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tive Gaussian (QTAG) method in a modular open-source Libra package for quantum
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1 Introduction

Nonadiabatic effects of electron-nuclear interactions are essential in many chemical pro-

cesses,1–6 including photophysics and photochemistry involving charge and energy transfer,

and reactive dynamics in the condensed phase. The systems exhibiting electronically nona-

diabatic behavior range from electron and/or proton transfer in chemical and biological sys-

tems,4,5,7 to light-harvesting materials,6,8–12 to reaction control and optochemistry.13 There-

fore, the development of time-dependent nonadiabatic dynamics methods has received a lot

of attention from many theorists utilizing a variety of approaches.14–18 Given the expense

and unfavorable scaling of exact quantum dynamics methods, an often-employed strategy is

to combine a classical treatment of the nuclei with a semi-classical or quantum description

of electrons.19–21 The trajectory surface hopping (TSH) and Ehrenfest methods – both used

in numerous applications8,22,23 – are the most popular methods of this type. The TSH and

the Ehrenfest dynamics are both based on an ensemble of independent classical trajectories:

in the former, these trajectories move on one potential energy surface with a possibility

of electronic transitions to different surfaces, while in the latter all trajectories move on a

single effective potential determined via an averaging procedure over the electronic states.

While the classical description of the nuclei makes these methods much more practical than

the exactly-calculated alternatives, they fail to incorporate nuclear quantum effects (NQEs),

which are at times essential for the understanding and characterization of a system. This

shortcoming motivates the active development of trajectory-based methods incorporating

NQEs at least approximately. An incomplete list of such methods includes those based

on ring-polymers,24–26 quantum trajectories,27,28 exact factorization15,29–32 and various ap-

proaches employing Gaussian bases.33–36 We refer an interested reader to Ref.16 for a recent

review of nonadiabatic dynamics methodologies.

A natural way to add NQEs to the nuclear dynamics is to represent nuclear wavefunctions

in terms of basis functions that follow trajectories capturing the broad features of the system’s

time-evolution. In this paper, we describe a multi-state generalization of a formally exact
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quantum dynamics method based on the trajectory-guided basis representation of nuclear

wavefunctions, i.e. the quantum trajectory-guided adaptable Gaussians (QTAG).37–39 In

the QTAG method – unlike many other Gaussian methods – the basis function parameters

are ‘optimized’ by the time evolution of the wavefunction. This approach offers several

conceptual advantages: (1) the trajectory paths are guided by the shape and coordinate-

dependent phase of the wavefunction itself, creating an efficient sampling of the configuration

space; (2) the NQEs are captured intrinsically, without requiring external corrections; (3)

thanks to the trajectories defining the basis functions’ centers, the QTAG formalism smoothly

connects to semi-classical and classical descriptions of nuclear motion and to the hierarchical

treatment of large molecular systems.

The remainder of the paper is organized in the following way: QTAG dynamics and

the propagation algorithm are reviewed, and the nonadiabatic generalization is presented

in Section 2. The multi-surface, multidimensional QTAG implementation within the Libra

software suite40 – including organization of the package, its key components and the main

algorithms used in their implementation – is described in Section 3. The utility of the QTAG

dynamics is demonstrated and discussed in the context of several standard nonadiabatic

models in Section 4. Summary and outlook is presented in Section 5.

2 Theoretical Background

2.1 Notation, Wavefunction, and Basis Definitions

The theoretical underpinnings of the QTAG method are described in full elsewhere.38 A

synopsis of the fundamental equations is presented here employing atomic units (h̄ = 1),

Cartesian coordinates and the diagonal form of the kinetic energy for clarity. At its core,

this method seeks to solve the time-dependent Schrödinger equation (TDSE):

ı
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 = [T̂ + V̂ ]|Ψ(t)〉. (1)
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Here, T̂ is the nuclear kinetic energy operator and V̂ is the electronic Hamiltonian operator.

The electron-nuclear wavefunction, |Ψ(t)〉 is represented in the basis of electronic states (|i〉

such that 〈i|j〉 = δij) and nuclear Gaussian basis functions (GBFs, |Gk〉):

|Ψ(t)〉 =
M−1∑
i=0

Nb−1∑
k=0

C(i,k)(t)|i, G(i,k)(λ(i,k)(t))〉 = |G〉C = |G̃〉B, (2a)

|i, G(i,k)(λ(i,k)(t))〉 = |i〉|G(i,k)(λ(i,k)(t))〉. (2b)

In our notation, bold-faced letters denote matrices and vectors. Here, C(i,k)(t) are the

time-dependent coefficients corresponding to the non-orthogonal GBF |G(i,k)(λ(i,k)(t))〉 asso-

ciated with electronic state i and trajectory k on that state, M is the number of electronic

states considered, and Nb is the number of GBFs per electronic state. The adaptable GBF

parameters λ(i,k)(t) are explained below. In the current implementation, we populate each

state with the same number of GBFs, although they may carry zero amplitudes. In principle,

each surface may need a different number of GBFs and one may allow GBF transitions (hops)

across states, although such an adaptive approach is not included in the current implemen-

tation. One may argue that incorporating the trajectory (or GBF) “hopping” is redundant,

since such events are naturally included in the time-dependence of the GBF coefficients on

different surfaces. Therefore, a better alternative to GBF transitions (not pursued here)

would be to adjust the sizes of the GBF sets on each surface as the quantum system evolves

according to a given Hamiltonian.

The notation |G〉 is used to denote a vector of state vectors: |G〉 = (|G0〉, |G1〉, . .., |GNtraj−1〉),

whereas the matrix C represents a vector-column C = (C0, C1, . .., CNtraj−1)T , such that the

short-hand notation |G〉C corresponds to the scalar product, |G〉C =
∑Ntraj−1

I=0 |GI〉CI .

Here, I ↔ (i, k) is a mapped index of the GBFs in the whole set of functions for all elec-

tronic states, and Ntraj = M×Nb is the total number of such functions on all surfaces. Since

both C and |G〉 are essentially one-dimensional (1D) vectors, the indices corresponding to

the state and GBF are combined within parenthesis in Eq. 2b, to not confuse them with the
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indices of a column and row of a regular matrix. Furthermore, we assume the state-block

ordering of the coefficients and GBFs, that is:

C = (C(0,0), . .., C(0,Nb−1), C(1,0), . .., C(1,Nb−1), . .., C(M−1,0), . .., C(M−1,Nb−1))
T , (3a)

|G〉 = (|G(0,0)〉, . .., |G(0,Nb−1)〉, |G(1,0)〉, . .., |G(1,Nb−1)〉, . .., |G(M−1,0)〉, . .., |G(M−1,Nb−1)〉), (3b)

〈G| = (〈G(0,0)|, . .., 〈G(0,Nb−1)|, 〈G(1,0)|, . .., 〈G(1,Nb−1)|, . .., 〈G(M−1,0)|, . .., 〈G(M−1,Nb−1)|)T . (3c)

The coefficients B in Eq. 2a correspond to the wavefunction expansion in an auxiliary

orthogonalized basis |G̃〉, related to the non-orthogonal GBF basis as:

|G̃〉 = |G〉U. (4)

Here, U is a unitary transformation matrix that orthogonalizes the GBF basis, that is, the

one that diagonalizes the overlap matrix S:

S = 〈G|G〉. (5)

Indeed, the basis |G̃〉 is defined as 〈G̃|G̃〉 = I, so 〈G̃|G̃〉 = U†〈G|G〉U = U†SU = I. One

can also note a useful relationship S−1 = UU†.

