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Abstract

Background and Purpose: Despite their use to treat cancers with specific genetic aberrations, targeted therapies elicit het-

erogeneous responses. Sources of variability are critical to targeted therapy drug development, yet there exists no method to

discern their relative contribution to response heterogeneity. Experimental Approach: We use HER2-amplified breast cancer

and two agents, neratinib and lapatinib, to develop a platform for dissecting sources of variability in patient response. The

platform comprises four components: pharmacokinetics, tumor burden and growth kinetics, clonal composition, and sensitivity

to treatment. Pharmacokinetics are simulated using population models to capture variable systemic exposure. Tumor burden

and growth kinetics are derived from clinical data comprising over 800,000 women. The fraction of sensitive and resistant

tumor cells is informed by HER2 immunohistochemistry. Growth rate-corrected drug potency is used to predict response. We

integrate these factors and simulate clinical outcomes for virtual patients. The relative contribution of these factors to response

heterogeneity are compared. Key Results: The platform was verified with clinical data, including response rate and progression-

free survival (PFS). For both neratinib and lapatinib, the growth rate of resistant clones influenced PFS to a higher degree than

systemic drug exposure. Variability in exposure at labeled doses did not significantly influence response. Drug potency strongly

influenced responses to neratinib. Variability in patient HER2 immunohistochemistry scores influenced responses to lapatinib.

Exploratory twice daily dosing improved PFS for neratinib but not lapatinib. Conclusion and Implications: The platform can

dissect sources of variability in response to target therapy, which may facilitate decision-making during drug development.
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ABSTRACT 89 

Background and Purpose: Despite their use to treat cancers with specific genetic aberrations, 90 

targeted therapies elicit heterogeneous responses. Sources of variability are critical to targeted 91 

therapy drug development, yet there exists no method to discern their relative contribution to 92 

response heterogeneity.  93 

 94 

Experimental Approach: We use HER2-amplified breast cancer and two agents, neratinib and 95 

lapatinib, to develop a platform for dissecting sources of variability in patient response. The 96 

platform comprises four components: pharmacokinetics, tumor burden and growth kinetics, 97 

clonal composition, and sensitivity to treatment. Pharmacokinetics are simulated using 98 

population models to capture variable systemic exposure. Tumor burden and growth kinetics 99 

are derived from clinical data comprising over 800,000 women. The fraction of sensitive and 100 

resistant tumor cells is informed by HER2 immunohistochemistry. Growth rate-corrected drug 101 

potency is used to predict response. We integrate these factors and simulate clinical outcomes 102 

for virtual patients. The relative contribution of these factors to response heterogeneity are 103 

compared.  104 

 105 

Key Results: The platform was verified with clinical data, including response rate and 106 

progression-free survival (PFS). For both neratinib and lapatinib, the growth rate of resistant 107 

clones influenced PFS to a higher degree than systemic drug exposure. Variability in exposure at 108 

labeled doses did not significantly influence response. Drug potency strongly influenced  109 

responses to neratinib. Variability in patient HER2 immunohistochemistry scores influenced 110 

responses to lapatinib. Exploratory twice daily dosing improved PFS for neratinib but not 111 

lapatinib. 112 

 113 

Conclusion and Implications: The platform can dissect sources of variability in response to 114 

target therapy, which may facilitate decision-making during drug development. 115 

 116 

 117 

 118 

 119 
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INTRODUCTION 133 

Patient response to targeted therapy is highly variable and difficult to predict. Multiple 134 

factors contribute to diverse patient responses to targeted therapy, including but not limited to 135 

drug pharmacokinetics (PK) and biodistribution [1], tumor growth characteristics [2], clonal 136 

composition [3], and tumor sensitivity or resistance [4]. Understanding the source of response 137 

variability can be valuable for decisions made during drug development concerning dose 138 

selection, patient stratification, and therapeutic benefit evaluation. However, some of these 139 

factors are challenging to characterize during clinical studies. For example, it is implausible to 140 

measure tumor growth rates without treatment in a metastatic disease setting. As a result, the 141 

relative contribution of these factors to discrepancies in drug efficacy within diverse patient 142 

populations remains largely undefined. Simulations informed by high volumes of historical 143 

clinical data and drug potency parameters measured during early-stage drug discovery may be 144 

convenient and intuitive tools for dissecting sources of variability in patient response and 145 

informing decision-making during drug development.  146 

Here, we use HER2-amplified metastatic breast cancer as a model system to decompose 147 

sources of variability in response to HER2 tyrosine kinase inhibitors (TKI). Given the routine 148 

clinical assessment of HER2 amplification in patients with newly diagnosed metastatic breast 149 

cancer, we assessed whether a pharmacokinetics/pharmacodynamics/tumor growth 150 

(PK/PD/TG)-based model could be applied to predict the efficacy of HER2 TKIs in patients with 151 

different levels of HER2 amplification. Such a model might also be useful in determining 152 

whether variability in response to approved HER2 TKIs depend on tumor-intrinsic features, like 153 

growth rate and HER2+ fraction, or drug-specific properties, like PK and biodistribution. 154 

Toward this end, we have developed a PK/PD/TG model for decomposing sources of 155 

variability between responders and non-responders. We simulate the highly variable PK of two 156 

