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Summary

We introduce an algorithm to find feedback Nash equilibria of a stochastic differential
game. Our computational approach is applied to analyze optimal policies to nurture a
romantic relationship in the long term. This is a fundamental problem for the applied
sciences, which is naturally formulated in this work as a stochastic differential game
with nonlinearities. We use our computational model to analyze the risk of marital
breakdown. In particular, we introduce the concept of "love at risk" which allows us
to estimate the probability of a couple breaking up in the face of possible unfavorable
scenarios.
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1 INTRODUCTION

The purpose of this work is twofold. Firstly, we introduce an algorithm to find feedback Nash equilibria of a stochastic differential
game (SDG) and, secondly, we apply our methodology to a problem of significance in the social sciences, related to human
behavior.

The numerical analysis of SDGs is currently a topic of growing interest (see early publications1,2 and recent contribu-
tions3,4,5,6,7,8). Most contributions in the literature focus on the study of the theoretical properties of certain classes of SDGs.
Also, various works that formulate economic and social problems as SDGs (see e.g.9,10,11) obtain their solutions by using heuris-
tic approximations to avoid solving the stochastic Hamilton-Jacobi-Bellman (HJB) equations of the problem. The most extended
approach to dealing with problems with more than two players is the approximation by a linear quadratic problem or the use of
open-loop solutions (see, for example,5). Also, in recent years, there has been an increase in computational methods to address
differential game problems. For example,12,13 propose an algorithm based on deep learning and fictitious play to find feedback
Nash equilibria for a class of finite-horizon SDGs. Additionally,14 addresses a similar problem from the perspective of policy
iteration and the Chebyshev spectral collocation method. Furthermore, in the literature on multi-agent reinforcement learning
there are model-free and discrete-time counterparts to solve similar problems (see e.g.15).

In this paper, our goal is to solve a model-based infinite-horizon autonomous SDG, which is a common problem in economics
and management (see e.g.16). Our computational approach involves solving a stationary HJB system. This seems like a useful
contribution to the field since most of the available algorithms are designed to solve non-stationary HJB equations. Regarding
the specific SDG application considered in this paper,17 proposes a numerical procedure to solve the HJB problem of the
original deterministic and one-dimensional version18. Here, our computational analysis deals with a two-dimensional stochastic
framework, which is required to address the two-person decision-making problem considered in this paper.
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Our numerical approach extends the idea in19, where an algorithm –called RaBVItG (Radial Basis Value Iteration Game)– is
introduced to solve the HJB system to find feedback Nash equilibria of deterministic differential games. The core of the algorithm
consists of two main loops: value iteration, as in20,21,22, plus game iteration, as introduced in19. More precisely, RaBVItG
uses game iteration to find the Nash equilibrium corresponding to a fixed value of the game and then uses value iteration to
find a fixed point solution for the coupled system of value functions (one per player). The feedback Nash equilibrium of the
deterministic differential game is found as the convergent solution of both iterations. We introduce below a stochastic version
of the RaBVItG algorithm to find feedback Nash equilibria of an SDG. Notice that game iteration is similar to the fictitious play
idea mentioned above. Fictitious play fixes, at an arbitrary stage of the game, the previous strategies of a player’s opponents
to find the Nash equilibrium. The game iteration method uses Krasnoselski iteration23 to find each player’s stage strategy by
combining the previous strategies of all players with the updated ones through the HJB equations. Both philosophies rely on the
idea of decoupling the problem into 𝑁 individual problems to be solved iteratively, instead of dealing with the complete set of
coupled HJB equations.

