , y 6= y2
Tk,M

, then y < y2
Tk,M

and ρ

(
Mdiag 1

y◦y2
Tk,M

)
= 1.

(ii) If y,y ∈ ΦTk,M such that y, y, and y2
Tk,M

are different two by two, then y and y
are not comparable.

(iii) If ΦTk,M has at least two distinct elements, then ρ

(
Mdiag 1

y2
Tk,M

◦y2
Tk,M

)
< 1 and

ρ
(
Mdiag 1

y◦y

)
> 1 for all y ∈ ΦTk,M\{y2

Tk,M
}.

(iv) If ΦTk,M has at least two elements and y0 ∈
⋃

y∈ΦTk,M
\{y2

Tk,M
}cy,∞d, then FitTk,M ,y0

is convergent and its limit is ωTk,M (y0) = y2
Tk,M

.

(v) y2
Tk,M

is an isolated fixed point of Tk,M .

Proof. For (i) we apply Theorem 2.5 and Theorem 3.4. For (ii) and (iii) we use Lemma
4.2 and Theorem 3.5. The statement (iv) is the consequence of Lemma 4.2, Lemma 4.3,
and Theorem 3.5. The statement (v) is obtained by using (iii) and Theorem 3.4.
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Remark 4.4. When n > 1, M is irreducible and ΦTk,M has at least two elements we have
by2

Tk,M
,∞d⊂

⋃
y∈ΦTk,M

\{y2
Tk,M

}cy,∞d. From the theory of discrete dynamical systems we

have that a fixed point y, y 6= y2
Tk,M

is not stable for the fixed point iteration method.

Remark 4.5. In the case when M is a reducible matrix we can reduce the equation
(1.6) (the determination of the fixed points of Tk,M) to a system of equations of the form
(1.6) and in each equation we have an irreducible matrix (possibly a 1-by-1 zero matrix).
From Lemma 4.1, the equation (1.6) is equivalent with an equation of the same form in
which the matrix M is in irreducible normal form (see Section A).

If M is in the irreducible normal form (A.2), then (1.6) becomes

k1 −M11
1
y1
−M12

1
y2
− · · · −M1 s−1

1
ys−1
−M1s

1
ys

= y1

k2 −M22
1
y2
− · · · −M2 s−1

1
ys−1
−M2s

1
ys

= y2

. . .

ks−1 −Ms−1 s−1
1

ys−1
−Ms−1 s

1
ys

= ys−1

ks −Mss
1
ys

= ys,

(4.2)

where y = (y1, . . . ,ys)
T , yi ∈ Rni . To determine ΦTk,M we will follow these steps:

� We find ΦTks,Mss
.

� For ys ∈ ΦTks,Mss
we find ΦT

k̃s−1,Ms−1 s−1
, k̃s−1 = ks−1 −Ms−1 s

1
ys

.

� ...

� For ys ∈ ΦTks,Mss
, ..., y2 ∈ ΦT

k̃2,M22
, k̃2 = k2−M23

1
y3
−· · ·−M2s

1
ys

we find ΦT
k̃1,M11

,

k̃1 = k1 −M12
1
y2
− · · · −M1s

1
ys

.

We observe that y2
Tk,M

has the components y2
Tk21 ,M11

, y2
Tk22 ,M22

, ..., y2
Tk2s−1,Ms−1 s−1

, y2
Tks,Mss

,

where k2
1 = k1 −M12

1
y2
Tk22 ,M22

− · · · −M1s
1

y2
Tks,Mss

, ..., k2
s−1 = ks−1 −Ms−1 s

1
y2
Tks,Mss

.

Remark 4.6. If M is a nonnegative, invertible matrix, M−1 is nonnegative, and z = 1
y
,

then the equation (1.6) is equivalent with the equation

z = M−1k−M−1 1

z
, (4.3)

which has the same form as the equation (1.6). It has been proved that a nonnegative
matrix has a nonnegative inverse if and only if its entries are all zero except for a single
positive entry in each row and column (see [2], [4]). The matrix M is the product of
a permutation matrix by a diagonal matrix. In this case, in addition to the dominant
fixed point we have a fixed point dominated by all other fixed points (see also Remark
4.1) .
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4.1 The case n = 1

In this case we have Tk,M : R∗+ → R, Tk,M(y) = k − M
y

with k ∈ R and M ∈ R+.
For M = 0 the function Tk,M has fixed points if and only if k > 0. If the above

inequality is satisfied, then ΦTk,0 = {k}.
For M > 0 we have ΦTk,M 6= ∅ if and only if k ≥ 2

√
M . If the above inequality is

satisfied, then ΦTk,M = {y2, y∗} with y2 = 1
2
(k+
√
k2 − 4M) and y∗ = 1

2
(k−
√
k2 − 4M).