HER2 TKIs, neratinib and lapatinib, and their therapeutic effects on tumor growth and 157 

progression. We also model a wide range of tumor sensitivity to therapy as informed by drug 158 

potency in cell lines with varying HER2 expression and population-level diversity in HER2 159 

immunohistochemistry (IHC) scores. These data are integrated into a virtual patient population 160 

to dissect the sources of variability in patient response. 161 

There are two key aspects of our approach. One is the use of population PK models to 162 

simulate drug PK and variability in patients. Population PK models and parameter estimates for 163 

investigational and approved drugs are usually readily available to sponsors. Using the drug 164 

sponsors’ population PK models ensures our simulations recapitulate a wide range of possible 165 

drug exposures. This is of critical importance, as drug exposure can vary dramatically between 166 

patients. Second, we explored the therapeutic effect in a tumor comprising mixed 167 

subpopulations of sensitive (HER2-amplified) and resistant (HER2-negative) cells. The clonal 168 

composition of these cells in a given tumor was informed by patient HER2 IHC scores. We 169 

considered subpopulation-specific cytostatic and cytotoxic effects using the growth rate 170 

inhibition metrics developed by Hafner et al. [4]. These metrics correct for differences in growth 171 

rates among cell lines, which can otherwise confound interpretations of drug potency. Recent 172 

publications showcase the added value of using growth rate metrics for predicting in vivo 173 

responses from in vitro data alone [5] and support the further elaboration of this approach for 174 

drug development. 175 

 176 
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METHODS 177 

Modeling framework overview 178 

The framework is shown in Fig. 1A. First, we used population PK models to derive drug 179 

exposure in patients. Next, we constructed a virtual HER2-positive patient population from 180 

large clinical datasets of HER2 IHC and tumor growth kinetics. We then used the in vitro GR 181 

metrics to determine sensitivity and resistance of tumor cellular subpopulations to treatment. 182 

Finally, we integrated these sources of variability to model the response of tumors with mixed 183 

populations to HER2 TKI treatment. 184 

 185 

Variability in systemic drug exposure  186 

For neratinib, a population PK model was used to simulate plasma concentration vs. 187 

time profiles [6]. Among all significant covariates, we included the effects of normally 188 

distributed age on ka and central volume, as well as the effects of lognormally distributed 189 

weight on clearance and central volume. No transporter-mediated uptake into cells was 190 

reported. We also assumed that patients would take the drug with a standard, low-fat 191 

breakfast under real-world conditions.  192 

For lapatinib, a structurally similar population PK model was used, the only difference 193 

being that drug absorption was modeled as a Tlag-delayed zero-order input followed by a first-194 

order input at the rate ka [7]. We included the effects of normally distributed age on ka and 195 

excluded the effects of ethnicity and race on other parameters. No transporter-mediated 196 

uptake into cells was reported. We also assumed that patients would take the drug with a 197 

standard, low-fat breakfast under real-world conditions.  198 

Free drug concentrations were simulated to inform tumor concentrations based on the 199 

Free Drug Hypothesis [8]. Prior to PK/PD simulation, we used the following equation to 200 

estimate the average unbound steady-state concentrations of alpelisib (PI3Kα), abemaciclib 201 

(CDK4/6), palbociclib (CDK4/6), ribociclib (CDK4/6), lapatinib (HER1/2), and neratinib 202 

(HER1/2/4): 203 

 204 

𝐶𝑠𝑠,𝑓𝑟𝑒𝑒 =
𝑋/𝜏

𝐶𝐿/𝐹
∙ (1 − 𝑃𝑃𝐵) 205 

 206 

Where X is the approved dose, 𝜏 is the approved dosing interval, and CL/F is the 207 

apparent clearance upon oral administration. PPB is the protein-bound fraction reported in 208 

publicly available US Food & Drug Administration (FDA) multidisciplinary review documents for 209 

each drug; the exception was neratinib, where the PPB in plasma samples from healthy 210 

volunteers was reported to be significantly lower than the in vitro PPB. For lapatinib, the 211 

reported PPB of “> 99%” was estimated as 99.5%. The following values were used for each 212 

drug: abemaciclib (X = 200 mg, 𝜏 = 12 hours, CL/F = 38 L/hour, PPB = 96.3%), alpelisib (X = 300 213 

mg, 𝜏 = 24 hours, CL/F = 9 L/hour, PPB = 89.2%), lapatinib (X = 1250 mg, 𝜏 = 24 hours, CL/F = 114 214 

L/hour, PPB = 99.5%), neratinib (X = 240 mg, 𝜏 = 24 hours, CL/F = 195 L/hour, in vitro PPB = 99%, 215 

in vivo PPB = 88%), palbociclib (X = 125 mg, 𝜏 = 24 hours, CL/F = 81 L/hour, PPB = 85%), and 216 

ribociclib (X = 600 mg, 𝜏 = 24 hours, CL/F = 26 L/hour, PPB = 70%). As it is generally thought that 217 

only free drug is available to interact with pharmacologically relevant targets in vivo [8], [9], 218 
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GEC50 values of cell lines were corrected for PPB to estimate sensitivity to free drug 219 

concentrations. 220 

 221 

Variability in tumor size and composition  222 

To estimate the baseline tumor burden at diagnosis of metastatic disease, we used data 223 

from a study of 819,647 women in the Surveillance, Epidemiology and End Results (SEER) 224 

registry [10]. To calculate the distribution of baseline tumor burden among patients diagnosed 225 

with metastatic disease, we multiplied the baseline tumor burden of all patients at diagnosis by 226 

the probability of a patient to have metastatic disease given a particular tumor burden (Fig. 1B). 227 