The second objective of this work seeks to estimate the risk of rupture in a dyadic romantic relationship that is intended to last.
This is a problem of enormous interest in the social sciences, due to the relevance of long-term romantic relationships, marriage
in particular, in most societies24. Furthermore, there is an epidemic of failed marriages in the West (see e.g.25) which is not well
understood in the field of marital psychology (see26). To formulate our problem we model a long-term romantic relationship
as an optimal control problem, as originally proposed in18 and27, and then extended in28. The quality of the relationship is
monitored by a state variable 𝑥(𝑡) (called feeling) whose evolution is controlled by the effort exerted by both partners to keep
the relationship alive and well. The couple’s problem consists of finding the optimal effort control paths to stay together forever.
In particular, for the relationship to be viable the feeling must stay above a certain critical value 𝑥𝑚𝑖𝑛 > 0. Once 𝑥(𝑡) drops
below the level 𝑥𝑚𝑖𝑛, the relationship enters a risk zone and is in danger of breaking down. It was found in18 that two effects
contribute to hindering the viability of the relationship. First, the feeling is subject to decay as time goes by and, second, there
is a tendency to reduce effort below the level required for the relationship to last, thus moving the relationship away from the
unique equilibrium path of feeling-effort for the relationship. These two inertial forces can make the feeling approach the risk
zone where the breakup is likely. Figure 1 below illustrates the idea of this hindering mechanism to put love at risk (see18).
Regarding the problem of love at risk, the point of interest in this paper is to estimate the critical value 𝑥𝑚𝑖𝑛 under a more realistic

Figure 1 Basic mechanism operating to put love at risk (adapted from18.)

version of the original model, where the effort variable is common for both partners and the evolution of the feeling is governed
by a deterministic equation. First, we assume here, as in the differential game formulation28, that each partner could make
effort differently, so there are two different effort variables 𝑐1(𝑡) and 𝑐2(𝑡) controlling the feeling dynamics. Furthermore, we
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extend both formulations of the couple’s relationship by considering that the feeling 𝑥(𝑡) is a random variable whose evolution is
governed by a stochastic differential equation. We thus introduce a new model formulation of the couple’s problem as an SDG.
This stochastic generalization allows us to deal with the idea of the probability of breaking up at a particular moment in the
relationship, which can be obtained from the probability distribution of 𝑥(𝑡) once the threshold value 𝑥𝑚𝑖𝑛 is estimated. Using
the well-known idea of “value at risk" in finance29 we provide an estimate of 𝑥𝑚𝑖𝑛 that will be called Love at Risk (LaR) below.

The paper is organized as follows. In Section 2, we present the mathematical model of the couple’s sentimental dynamics as an
SDG. We pay attention here to the main output of the model solution, namely the stochastic feedback Nash equilibrium, and the
feedback mappings that are required for its numerical approximation. In Section 3 we present the computational model. Firstly,
we present the discretization of the involved equations and the way to implement the RaBVItG algorithm to solve numerically the
couple’s problem. In section 4 we analyze several numerical experiments for different types of couples and how our stochastic
computational scheme renders new information compared with the deterministic versions of the couple’s problem. We also
show how the threshold value LaR can be determined using our stochastic structure to estimate the probability of dissolution of
a given couple. In a final appendix, we provide numerical evidence of the accuracy of the algorithm proposed in the paper.

2 MATHEMATICAL MODEL

Our model is a stochastic two–person generalization of the optimal control model for a long-term romantic relationship intro-
duced in18. A deterministic differential game model of the problem was introduced in28. Also, a mean-field stochastic version of
the original model was considered in30. In this paper, the state of the relationship at time 𝑡 ≥ 0 is described by 𝑥(𝑡) –the feeling
variable–, which is modeled by a stochastic process {𝑥(𝑡)}𝑡≥0, with 𝑥 ∶ [0,∞) → 𝑋 ⊆ ℝ, being 𝑋 the state space. The feeling
evolves according to a stochastic differential equation

d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑐1 (𝑡) + 𝑎2𝑐2 (𝑡)
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤, (1)

where 𝑟, 𝑎1, 𝑎2 > 0 and, for 𝑖 = 1, 2, 𝑐𝑖 ∶ [0,∞) → ℝ+ is a (piece-wise continuous) function that measures the effort put
into the relationship by partner 𝑖 at time 𝑡, and 𝑤(𝑡) is a Wiener process. Equation (1) is a stochastic version of the differential
equation presented in28, called the “second law of thermodynamics for sentimental relationships"26. Here the time evolution of
the feeling includes a random term, due to the fact that the couple’s evaluation of the state of the relationship may be subjected
to some observational error or uncertainty at any time 𝑡. The total well-being 𝑊𝑖 of each partner 𝑖 is defined as the conditional
expectation