The GBFs are constructed as a product of 1D Gaussians for each degree of freedom. In

the position representation, this takes the form:

〈q|GI〉 = GI(q;λI(t)) =

Nd−1∏
n=0

g(qn;λI(t)), (6)

where q is the coordinate vector of Nd nuclear degrees of freedom, q = (q0, q1, . .., qNd−1)T .

The 1D Gaussians are defined as:

g(qn;λI(t)) =
(a(I)

n (t)

π

)1/4

exp
(
− a

(I)
n

2
(qn −Q(I)

n (t))2 + iP (I)
n (t)(qn −Q(I)

n (t)) + is(I)
n (t)

)
(7)
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The QTAG GBFs – Eqs 6 and 7 – are parametrized by a set of real, adaptable, time-

dependent parameters λI(t) = {Q(I),P(I),a(I), s(I)} whose tuneability offers an efficient

means to represent the system wavefunction. Here, Q
(I)
n (t) and P

(I)
n (t) can be regarded

as the n-th component of the coordinate and momentum of the I-th GBF (I ↔ (i, k)),

whereas a
(I)
n (t) and s

(I)
n (t) are the n-th components of its width and phase vectors.

Although all the parameters are formally time-dependent quantities, our implementa-

tion allows for the opportunity of constraining the values of any of these parameters to

remain constant. In the special case of all constant values, the approach reduces to the

regular TDSE solution in a static basis. Such a limiting case has an important flaw which

the QTAG approach is designed to overcome: the efficiency of the basis. In the fixed ap-

proach, an unnecessarily large basis is required to cover all the regions of configuration space

where the system may evolve. However, under evolution in bounded potentials, the system’s

wavefunction is likely to be reasonably localized, and the actual basis needed for an accurate

description may be smaller. In the QTAG procedure, the basis functions instead evolve along

quantum trajectories to achieve a compact and accurate representation of the wavefunctions.

2.2 Computing Hamiltonian Matrix Elements

The QTAG computational workflow described in the following sections requires evaluating

matrices of three kinds – the GBF overlap matrix S = 〈G|G〉, the kinetic energy matrix,

T = 〈G|T̂ |G〉, and the potential energy operator, V = 〈G|V̂ |G〉. Considering the ordering

of the electron-nuclear basis functions (Eq. 3b) and the orthogonality of the electronic

components, one can note that the matrix S – as well as any other matrices of the form

〈G|Â|G〉 (e.g. with Â = T̂ or V̂ ) – have a block structure with each block being an Nb×Nb

sub-matrix whose elements correspond to different trajectories for a given set of electronic

state indices (Fig. 1). The blocks of the S and T matrices corresponding to different

electronic states are zero because of the orthogonality of the electronic components of the

GBF, 〈i|j〉 = δij, whereas the matrix V may have non-zero elements in blocks connecting
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different electronic states.

Figure 1: Hamiltonian (a.) and overlap (b.) super-matrices, each of dimension Ntraj×Ntraj.
The sub-matrices (dimension Nb × Nb) correspond to single-surface Hamiltonians on the
diagonal, or coupling Hamiltonians on the off-diagonals. In (a.), the 0-blocks coupling states
1 and 3 are merely given as an example of uncoupled states 1 and 3; in (b.) all 0-blocks
are enforced, as basis functions of different surfaces do not overlap. The text within each
sub-block indicates the calculation required for its entries, while the colors purple, blue and
green are used for clarity to distinguish the surfaces 1, 2 and 3, respectively. The non-zero
coupling blocks in the Hamiltonian super-matrix are marked as orange.

In general, the Hamiltonian and overlap matrices for an arbitrary number of quantum

states, M , are referred to as the super-Hamiltonian and super-overlap, and are constructed

from their single-surface counterparts (Fig. 1). The numeric superscripts on the right-hand

side of sub-blocks index the electronic states; for example, S0,0 refers to an overlap matrix

containing single-surface elements corresponding to state 0, and H1,M−1 corresponds to the

Hamiltonian with elements which couple states 1 and M−1. The use of 0 in the definition of

the super-overlap matrix indicates the zero-matrix, a matrix of the same rank as the block-

diagonal entries and whose elements are all zeroes. This property of the super-overlap means

that QTAG GBFs on different surfaces have no overlap with one another by construction; if

this were not enforced, the resulting matrix would be singular and Eq. 21 would be rendered

7



un-invertible in the basis orthogonalization and transformation (BOT) algorithm described

in Section 2.3.

The computation of the S and T matrices is a straightforward invocation of the func-

tions implemented in Libra’s Gaussian wavepacket (GWP) library, libgwp, for the GWP

parameter values at time t (see Appendix A).

As for the matrix elements of the potential energy operator, the resulting integrals cannot

be evaluated analytically (except for special cases of V̂ ), or the potential energy is not

available in an analytic form altogether – only numeric values and local derivatives are known,

for example, from electronic structure calculations. In these instances, the potential can be

approximated via local Taylor expansion at the GBF centers. Denoting the gradient vector

and the Hessian matrix of V (Q) as V′ and V′′, respectively, the approximated potential at

the location of the k-th GBF is

V (Q; Q(k)) ≈ V [k] + (Q−Q(k))TV′[k] +
1

2
(Q−Q(k))TV′′[k](Q−Q(k)), (8)

where the GBF center at which the functions are evaluated is labeled as [k], V′[k] = V′(Q(k)),

etc. Within the QTAG dynamics, the potential matrix elements Vkl are evaluated employing

the overlap matrix Skl from the libgwp library and the following integrals for each pair of

GBFs, 〈Gk| and |Gl〉. For each dimension qn the required integrals of the k-th and l-th

GBFs, 〈g(qn;λk)| and |g(qn;λl)〉, are given in terms of the GBF overlap and an auxiliary

variable ζ
(kl)
n (n labels dimension; k and l label bra and ket basis functions):

ζ(kl)
n =

a
(k)
n Q

(k)
n + a

(l)
n Q

(l)
n

a
(k)
n + a

(l)
n

+ ı
P

(l)
n − P (k)

n

a
(k)
n + a

(l)
n

(9)

Then, an Nd-dimensional vector Q̃(kl) is constructed from the first moments,

Q̃(kl)
n =

〈Gk|qn|Gl〉
〈Gk|Gl〉

= ζ(kl)
n (10)
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and an Nd × Nd matrix Q̃2
(kl)

= 〈Gk|qnq′n|Gl〉/〈Gk|Gl〉 is constructed from the second

moments,

Q̃2
(kl)

nn = (ζ(kl)
n )2 +

1

a
(k)
n + a

(l)
n

, (11a)

Q̃2
(kl)

nn′ = ζ(kl)
n ζ

(kl)
n′ , n 6= n′. (11b)

With that, the potential matrix elements are computed using the average of the Taylor

expansions (Eq. 8) at the GBF centers Q(k) and Q(l). The first-order expansion yields the

bra-ket-average (BAT) approximation,41

V BAT
kl = Ṽ BAT

kl Skl, (12a)

Ṽ BAT
kl =

1

2

(
V [k] + V [l] + (Q̃(kl) −Q(k))TV′[k] + (Q̃(kl) −Q(l))TV′[l]

)
(12b)

The half-sum of the second-order expansions gives the local harmonic approximation

(LHA),

V LHA
kl = Ṽ LHA

kl Skl, (13a)

Ṽ LHA
kl =

1

4

(
Tr{(V′′

[k]+V
′′
[l])Q̃2

(kl)
} − 2(Q̃kl)T

(
V

′′
[k]Q(k)+V

′′
[l]Q(l)

)
(13b)

+(Q(k))TV
′′
[k]Q(k)+(Q(l))TV

′′
[l]Q(l)

)
+ Ṽ BAT

kl .