For tumor size probabilities reported over size intervals, we assumed a uniform distribution 228 

over the interval and calculated probabilities in diameter increments of 1 mm. A lognormal fit 229 

to these data yielded a mean log tumor diameter (mm) of 3.624 and a standard deviation of 230 

0.668. Baseline diameters were converted to volumes for simulation, assuming approximately 231 

spherical tumors (Fig. 1C). Parameters used for generating virtual populations and treatment 232 

simulations are provided in Table S1.  233 

As HER2 TKIs are indicated for HER2+ breast cancer patients, we needed to estimate the 234 

cellular fraction of each tumor that was HER2 amplified. HER2 positivity is currently defined as 235 

IHC scores of IHC3+ or IHC2+ with amplification on orthogonal fluorescence in situ hybridization 236 

(FISH) assay. The proportion of IHC3+ and IHC+ patients among all HER2+ patients was 237 

calculated from 1,522 samples reported in a 12-year, single-center study [11] (Fig. 1D). For 238 

simplicity, we assumed each tumor harbored one sensitive (HER2-amplified) and one resistant 239 

(HER2-negative) population of cells with different levels of sensitivity to HER2 TKIs.  240 

 241 

Variability in tumor sensitivity and resistance 242 

Once a virtual patient was designated as IHC3+ or IHC2+, a fraction fsens of their tumor 243 

cells was designated as sensitive, while fres = 1 – fsens was designated as resistant. By definition, 244 

10 – 30% of cancer cells in IHC2+ tumors are HER2 amplified, compared to 30 – 100% of cells 245 

within IHC3+ tumors. Within these two strata, we assumed HER2 amplification was uniformly 246 

distributed.  247 

To calibrate the effect of drug concentrations on tumor growth, the in vitro growth rate 248 

(GR) metrics of 75 human breast cancer cell lines under treatment with alpelisib, abemaciclib, 249 

palbociclib, ribociclib, lapatinib, and neratinib were identified from the literature [4], [12]. Data 250 

are presented in Fig. 2A. For use in the model, the HER2 status and clinical subtype of each cell 251 

line was cross-referenced with data from [13]. Cell lines with unknown or inconsistent HER2+ 252 

status across publications were excluded. Drug potency (GEC50), efficacy (GRinf), and Hill 253 

coefficient parameters of HER2+ cell lines were sampled to generate HER2 TKI-sensitive cell 254 

populations, while the parameters for Basal A and Basal B cell lines were sampled to generate 255 

resistant populations. GEC50 values were adjusted for PPB as described above. The GR metrics 256 

for neratinib and lapatinib are presented in Fig. 2B and Fig. S1, respectively. 257 

 258 

Modeling responses to HER2 TKI 259 

Tumor growth with and without treatment was modeled using a generalized logistic 260 

model with an exponent of 0.25 [14] (Fig. 1C), which has been validated to faithfully 261 

characterize the growth kinetics of breast tumors in a study of 395,188 women [2]. The b 262 
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growth parameter estimated in this study was lognormally distributed with a mean of 1.38 and 263 

variance of 1.36 for women under the age of 60. This corresponds to a geometric mean kg = 264 

1.66 x 10-4 hours, or 2.78 x 10-2 weeks. The equations used to model changes in the abundance 265 

(volume) of sensitive and resistant cell populations over time were: 266 

 267 

𝑑𝑆𝑒𝑛𝑠

𝑑𝑡
= 𝑘𝑔,𝑠𝑒𝑛𝑠𝑁𝑠𝑒𝑛𝑠 (1 −

𝑁𝑠𝑒𝑛𝑠 + 𝑁𝑟𝑒𝑠

𝐾
)

4

𝑙𝑜𝑔2(1 + 𝐸𝑓𝑓𝑒𝑐𝑡𝑠𝑒𝑛𝑠) 268 

 269 

𝑑𝑅𝑒𝑠

𝑑𝑡
= 𝑘𝑔,𝑟𝑒𝑠𝑁𝑟𝑒𝑠 (1 −

𝑁𝑠𝑒𝑛𝑠 + 𝑁𝑟𝑒𝑠

𝐾
)

4

𝑙𝑜𝑔2(1 + 𝐸𝑓𝑓𝑒𝑐𝑡𝑟𝑒𝑠) 270 

 271 
𝑑𝑇𝑢𝑚𝑜𝑟

𝑑𝑡
=

𝑑𝑅𝑒𝑠

𝑑𝑡
+ 

𝑑𝑆𝑒𝑛𝑠

𝑑𝑡
 272 

 273 

Where N represents the volume of the population and K represents the carrying 274 

capacity (diameter = 128 mm [2]). The effects of drug on tumor growth, Effectsens and Effectres, 275 

were calculated as follows [4]: 276 

 277 

𝐸𝑓𝑓𝑒𝑐𝑡 = 𝐺𝑅𝑖𝑛𝑓 +
1 − 𝐺𝑅𝑖𝑛𝑓

1 + (
𝐹𝑟𝑒𝑒 𝑑𝑟𝑢𝑔

𝐺𝐸𝐶50
)