𝑊𝑖
(

𝑐𝑖
)

= 𝔼
⎛

⎜

⎜

⎝

∞

∫
0

𝑒−𝜌𝑖𝑡
(

𝑈𝑖 (𝑥 (𝑡)) −𝐷𝑖
(

𝑐𝑖 (𝑡)
))

d𝑡|𝑥(0) = 𝑦
⎞

⎟

⎟

⎠

, 𝑖 = 1, 2, (2)

where 𝑈𝑖 and 𝐷𝑖 are, respectively, the utility of feeling and disutility of effort, while 𝜌𝑖 > 0 is the individual rate of temporal
preference. The functions 𝑈𝑖 and 𝐷𝑖 are assumed to satisfy the same properties as in28, namely 𝑈 ′

𝑖 (𝑥) > 0, 𝑈 ′′
𝑖 (𝑥) < 0, and

𝑈 ′
𝑖 (𝑥) → 0 as 𝑥 → +∞, and also 𝐷′′

𝑖 (𝑐𝑖) > 0, 𝐷′
𝑖(𝑐

∗
𝑖 ) = 0 for some 𝑐∗𝑖 ≥ 0, 𝐷′

𝑖(𝑐𝑖) → +∞ as 𝑐𝑖 → +∞, for 𝑖 = 1, 2. Notice that
𝑐∗𝑖 gives the effort level preferred (myopically) by partner 𝑖. The underlying psychological rationale behind these assumptions is
explained in detail in18.

The couple’s problem considered in this paper can now be stated as follows. Given the feeling dynamics (1), and the initial
feeling level 𝑥(0) = 𝑥0, find the effort trajectories 𝑐1(𝑡), 𝑐2(𝑡) such that each individual well-being (2) is maximal. This is an
infinite-horizon stochastic differential two-person game. It may be assumed that the relationship will be viable as long as the
feeling 𝑥(𝑡) remains above a certain value 𝑥𝑚𝑖𝑛 > 0 (see Figure 1). Let us define the pair

(

𝑐♡1 (𝑡) , 𝑐♡2 (𝑡)
)

that solves the couple’s
problem. We aim to find a Nash equilibrium for this differential game. The differential game is autonomous, so we consider
stationary feedback solutions of the problem, that are defined as 𝑐𝑖 = 𝑆𝑖 (𝑥), being 𝑆𝑖 ∶ 𝑋 → ℝ+ the feedback map that provides
the effort by player 𝑖 for the feeling level 𝑥. We look for a couple of optimal strategies

(

𝑆♡

1 (⋅) , 𝑆♡

2 (⋅)
)

, such that 𝑆♡

𝑖 ∶ 𝑋 → ℝ+

is a stationary feedback Nash equilibrium of the SDG. This equilibrium is attained if 𝑆♡

1 (𝑥 (𝑡)) solves

max
𝑐1(𝑡)

𝔼
⎛

⎜

⎜

⎝

∞

∫
0

𝑒−𝜌1𝑡
(

𝑈1 (𝑥 (𝑡)) −𝐷1
(

𝑐1 (𝑡)
))

d𝑡|𝑥(0) = 𝑦
⎞

⎟

⎟

⎠

(3)
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with d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑐1 (𝑡) + 𝑎2𝑆
♡

2 (𝑥 (𝑡))
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤, and also 𝑆♡

2 (𝑥 (𝑡)) solves

max
𝑐2(𝑡)

𝔼
⎛

⎜

⎜

⎝

∞

∫
0

𝑒−𝜌2𝑡
(

𝑈2 (𝑥 (𝑡)) −𝐷2
(

𝑐2 (𝑡)
))

d𝑡|𝑥(0) = 𝑦
⎞

⎟

⎟

⎠

(4)

with d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑆
♡

1 (𝑥 (𝑡)) + 𝑎2𝑐2 (𝑡)
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤, with 𝑥(0) = 𝑦, and 𝑐𝑖(𝑡) ∈ ℝ+ for 𝑡 ≥ 0.
Assume that there exists a stochastic feedback Nash equilibrium 𝑆♡ =

