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Abstract

The protein secondary structure (SS) prediction plays an important role in the characterization of general protein structure and
function. In recent years, a new generation of algorithms for SS prediction based on embeddings from protein language models
(pLMs) is emerging. These algorithms reach state-of-the-art accuracy without the need for time-consuming multiple sequence
alignment (MSA) calculations. LSTM-based SPOT-1D-LM and NetSurfP-3.0 are the latest examples of such predictors. We
present the ProteinUnetLM model using a convolutional Attention U-Net architecture that provides prediction quality and
inference times at least as good as the best LSTM-based models for 8-class SS prediction (SS8). Additionally, we address
the issue of the heavily imbalanced nature of the SS8 problem by extending the loss function with the Matthews correlation
coefficient (MCC), and by proper assessment using previously introduced adjusted geometric mean metric (AGM). Protein-
UnetLM achieved better AGM and sequence overlap score (SOV) than LSTM-based predictors, especially for the rare structures
310-helix (G), beta-bridge (B), and high curvature loop (S). It is also competitive on challenging datasets without homologs,
free-modeling targets, and chameleon sequences. Moreover, ProteinUnetLM outperformed its previous MSA-based version Pro-
teinUnet2, and provided better AGM than AlphaFold2 for 1/3 of proteins from the CASP14 dataset, proving its potential for
making a significant step forward in the domain. To facilitate the usage of our solution by protein scientists, we provide an
easy-to-use web interface under [https://biolib.com/SUT /ProteinUnetLM/|(https://biolib.com/SUT /ProteinUnetLM/).

Convolutional ProteinUnetLM competitive with LSTM-based protein secondary structure predictors Krzysztof Kotowski!:*

Introduction

Proteins are macromolecules built from amino acids (AAs) and the kind and order of the AAs (known
as primary structure) are determined by DNA sequence. Most proteins are built out of 20 different AAs,
which only differ in the organic side chain (R groups). The backbone is the same for all AAs, it consists
of an amino group, a central carbon atom, and a carboxyl group. From a linear sequence of amino acids,
a protein sequence folds rapidly into secondary or local arrangements, and then into a tertiary or three-
dimensional structure. The regular structural elements created by hydrogen bonds between hydrogen donors
in the nitrogen part and hydrogen acceptors in the carboxyl group of the backbone define the secondary
structure (SS) of a protein. These structures stabilize the protein. Different types of secondary structures
are known: the alpha-helix, beta-sheet, and loop are the three most important ones. There are different SS
assignment methods among which the most commonly used is the algorithm of the Dictionary of Protein
Secondary Structure (DSSP) . DSSP proposed 8 classes of secondary protein structures which provide more



information about the actual 3D formation of the protein. There are three helix states: 310-helix (G), alpha-
helix (H), and pi-helix (I); two beta-sheet states: beta-bridge (B) and beta-strand (E); and three loop (or
irregular) classes: high curvature loop (S), beta-turn (T), and random coil (C).

SS prediction plays an important role in protein tertiary structure prediction as well as in the characterization
of general protein structure and function. Because the SS provides the first step toward native or tertiary
structure prediction, it is utilized in many protein folding algorithms 2® and in a variety of bioinformatics
areas, including proteome and gene annotation®?, the determination of protein flexibility!'?, the subcloning
of protein fragments for expression and the assessment of evolutionary trends among organisms?. Therefore,
protein SS prediction remains an active area of research and an integral part of protein analysis.

Three generations of methods and algorithms are described in the literature for secondary structure prediction
1 The first generation, represented by the Chou-Fasman method'2, exploited statistical propensities of
residues to a particular secondary structure class. These methods usually achieved a prediction accuracy
of less than 60%. The second generation of methods was developed in the 1980s. They used advanced
statistical methods, machine learning techniques, and information about neighbor residues, usually using
a sliding window approach. These methods include, among others, GOR '* and Lim '4. The accuracy of
predicting secondary structure as assessed by the Q3 parameter was less than 65% '°. The third generation
of methods appeared in the 1990s. They used neural networks and additional features based on multiple
sequence alignment (MSA) profiles, e.g., PSSM - position-specific scoring matrices ¢ or HHblits (iterative
protein sequence search according to the hidden profile) Markov models '7. The Q3 accuracy of these methods
exceeded 80% for models such as PSIPRED '8, Given the increasing number of known protein sequences
and more efficient neural network architectures, the latest methods can predict the secondary structure with
over 70% accuracy for an 8-class problem such as NetSurfP-2.0 (Q8 = 71.43% for CASP12) ! or SPOT-1D
(Q8 = 73.67% for CASP12) 2° based on long-term memory (LSTM) bidirectional recursive neural networks
(BRNN).