ℎ 278 

 279 

Where h is a Hill coefficient estimated for a given cell line’s relationship between drug 280 

concentrations, GRinf, and GEC50. Of note, a proportion (27%) of neratinib’s therapeutic effect is 281 

attributed to active metabolites [6]. We therefore multiplied free neratinib concentrations by 1 282 

/ (1 – 0.27) when calculating Effectsens and Effectres to adjust for expected metabolite activity. 283 

 284 

Analysis and software 285 

Virtual populations were generated in MATLAB R2020b. Treatment simulations were 286 

performed in Simulx 2020. Statistical analyses were performed in MATLAB R2020b. Diameters 287 

were “measured” by sampling from simulations every 6 or 8 weeks to assess for progression-288 

free survival (PFS), mirroring the frequency of radiographic assessment in clinical trials. PFS was 289 

evaluated per RECIST v1.1 criteria, which designate target lesion diameter increases of ≥ 20% 290 

from nadir and at least 5 mm in absolute terms as progressive disease [15]. Importantly, events 291 

such as the appearance of new metastases, enlargement of non-target lesions, and death from 292 

any cause are also classified as progressive disease. We termed these events “DNTP”, or Death 293 

or Non-target Progression, and modeled the daily probability of patients to progress due to 294 

DNTP at the empirically estimated rate of 1.5 x 10-4 events/mm of tumor diameter/day. 295 

Objective response rates (ORR) were also evaluated per RECIST v1.1. This required the 296 

calculation of best overall response (BOR) for each patient. To do so, diameter measurements 297 

sampled from simulations every 6 or 8 weeks were compared to baseline tumor diameters. The 298 

smallest non-baseline tumor measurement was used to evaluate BOR. Patients with BOR 299 

diameter reductions of at least 30% from baseline were considered responders. ORR was 300 

calculated by dividing the fraction of responders by the total number of patients.  301 
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RESULTS 302 

Tumor sensitivity and resistance to targeted therapies is heterogeneous  303 

We initially questioned whether the steady-state unbound concentrations of several 304 

targeted therapies at their approved doses for the treatment of metastatic breast cancer were 305 

above or below their in vitro potency, as measured by PPB-adjusted GEC50. Plotting the PPB-306 

adjusted GEC50 of breast cancer cell lines [4], [12] against the estimated Css,free (Fig. 2A, see 307 

Methods) of 6 different drugs revealed significant differences in predicted response. The 308 

majority of cell lines in the dataset possessed GEC50 below the Css,free of abemaciclib, neratinib, 309 

and palbociclib, but not alpelisib, lapatinib, and ribociclib (Fig. 1). While these cell lines may not 310 

fully reflect the mixed cellular populations in patients, it is reassuring that HER2-amplified cell 311 

types in particular tended to have sensitivities below the predicted Css,free of HER2 TKIs neratinib 312 

and lapatinib. No such enrichment of HER2-amplified cell lines was noted for the PARP 313 

inhibitors abemaciclib, palbociclib, and ribociclib, nor for the PI3Kα inhibitor alpelisib. These 314 

data support the fidelity of GR metrics for characterizing and discriminating sensitivity and 315 

resistance to HER2 TKIs across diverse cell lines. 316 

 317 

Plasma free neratinib is closely associated with patient response and confers therapeutic 318 

effect beyond target lesions 319 

We created a virtual HER2+ breast cancer population and simulated patient response to 320 

neratinib (see Methods). The population PK of neratinib was simulated using a two-321 

compartment model with sequential first-order absorption, Tlag, and first-order elimination (Fig. 322 

3A-B) [6], [16], [17]. A generalized logistic growth model was used to describe the growth of a 323 

two-population tumor with different subpopulation sensitivities to neratinib (Fig. 3C-D) [2], 324 

[14].  325 

We explored several possibilities for tumor suppressive effects, including total- and free-326 

drug concentration-driven tumor growth inhibition of target lesions as well as indirect 327 

(unobserved) suppression of the growth of non-target and new lesions. When only target 328 

lesions were considered, tumor growth inhibition driven by total drug concentrations resulted 329 

in an overestimation of PFS and ORR (Fig. S2) [16]. This was not entirely unexpected, as 330 

progression from target lesions only reflects a subset of patients; many breast cancer 331 

progression events are due to death, new metastases, or non-target lesion progression while 332 

patients are still under therapy [18]. The use of free neratinib concentrations improved 333 

concordance and matched the target lesion response rates reported in [16] (31.6% simulated 334 

vs. 30.3% reported), but still overestimated PFS (Fig. 3E-F).  335 

We found the indirect tumor suppressive effect on non-target and new lesions to be 336 

critical for producing clinically consistent outcomes. For tumors that were already large at 337 

baseline, modeling drug effect on target lesions alone may overpredict patient response as 338 

these patients are at a higher risk of non-target progression and new lesions. Considering (1) 339 

the positive correlation between tumor burden and mortality and/or metastasis [10], and (2) 340 

more patients with metastatic breast cancer progress from non-target sources than target 341 

sources [18], we derived an additional time-variant probability of Death or Non-target 342 

progression (DNTP) for each patient that increased as a function of tumor burden. DNTP 343 

represents the instantaneous daily probability of a patient to die, experience new metastasis, 344 
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or exhibit non-target lesion growth and was estimated as 1.5 x 10-4 events/mm tumor 345 

diameter/day.  346 

With free drug-driven tumor growth inhibition and indirect tumor burden-driven DNTP, 347 

the platform generated PFS estimates that matched well with clinical outcomes [16] (Fig. 3G). 348 