(

𝑆♡

1 , 𝑆
♡

2

)

for the couple’s problem. Let 𝑣♡𝑖 ∶ 𝑋 → ℝ
be the value function of partner 𝑖, i=1,2, defined by

𝑣♡𝑖 (𝑦) = 𝑊𝑖
(

𝑆♡

𝑖 (𝑥 (𝑡))
)

,

where, for 𝑡 ≥ 0, 𝑆♡

𝑖 (𝑥 (𝑡)) gives the optimal feedback trajectory of partner 𝑖 for the initial feeling level 𝑥(0) = 𝑦. The value
functions 𝑣♡𝑖 , 𝑖 = 1, 2, must satisfy the stochastic Hamilton-Jacobi-Bellman (HJB) equations, which in this case are given by

⎧

⎪

⎨

⎪

⎩

𝜌1𝑣1 (𝑦) = max𝑐1∈ℝ+

{

𝑈1 (𝑦) −𝐷1
(

𝑐1
)

+ 𝑣′1 (𝑦)
(

−𝑟𝑥 + 𝑎1𝑐1 + 𝑎2𝑆
♡

2 (𝑦)
)

+ 1
2
𝑣′′1 (𝑦) 𝜎

2 (𝑦)
}

,

𝜌2𝑣2 (𝑦) = max𝑐2∈ℝ+

{

𝑈2 (𝑦) −𝐷2
(

𝑐2
)

+ 𝑣′2 (𝑦)
(

−𝑟𝑥 + 𝑎1𝑆
♡

1 (𝑦) + 𝑎2𝑐2
)

+ 1
2
𝑣′′2 (𝑦) 𝜎

2 (𝑦)
}

.
(5)

The solution of (5) gives the (optimal) feedback maps 𝑆♡

𝑖 ∶ 𝑋 → ℝ+, 𝑖 = 1, 2,

⎧

⎪

⎨

⎪

⎩

𝑆♡

1 (𝑦) = 𝑎𝑟𝑔max𝑐1∈ℝ+

{

𝑈1 (𝑦) −𝐷1
(

𝑐1
)

+ 𝑣′1 (𝑦)
(

−𝑟𝑥 + 𝑎1𝑐1 + 𝑎2𝑆
♡

2 (𝑦)
)

+ 1
2
𝑣′′1 (𝑦) 𝜎

2 (𝑦)
}

,

𝑆♡

2 (𝑦) = 𝑎𝑟𝑔max𝑐2∈ℝ+

{

𝑈2 (𝑦) −𝐷2
(

𝑐2
)

+ 𝑣′2 (𝑦)
(

−𝑟𝑥 + 𝑎1𝑆
♡

1 (𝑦) + 𝑎2𝑐2
)

+ 1
2
𝑣′′2 (𝑦) 𝜎

2 (𝑦)
}

,
(6)

constitutes a feedback Nash stochastic equilibrium of the problem. Given 𝑥(0) = 𝑦, inserting 𝑆♡

𝑖 (𝑥(𝑡)), 𝑖 = 1, 2, into (1), we
obtain

d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑆
♡

1 (𝑥 (𝑡)) + 𝑎2𝑆
♡

2 (𝑥 (𝑡))
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤,
which gives the optimal evolution of the stochastic process

{

𝑥♡(𝑡)
}

𝑡≥0 which solves the couple’s problem with initial state 𝑦 ∈ 𝑋.

3 A COMPUTATIONAL MODEL

General existence or uniqueness results for feedback Nash equilibria for differential games are not available in the literature31,
except for some particular cases, namely the so-called Linear Quadratic models5. Thus, a computational approach is required to
find a solution. The following method can be considered a generalization of the algorithm in19 to solve an infinite horizon SDG
in feedback Nash equilibrium. While it can be applied to a general class on 𝑁-player SDG, we present the algorithm adapted to
the SDG model for the couple’s problem described in the preceding section.