The fourth, recently emerging, generation of methods uses protein language models (pLMs) inspired by
advancements in the natural language processing (NLP) field?!. Secondary structure predictors of the latest
generation use embeddings from models like SeqVec 22or transformers-based networks like ProtTrans 22,
ESM?4, or BERT 2° that learn thegrammar of the language of life . The concept of embedding in machine
learning is an idea of encoding categorical parameters (i.e., sequences of amino acids) as highly informative
numerical vectors that can be used as inputs of neural networks. LM-based classifiers are able to achieve SS
prediction performance close to or better than the previous generation of methods, e.g., NetSurfP-3.0 26and
ProtT5Sec 23 which are comparable to NetSurfP-2.0; or SPOT-1D-LM 27 which improves over SPOT-1D.
Most importantly, the sequence embeddings can be generated in a fraction of the time with respect to MSA-
based features 23. Additionally, the recent success of AlphaFold2 ?proved that NLP-inspired mechanisms
like attention and transformers may be extremely useful in protein tertiary structure prediction. It predicted
protein structures near the X-ray resolution in the latest Critical Assessment of protein Structure Prediction
(CASP14)?°. However, there is still room for improving AlphaFold2 predictions in terms of SS. The newest
results demonstrate that its accuracy decreases for longer loop regions, and it has a tendency to slightly
overpredict helices and beta-sheets?C.

In our study, we present how our proposed ProteinUnetLM model based on Attention U-Net architecture and
LM-based features improves over its previous MSA-based version 3!, and over its closest LM-based compe-
titors (SPOT-1D-LM, NetSurfP-3.0, and ProtT5Sec): (i) its prediction performance measured by sequence-
level adjusted geometric mean (AGM) is better than all other LM-based networks while being comparable
in segment overlap metric (SOV8) and Q8 accuracy, (ii) it provides the best results for rare structures G, B,
and S, (iii) its prediction time is comparable to the fastest NetSurfP-3.0. These results support our hypothe-
sis that LSTMs are not needed to achieve state-of-the-art performance as our fully-convolutional Attention
U-Net architecture is at least as accurate and at least as fast as any LSTM-based competitor. We especially
focus on the issue of imbalance in the SS8 prediction problem, so besides proposing proper metrics and
statistical methodology, we extended the loss function of the network with the Matthews correlation coeffi-



cient (MCC) which improved the performance for rare structures. In comparison with secondary structures
parsed from tertiary structure predictions of famous AlphaFold22® on the CASP14 dataset, ProteinUnetLM
achieved better AGM for 10 out of 30 sequences and better precision for helix (H) structure proving its
potential for making a significant step forward in the domain.

Materials and Methods

Datasets

For a fair comparison with previous MSA-based models ProteinUnet2 and SPOT-1D, we use the same
training, validation, and test sets. The training set TR10029 contains 10’029 sequences, the validation set
VAL983 has 983 sequences, and there are two test sets: TEST2016 with 1213 and TEST2018 with 250. See
20 for the details about these datasets.

For comparison with LM-based models, we use four additional test sets introduced in SPOT-1D-LM 27,
The largest TEST2020 contains 547 sequences deposited between the years 2018 and 2020 where remote
homology to proteins released before 2018 was removed. Two separate test subsets were extracted from
TEST2020 to assess the performance of algorithms in specific cases, TEST2020-HQ with 121 sequences with
high-resolution structures (< 2.5 A), and Neff1-2020 with 46 sequences with no homologs (Nefft=1). The
original list of sequences in the TEST2020 set contained 671 sequences but we could not find some sequence
codes in Protein Data Bank (PDB) or ProteinNet 2. Thus, we attached our lists of sequences and their
DSSP-generated SS8 for TEST2020 as Supplementary File 2. The smallest CASP12-FM dataset contains 22
sequences without any known structural templates (free-modeling) from CASP12.

Finally, we compare all the networks on the newest CASP14 dataset of 30 proteins (the same as used
in 3!) for which the PDB targets were available on the official CASP14 challenge page (prediction-
center.org/download area/CASP14/targets).

The ratios of each SS8 in all mentioned datasets are given in Supplementary Figure S1. It gives an overview
of how imbalanced is the problem of SS8 prediction.