Interestingly, the risk of progression from non-target, DNTP sources was relatively consistent 349 

throughout the course of treatment, whereas the risk of progression from target lesions was 350 

highest toward the end of treatment (Fig. 3H). Free drug-driven PD with concomitant DNTP was 351 

carried forward for all additional simulations. 352 

 353 

Patient response to neratinib is mostly influenced by tumor characteristics and less by 354 

systemic drug exposure  355 

Having established the model’s ability to reasonably recapitulate the clinical outcomes 356 

of neratinib, we proceeded to simulate 52 weeks of neratinib monotherapy in 1,000 virtual 357 

patients in search of tumor characteristics associated with longer PFS. Treatment with 240 mg 358 

QD neratinib prolonged median PFS from 15.5 to 18.3 weeks (Fig. 4A) and extended DNTP-free 359 

survival in 25.7% of patients (Fig. 4B).  360 

Patients were stratified by tumor characteristics and systemic drug exposure (Fig. 4C). 361 

As expected, a greater baseline tumor burden correlated with shorter PFS. The growth rate of 362 

resistant cells and drug potency on sensitive cell populations were also great sources of 363 

variability in PFS (Fig. 4D). Patients with more sensitive cell populations or slower growth of 364 

resistant populations tended to have longer survival. In contrast, the growth of sensitive cell 365 

populations, drug potency on resistant cell populations, and drug PK parameters like clearance, 366 

area under the curve (AUC), and Css,trough at the labeled dose did not significantly influence 367 

patient response and PFS (Fig. 4C). Interestingly, differences in HER2+ fraction were also 368 

insignificant to patient response.  369 

Patients who achieved above-median PFS tended to have greater killing of sensitive cells 370 

and better control of resistant cell outgrowth than patients who did not (Fig. 4E). On an 371 

individual level, however, a diverse range of response dynamics was observed (Fig. 4F). 372 

Sensitive subpopulations could be completely eradicated in some patients, fully controlled in 373 

others, and completely insensitive in still others (Fig. 4F), raising the possibility of post-374 

treatment changes to HER2+ fraction [19]. Collectively, these data suggest that tumor-intrinsic 375 

characteristics and cellular heterogeneity strongly influence patient responses to targeted 376 

therapy, and to a higher degree than inter-individual variability in drug PK at the approved 377 

doses. 378 

 379 

Patient response to lapatinib is also largely explained by variability in tumor characteristics 380 

and cellular composition 381 

To investigate the broader applicability of our modeling approach, we adjusted the 382 

PK/PD/TG model for another HER2 TKI, lapatinib (Fig. 5A). Simulations using the virtual breast 383 

cancer population, publicly available GR metrics [4], [12], and the original sponsor-developed 384 

population PK models reproduced the clinically observed PK, PFS, and ORR of 1500 mg QD 385 

lapatinib (Fig. 5B, Fig. S3) [7], [20]–[22]. As with neratinib, free plasma lapatinib was assumed to 386 

drive tumor suppressive effect while accounting for indirect effects on additional probability of 387 

progressive disease from DNTP.  388 
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Lapatinib monotherapy was predicted to improve median PFS to 17.4 weeks, from 15.1 389 

weeks if untreated (Fig 5C). DNTP-free survival was also extended in 11.4% of patients (Fig. 5D). 390 

Similar to neratinib, tumor-intrinsic properties such as tumor burden and resistant cell growth 391 

rate differed between patients with longer and shorter PFS, while PK parameters did not (Fig. 392 

5E). HER2+ fraction also impacted lapatinib outcomes, with the lowest quartile exhibiting 393 

markedly shorter PFS (Fig. 5F), while drug sensitivity did not. In contrast to neratinib, there was 394 

no difference in the killing of sensitive cells between patients who achieved above- and below-395 

median PFS, although there was a difference in the control of resistant cell outgrowth (Fig. 5G). 396 

 397 

Dose intensification may improve clinical response for neratinib but may not for lapatinib 398 

Although there was only a modest relationship between PK variability and PFS under the 399 

approved doses of neratinib and lapatinib, we wondered whether BID dosing might improve 400 

tumor control and patient outcomes. To our surprise, doubling the dosing frequency improved 401 

outcomes for neratinib significantly more than for lapatinib, with 27% versus 2% deriving longer 402 

PFS from BID dosing (Fig. 6A-B). This suggests different levels of susceptibility of neratinib and 403 

lapatinib, at their approved doses, to significant changes in PK; 240 mg QD neratinib is perhaps 404 

in a steeper portion of its dose-response curve than 1500 mg QD lapatinib. Dose fractionation 405 

of neratinib into 120 mg BID to mitigate dose-limiting diarrhea did not significantly influence 406 

efficacy (Fig. S4) [6]. 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 
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DISCUSSION 433 