Figure 1 shows the dynamics generated by of the fixed point iteration method.

Figure 1: The 1-D fixed point iteration sequences. a) k > 2
√
M ; b) k = 2

√
M .

4.2 Numerical simulation for the steady states of a DC linear
circuit with two CPLs

The mathematical representation of the constant steady states for a DC linear circuit
with two CPLs, which is first studied in [1] and then re-studied in [8], is(

v1

v2

)
=

(
E
E

)
−
(
r1P1 r1P2

r1P1 (r1 + r2)P2

)( 1
v1
1
v2

)
. (4.4)

In the above system v1, v2 are the voltage of the capacitors, P1, P2 are the power of the
CPLs, r1 and r2 are the line resistances, and E is the voltage source. We work with the
following numerical values taken from [8]: E = 24V , r1 = 0.04 Ω, and r2 = 0.06 Ω.

I. The case P1 = 500W , P2 = 450W .

In this case we have ∆ =

(
496
396

)
, vmin =

(
0.86
2.05

)
, and vmax =

(
23.13
21.94

)
. The

necessary conditions for the existence of a steady state presented in Proposition 4.4 are
satisfied. All these points are contained in bvmin,vmaxe(Proposition 4.4). The fixed point
iteration sequence which starts from vmax is convergent and its limit is the dominant fixed

point v2 = ω(vmax) =

(
22.94
20.95

)
. This point is a solution of (4.4) and it dominates all

other positive solutions (Theorem 4.6). By computation we obtain that this system has

two positive solutions: v2 and v∗ =

(
14.45
2.20

)
. The fixed point iteration sequence which

start from cv∗,∞d is convergent and its limit is v2 (Theorem 4.9).
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II. The case P1 = 3000W , P2 = 1000W . In this case we have ∆ =

(
96
196

)
,

vmin =

(
7.10
5.36

)
, and vmax =

(
16.89
18.63

)
. The necessary conditions for the existence of

a steady state presented in Proposition 4.4 are satisfied. When we analyze the fixed

point iteration sequence starting from vmax we observe that the term v3 =

(
8.76
0.42

)
is

not comparable with vmin. We deduce, from Theorem 4.5, that the system (4.4) has no
positive solutions.

Figure 2: The fixed point iteration sequence which start from vmax. (a) - P1 = 500W ,

P2 = 450W ; (b) - P1 = 3000W , P2 = 1000W .

Figure 2 present the fixed point iteration sequences which start from vmax.

4.3 Conclusions

We present a practical method, using a fixed point iteration sequence, to decide whether
an isotone electric systems has a steady state (Theorem 4.5). When their existence is
assured a dominant steady state may be highlighted. The dominant steady state is the
limit of some sequences generated by the fixed point iteration method (Theorem 4.6)
and we specify a part of its domain of attraction (Theorem 4.6 and Theorem 4.9).

We pay special attention to the case for which the function is defined by an irreducible
matrix. In this case we have:
- the dominant steady state is an isolated steady state (Theorem 4.9);
- a steady state, other than the dominant steady state, is strictly smaller than the
dominant steady state (Theorem 4.9);
- two steady states, different from the dominant dominant steady state, are incomparable
(Theorem 4.9);
- a fixed point iteration sequence which start from a vector strictly greater than a steady
state is convergent and its limit is the dominant steady state (Theorem 4.9).

When the matrix which appears in the isotone electric system is reducible, the deter-
mination of the steady states can be reduced to the determination of the steady states
of some isotone electric systems defined by irreducible matrices (Remark 4.5).
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A Irreducible matrices

A matrix A ∈ Mn(R), n > 1, is reducible (see Definition 6.2.21, [7]) if there is a
permutation matrix P ∈Mn(R) such that

P TAP =

(
B C

O(n−r)×r D

)
and 1 ≤ r ≤ n− 1. (A.1)

A lower-left (n− r)× r block of zero entries can be created by some sequence of row and
column interchanges. A matrix A ∈ Mn(R), n > 1, is irreducible if it is not reducible
(see Definition 6.2.22, [7]). All matrices of M1(R) are irreducible.