The SDG model is discretized in a Semi-Lagrangian way (see, for instance,32). This implies first discretizing in time and
space and then using numerical interpolation, by means of radial basis functions (see19). The discretization of (2) is performed
through the rectangle rule, taking ℎ > 0 as a time step. Thus, given a value of the state variable 𝑦 ∈ 𝑋, we consider

𝑊 ℎ
𝑖

(

𝑐ℎ𝑖
)

= 𝔼

{

ℎ
∞
∑

𝑘=0
𝑒−𝜌𝑖𝑡𝑘

(

𝑈𝑖
(

𝑥𝑘
)

−𝐷𝑖
(

𝑐𝑖,𝑘
))

|𝑥0 = 𝑦

}

, 𝑖 = 1, 2, (7)

where 𝑐ℎ𝑖 =
{

𝑐𝑖,𝑘
}

𝑘≥0 is a sequence of admissible controls for partner 𝑖, defined by the piece-wise constant function 𝑐ℎ𝑖 (𝜏) =
𝑐𝑖,𝑘, 𝜏 ∈ [𝑡𝑘, 𝑡𝑘+1), with 𝑡𝑘 = ℎ𝑘, 𝑘 ∈ ℕ ∪ {0}. Furthermore, the sequence 𝑥𝑘 = 𝑥(𝑡𝑘) is obtained by time discretization of (1)
using the Euler-Maruyama scheme (see, for instance,33), that is,

𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓
(

𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘
)

+ 𝜎
(

𝑥𝑘
)

𝜉𝑘, (8)

where 𝜉𝑘 denotes the increment of a standard Brownian motion 𝑤(𝑡) in the interval [𝑡𝑘, 𝑡𝑘+1), 𝑥0 = 𝑦, and 𝑓 (𝑥, 𝑐1, 𝑐2) = −𝑟𝑥 +
𝑎1𝑐1 + 𝑎2𝑐2 in our case. Then, the discrete value function for partner 𝑖 = 1, 2 is given by

𝑣ℎ𝑖 (𝑦) = max
𝑐ℎ𝑖

𝑊 ℎ
𝑖

(

𝑐ℎ𝑖
)

.

Therefore, we can redefine (8) as a set of two equally probable displacements of the state variable,

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑑(𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘),
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where

𝛿𝑑(𝑦, 𝑐1, 𝑐2) = ℎ𝑓 (𝑦, 𝑐1, 𝑐2) + (−1)𝑑𝜎(𝑦)
√

ℎ, 𝑑 = 1, 2.
The Dynamic Programming Principle in discrete time implies that the discrete value functions 𝑣ℎ𝑖 satisfy (see32)

⎧

⎪

⎨

⎪

⎩

𝑣ℎ1 (𝑦) = max𝑐1∈ℝ+

{

ℎ
(

𝑈1 (𝑦) −𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑣

ℎ
1

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑐1, 𝑆ℎ
2 (𝑦)

))

}

,

𝑣ℎ2 (𝑦) = max𝑐2∈ℝ+

{

ℎ
(

𝑈2 (𝑦) −𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑣

ℎ
2

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑆ℎ
1 (𝑦) , 𝑐2

))

}

,
(9)

where
⎧

⎪

⎨

⎪

⎩

𝑆ℎ
1 (𝑦) = 𝑎𝑟𝑔max𝑐1∈ℝ+

{

ℎ
(

𝑈1 (𝑦) −𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑣

ℎ
1

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑐1, 𝑆ℎ
2 (𝑦)

))

}

,

𝑆ℎ
2 (𝑦) = 𝑎𝑟𝑔max𝑐2∈ℝ+

{

ℎ
(

𝑈2 (𝑦) −𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑣

ℎ
2

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑆ℎ
1 (𝑦) , 𝑐2

))

}

.
(10)