In this study, we integrated PK, tumor stage and growth characteristics, clonal composition, 434 

and tumor sensitivity and resistance to treatment into a PK/PD/TG modeling platform and 435 

simulated the antitumor efficacy of two HER2 TKIs in a virtual metastatic breast cancer 436 

population. Previous studies conducted to evaluate the interplay between PK and tumor 437 

characteristics and their influence on patient response have found both to be major sources of 438 

variability in patient response [1]. While we also found tumor growth parameters such as 439 

resistant cell growth rate to significantly contribute to PFS, we did not find a strong influence of 440 

drug PK on patient response to the assessed target therapies.  441 

The finding that HER2+ positivity influenced clinical outcomes under lapatinib treatment is 442 

consistent with clinical observations [23]. It is not clear why a similar magnitude of effect was 443 

not observed in patients treated with neratinib. We also found the growth rate of resistance 444 

clones, analogous to tumor regrowth rate after progression, to be significant to patient 445 

response. Interestingly, growth rate after progression has been directly correlated with patient 446 

survival in non-small cell lung cancer and glioblastoma [24], [25]. A similar analysis has been 447 

conducted for HER2-negative breast cancer response to chemotherapy [26], though to our 448 

knowledge, no such work exists for HER2-positive breast cancer. Our results in the context of 449 

accumulating literature highlighting the importance of HER2+ fraction suggests a similar 450 

relationship may between regrowth rate and long-term outcomes may exist. 451 

To recapitulate clinically observed PFS curves that account for progression from both target 452 

and non-target sources, a tumor burden-based risk of DNTP seems to be critical [10], [18]. 453 

Patients with metastatic disease may have discordant responses to therapy across metastases, 454 

confounding PFS based on changes in the target lesions [27], [28]. To our knowledge, DNTP 455 

rates have not been well characterized previously. As shown in our study, DNTP rate could be 456 

informed by the progression difference between target lesions and all lesions that are clinically 457 

observed per RECIST 1.1.  458 

Two points should be kept in mind when interpreting this study. First, nonspecific protein 459 

binding is much higher in tumors than in blood for most small molecule therapeutics. For 460 

lapatinib specifically, Spector et al. [29] showed that total drug concentrations in xenograft 461 

tumors are slower clearing and at least 6-fold higher than in plasma. With substantial total drug 462 

accumulation in the tumor due to nonspecific binding, one would expect total drug-driven 463 

effect to result in even longer PFS than we have simulated here, therefore requiring a higher 464 

rate of DNTP to “bring down” the PFS curve. One major assumption of this work is that 465 

nonspecific proteins available for drug binding are always in great excess, leading to a constant 466 

fup over time [30], [31]. Hypoalbuminemia does occur in breast cancer, although whether this 467 

meaningfully affects free drug concentrations is not known [32].  468 

Second, the Free Drug Hypothesis is generally taken prima facie when translating drug PD 469 

from in vitro systems into living organisms [5], [8]. This draws from the assumption that drug 470 

nonspecifically bound to circulating plasma protein or extracellular parenchymal protein is 471 

unable to interact with its intended target – in this case, the intracellular kinase domain of 472 

HER2. Violations of the free drug hypothesis are generally driven by mechanisms that disturb 473 

steady state equilibria assumptions, such as drug transport proteins like P-glycoprotein (Pgp) or 474 

high tissue clearance rates relative to diffusion [8]. While lapatinib is a substrate for Pgp and 475 

breast cancer resistance protein (BCRP) [33], the direction of its transport is extracellular, such 476 
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that intracellular lapatinib concentrations are unlikely to be higher than what one would expect 477 

from free plasma concentrations. With no evidence to suggest transporter-mediated uptake 478 

into cancer cells, nor increased clearance from the tumor, we consider free drug concentrations 479 

to be an appropriate driver of PD for lapatinib [6], [9], [29]. Hypothetically, covalent inhibitors 480 

such as neratinib might cause receptor internalization, leading to longer PD than would be 481 

expected from free concentrations [34]. If de novo HER2 re-synthesis kinetics are faster than 482 

neratinib’s half-life, however, we would expect this prolonged PD to be negligible [35]. 483 

Oncology drug developers may benefit from seriously considering free drug concentrations 484 

when predicting clinical efficacy from pre- and non-clinical data. With our emphasis on free 485 

drug concentrations, it might be tempting to use this study to support optimizing protein 486 

binding as a goal during early development. However, this would be misguided, as decreasing 487 

protein binding does not increase free drug AUC without a concomitant decrease in intrinsic 488 

clearance [36]. For drugs such as lapatinib, correcting for protein binding and comparing to GR 489 

metrics like GEC50 may have alerted investigators to the relatively minimal effect lapatinib 490 

would exert as a monotherapy [21]; indeed, lapatinib is only approved for use in combination 491 

with capecitabine. Previous studies that estimated brain tumor lapatinib concentrations did not 492 

consider nonspecific protein binding and used an oversimplified representation of the drug’s 493 

pharmacokinetic variability [37]. Interestingly, the 0.61 tumor-to-blood ratio that was used is 494 

lower than the tumor accumulation ratio reported by Spector et al., though this may be due to 495 

differences in brain and peripheral drug distribution [29]. In any case, it may be useful to re-496 

evaluate these studies in the context of blood brain barrier-mediated transport of free drug. 497 

Developing a well-calibrated model with realistic characterization of inter-patient PK and 498 

tumor growth variability allowed us to explore alternative dosing regimens in a semi-realistic 499 

population. We were surprised to find substantial differences in the extent of benefit achieved 500 

with BID neratinib and lapatinib. Hypothetically, this suggests dose titration of lapatinib up to 501 