The LHA approximation is exact for parabolic potentials, but also obviously more ex-

pensive than BAT in general because of the Hessian evaluation. To estimate the BAT error,

we may expand V at the midpoint of the GBF centers, considering only one dimension for
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simplicity. Using the following notations,

Q̄ =
Q(k) +Q(l)

2
, ã = a(k) + a(l) (14a)

∆Q = Q(l) −Q(k), ∆P = P (l) − P (k) (14b)

and taking the potential as:

V = V0 + V ′|q=Q̄ (q − Q̄) + V ′′|q=Q̄

(q − Q̄)2

2
, (15)

the integral approximation is equal to:

V BAT
kl − Vkl =

V ′′|q=Q̄

2ã2

(
∆2

P − ã− ı(a(l) − a(k))∆P∆Q −
(a(k))2 + (a(l))2

2
∆2

Q

)
Skl. (16)

The error in the BAT and LHA approximations depends on the separation between GBFs

as ∼ ∆2
Q exp(−a∆2

Q). In other words, the long-time dynamics that leads to notable wave-

function dispersion may incur additional inaccuracies due to the potential matrix element

approximations.

2.3 Propagation of the Wavefunctions

To integrate the TDSE, Eq. 1 is first projected onto the basis of the GBFs (Eq. 3b) to yield:

ıS
d

dt
C = HvibC, (17)

Hvib =
〈
G
∣∣∣(Ĥ − ı∑

jj′

|j〉 ∂
∂t
〈j′|
)∣∣∣G〉 = T + V − ı

〈
G
∣∣∣(∑

jj′

|j〉 ∂
∂t
〈j′|
)∣∣∣G〉. (18)

Here, Hvib is the vibronic Hamiltonian matrix, which includes the effects of nonadiabatic

couplings connecting the different electronic states labeled |j〉 (and 〈j′|). In the present

approach, however, it is assumed that the solution is obtained in the basis of locally static
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(on the interval [t, t + ∆t]) GBFs. In other words, the basis of the GBFs is considered

to be the crude diabatic basis at every time interval [t, t + ∆t] that does not depend on

time explicitly. Hence, the time-derivative coupling term, −ı
∑

jj′ |j〉
∂
∂t
〈j′|, can be dropped,

leading to:

Hvib = 〈G|Ĥ|G〉 = T + V (19)

Note that the crude diabatic basis Hamiltonian35,42 Hvib may still contain diabatic couplings

connecting distinct electronic states.

To solve Eq. 17 using the Hamiltonian in Eq. 19, we use the following propagation

scheme for the non-orthogonal basis:

C(t+ ∆t) = exp(−ıS−1Hvib∆t)C(t) = Zexp(−ıE∆t)Z†SC(t). (20)

Here, S is the overlap matrix defined in Eq. 5, while Z and E are matrices that contain the

eigenvectors and eigenvalues of the following generalized eigenvalue problem, respectively:

HvibZ = SZE. (21)

The second identity in Eq. 20 can be proven by applying the Taylor expansion to the

second form of the propagator:

Zexp(−ıE∆t)Z†S = ZIZ†S− ıZEZ†S∆t− ZEEZ†S
∆t2

2
+ · · · (22)

One can insert the orthogonality property I = Z†SZ, which also suggests that S−1 = ZZ†,

11



and use Eq. 21 in the form ZE = S−1HZ to obtain the following chain of derivations:

Zexp(−ıE∆t)Z†S = ZIZ†S− ıZEZ†S∆t− ZE(Z†SZ)EZ†S
∆t2

2
+ · · ·

= S−1S− ıS−1HZZ†S∆t− (S−1HZ)Z†S(S−1HZ)Z†S
∆t2

2
+ · · ·

= I− ıS−1HS−1S∆t− S−1HS−1SS−1HS−1S
∆t2

2
+ · · ·

= I− ıS−1H∆t− S−1HS−1H
∆t2

2
+ · · ·

(23)

The resulting expression is equivalent to the Taylor expansion of the propagator in another

form:

exp(−ıS−1H∆t) = I− ıS−1H∆t− S−1HS−1H
∆t2

2
+ · · · (24)

The quantum amplitudes also change when the GBFs are moved in tandem with the

trajectories. Thus, we incorporate the re-projection technique, taking advantage of the fact

that the wavefunction represented in the bases associated with times t and t + ∆t is the

same.38 The expansion coefficients C′(t + ∆t) of the evolved wavefunction in the evolved

basis are found by minimizing the error between the two representations:

|Ψ(t+ ∆t)〉 = |G(t)〉C(t+ ∆t) ≈ |G(t+ ∆t)〉C′(t+ ∆t), (25)

C′(t+ ∆t) = [〈G(t+ ∆t)|G(t+ ∆t)〉]−1〈G(t+ ∆t)|G(t)〉C(t)

= S−1(t+ ∆t)S(t+ ∆t, t)C(t),

(26)

where S(t + ∆t) and S(t + ∆t, t) are the new/new and new/old GBF overlap matrices,

respectively. In principle, the time-increment ∆t in Eqs 25 and 26 does not need to be

small, and the basis parameters, including the number of the GBFs, can be changed in any

manner, as long as the new basis provides a sufficiently complete representation of |Ψ(t+∆t)〉.

The re-projection technique allows us to update the expansion coefficients analytically over

finite time-increments for which the basis functions are taken as time-independent, thereby

bypassing explicit computation of the GBF time-derivatives.
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2.4 Propagation of the GBFs

In the QTAG method, the GBFs are adaptive, meaning that the time-evolution of their

parameters is related to (but not the same as) that of Bohmian dynamics.43 A basis function

can then be described as “trajectory-guided” by associating its position and momentum

to that of an underlying trajectory, where the equations of motion (EOMs) of the latter

determine the parameters of the former. The defining characteristic of the QTAG method,

then, lies within how these basis-guiding trajectories are computed.

The definitions of the Bohmian equations of motion can be recognized by inserting a

polar wavefunction Ψ(q, t) = |Ψ(q, t)|exp(iS(q, t)) with real amplitude (|Ψ|) and phase (S)

into the TDSE (Eq. 1) and separating real and imaginary components. The former yields

the well-known quantum Hamilton-Jacobi equation,

∂S

∂t
= −1

2
(∇S)TM−1∇S − (V + U), U = −

Nd−1∑
n=0

∇2
n|Ψ|

2Mn|Ψ|
, (27)

while the latter gives the continuity equation for probability density ρ,

∂ρ

∂t
= −(∇ρ)TM−1(∇S)−

Nd−1∑
n=0

∇2
nS · ∇nρ

Mn

, ρ = |Ψ|2 (28)

Here q is the position vector in Nd-dimensional space, and M is the diagonal matrix with the

particle mass Mn for each dimension n = [0, Nd−1]. The potential-like term U– termed the

quantum potential – incorporates the quantum effects into the otherwise classical-looking

time-evolution equations, once the trajectory momentum is identified with the gradient of

the phase:

P = ∇S(q, t). (29)

Strictly speaking, the above formalism is valid only for a single-surface wavefunction; in

the nonadiabatic case, a more complicated form of the wavefunctions should be used.44 In

this work, we extend the QTAG approach initially formulated for adiabatic dynamics37 to
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the nonadiabatic domain by assuming that the GBF centers on each surface move according

to the momentum defined as in Eq. 29. The nonadiabatic effects are fully accounted for in

the evolution of the GBF coefficients, as explained in Section 2.3, but ignored in the EOMs

for the GBF parameters.