Attention U-Net for secondary structure prediction

U-Net is a state-of-the-art architecture in image segmentation tasks>>3° and we previously successfully intro-

duced it into the domain of protein secondary structure prediction by creating the ProteinUnet model 6. The
Attention U-Net architecture of ProteinUnetLM presented in this paper adapts our previous ProteinUnet2
model 3! to the features from pLMs.
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The network learns higher-level features in convolutional contractive paths, concatenates them, and passes
them to the attention gates that learn to filter out irrelevant features 37-38. Finally, the filtered features are
passed to the convolutional expanding path that learns to predict the sequence of 8-class secondary structures
as the output layer with softmax activation connected to the last up-block (Figure 1). As in ProteinUnet2,
taking into account that the receptive field of our network includes 710 residues 26, we limited the input
sequence length to 704. We also resigned from predicting 3-class secondary structures (SS3) as they can be
easily derived from 8-class predictions (SS8), and we did not notice any advantages of including SS3 output
in the network training in our previous works. Other hyperparameters were the same as in the ProteinUnet2
paper, to enable direct comparisons between the architectures. Specifically, we have 2 convolutions with 1D
kernels of length 7 and ReLU activations, and dropouts with a 0.1 rate between convolutional layers in all
blocks. In overall, the model has 2’501’260 trainable parameters. It is worth noticing that ProteinUnetLM
is a single model, not an ensemble of 10 models like in previous versions of ProteinUnet. The ensembling
provides a bit better performance in some metrics, as presented in Supplementary Table S1, but we decided
to sacrifice it to improve the inference time.

ProteinUnetLM takes a sequence of feature vectors X = (x1, x2, z3,..., xy)as input, where z; is the
feature vector corresponding to thei th residue, and it returns a vectorY = (y1, y2, ¥s3,..., yn) as output,
where y; is the vector 8 probabilities of 7 th residue being in one of the SS8 states. Our model is fed with
1024 features from ProtTransT5-XL-U50 23. Each feature is standardized to ensure a 0 mean and SD of 1
in the training data. Using features from the ESM-1b model 3? instead of ProtTrans resulted in suboptimal
performance as presented in Supplementary Table S1. Additionally, we use a one-hot encoded sequence of
amino acids as the second input to keep a close comparison with ProteinUnet2. However, Supplementary
Table 1 suggests that it has a minor impact on the results.

Training procedures and improved loss function

We trained a single ProteinUnetLM model using TR10029 as a training set and VAL983 as a validation set.
The model was trained to simultaneously minimize the categorical cross-entropy (CCE, Equation 1) and



maximize the Matthews correlation coefficient (MCC, Equation 2) by defining a loss function as a difference
between average CCE and average MCC across the training batch (Equation 3).

CCE = — Z§:1 y; logy;, where y is a target
vector and y is a model output, (1)

(2)

TP xTN —-FP x FN

MCC =
V/(TP+ FP)(TP+FN)(TN +FP)(TN + FN) +e

where TP =y -y, TN =(1-y) - (1-y),
FP=(1-y)y, FN =y (1-y), and e is a very
small number preventing division by zero,

Loss = CCE — MCC (3)

MCC was already evaluated as one of the most reliable, universal, and informative metrics in machine
learning and bioinformatics problems** 42, We involved MCC in the training loss to address the imbalance
problem of the protein SS prediction and improve the results on rare structures. The ablation study in
Supplementary Table S1 suggests that it was successfully achieved by improving metrics for TEST2018.

We used an Adam optimizer 43 with batch size 8 and an initial learning rate of 0.001. The learning rate was
reduced by a factor of 0.1 when there was no improvement in the validation loss for 4 epochs. The training
was stopped when the validation loss was not improving for 6 epochs and the checkpoint with the lowest
validation loss among all epochs was selected as the final ProteinUnetLM model.

ProteinUnetLM was implemented in the environment containing Python 3.8 with TensorFlow 2.9 accelerated
by CUDA 11.7 and cuDNN 8. The inference code and trained models are available on the CodeOcean plat-
form (https://codeocean.com/capsule/7112101) ensuring high reproducibility of the results. An easy-to-use
web interface is accessible on Biolib (https://biolib.com/SUT /ProteinUnetLM/). The code for training can
be run in the Google Colab notebook (https://colab.research.google.com/drive/10nh6xlg-a- QDy2EL _ -
t9XmKa8T3VLVEV).

Metrics and statistical testing

Following the reasoning from the ProteinUnet2 paper, we utilize the Adjusted Geometric Mean (AGM)
metric as a primary metric for assessing the prediction performance. It is well-suited for bioinformatics
imbalance problems, it performs better than F-score in these problems, and it has no parameters (like a
beta in F-score) 4*. It is given by Equation 4 where GM is the geometric mean (Equation 5) and N,, is the
proportion of negative samples. It takes value from range <0, 1> where 1 is a perfect prediction. The metric
can be calculated both at the residue and at the sequence level. By the residue level , we mean calculating
the metric once for all residues in all sequences in the dataset, and bythe sequence level , we mean calculating
the metric separately for each sequence in the dataset and taking an average out of scores. To aggregate the
metric across 8 classes, we use macro averaging — we calculate the AGM score separately for each class and
average the results to create the macro-AGM score.