1500 mg BID would be futile in most cases, whereas 240 mg BID neratinib would be reasonably 502 

likely to extend PFS. In practice, dose-limiting diarrhea may prevent the administration of more 503 

than 240 mg QD neratinib, highlighting that safety and tolerability can impose upper limits to 504 

the range of the free drug ER that can be explored [6]. Splitting the 240 mg dose into two 120 505 

mg doses did not compromise efficacy of neratinib (Fig. S4), but did lower Css,max without 506 

changing Css,avg. This may be an alternative to the currently on-label dose adjustment strategy, 507 

which recommends sequential dose reductions in increments of 40 mg. 508 

HER2 was an unusually apt target on which to demonstrate modeling proof of concept, as 509 

HER2 amplification is routinely quantified in the clinic. In addition, widespread breast cancer 510 

screening efforts have generated volumes of data against which it is possible to calibrate 511 

models of tumor growth [2]. Based on these results, it may be useful to consider HER2+ fraction 512 

as a predictor of outcomes on HER2 targeted therapy; this may provide greater granularity than 513 

HER2 IHC scores. An immediate expansion of this approach would be to predict the efficacy of 514 

EGFR TKIs, as several groups have found EGFR mutation fraction to influence outcomes during 515 

treatment with EGFR mutation-selective therapies [38], [39]. Overall, our GR metric-based 516 

population PK/PD/TG modeling approach has potentially broad utility for decision-making 517 

during early drug development. 518 

 519 

 520 
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FIGURES 695 

Figure 1. Virtual patients reflect real-world sources of variability 696 

A. Variability in drug pharmacokinetics, target fraction, subpopulation growth rates, and 697 

drug-specific subpopulation sensitivity were considered during model development. 698 

Lapatinib and neratinib population PK models were adapted from publications by the 699 

original developers and FDA review documents. Target fraction (subpopulation 700 

proportions) was determined using HER2 IHC2/IHC3+ frequencies available in the 701 

literature [11]. Growth rates were derived from a published tumor growth model built 702 

on breast cancer screening data from 395,188 women [2]. Drug sensitivity for tumor 703 

subpopulations was obtained from GR metrics reported in the literature [4], [12]. 704 

B. Baseline tumor diameter at diagnosis (left) and the likelihood of metastatic disease at 705 

diagnosis based on baseline tumor diameter (center) used to calculate baseline tumor 706 

diameter at diagnosis of metastatic disease (right). Baseline tumor diameter frequencies 707 

below 20 mm were available in increments of 1 mm; above 20 mm were available in 708 

increments of 10 mm [10]. 709 

C. Simulated growth (red) of 15 mm diameter tumors as compared to [2] (black). Dashed 710 

lines indicate 5th, 25th, 75th, and 95th percentiles of 100 simulated tumors, while solid 711 

lines indicate medians.  712 

D. Relative frequency of IHC3+ and FISH-amplified IHC2+ breast cancers at diagnosis 713 

reported in [11]. 714 
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Figure 2. Tumor sensitivity and resistance to targeted therapies is heterogenous 716 

A. Protein binding (PPB)-adjusted sensitivity (log10 nM) of breast cancer cell lines to six 717 

drugs approved for the treatment of metastatic breast cancer [4], [12]. Dashed lines 718 

indicate estimated average steady-state concentrations of free drug (Css,free). Inset 719 

percentages indicate the proportion of cell lines in the dataset with PPB-adjusted GEC50 720 

below the drug’s free Css,free. For visualization purposes, cell lines with no detected 721 

sensitivity to a particular drug at tested concentrations were assigned a nominal value 722 

of 1 x 109. 723 

B. Neratinib GEC50 (left) and GRinf (center) values for breast cancer cell lines reported in 724 

[12]. HER2 status was determined by [13]. Cell lines with conflicting HER2 status in the 725 

literature were excluded. GRexpected (right) values reflect the predicted GR of each cell 726 

line at the estimated Css,avg of neratinib.  727 
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Figure 3. PK/PD/TG model recapitulates the clinical efficacy of neratinib 733 

A. Population pharmacokinetic model structure for neratinib reported in [6]. Drug 734 

absorption occurs through a first-order (Ka) process with delay (Tlag). Drug subsequently 735 

distributes (Q) between central/plasma (Vc) and peripheral (Vp) compartments and 736 

clears from the central compartment by first-order elimination (CL). 737 

B. Simulated pharmacokinetic profiles during the first week of once-daily treatment with 738 

240 mg neratinib. Lines represent medians, whereas shaded regions represent 5th and 739 

95th percentiles. Black circles represent observations from [17].  740 

C. Pharmacodynamic model of tumor growth comprising two competing cell populations 741 

with differential sensitivity to a cytostatic drug. 742 

D. Growth dynamics of HER2-amplified (“sensitive”) and HER2-negative (“resistant”) 743 

subpopulations within an illustrative IHC2+ tumor. Values for either subpopulation are 744 

normalized to their abundance at treatment initiation. 745 

E. Predicted PFS during 52 weeks of treatment with 240 mg QD neratinib using free drug-746 

driven pharmacodynamics, compared to [16]. Only progression from target lesions is 747 

included. 748 

F. Predicted ORR during 5 weeks of treatment with 240 mg QD neratinib using free drug-749 

driven pharmacodynamics, compared to [16]. 750 

G. (E) with an additional daily chance of Death or Non-target Progression (DNTP) estimated 751 

as 1.5 x 10-4 events/mm of tumor diameter/day. 752 

H. Risk of progression by source during each 6-week scan interval during 52 weeks of 753 

treatment with 240 mg QD neratinib. NAR, number at risk during the scan interval. 754 