The functions V (q, t) and U(q, t) seen in Eq. 27 are the classical and quantum potentials

found in the TDSE, respectively. With the definition of Eq. 29, transformation of the

gradient of Eq. 27 into the Lagrangian frame of reference yields an expression for its time-

dependence, and hence the equations of motion for a quantum trajectory (Ṗ ≡ dP/dt and

so on):

Q̇ = M−1P (30a)

Ṗ = −∇q(V + U)
∣∣∣
q=Q

(30b)

As demonstrated in Ref.,38 the EOMs of the GBF width parameters, {an}, and phase s (Eq.

7) aggregated over the dimensions take the form:

ȧn = −2an
Mn

∇qnPn|q=Q, (31a)

ṡ =
∑
n

sn =
∑
n

P 2
n

2Mn

− (V + U)|q=Q (31b)

The GBF parameters {sn} in Eq. 7 (or their Nd-dimensional counterpart in Eq. 31b) can

be omitted entirely, as their role in the basis definition (i.e. via the exp(ıs) term) is that of

an overall phase factor. Such a factor is already accounted for in the expansion coefficients

{Ci}; thus, the Libra implementation of QTAG utilizes this omission for efficiency. Note,

however, that inclusion of s within the GBF reduces oscillations of the expansion coefficients,

which may help to stabilize their time-evolution. We do not use Eq. 30b to evolve the

GBF positions, since evaluation of its right-hand side involves third order derivatives of |Ψ|.
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Instead P is computed from the wavefunction according to

P = Im
(∇Ψ(q, t)

Ψ(q, t)

)∣∣∣
q=Q

, (32)

which allows us to bypass integration of stiff EOMs arising from the quantum potential.

There are still two drawbacks associated with Eq. 32, however. First, the momentum

is ill-defined in regions of negligible wavefunction amplitude or at the wavefunction nodes,

leading to potentially unstable dynamics. Second, the wavefunction must be well-defined (i.e.

have appreciable amplitude) for a given quantum state. Thus, we introduce the following

modifications to the definition of P (Eq. 32).

First, we smooth out the momenta defined by Eq. 32. This reduces micro-features in

the trajectory dynamics without introducing formal errors into the wavefunction propaga-

tion, since within an adequately full basis the guiding trajectories do not need to follow

Bohmian equations of motion exactly; they just need to cover the same configuration space.

In principle, this can be achieved in a variety of ways. The approach in Libra is to use a

first-order polynomial to fit P(Q). Such a fitting introduces an efficient means of calculating

the gradient of the momentum ∇TP, generally a matrix, used in Eq. 31a, although this ap-

proximation comes at the expense of having the GBF width parameters {a(i)} change in the

same manner. Some alternatives to this approach (not included in the Libra implementation)

are to use a Gaussian convolution of either P or Ψ.37

Second, the following protocol is introduced to handle situations where trajectories evolve

on multiple surfaces. The motion of GBFs on surfaces with little to no probability density

is a concern, since the momentum of Eq. 32 is ill-defined in these cases.27 We take the

most straightforward approach of synchronizing the GBFs on surfaces with no appreciable

population density to the ones on the most populated surface, thus allowing the latter

to dictate the position of the former until probability density is built up on the initially

unpopulated states. This approach requires that both states’ trajectories are governed by
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the wavefunction of the initially occupied state, which is reasonable for systems in which

the relevant surfaces are bound over similar spatial domains, or over short time scales before

the wavefunction decoheres. Neither modification leads to additional approximations of

the wavefunction, but they do make the GBF basis non-ideal unless the evolving-in-time

wavefunction itself is a Gaussian wavepacket.

2.5 Overall Computational Workflow

In summary, the QTAG wavefunction evolution proceeds according to the BOT algorithm,

which is composed of three parts (Fig. 2). The first part is responsible for evolving the

coefficients {Ci} given a locally time-independent set of GBFs, while the second part evolves

the coefficients {Ci} in response to the time-evolution of the GBFs along the trajectories

via re-expansion of the wavefunction. These two parts are detailed in Section 2.3. The

third component of the algorithm is to evolve the parameters of the GBFs, which can be

interpreted classically according to the Bohmian EOMs with the momentum computed from

the single-surface wavefunctions, as explained in Section 2.4.

3 Software Description

3.1 Software Architecture and Functionality

The package consists of both Python and C++ layers. The former is represented by the

libra py.dynamics.qtag module and implements the high-level functions of immediate

importance to the user. The latter is represented by the dyn/qtag library (libqtag when

compiled) as well as several other C++ sub-libraries in the core of the Libra software,

notably libgwp (Fig. 3). The C++ level functions and classes are leveraged to construct

the algorithms at the higher level, including in the libra py.dynamics.qtag module. These

functions are implemented in C++, although most of them are exposed to Python via the

Boost.Python library.45 They may be of higher interest to the methodology developers.
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1. Propagate C(t+ ∆t) in orthonormal basis stored in Z.
2. Update P (t+ ∆t) according to Ψ defined by C(t+ ∆t) and λ(t).
3. Update Q(t+ ∆t) and a(t+ ∆t) via P (t+ ∆t) and ∇P (t+ ∆t).
4. Reexpand C(t+ ∆t)→ C ′(t+ ∆t) with bases defined by λ(t+ ∆t).

S(t+ ∆t)C′(t+ ∆t) = S(t+ ∆t, t)C(t+ ∆t)

Figure 2: The BOT algorithm for a generic nonadiabatic system involving two surfaces, V0

and V1, for an initially unpopulated V1 state. A three-function basis (blue) is initialized
on the ground surface and propagated for one iteration (i.e. t → t + ∆t). Propagation of
the coefficients (step 1) changes the overall GBF contributions, shown as the corresponding
purple functions which represent the new wavefunction Ψ(t + ∆t) in the old basis defined
by λ(t). Upon updating the basis parameters (steps 2 and 3), the new functions (red) have
moved according to the Bohmian EOMs and have new widths. Note that the amplitudes
have also changed, as they must describe the same overall wavefunction as the purple basis,
but with ‘new’ functions described by λ(t + ∆t) (4). The dashed vertical lines indicate
the basis synchronization described in-text, whereby the excited state functions are moved
according to their ground-state counterparts due to low V1 population.
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Figure 3: Structure of the QTAG components of Libra in the Python (top) and C++ (bot-
tom) layers. Arrows in the C++ layer indicate dependencies relating certain functions.

At the C++ layer (Fig. 3, bottom), multiple time-consuming functions are implemented.

The functions “BAT” and “LHA” implement the calculation of the ṼBAT
IJ and ṼLHA

IJ po-

tentials of Eqs 12 and 13, respectively. These elementary functions compute the pair po-

tentials between two arbitrary GBFs, and are called via the qtag potential module for

all pairs of GBFs to compute the corresponding elements of the appropriate N × N ma-

trix Ṽ. The qtag overlap function is used to construct the N × N super-overlap ma-

trix SIJ (Eq. 5), which is assembled from the smaller Nb × Nb overlaps S(i,j) for all

i, j ∈ 0, . ..,M − 1, as illustrated in Fig. 1. The smaller overlap matrices are computed

by the qtag overlap elementary function, which is essentially a wrapper of the libgwp

gwp overlap matrix function customized for the QTAG definitions of the GBFs – Eqs 6

and 7 – which is itself the main driver for computing the overlaps of multidimensional Gaus-

sians (not accounting for the electronic state they belong to). The direct (element-wise)

product of the super-overlap S and potential Ṽ matrices yields the potential energy matrix
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of the Hamiltonian:

V = Ṽ ⊗ S ↔ VIJ = ṼIJSIJ . (33)

These calculations are conducted in the qtag hamiltonian and overlap function as a

part of the super-Hamiltonian construction. The remaining part – the kinetic energy matrix

in the basis of GBFs – is computed using the qtag kinetic elementary function, which

is isomorphic to the qtag overlap elementary function and, like the latter, an adaptation

of the libgwp function gwp kinetic matrix to the QTAG definition of the GBFs. Unlike

the output of qtag overlap, however, a super-matrix of the kinetic energy elements alone is

unnecessary: only the super-Hamiltonian and super-overlap are needed for propagation. The

super-Hamiltonian matrix is constructed by the qtag hamiltonian and overlap function

directly.