GM + SpecificityxNy, . e
AGM = TN, ; &am.p,.Senszthty >0 )
0, &amp; Sensitivity =0
GM = \/Precision x Sensitivity (5)




Additionally, we use a segment overlap score for 8 classes (SOV8) as defined by the SOV _refine algorithm 4°.
The SOV score was designed specifically to compare two sequences of protein secondary structures in which
the continuity of segments has important meanings. It promotes classifiers that are able to more consistently
predict segments of the same structure without breaking it with incorrect prediction. It takes value from
range <0, 1> where 1 is a perfect prediction. It can be calculated only at the sequence level.

We report Q8 accuracy at the residue level just for compatibility with previous literature, we consider it
highly inappropriate for such an imbalanced problem 3! and we do not perform any statistical tests on Q8.
To avoid any potential bias towards the MCC metric that was optimized during training, we decided to
avoid its assessment during testing. The implementations of all the mentioned metrics are available in our
computational capsule on CodeOcean.

For fair experimental classifier evaluation 46, we apply paired statistical comparisons between ProteinUnetLM

and other networks using two-sided paired sample permutation tests for difference in mean classifier perfor-
mances (perm.paired.loc function fromwPerm R package with 10’000 replications). We decided to use the
permutation approach as it does not make any assumptions about a sampling distribution or a sample size.
The tests were performed at the sequence level, that is, we first calculated metric values for each sequence
separately, and then we run statistical tests on them. We selected a significance level of 0.05 but we use
Bonferroni correction for multiple hypothesis testing (MHT) when ProteinUnetLM is compared with more
than 1 other classifier on the same dataset. It means that the significance level is divided by the number
of comparisons, i.e., the significance level for TEST2016 is 0.025 (2 comparisons), for TEST2018 is 0.01 (5
comparisons), and so on. To quantify the effect size and its direction, as proposed previously in 3!, we use
Cohen’s d effect for paired samples calculated as the mean difference divided by the standard deviation of

the differences?”.

Comparison with LSTM-based networks

We compare ProteinUnetLM with the three latest networks for protein secondary structure prediction based
on features from protein LMs: NetSurfP-3.0 2, ProtT5Sec 22, and SPOT-1D-LM 27. SPOT-1D-LM and
NetSurfP-3.0 are hybrids of convolutional feature extractors and bidirectional recurrent neural networks
(BRNN) with long short-term memory (LSTM) units. SPOT-1D-LM uses ResNet convolutional encoder 48,
and NetSurfP-3.0 uses two convolutional layers with very large kernels (129 and 257) and paddings (64 and
128) followed by 0.5 dropouts and ReLU activations. In fact, SPOT-1D-LM, unlike ProteinUnetLM and
NetSurfP-3.0, is an ensemble of three separate networks, BRNN, ResNet, and ResNet-BRNN hybrid, which
increases the complexity and time of the training and prediction. Interestingly, the authors of NetSurfP-3.0
showed that replacing their downstream architecture with a transformer-based encoder resulted in suboptimal
performance 2.

The main purpose of LSTM networks is to learn both short and distant dependencies within sequences 4°.

Distant dependencies are not possible to capture by convolutional layers because of their limited receptive
field, but this can be overcome by using an attention mechanism °°. The positive impact of the attention
mechanism on the results of ProteinUnetLM can be observed in Supplementary Table S1. Additionally, long
skip connections in U-Net architecture, besides stabilizing gradient updates in deep architectures, prevent
from losing fine-grained details of the input sequence . Moreover, the training time of LSTM networks is
several times longer than for fully-convolutional networks3¢-2, Mainly because RNNs are harder to parallelize
and they take less advantage of GPU processing °3.

ProtT5Sec was introduced as a simple classification backbone based on ProtTrans features 22. The au-
thors tested four different classifiers: logistic regression, fully-connected network, fully-convolutional network
(CNN), and BRNN-LSTM. They concluded that two-layer CNN (32 filters of size 7) provided the best per-
formance while being computationally less expensive than LSTM which reached similar results. In our paper,
we build on this conclusion, and we hypothesize that LSTM networks are not necessary to achieve state-
of-the-art results in protein secondary structure prediction and can be effectively replaced by the proposed



Attention U-Net architecture when using features from pLMs.

Results

Comparison with MSA-based classifiers

First, we directly compared ProteinUnetLM with its previous version ProteinUnet2 based on multiple se-
quence alignment (MSA) features (https://codeocean.com/capsule/0425426), and its competitor SPOT-1D
network 2°(https://sparks-lab.org/server/spot-1d/). ProteinUnetLM achieved the best results in 7 out of 8
combinations of the test set (TEST2016 and TEST2018) and metric (macro-AGM at residue and sequence
levels, SOV, and Q8 at the residue level) presented in Table 1. In terms of statistical significance, Pro-
teinUnetLM had statistically significantly better macro-AGM in comparison to ProteinUnet2 (p=0.0054 on
TEST2016) and SPOT-1D (p=2e-5 on TEST2016 and p=0.0077 on TEST2018) with small effect sizes (d <
0.2). There were no large or significant differences between networks for the SOV8 metric. ProteinUnetLM
achieved the highest Q8 among all networks.