To obtain numerical approximations of 𝑣ℎ𝑖 , 𝑖 = 1, 2, in (9), we consider a spatial discretization of the state space. Let �̃� =
{

𝑦𝑗
}

𝑗=1,...,𝑄 ⊂ 𝑋 be a set of arbitrary 𝑄 points. Notice that, in general, the points of the form 𝑦♯ ∶= 𝑦𝑗 + 𝛿𝑑
(

𝑦𝑗 , 𝑐1, 𝑐2
)

in (9) do
not belong to �̃�. To find approximate values �̃�ℎ𝑖

(

𝑦𝑗
)

of 𝑣ℎ𝑖
(

𝑦𝑗
)

for 𝑦𝑗 ∈ �̃�, 𝑖 = 1, 2, the values 𝑣ℎ𝑖
(

𝑦♯
)

are calculated through a
collocation mesh-free algorithm using the set of scattered nodes �̃� 34. This idea leads to the following version of (9), for 𝑦𝑗 ∈ �̃�,

⎧

⎪

⎨

⎪

⎩

�̃�ℎ1
(

𝑦𝑗
)

= max𝑐1∈ℝ+

{

ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V1
]

(

𝑦♯1,𝑑
)}

,

�̃�ℎ2
(

𝑦𝑗
)

= max𝑐2∈ℝ+

{

ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V2
]

(

𝑦♯2,𝑑
)}

,
(11)

together with
⎧

⎪

⎨

⎪

⎩

�̃�ℎ
1

(

𝑦𝑗
)

= 𝑎𝑟𝑔max𝑐1∈ℝ+

{

ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V1
]

(

𝑦♯1,𝑑
)}

,

�̃�ℎ
2

(

𝑦𝑗
)

= 𝑎𝑟𝑔max𝑐2∈ℝ+

{

ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V2
]

(

𝑦♯2,𝑑
)}

.
(12)

where for 𝑑 = 1, 2,
{

𝑦♯1,𝑑 = 𝑦𝑗 + 𝛿𝑑
(

𝑦𝑗 , 𝑐1, �̃�ℎ
2

(

𝑦𝑗
))

,
𝑦♯2,𝑑 = 𝑦𝑗 + 𝛿𝑑

(

𝑦𝑗 , �̃�ℎ
1

(

𝑦𝑗
)

, 𝑐2
)

,
(13)

and 𝑅𝐵𝐹 [V𝑖] is the approximation of the 𝑖-th value function obtained using Radial Basis Functions35. Specifically, for 𝑦 ∈ 𝑋,
𝑅𝐵𝐹 [V𝑖](𝑦) is obtained by interpolation from the values of the array V𝑖 =

[

�̃�ℎ𝑖
(

𝑦1
)

, ..., �̃�ℎ𝑖
(

𝑦𝑄
)]𝑇 as follows,

𝑅𝐵𝐹
[

V𝑖
]

(𝑦) =
𝑄
∑

𝑗=1
𝜆𝑖,𝑗Φ

(

‖

‖

‖

𝑦 − 𝑦𝑗
‖

‖

‖

)

, 𝑖 = 1, 2, (14)

where �̄�𝑖 =
[

𝜆𝑖,1, ...., 𝜆𝑖,𝑄
]𝑇 ∈ ℝ𝑄 is an array of weighting coefficients, and Φ

(

‖

‖

‖

𝑦 − 𝑦𝑗
‖

‖

‖

)

= exp
(

−‖
𝑦−𝑦𝑗‖

2

𝜈2

)

, with 𝜈 > 0 a

shape parameter (see34 for the details). In addition, for 𝑖 = 1, 2, �̄�𝑖 is obtained by solving A�̄�𝑖 = V𝑖, where A is the matrix with
entries A𝑗,𝑙 = Φ

(

‖

‖

‖

𝑦𝑙 − 𝑦𝑗
‖

‖

‖

)

, 𝑗, 𝑙 = 1, ..., 𝑄.