Another C++ function – propagate electronic from the libelectronic library – is

used to implement the non-orthogonal basis propagator, Eq. 20. This function is called

within the run qtag Python function, which is the main driver of the present QTAG algo-

rithm implementation. Finally, the qtag momentum function on the C++ side implements

the quantum momentum calculations according to Eq. 32, and the qtag psi function im-

plements the evaluation of the multidimensional GBFs at points according to Eqs 6 and

7.

The Python layer introduces a number of workflow-forming and convenience functions, all

organized into four self-explanatory modules: initialize, compute, save, and plot. The

functions initialize.grid and initialize.gaussian create the GBFs by placing them

either on a regular grid (grid) or by sampling them from a normal distribution (gaussian).

In both cases, the user provides the number of GBFs to be placed. For the grid placement,

the boundaries of the box where the functions are added are defined either manually or by

specifying a wavefunction amplitude threshold; in the latter case, the GBFs will be placed in

those regions where the initial Gaussian wavepacket has amplitude larger than the specified

value. Placing the GBFs near the initial wavepacket leads to a very economic representa-

19



tion of the basis, considering that the GBFs also evolve in the simulations. The approach

based on defining manual boundaries (which usually requires more GBFs) is reminiscent of

wavepacket dynamics where a sufficiently large, fixed basis is used during the entire simula-

tion. This approach may also lead to better energy conservation in some cases, e.g. when

the QTAG wavefunction and trajectories do not stray significantly outside of the manually-

defined region. Both types of grids are produced by the initialize.initialize function,

which returns the matrices of the GBF parameters shown in Fig. 4.

Figure 4: Sample output of the basis initialization procedure computed via the
libra py.dynamics.qtag.initialize.initialize function.

The initialize.coeffs function computes the initial expansion coefficients – also re-

ferred to as ‘amplitudes’ – of a starting Gaussian wavepacket |Ψ〉 = |G̃〉 in terms of the GBFs

used in the simulations:

|Ψ〉 = |G(0)〉C(0)↔ C(0) = S−1(0)〈G|G̃〉. (34)

The module compute implements the main computational elements of the QTAG work-

flow. The main entry point to the QTAG calculations is the compute.run qtag function,

which is the main wrapper of the entire workflow (excluding the initialization and plotting).

This function takes the dynamical variables (coefficients and GBF parameters), the function

object for computing the system’s Hamiltonian, and the dynamical and model Hamilto-

nian parameter dictionaries as inputs. The initial dynamical variables are generated by the
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Figure 5: Sample output of the coefficients initialization procedure computed via the
libra py.dynamics.qtag.initialize.coeffs function.

initialize.initialize and initialize.coeffs functions, as shown above (Figs. 4 and

5, respectively). The compute.run qtag function also takes care of calculating various ob-

servables and saving the computed results, as implemented in the save module. A typical

call of this function is shown in Fig. 6.

Internally, the compute.run qtag function cycles through calls of the following functions:

propagate electronic, compute.propagate basis, qtag hamiltonian and overlap,

compute.qtag energy, compute.qtag pops, and save.save qtag data. In order, these

functions propagate the basis coefficients and parameters, calculate the Hamiltonian matrix

elements, compute the system energy and surface populations, and save the output data.

The compute.propagate basis function implements the basis re-expansion procedure, Eq.

26, together with the evolution of the GBF parameters according to Eqs 30a and 31a,

unless any constraints are specified. The function compute.qtag momentum implements Eq.

32 together with the single-surface linear fitting scheme to update the basis momenta and

mitigate numerical instabilities. The time-overlaps of the GBFs, 〈G(t′)|G(t)〉, are needed for

the basis re-expansions and computed by the function compute.time overlap. The function

compute.propagate basis also takes care of the GBF synchronization across surfaces, as

necessary. As described previously, when there is no wavefunction amplitude on any state,

the direct evaluation of the quantum momentum, Eq. 32, may be problematic. In these
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Figure 6: Sample output of the main code computed via the
libra py.dynamics.qtag.compute.run qtag function. The first column shows total
energy, while the second and third columns (which are elements of a Python list) display
surface populations.

situations, certain properties of the GBFs evolving on the surfaces with little or no probability

density may be set to be equal to those GBF parameters for the basis functions on the most-

populated surface (synchronized). The user may control which properties – coordinates,

momenta, width parameters, or any combinations of these – should be synchronized. The

synchronization is also controlled based on the individual population(s) of the wavefunction-

deficient state(s) – for populations larger than a user-controlled threshold value, the GBFs

on these state(s) would evolve independently, and be synchronized to the GBFs on the most

populated surface only when their population is lower than the specified threshold.

The role of the propagate electronic and qtag hamiltonian and overlap functions

has been explained above. The function compute.qtag energy computes the total energy

of the system as

E = 〈Ψ|T̂ + V̂ |Ψ〉 = C†HC. (35)
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The function compute.qtag pops computes the populations on all states:

pi = (C(i))†S(i,i)C(i) =

Nb−1∑
k,k′=0

C∗(i,k)〈i, G(i,k)|i, G(i,k′)〉C(i,k′). (36)

The modules save and plot implement the functionality for storing dynamical data

in specialized formats and retrieving them for plotting, respectively. The functions of the

save module replicate the structure of the save modules of other Libra workflows, such as

HEOM, TSH, and exact quantum simulations (DVR). Most likely, the user is not exposed

to them directly; instead they are called in the main workflow function compute.run qtag.

The save.init qtag savers function creates the objects of the saver classes defined in the

libra py.data savers module, which can work in the ’mem’, ’hdf5’, and ’txt’ formats. The

first two have been briefly described in another account.46 The third format, ’txt’, is designed

to save data in a human-readable ACSII (text) format. In our experience, this approach has

been quite convenient compared to the other two, since it has fast write operations (unlike

the HDF5 saver) and is not as memory-intensive as the ’mem’ mode. The function also

takes care of preparing the filesystem for the output of the files. The save.init qtag data

function allocates memory (as multidimensional numpy arrays) for variables of interest.

For instance, to store information about the nuclear coordinates (’q’) of Ntraj trajectories

with Ndof degrees of freedom for Nsteps timesteps, one allocates a rank-3 real (’R’) array of

size Nsteps ×Ntraj ×Ndof via the command saver.add dataset(’q’, ( nsteps, ntraj,

ndof), ’R’).