Lemma A.1. Let be A ∈Mn(R) an irreducible matrix.

(i) If d ∈
(
R∗+
)n

, then A (diag d) is irreducible.

(ii) If A is nonnegative, n > 1, d, e ∈
(
R∗+
)n

with d � e, then A (diag d) � A (diag e).

Proof. (i) If B := A (diag d), then Bij = djAij, i, j ∈ {1, . . . , n} and Bij = 0⇔ Aij = 0.
(ii) It is easy to observe that A (diag d) ≤ A (diag e). There exists r ∈ {1, . . . , n}

such that dr < er. Because A is irreducible we have an element Air > 0, i ∈ {1, . . . , n}.
Because Airdr < Airer we obtain the announced result.

The matrix M ∈ Mn(R) is in irreducible normal form, see [7], if it is block upper
triangular, and each diagonal block is irreducible (possibly a 1-by-1 zero matrix); more
precisely,

M =


M11 M12 . . . M1 s−1 M1s

O M22 . . . M1 s−1 M2s
...

...
. . .

...
...

O O . . . Ms−1 s−1 Ms−1 s

O O . . . O Mss

 , 1 ≤ s ≤ n, (A.2)

with M11 ∈ Mn1(R+), . . . ,Mss ∈ Mns(R+) irreducible matrices, n1 ≥ 1, ..., ns ≥ 1, and∑s
i=1 ni = n.
An irreducible normal form of A ∈ Mn(R) is a matrix B = P TAP in an irreducible

normal form, with P a permutation matrix.
An irreducible normal form of the matrix A is not necessarily unique. If A ∈Mn(R) is

irreducible then it is in irreducible normal form. For A ∈Mn(R) there exists B ∈Mn(R)
such that B is the irreducible normal form of A.

B The fixed points, the fixed point iteration sequences,

and the ω-limit set

Let T :
(
R∗+
)n → Rn be a continuous function. The vector y ∈

(
R∗+
)n

is a fixed point of
T if T (y) = y. We denote by ΦT the set of fixed points of T .
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We consider the sequence of open setsDT (1) =
(
R∗+
)n
, DT (r+1) = T−1 (DT (r))

⋂
DT (r) ⊂(

R∗+
)n
, r ≥ 1, and the composite functions T (r) : DT (r) → Rn given by T (r) =

r times

T ◦ · · · ◦ T .
Also, we denote by D∞T =

⋂
r∈N∗ DT (r) .

For y ∈
(
R∗+
)n

we construct the number Ny ∈ N ∪ {∞},

Ny =

{
∞ if y ∈ D∞T
min{r ∈ N |y /∈ DT (r+1)} if y ∈

(
R∗+
)n \D∞T .

The fixed point iteration sequence FitT,y0 := (yr)r∈{0,...,Ny0} starts from the vector

y0 ∈
(
R∗+
)n

and it verifies the iteration

yr+1 = T (yr), r < Ny0 . (B.1)

It is easy to observe that we have the following results.

Lemma B.1. Suppose that T is isotone. Let be y0,y0 ∈
(
R∗+
)n

such that y0 ≤ y0.

(i) Ny0 ≤ Ny0
. If y0 ∈ D∞T , then by0,∞d⊂ D∞T .

(ii) If r ∈ N with r ≤ Ny0, then yr ≤ yr.

For y0 ∈ D∞T we work with the ω-limit set of FitT,y0 defined by

ωT (y0) = {y ∈ Rn+ | ∃ the subsequence (ykq)q∈N of FitT,y0 such that ykq
q→∞−→ y}. (B.2)

From the continuity of T we obtain that the set ωT (y0) is invariant under T . When
FitT,y0 is bounded from above by w, then it is contained in the compact set b0,we, and,
consequently, ωT (y0) 6= ∅. When FitT,y0 is convergent we denote by ωT (y0) its limit. If
FitT,y0 is convergent and ωT (y0) ∈

(
R∗+
)n

, then ωT (y0) is a fixed point of T .
The ω-limit set of T (with respect to the fixed point iteration method) is:

ΩT = {y ∈ Rn+ | ∃y0 ∈ D∞T such that y ∈ ωT (y0)}. (B.3)

It is easy to observe that we have ΦT ⊂ ΩT .
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