The separate AGM scores for each SS8 in Supplementary Table S2 show that ProteinUnetLM is better than
ProteinUnet2 for all structures on the biggest TEST2016 and TEST2018 datasets, especially on the rare
structures B, G, S, and I. Importantly, ProteinUnetLM achieved correct predictions for the rarest structure
“I” which was not possible using MSA features in ProteinUnet2. It confirms that LMs provide better features
for protein SS than MSA-based methods like PSSM or HHblits. Especially, taking into account the fact that
ProteinUnetLM is a single model, not an ensemble of 10 models like ProteinUnet2.

Table 1 . The comparison of macro-AGM at thesequence and residue level , SOVS8 at thesequence
level, and Q8 at the residue levelon two test sets for ProteinUnetLM vs ProteinUnet2 and SPOT-1D. The
best results for each dataset are boldfaced. The green shading of sequence level scores denotes the statistical
significance that ProteinUnetLM has a better mean with standard deviations (SD), p-values, and Cohen’s
effect size (d) given below the score.

Test set Model Macro-AGM Macro-AGM SOV8S8 Q8
Residue level Sequence level Sequence level Residue level
(+£SD/p- (+SD/p-
value/d) value/d)
TEST2016 ProteinUnetLM 0.829 0.767 + 0.135 0.786 + 0.113 0.771
ProteinUnet2 0.729 0.759 0.784 0.766
+0.122/p=0.005/d=BM0682 /p=0.526/d=0.014
SPOT-1D 0.809 0.747 0.784 0.771
+0.127/p=2e- +0.103/p=0.385/d=0.019
5/d=0.154
TEST2018 ProteinUnetLM 0.728 0.728 £0.182 0.760 £0.144 0.756
ProteinUnet2 0.721 0.719 0.763 0.746
+0.175/p=0.273 /d=0803Q@9 /p—=0.643 /d=-
0.020
SPOT-1D 0.718 0.707 0.762 0.754
+0.176/p=0.008,/d=H0L182/p=0.767/d=-
0.012




Comparison with LM-based classifiers

We compared our network with the three latest networks of similar utility based on features from
pLMs: NetSurfP-3.0 26, ProtT5Sec 22, and SPOT-1D-LM 27. SPOT-1D-LM uses features from both
ProtTransT5-XL-U50%3 and ESM-1b 3° LMs, NetSurfP-3.0 uses only ESM-1b with 1280 features, and
ProtT5Sec only ProtTransT5-XL-U50 with 1024 features. We run SPOT-1D-LM from its source
code (https://github.com/jas-preet/SPOT-1D-LM), and we used web interfaces to run NetSurfP-3.0
(https://dtu.biolib.com /NetSurfP-3/) and ProtT5Sec (https://api.bioembeddings.com/). It needs to be
noted that these networks were trained on different, but partially overlapping datasets. ProteinUnetLM
was trained on 10029 (TR10029 dataset) and validated on 983 sequences (VAL983 dataset), NetSurfP-3.0
and ProtT5hSec were trained on 10337 and validated on 500 sequences, and SPOT-1D-LM was trained on
38913 (including most of the sequences from TR10029 and TEST2016) and validated on 100 sequences. To
ensure no overlap between the train and test sets, we used only test sets from SPOT-1D-LM for comparisons
in this section. We attempted to train the ProteinUnetLM model using the larger datasets from SPOT-1D-
LM but surprisingly the results were suboptimal (as presented in Supplementary Table S1), so we decided
to keep the model based on the TR10029 dataset.

The comparison of ProteinUnet2 with these three networks on 5 different test sets is presented in Table
2. First of all, ProteinUnetLM was statistically significantly better than NetSurfP-3.0 for all test sets in
macro-AGM and SOV8 metrics, with relatively large effect sizes (d > 0.3). ProteinUnet2 had also much
better residue level metrics, excluding macro-AGM for TEST2018 for which NetSurfP-3.0 correctly predicted
the rarest structure “I” (Supplementary Table S3). The main advantage of ProteinUnetLM over the SPOT-
1D-LM network was better macro-AGM for all test sets, statistically significant (with a small effect size d
[?7] 0.1) for the three largest sets TEST2018, TEST2020, and TEST2020-HQ. It comes from the fact that
ProteinUnetLM achieves much better results for rare structures B, G, and S without losing much accuracy
for the frequent ones. For the same reason, SPOT-1D-LM had better Q8 on most of the test sets (excluding
CASP12-FM), but as mentioned in Section 2.4, this metric is not appropriate for assessing SS8 prediction.