Once such arrays are allocated, they are used to collect the desired data during the

simulation. The save.init qtag data function is needed for the ’mem’ and ’hdf5’ modes,

but not for the ’txt’ mode. The user can control what variables are to be saved by either

providing the list of variables (properties to save) to the constructors of the savers class

(e.g. to save.init qtag savers) or by providing it as an input to the save.init qtag data

function. In addition, the user can limit the dimensionality of stored/output data by using
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the * output level keywords, where the asterisk stands for ’txt2’, ’hdf5’, or ’mem’. For the

output level of 1, only one-dimensional data would be stored and saved, such as the timestep

index (’time’) or the total energy (’Etot’) of the system, (unless they are excluded from the

properties to save list); for the output level of 2, one can store populations (’pops’) and

quantum coefficients (’coeffs’); for the output level of 3, one can store the GBF parameters

(’q’, ’p, ’s’, ’a’). Note that this is the level of output required to reconstruct a wavefunction

snapshot, if desired.

Finally, the process of saving is conducted via the save.save qtag data function. Saving

data with the txt2 saver occurs with a given frequency (controlled by the progress frequency

keyword), whereas for the ’hdf5’ format the common practice is to write the data only at

the end of simulations. This function is called within the compute.run qtag function. For

the ’hdf5’ format savers, the function calls any of the save.save qtag hdf5 nD (n = 1, 2,

or 3) functions, depending on the dimensionality of the output data.

The plotting of the results is conducted by the functions of the ’plot’ module. With

the help of plot.wf plt, one can plot the snapshots of the wavefunctions, provided the

necessary parameters were designated to be saved via the properties to save list. The

files necessary for such visualization are computed using the compute.wf calc nD function

(Fig. 7a). Analogously, with the help of the plot.energy and pops function, one can

plot the total energy and state populations as a function of time (Fig. 7b). Finally, the

plot.trajectories function plots the evolution of the trajectories, which can be regarded

as the visualization of the time-dependent grid of GBF centers (Fig. 7c).

4 Application to Model Problems

To illustrate our dynamics method and to understand the effect of the approximations de-

scribed in Section 2, we apply the nonadiabatic QTAG to one-dimensional benchmark sys-

tems, i.e. a coupled harmonic oscillator model (’Holstein’) and to single (’Tully 1’) and
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Figure 7: Sample outputs of the various plotting functions computed via the
libra py.dynamics.qtag.plot module. (a.) Wavefunction snapshots. (b.) Surface popu-
lations and energy. (c.) Trajectory positions as functions of time.
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dual (’Tully 2’) avoided crossing models in the diabatic representation. This choice is made

primarily for convenience, although the recently developed quasi-diabatic approximation47,48

provides a link to electronic structure calculations in an adiabatic scheme, if desired. Indeed,

the QTAG method is insensitive to the chosen representation (diabatic vs. adiabatic) from

an algorithmic perspective, and the Libra software library is capable of performing diabatic-

to-adiabatic transformations on-the-fly as necessary. For simplicity, the spatial coordinate

and particle mass are labeled as x and m, respectively.

In each case, an initial wavepacket ψ0 is prepared according to Eq. A.1 with parameters

specified by the appropriate entry in the upper half of Table 1,

ψ0(x) =

(
2α0

π

)1/4

exp(−α0(x− x̄0)2 + ıp̄0(x− x̄0) + ıγ0), (37)

where x̄0 and p̄0 denote the initial average position and momentum of the wavepacket, α0 is

used for the initial width and γ0 for the overall phase. Basis functions are then placed with

equal spacing between points defined by a wavepacket density threshold ρc on the populated

state and subsequently mirrored on all remaining states, so that each state is represented by

Nb GBFs. Projection of the basis onto the wavepacket yields an initial projection vector with

components bi = 〈gi(x)|ψ0(x)〉 for the populated state; basis projections onto the remaining

states are set to zero. As mentioned in Section 2, the unpopulated state bases’ positions

are synchronized to the populated state until sufficient population accumulates, as defined

by ρd – once a state exceeds this threshold, its trajectories evolve independently of the

other states. These basis parameters are summarized in the lower half of Table 1; the only

remaining quantity to define is κ, which is a scaling factor for the basis widths, i.e. a0 = ακ.

For exact reference calculations, we employ the split-operator Fourier transform (SOFT)

method49,50 as already implemented in the Libra software suite.

Before progressing to model-specific results, it is important to comment on the initial

choice of parameters in the dyn params dictionary. The three parameters Nb, ρc, and ascl
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Table 1: Initial wavepacket and basis parameters for the model systems. Atomic units are
implied throughout, where appropriate. S(D)AC: = Single (Dual) Avoided Crossing models.

ψ0 x̄0 p̄0 α0 s0

Holstein -2.0 0.0 1.0 0.0
SAC/DAC -5.0 10.0 2.0 0.0

Basis Nb κ ρc ρd

Holstein
25 6.0 (LHA)

10−12 0.3
50 32.0 (BAT)

SAC
25 10.0 (LHA)

10−12 0.1
35 15.0 (BAT)

DAC 35 25.0 (LHA/BAT) 10−12 0.01

primarily control the quality of the basis representation: in general, increasing the size of the

basis improves the description of the wavefunction; however, the QTAG algorithm will fail if

the overlap of any two basis functions strays too close to unity due to the matrix inversion

step performed when solving Eq. 19. Furthermore, there are competing effects influencing

the degree of error during a simulation originating with the basis width parameter. On

one hand, the degree of error incurred in approximating the potential surfaces with the

LHA/BAT techniques grows with the basis width (i.e. as ascl shrinks); this is due to non-

negligible basis overlap at large distances, where the approximation of the potential as a

quadratic/linear function breaks down. On the other hand, a wider basis is more robust, as

this leads to more functions being able to describe the wavefunction at any given point. The

adaptability of the QTAG basis may somewhat mitigate the error incurred through these

width effects, although we emphasize that consideration should still be given to both basis

size and model potential when establishing initial conditions, and that an ’optimal’ set of

basis parameters will be system-dependent.

There are also certain scenarios in which expressions for one or more of the potential

integrals in a Gaussian basis can be found analytically; in these cases, the error associated

with approximating the potential elements via the LHA/BAT methods is removed and more

accurate results can be achieved. We take advantage of this for the 1D model systems

presented below, evaluating the coupling potential elements exactly (the coupling in each
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case is a Gaussian function). In principle, these values could be approximated with the

LHA/BAT methods, although we note that the propagation is less stable and results are less

accurate at longer times.

Figure 8: Diabatic potential surfaces (V0 and V1) with coupling (Vc) for 1D model systems;
SAC = Single Avoided Crossing, DAC = Dual Avoided Crossing. The horizontal axis applies
to all panels, while Vc is scaled by a factor of 50 in the Holstein model and by a factor of 5
in the avoided crossing models for visual clarity.

Overall numerical results for each of the three systems have been tabulated in Table 2

for both BAT- and LHA- approximated potentials. These quantities, which can be taken as

indicators of simulation quality, are in good agreement with exact split-operator values for

the times tested. The maximum and average errors in energy are computed as max(|E −

Einit|)/Einit and (Eavg − Einit)/Einit, respectively; further details and graphical results are

given in the appropriate section.
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Table 2: Indicators of simulation accuracy for all systems in the LHA/BAT-approximated
cases with exact coupling elements. The normalization and population quantities are taken
at the end of each run (further detail is discussed in the appropriate section in-text).