 755 
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Figure 4. Tumor-intrinsic characteristics influence neratinib efficacy 761 

A. Simulated PFS of 1000 patients with and without 52 weeks of treatment with 240 mg 762 

QD neratinib.  763 

B. DNTP-free survival for each patient in untreated (blue) and treated (orange) states. 764 

DNTP-free survival is the time on study without a DNTP event. 765 

C. Multiplicity-corrected significance of differences in PFS between patients with 766 

parameter values above or below the population median (bars). The dashed line 767 

represents the Benjamin-Hochberg significance threshold for one-way ANOVA. For 768 

visualization purposes, the y axis is truncated at 2.5. 769 

D. Significant differences in PFS stratified by tumor burden (left), resistant cell growth rate 770 

(middle), sensitive cell GEC50 (right) quartiles.  771 

E. Normalized tumor diameters (left), sensitive cell volume (middle), and resistant cell 772 

volume (right) stratified length of PFS relative to median PFS (mPFS). All y axes are on a 773 

log scale. Shaded regions represent interquartile ranges. 774 

F. Representative profiles of baseline-normalized sensitive and resistant cell abundance 775 

from three virtual patients treated with 52 weeks of 240 mg QD neratinib. 776 
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Figure 5. Different tumor-intrinsic characteristics influence lapatinib efficacy 789 

A. Population pharmacokinetic model structure for lapatinib reported in [7]. Drug 790 

absorption occurs through a sequential zero-order (Dur) and first-order (Ka) process with 791 

delay (Tlag). Drug subsequently distributes (Q) between central/plasma (Vc) and 792 

peripheral (Vp) compartments and clears from the central compartment by first-order 793 

elimination (CL). 794 

B. Simulated pharmacokinetic profiles during the first week of once-daily treatment with 795 

1500 mg lapatinib. Lines represent medians, whereas shaded regions represent 5th and 796 

95th percentiles. Black circles represent observations from [22]. 797 

C. Simulated PFS of 1000 patients with and without treatment of 1500 mg daily lapatinib.  798 

D. DNTP-free survival for each patient in untreated (blue) and treated (orange) states. 799 

DNTP-free survival is the time on study without a DNTP event. 800 

E. Multiplicity-corrected significance of differences in PFS between patients with 801 

parameter values above or below the population median (bars). The dashed line 802 

represents the Benjamin-Hochberg significance threshold for one-way ANOVA. For 803 

visualization purposes, the y axis is truncated at 2.5. 804 

F. Significant differences in PFS stratified by tumor burden (left), resistant cell growth rate 805 

(middle), sensitive cell HER2+ fraction (right) quartiles.  806 

G. Normalized tumor diameters (left), sensitive cell volume (middle), and resistant cell 807 

volume (right) stratified length of PFS relative to median PFS (mPFS). All y axes are on a 808 

log scale. Shaded regions represent interquartile ranges. 809 
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Figure 6. Dose intensification benefits neratinib more than lapatinib 819 

A. PFS benefit from treatment with 240 mg QD or BID neratinib versus no treatment. PFS 820 

benefit is the positive difference in predicted PFS between two treatment schedules. 821 

B. (A) for 1500 mg QD or BID lapatinib. 822 
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Figure S1. Lapatinib drug sensitivity 853 

A. Lapatinib GEC50 (left) and GRinf (center) values for breast cancer cell lines reported in [4]. 854 

HER2 status was determined by [13]. Cell lines with conflicting HER2 status in the 855 

literature were excluded. GRexpected (right) values reflect the predicted GR of each cell 856 

line at the estimated Css,avg of lapatinib. 857 
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Figure S2. Neratinib pharmacodynamics using total or free drug 872 

A. Predicted PFS (top) and ORR (bottom) during treatment with 240 mg daily neratinib 873 

using total drug-driven pharmacodynamics, compared to [16]. Only progression from 874 

target lesions is included. 875 

B. (A) using free drug-driven pharmacodynamics. 876 

C. (B) with an additional daily chance of Death or Non-target Progression (DNTP) estimated 877 

as 1.5 x 10-4 events/mm of tumor diameter/day. 878 

 879 
 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 



30 
 

Figure S3. Lapatinib efficacy calibration 898 

A. Predicted PFS (left) and ORR (right) of 1500 mg QD lapatinib using free-driven 899 

pharmacodynamics and an additional daily chance of Death or Non-target Progression 900 

(DNTP) estimated as 1.5 x 10-4 * tumor diameter in mm, compared to [20], [21]. 901 
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Figure S4. Neratinib dose fractionation  925 

A. PFS benefit from treatment with 240 mg QD or 120 mg BID neratinib versus no 926 

treatment. PFS benefit is the positive difference in predicted PFS between two 927 

treatment schedules. Lack of orange bars indicates PFS equivalence between 240 mg 928 

QD and 120 mg BID. 929 
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