Table 2 . The comparison of macro-AGM and Q8at the residue level , and SOV8 at the sequence
level , on 5 test sets for ProteinUnetLM vs NetSurfP-3.0, ProtT5Sec, and SPOT-1D-LM. The best results
for each dataset are boldfaced. The green shading of sequence level scores denotes the statistical significance
that ProteinUnetLM has a better mean with standard deviations (SD), p-values, and Cohen'’s effect size (d)
given below the score.

Test set Model Macro-AGM Macro-AGM SOV8 Q8
Residue level Sequence level Sequence level Residue level
(£SD/p- (£SD/p-
value/d) value/d)
TEST2018 ProteinUnetLM 0.728 0.728 10.182 0.760 +0.144 0.756
NetSurfP-3.0 0.693 0.644 0.695 0.716
+0.196/p=2e- +0.171/p=2e-
5/d=0.443 5/d=0.411
ProtT5Sec 0.800 0.688 0.748 0.749
+0.193/p=2e- +0.153/p=3e-
5/d=0.212 4/d=0.080
SPOT-1D-LM 0.725 0.710 0.757 0.764
+0.197/p=0.004/d=000961 /p=0.414/d=0.019
TEST2020 ProteinUnetLM 0.667 0.599 40.200 0.648 +0.173 0.683
NetSurfP-3.0 0.718 0.509 0.588 0.662
+0.204/p=2e- +0.192/p=2e-
5/d=0.447 5/d=0.325



Test set Model Macro-AGM Macro-AGM SOV8 Q8
ProtT5Sec 0.761 0.568 0.638 0.681
+0.200/p=2¢- +0.179/p=0.002/d=0.055
5/d=0.156
SPOT-1D-LM 0.661 0.569 0.643 0.693
+0.208/p=—2e- +0.181/p=0.140/d=0.028
5/d=0.149
TEST2020-HQ ProteinUnetLM 0.678 0.623 £0.192 0.685 +0.167 0.689
NetSurfP-3.0 0.640 0.529 0.625 0.657
+0.179/p=2¢- +0.178 /p=2e-
5/d=0.501 5/d=0.347
ProtT5Sec 0.668 0.595 0.681 0.688
+0.186 /p=>5e- +0.165/p=0.585/d=0.021
4/d=0.144
SPOT-1D-LM 0.674 0.601 0.687 0.701
+0.189/p=0.008 /d=1165/p=0.761/d=-
0.012
Neff1-2020 ProteinUnetLM 0.653 0.585 +0.216 0.653 +0.202 0.687
NetSurfP-3.0 0.635 0.506 0.573 0.678
+0.229/p=2¢- +0.202/p=2¢-
4/d=0.348 4/d=0.391
ProtT5Sec 0.652 0.584 0.645 0.689
+0.208/p=0.991/d=000013 /p=0.469,/d=0.040
SPOT-1D-LM 0.647 0.574 0.652 0.701
+0.227/p=0.368 /d=010293 /p=0.900/d=0.007
CASP12-FM ProteinUnetLM 0.663 0.609 +0.161 0.650 +0.114 0.651
NetSurfP-3.0 0.563 0.541 0.574 0.610
+0.149/p=0.001/d=H01221 /p=>5e-
4/d=0.631
ProtT5Sec 0.584 0.603 + 0.633 0.640
0.155/p=0.736/d=0-4885109 /p=0.059,/d=0.150
SPOT-1D-LM 0.656 0.589 0.627 0.643

+0.168/p=0.165/d=A01180,/p=0.039/d=0.196

There were no statistically significant differences between ProteinUnetLM and SPOT-1D-LM in terms of
SOVS, but in most cases (excluding TEST2020-HQ) ProteinUnetLM had a better mean and smaller stan-
dard deviation (SD). The only advantage of ProtT5Sec over ProteinUnetLM was a correct prediction of the
rarest structure “I” that highly improved the macro-AGM at the residue level for TEST2018 and TEST2020.
ProteinUnetLM was better than ProtT5Sec in all other aspects. ProteinUnetLM was not statistically sig-
nificantly worse than competitors in any metric or dataset. The competitive results of ProteinUnetLM on
Neff1-2020 (sequences without homologs) and CASP12-FM (free modeling targets) prove the abilities of the
network to generalize well beyond the protein folds included in the training/validation sets