Algorithm pseudocode
The algorithm to find a solution for the discretized problem of the previous section is called RaBVItG, which refers to Radial
Basis approximations, Value Iteration and Game Iteration. It essentially consists of two main loops: game iteration to find a Nash
Equilibrium for a given value function, and value iteration to improve the approximation of the value function, given a previously
obtained equilibrium. Both iterations are sequentially interspersed until convergence is reached. We provide the details below.

Let V =
[

V1,V2
]

and C =
[

C1,C2
]

, denote the arrays to store the updated algorithm information for both partners after each
iteration, that is,

V𝑖 =
[

�̃�ℎ𝑖
(

𝑦1
)

, ..., �̃�ℎ𝑖
(

𝑦𝑄
)]𝑇 , C𝑖 =

[

𝑐ℎ𝑖
(

𝑦1
)

, ..., 𝑐ℎ𝑖
(

𝑦𝑄
)]𝑇 , 𝑖 = 1, 2,
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are 𝑄−dimensional arrays for the value functions and the effort controls of each partner 𝑖 = 1, 2, evaluated at the points 𝑦𝑗 ∈ �̃�.
Let 𝑇𝑖 =

[

𝑇𝑖,1, ..., 𝑇𝑖,𝑄
]

∶ ℝ𝑄 → ℝ𝑄 and 𝐺𝑖 =
[

𝐺𝑖,1, ..., 𝐺𝑖,𝑄
]

∶ ℝ𝑄 → ℝ𝑄 be two operators defined component-wise by

𝑇𝑖,𝑗
(

V𝑖
)

= ℎ
(

𝑈𝑖
(

𝑦𝑗
)

−𝐷𝑖
(

𝑐𝑖
))

+

(

1 − 𝜌𝑖ℎ
)

2

2
∑

𝑑=1
𝑅𝐵𝐹

[

V𝑖
]

(

𝑦♯𝑖,𝑑
)

, 𝑗 = 1, ..., 𝑄, (15)

and

𝐺𝑖,𝑗
(

V𝑖
)

= 𝑎𝑟𝑔 max
𝑐𝑖∈ℝ+

{

ℎ
(

𝑈𝑖
(

𝑦𝑗
)

−𝐷𝑖
(

𝑐𝑖
))

+

(

1 − 𝜌𝑖ℎ
)

2

2
∑

𝑑=1
𝑅𝐵𝐹

[

V𝑖
]

(

𝑦♯𝑖,𝑑
)

}

, 𝑗 = 1, ..., 𝑄, (16)

with 𝑦♯𝑖,𝑑 as defined in (13).
The two main loops of RaBVItG are shown schematically in Figure 2. For 𝑠, 𝑟 ∈ ℕ ∪ {0}, let C𝑠 and V𝑟 be candidates for

optimal controls and values, respectively. The first loop GI obtains a new (optimal) control C𝑠+1, given V𝑟 and the second loop
VI then determines a better value V𝑟+1 using C𝑠+1.

Figure 2 Scheme of the two main loops of RaBVItG.

GI VI
C𝑠+1C𝑠,V𝑟 C𝑠+1,V𝑟+1

We provide the details below.

1. Game Iteration (GI). We obtain C𝑠+1
𝑖 as follows:

C𝑠+1
𝑖 = 𝜃C𝑠

𝑖 + (1 − 𝜃)𝐺𝑖
(

V𝑟
𝑖

)

, 𝑖 = 1, 2,

with 𝐺𝑖 as defined in (16), and 𝜃 ∈ (0, 1) a weighting coefficient, as in the Krasnoselski iteration23.