Max. % Error, E Avg. % Error, E Norm. S0/S1 Pops.
Holstein

SOFT 0.024 0.011 1.000 0.587/0.413
LHA 0.193 0.005 0.999 0.585/0.414
BAT 1.649 0.051 0.999 0.578/0.421

Single Avoided Crossing
SOFT 2.09× 10−4 4.22× 10−6 1.000 0.114/0.886
LHA 0.090 -0.005 1.000 0.121/0.879
BAT 0.428 -0.170 0.999 0.133/0.866

Dual Avoided Crossing
SOFT 5.64× 10−4 5.43× 10−5 1.000 0.990/0.0098
LHA 2.856 0.437 0.994 0.967/0.027
BAT 2.111 0.277 0.992 0.966/0.026

4.1 Holstein Model

The first model considered is reminiscent of the phonon component of the Holstein model,

consisting of two offset parabolic potentials V11 and V22 locally coupled by a Gaussian function

centered at their crossing (Eqs 38a–38c).

V Hol
11 =

k1

2
x2 (38a)

V Hol
22 =

k2

2
(x− x0)2 + y0 (38b)

V Hol
12 = V21 = c1e

−c2(x−c3)2 (38c)

The spring constants k1 and k2 are taken to be 10 Eh/a0 each, while the displacement

coordinates of the first excited surface are (x0,y0)=(1.0,5
√
k1/m). The parameters c1 = 1.0,

c2 = 1
2

√
k1/m, and c3 = 2.0 define the coupling potential V12, and a mass of m = 1 a.u.

is used. A useful feature of this model, as seen in the top panel of Fig. 8, is the nature of

its quadratic surfaces – since the LHA for the potential integrals (Eq. 13) is exact in these

instances, the only approximations entering the algorithm originate in the basis propagation

step through the momentum fitting and GBF synchronization procedures, thus allowing the
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impact of the parameters relating to this step to be explored.

A wavepacket is prepared according to Eq. 37 on the ground state surface with initial

parameters specified in Table 1 and allowed to propagate for t = 800 a.u., which is long

enough for multiple oscillations into the coupling region (see Fig. 9, for example). Satis-

factory results are obtained when the ground and excited state trajectories are decoupled

from one another after ∼3 a.u., as evidenced by the wavefunction snapshots (|ψ|2) displayed

in Fig. 10. Discrepancies between QTAG and SOFT results are seen primarily in the final

panel of the BAT-approximated simulations. The overall energy conservation is still quite

good – within 0.5% and 1.5% of the system total for the LHA and BAT approximations,

respectively – as is displayed by the dashed green curve (right axis) of Fig. 11. The regions

of poorest conservation coincide with the times when the trajectories are predominantly in

the coupling region. State populations are also in good agreement with the SOFT values,

as can be also be seen in Fig. 11. Note that the BAT-approximated results require twice as

many basis functions to be in good agreement with those computed with the LHA method;

we interpret this not necessarily as a failing of the former, but as an instance of a system

engineered to demonstrate particularly good results for the latter due to its exact nature.

a) LHA-computed trajectories b) BAT-computed trajectories

Figure 9: Trajectories for the Holstein model, computed within the LHA (a) and BAT (b)
approximations. The desynchronization between states is evident in both instances at t≈ 3
a.u.; prior to that, the excited state trajectories (State 1, orange) move in tandem with their
ground state partners (State 0, blue).

As mentioned previously, the nature of the Holstein model evaluated via the LHA also
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a) LHA-computed wavefunctions b) BAT-computed wavefunctions

Figure 10: Wavefunction snapshots taken every 200 iterations on the ground (State 0, blue)
and excited (State 1, orange) states, computed within the LHA (a) and BAT (b) approxima-
tions. Black circles indicate exact quantum results, as calculated using the SOFT method
with 2048 grid points. The snapshot frequency is chosen to coincide with oscillations out of
the coupling region.

a) LHA-computed observables b) BAT-computed observables

Figure 11: State populations and energy conservation for the LHA- and BAT-approximated
Holstein model potentials. Black circles represent exact (SOFT) results.
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allows for some direct testing of the basis initialization parameters Nb, ascl, and ρc, free from

error introduced by potential approximations. Taken together, these values (along with

the initialization scheme) define the size and quality of the initial basis, which impacts the

stability and accuracy of the calculations at later times. Using a fixed value of ρc = 1×10−12,

we test combinations ofNb and ascl by monitoring the maximum absolute error in total energy

for simulations up to t = 8 a.u. The results, displayed as a heatmap in Fig. 12, suggest

three regimes of basis quality. In the first regime, the basis is large and each function wide

– a pairing that would conceptually lead to accurate results, although the near-unity of the

overlap matrix elements causes numerical issues with the inversion of S and ultimately leads

to premature crashing of the calculation. The second regime corresponds to a compromise

between basis size and overlap, and yields stable results that improve with an increase in

basis width (decreasing ascl). Finally, the third regime seen in Fig. 12 describes a basis –

albeit stable – that is too small and leads to large errors in energy conservation regardless

of width. Note that the specific values and domains of this figure will be system-dependent;

the goal here is to emphasize the qualitative aspects of the initial basis parameter selection

procedure and its impact on possible simulation outcomes.

4.2 Avoided Crossing Models

We also demonstrate the performance of the QTAG algorithm using the well known two-state

models of Tully,51 which have served as a testing ground for numerous algorithms to date.

In the diabatic representation, Model 1 (single avoided crossing model) is a pair of crossing

surfaces with Gaussian coupling localized at their intersection, as displayed in the middle

panel of Fig. 8. Their form is also seen in Eqs 39a – 39c; a hyperbolic tangent representation

is used here instead of the original piecewise definition, as this yields smooth and continuous
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Figure 12: Heatmap of maximum percent error in energy for the LHA-approximated Holstein
model; the black region in the lower right corresponds to simulations which failed due to
singularities in the overlap matrix, meaning the interpolation in this region (demarcated by
the dashed line) is hypothetical. The white region indicates simulations with percent errors
larger than the color scale (i.e. >1%).

derivative expressions.

V SAC
11 = A

(
1 + tanh(Bx)

)
(39a)

V SAC
22 = A

(
1− tanh(Bx)

)
(39b)

V SAC
12 = V21 = Ce−Dx2

(39c)

The surface parameters are A = 0.01 and B = 1.147, while the coupling parameters are

C = 0.005 and D = 1.0.

The wavepacket, represented by 25(35) basis functions in the LHA(BAT) approximation,

is initialized on the lower S0 surface and propagated for t = 2000 a.u. – i.e. for a sufficiently

long time to have crossed the coupling region. Snapshots of |Ψ|2 calculated in the BAT

approximation scheme are shown in Fig. 13a in increments of 500 a.u.; agreement with SOFT

results computed from 2048 points is quite good. The corresponding surface populations and

energy conservation (again represented as a percent error) are displayed in Fig. 13b. The
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quality of the BAT-based results is improved in this model relative to the Holstein one,

both in terms of basis compactness and energy fluctuations; this can be attributed both

to the favorable contour of the potential surfaces – which are nearly linear here than in the

parabolic shapes seen before – and to the relative decrease in quality of the LHA since it is no

longer exact in this case. Moreover, both approximation schemes benefit from the design of

the first Tully system, which prevents multiple visits to the coupling region by the traveling

wavepacket and thereby removes some of the more complex interference effects seen in the

longer times of the Holstein model.

The second Tully model is a dual avoided crossing, as seen in the bottom panel of Fig. 8

and defined by Eqs 40a – 40c in the diabatic representation:

V DAC
11 = 0 (40a)

V DAC
22 = −Ae−B∗x2

+ E (40b)

V DAC
12 = V21 = Ce−Dx2

(40c)

The constants here are the same as in the original formulation (A= 0.1, B= 0.28, C= 0.015,

D= 0.06, E= 0.05); the coupling surface defined in this way is quite wide, spanning both

crossing regions. One point of note unique to this system is the use of a small decoupling

parameter (see Table 1), a choice that allows the surfaces’ trajectories evolve nearly inde-

pendently of one another for the duration of the simulation. We choose such a low value

to prevent spurious resynchronization of the low-population trajectories back to their high-

population counterparts: this artificial ‘snapping’ of trajectories away from their current

positions is a possible concern in systems where state populations return to zero, as in the

S1 case here.