Comparison on CASP14

In the context of the recent success of AlphaFold2 in the CASP14 contest?®, it is necessary to compare our
network with SS8 predictions derived from AlphaFold2 tertiary structures (using DSSP) submitted to that
contest, in order to support the desirability of our work. This comparison is far from being fair as AlphaFold2
is a much bigger model trained on a much bigger dataset. Despite this, ProteinUnetLM was able to achieve
better macro-AGM for 10 out of 30 sequences from the CASP14 dataset (Supplementary Table S4) with



better residue level AGM for the rare class G (Supplementary Table S5) and is not statistically significantly
different than AlphaFold2 in that metric (Table 3). It supports the claim that ProteinUnetLM provides
state-of-the-art results in terms of the AGM metric. AlphaFold2 dominated other metrics and structures.
It has a much better SOV8 which confirms the abilities of this metric to evaluate the quality of tertiary
structure prediction at the secondary structure level*®, and a much higher Q8.

Setting aside AlphaFold2, ProteinUnetLM dominated all other networks in terms of macro-AGM at the
sequence level with relatively large effect sizes (d > 0.3) and achieved the highest SOVS8 (statistically signifi-
cantly better than ProteinUnet2 and NetSurfP-3.0). As for TEST2018 and TEST2020, ProtT5Sec was able
to predict the rarest structure “I” (Supplementary Table S5), so it surpassed ProteinUnetLM in macro-AGM
at the residue level; it turns out to be one of the most prominent features of the ProtT5Sec network. In
terms of Q8, ProteinUnetLM only gave way to SPOT-1D-LM

Table 3 . The comparison of macro-AGM at thesequence and residue level , SOVS8 at thesequence
level, and Q8 at the residue levelon CASP14 for ProteinUnetLM vs all other networks. The best results
for each metric are boldfaced and the second best areunderlined . The green/red shading of sequence
level scores denotes the statistical significance that ProteinUnetLM has a better/worse mean with standard
deviations (SD), p-values, and Cohen’s effect size (d) given below the score.

Model Macro-AGM Macro-AGM SOVs8 Q8
Residue level Sequence level Sequence level Residue level
(£SD/p-value/d) (£SD/p-value/d)
ProteinUnetLM 0.697 0.658 +0.152 0.668 +0.129 0.694
ProteinUnet2 0.643 0.584 £0.139/p=6e-  0.601 0.618
4/d=0.499 +0.111/p=0.001/d=0.545
NetSurfP-3.0 0.655 0.538 +£0.162/p=2¢- 0.617 +£0.134/p=4e- 0.661
5/d=0.747 5/d=0.379
SPOT-1D-LM 0.683 0.606 £0.139/p=5e-  0.662 0.701
4/d=0.347 +0.138/p=0.344/d=0.044
SPOT-1D 0.680 0.621 0.639 0.683
+0.170/p=0.068,/d=0.36D.168 /p=0.325/d=0.189
ProtT5Sec 0.766 0.610 0.654 0.686
+0.152/p=0.004/d=0.3£0.127/p=0.099 /d=0.107
AlphaFold2 0.830 0.717 0.748 0.726
+0.106/p=0.042/d=- =40.110/p=0.001/d=-
0.442 0.659

3.3.1 Analysis of chameleon sequences

To understand the differences between the networks on the CASP14 dataset, we applied the analysis of
predictions for chameleon sequences (ChSeqs) — specific sequences of amino acids that are known to adopt
different 3-class SS (H, E, C) in different unrelated proteins. This analysis is considered one of the most
rigorous tests for SS predictors because the conformations of ChSeqs depend on non-local protein-specific
interactions %%, We searched CASP14 for all 4-element ChSeqs according to the database by °® and
created a CASP14-ChSeqgs set containing 3202 such 4-element sequences and their associated SS (for the
first element in the sequence) according to DSSP. In Supplementary Figure S2, we compared the numbers and
types of mistakes made for CASP14-ChSeqs by all the networks. The largest number of mistakes and largest
differences between networks were observed for the loop class. ProteinUnetL.M mistook helix for coil (H - C)
over 2x less often than ProteinUnet2, reaching a level similar to AlphaFold2. The biggest disadvantage of
AlphaFold2 was the overprediction of helices instead of coils (with the highest number of C - H errors out of
all networks) which is in line with the conclusions from3°. MSA-based networks (ProteinUnet2 and SPOT-
1D) made over 80 mistakes more than their LM-based counterparts which confirms the higher predictive
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power of LM features for challenging chameleon sequences. ProteinUnetLM achieved 3" best result after
AlphaFold2 and SPOT-1D-LM, beating NetSurfP-3.0.

Running time comparison

For a comparison of running times of LM-based models, we used a laptop with Nvidia RTX 2080 Max-Q
GPU and Intel i7-10750H CPU. In the prediction time, we take into account the time needed for feature
generation and the time of inference of the networks for SS prediction only (i.e., excluding regression-based
networks for generating other outputs of SPOT-1D-LM) using batch size 1. We do not take into account
the time needed for program initialization, data loading, or saving the results on disk. We were unable to
measure the inference time of NetSurfP-3.0 on the same computer, as the model is accessible only for online
end-to-end prediction. However, we assumed that the inference time of NetSurfP-3.0 is 5.3x shorter than
for SPOT-1D-LM, based on the information from article 25, this assumption was marked with an asterisk in
Table 4 which presents the times.

The features calculation time for ProtTransT5-XL-U50 (ProteinUnetLM) and ESM-1b (NetSurfP-3.0) on
GPU is similar, with ESM-1b being 1.5x faster on CPU. The features calculation time for SPOT-1D-LM is
a sum of both which makes it around 2x longer. ProteinUnetLM has nearly 3x shorter inference time on
CPU (3 s) than on GPU (8 s). This is because ProteinUnetLM is so lightweight that loading features from
pLMs (1024 x 704 values) into GPU and retrieving the result takes longer than simply running the model
on the CPU. It leads to the situation where the optimal approach is to generate features using GPU and
to run inference on CPU. It makes the inference time around 7x shorter than for SPOT-1D-LM on GPU
and around 66x shorter on CPU. It results in 38 s (152 ms per sequence) of prediction time which is on
par with the estimated prediction time of NetSurfP-3.0 on GPU and 2.4 times shorter than SPOT-1D-LM
on GPU. Additionally, ProteinUnetLM can be effectively used without GPU with a prediction time shorter
than 3 s per sequence. It is worth adding that ProteinUnetLM can be additionally sped up without losing
much accuracy by training without AA on input (Supplementary Table S1) if necessary

Table 4 . The comparison of running times for ProteinUnetLM, SPOT-1D-LM, and NetSurfP-3.0 on the
TEST2018 set with 250 sequences.

Model Features calculation time (s) Features calculation time (s) Inference time (s) Inference time (s) P

GPU CPU GPU CPU G
ProteinUnetLM 35 693 8 3 3¢
SPOT-1D-LM 69 1155 22 199 9]
NetSurfP-3.0 34 462 4* 38* 3¢

*Estimated running times based on the assumption that NetSurfP-3.0 is 5.3x faster than SPOT-1D-LM

GPU+CPUFeature calculation on GPU and inference on CPU

Conclusion

The Attention U-Net convolutional architecture of ProteinUnet was shown to predict SS8 much better when
using features from protein language models than features from MSA (as in the previous ProteinUnet2
network). Our experiments suggest that it has at least as good prediction quality as SPOT-1D-LM while
being much faster; as fast as NetSurfP-3.0 which achieves much worse results. It supports our hypothesis
that state-of-the-art in SS8 prediction can be achieved without using LSTM networks. Additionally, Protei-
nUnetLM has better results than the ProtT5Sec classifier which suggests that our architecture provided a
significant improvement over this simple fully-convolutional network. Our focus on the issue of imbalance in
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SS8 prediction, i.e., by adjusting the loss function of the network, allowed ProteinUnetLM to achieve state-
of-the-art results in AGM metric by providing results competitive with AlphaFold2, and by dominating all
other networks on CASP14 dataset. ProteinUnetLM can be considered one of the most efficient (predic-
tion time shorter than 200 ms per sequence) and effective (macro-AGM 0.653-0.829, SOV8 0.648-0.786, Q8
0.651-0.771, depending on the test set) networks for predicting rare secondary structures, such as 310-helix
(G), beta-bridge (B) and high curvature loop (S) while maintaining high performance for other structures.
It can be run even on computers without GPU, so it is an ideal solution for embedded chips, mobile devices,
and low-end computers. To support the reproducibility of the research and to encourage the community
to adopt our network, we shared models and a complete code (for both training and inference), and an
easy-to-use web interface.

The only limitation of Attention U-Net in comparison to LSTMs is the limited size of the input sequence
(i.e., 704 residues). However, such long sequences rarely occur in nature and they can be still predicted by
Attention U-Net in fragments if necessary. Moreover, an additional performance boost can be achieved by
training an ensemble of 10 ProteinUnetLM models in the way described in the ProteinUnet2 publication
3L The architecture can be easily extended to predict torsion angles and protein features like half sphere
exposure, accessible solvent area, or contact number, as presented in the first ProteinUnet publication 36.
We plan to extend ProteinUnetLM with those outputs to enhance the utility of our network. Also, we plan
to train a larger version of ProteinUnetLM on much larger datasets to reach AlphaFold2 accuracy. We
hope that the thesis stated in the title will inspire researchers to apply Attention U-Net architecture to
eliminate less energy-efficient LSTMs in other domains beyond bioinformatics, such as the classification of
electroencephalography signals 7.
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