The wavepacket is composed of 35 GBFs in both the LHA- and BAT-approximated

cases, and initialized on the S0 surface. Propagation for t = 2000 a.u. is sufficiently long for

passage through both crossing regions, as seen in the wavefunction snapshots of Fig. 14a.
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a) wavefunction snapshots

b) observables c) trajectories

Figure 13: Wavefunction snapshots (a), energies and populations (b), and trajectories (c) for
the single avoided crossing model described in-text, calculated using BAT-approximated po-
tentials. In each case, blue and orange lines correspond to the S0 and S1 states, respectively,
while black dots indicate exact quantum results.
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The corresponding populations and trajectories (again, visualized for the BAT results) are

displayed in Fig. 14b and 14c, respectively. Both the LHA and BAT results show good

agreement with the SOFT data for the majority of the simulation, deviating at longer times

due to a small but persistent population on the S1 state. This is reflected in the dispersion

of S1 trajectories seen near the end of panel 14c, and serves as a visual aid for the possibility

of trajectory ‘snapping’, as discussed above.

a) wavefunction snapshots

b) observables c) trajectories

Figure 14: Wavefunction snapshots (a), energies and populations (b), and trajectories (c) for
the dual avoided crossing model described in-text, calculated using BAT-approximated po-
tentials. In each case, blue and orange lines correspond to the S0 and S1 states, respectively,
while the corresponding points indicate exact quantum results.
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5 Conclusions

In this work, we present the nonadiabatic extension of the single-surface QTAG method

and its implementation in the Libra software suite. The QTAG functionality is available

in Libra package starting since version v5.3 reported here. This version is available at the

Zenodo server, as well as from the Quantum Dynamics Hub GitHub Libra software repos-

itory https://github.com/Quantum-Dynamics-Hub/ libra-code. The current work provides

a comprehensive account of the underlying theoretical foundations and terminology of the

method, the key algorithms used, and the important implementation details and use guid-

ance. The detailed examples to run the calculations presented in this work are available at

the Zenodo server52 (https://zenodo.org/record/7106561#.Yy2rhLTMK3A), as well as from

the GitHub data repository https://github.com/AkimovLab/Project QTAG.

The flexibility of the Libra interface allows us to construct model potentials, commonly

used in nonadiabatic dynamics methods benchmarking, with which we demonstrate vari-

ous facets of our algorithm. Inspired by the Bohmian formulation of quantum mechanics,

the biggest obstacle in our trajectory propagation scheme is the inherent instability of the

trajectories themselves – to mitigate these effects and enforce numerical smoothness, we

incorporate both single- and multi-surface adjustments to the basis. Furthermore, as inte-

grable potentials in the GBF basis cannot be guaranteed, we explore the impact of the use

of first- and second-order Taylor series approximations as a way to estimate the required

matrix elements on the computed dynamics. We argue that the BAT expansion is expected

to be especially useful in practical applications of the method, where second derivatives are

not generally available.

Using the one-dimensional, two-state Holstein model, we demonstrate a “best-case” simu-

lation, in which all potential elements can be evaluated exactly (via the LHA, which is exact

for quadratic surfaces) and the single-surface momentum smoothing is most appropriate.

The quality of results are relatively insensitive to the choice of basis initialization parame-

ters, although extreme cases of basis over- or under-population lead to numerical errors and
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poor wavefunction representation, respectively. We demonstrate that results obtained using

the BAT approximation for this system can be comparable in quality to those of the exact

case, although in general a larger number of basis functions are required.

We demonstrate how the developed QTAG approach applies to famous avoided crossing

models (SAC/DAC) of Tully’s - the problems designed to highlight the nonadiabatic effects in

electron-nuclear dynamics. In our test, both the BAT and LHA approaches are approximate

in nature and perform comparably well. Further comparison of the SAC and DAC systems

reveals an apparent insensitivity of the simulations to the basis desynchronization parameter

ρd; similar quality results are obtained in each case, despite ρd being an order of magnitude

smaller in the latter. Although not explicitly tested in the present work, it seems at least

plausible that this insensitivity could allow for nearly fully independent evolution of basis

functions across electronic states.

Finally, we note that the suite of numerical basis modifications made in the current

QTAG implementation could be extended to include numerous other approaches, which in

turn may further improve numerical accuracy and computational efficiency.
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Appendix A. Gaussian integrals in the libgwp library

The libgwp library in Libra contains a multitude of useful modules for calculating vari-

ous Gaussian integrals, which are used extensively in the QTAG algorithm. A Gaussian

wavepacket Gi (GWP) in one dimension is defined as:

Gi = G(x;xi, pi, αi, γi) =

(
2αi

π

)1/4

exp

(
−αi(x− xi)2 +

ıpi(x− xi)
h̄

+
ıγi
h̄

)
, (A.1)

with center, momentum, width, and phase parameters defined by xi, pi, αi, and γi, respec-

tively. Notice that this definition differs from that of the i-th QTAG Gaussian basis function

(GBF) of Eq. 7 in the following ways:

α
(GWP )
i︸ ︷︷ ︸

Eq. A.1

=
a

(GBF )
i

2︸ ︷︷ ︸
Eq. 7

, γ
(GWP )
i︸ ︷︷ ︸

Eq. A.1

= s
(GBF )
i︸ ︷︷ ︸
Eq. 7

. (A.2)

The QTAG basis can thus be mapped onto the form of a GWP expected by libgwp,

where the following formulas are implemented. The overlap matrix element S12 between

Gaussian functions G1 and G2 is equal to:

S12 = 〈G1|G2〉 =

(
2ᾱ

α1 + α2

)1/4

exp

(
− ᾱ

2
(x2 − x1)2 − (p2 − p1)2

4h̄2(α1 + α2)
+
ı(γ2 − γ1)

h̄

)
(A.3)
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where the following notations have been used:

ᾱ : =
2α1α2

α1 + α2

(A.4a)

p̄ : =
α1p2 + α2p1

α1 + α2

(A.4b)

The matrix element of the transition dipole moment is given by:

µ12 = 〈G1|x|G2〉 =

(
α1x1 + α2x2

α1 + α2

+
ı(p2 − p1)

2h̄(α1 + α2)

)
S12. (A.5)

The first-order nonadiabatic derivative coupling matrix element d12 is equal to:

d12 = 〈G1|∇|G2〉 =
(
ᾱ(x2 − x1) +

ıp̄

h̄

)
S12. (A.6)

The kinetic energy matrix element for Gaussians G1 and G2 with particle mass M is:

T12 = − h̄2

2M
〈G1|∇2|G2〉 =

h̄2

2M

(
ᾱ−

(
ᾱ(x2 − x1) +

ıp̄

h̄

)2
)
S12. (A.7)

The product of two GWPs (note complex conjugation) gives a new GWP,

G∗1G2 =

(
2ᾱ

π

)1/4

exp
(
− ᾱ

2
(x2 − x1)2

)
G (x;x0, p0, α0, γ0) , (A.8)

with the following parameters:

x0 =
α1x1 + α2x2

α1 + α2

(A.9a)

p0 = p1 + p2 (A.9b)

α0 = α1 + α2 (A.9c)

γ0 = γ2 − γ1 + p̄(x2 − x1). (A.9d)
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