The GI loop is thus defined by the scheme
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐𝑠+11,𝑗 ≡ 𝜃𝑐𝑠1,𝑗 + (1 − 𝜃) 𝑎𝑟𝑔max𝑐1∈ℝ+

{

ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V1
]

(

𝑦♯1,𝑑
)}

,

𝑐𝑠+12,𝑗 ≡ 𝜃𝑐𝑠2,𝑗 + (1 − 𝜃) 𝑎𝑟𝑔max𝑐2∈ℝ+

{

ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V2
]

(

𝑦♯2,𝑑
)}

,

𝑦♯1,𝑑 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 ,
[

𝑐1, 𝑐𝑠2,𝑗
])

+ (−1)𝑑𝜎
(

𝑦𝑗
)
√

ℎ,

𝑦♯2,𝑑 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 ,
[

𝑐𝑠1,𝑗 , 𝑐2,
])

+ (−1)𝑑𝜎
(

𝑦𝑗
)
√

ℎ, 𝑑 = 1, 2,

for 𝑗 = 1, ..., 𝑄, where 𝑐𝑠𝑖,𝑗 ≡ 𝑐ℎ,𝑠𝑖,𝑗
(

𝑦𝑗
)

denotes the 𝑗th-component of C𝑠. This scheme is iterated until a convergence
criterion is satisfied, that is, ‖

‖

C𝑠+1 − C𝑠
‖

‖

< 𝜖1, for a given 𝜖1 > 0 (‖⋅‖ is the Euclidean norm). A candidate for feedback
Nash equilibrium, for the value functions V𝑟

𝑖 , 𝑖 = 1, 2, is obtained as C𝑠+1 =
[

C𝑠+1
1 ,C𝑠+1

2

]

.

2. Value Iteration (VI). Given C𝑠+1 obtained from the GI loop, the value functions at step 𝑟 + 1 are updated as follows:

V𝑟+1
𝑖 = 𝑇𝑖

(

V𝑟
𝑖

)

, 𝑖 = 1, 2,

where 𝑇𝑖 =
[

𝑇𝑖,𝑗
]

, 𝑖 = 1, 2, are defined in (15). The VI loop is defined by the scheme

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉 𝑟+1
1,,𝑗 ≡ ℎ

(

𝑈1
(

𝑦𝑗
)

−𝐷1

(

𝑐𝑠+11,𝑗

))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V𝑟
1

]

(

𝑦♯1,𝑑
)

,

𝑉 𝑟+1
2,𝑗 ≡ ℎ

(

𝑈2
(

𝑦𝑗
)

−𝐷2

(

𝑐𝑠+12,𝑗

))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑅𝐵𝐹

[

V𝑟
2

]

(

𝑦♯2,𝑑
)

,

𝑦♯1,𝑑 ≡ 𝑦♯2,𝑑 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 ,
[

𝑐𝑠+11,𝑗 , 𝑐
𝑠+1
2,𝑗

])

+ (−1)𝑑𝜎
(

𝑦𝑗
)
√

ℎ, 𝑑 = 1, 2.

This scheme is iterated until satisfying the convergence criterion ‖

‖

V𝑟+1 − V𝑟
‖

‖

< 𝜖2, with 𝜖2 > 0 given. A new candidate
for the value functions is thus obtained, V𝑟+1 =

[

V𝑟+1
1 ,V𝑟+1

2

]

.
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Once convergence is reached, the algorithm renders the outputs C♡ =
[

C♡

1 ,C
♡

2

]

, V♡ =
[

V♡

1 ,V
♡

2

]

, which constitute the com-
putational solutions for the value functions and control policies of the couple’s problem. Once

(

C♡,V♡
)

are obtained, we can
recover the corresponding approximated feedback maps defined in (12).

For the purpose of our model analysis below, we take 𝑓
(

𝑦,
[

𝑐1, 𝑐2
])

= −𝑟𝑦 + 𝑎1𝑐1 + 𝑎2𝑐2, and 𝜎
(

𝑦𝑗
)

≡ 𝜎 constant.

4 NUMERICAL ANALYSIS

We present here the numerical analysis of the couple’s problem defined in section 3 for the functional structure and parameter
values given in Table 1. Notice that these model inputs satisfy all assumptions specified in section 2. Furthermore, it is a
convenient choice for the sake of comparison with previous works, i.e.17 and28, where the same set of inputs are considered.
The algorithm code has been written and run in MATLAB36. The set of parameter values used in the computational experiments
below are ℎ = 1∕12, 𝑋 = [0, 5], �̃� =

{

𝑦𝑗 ∶= 𝑗 length (X)
𝑄−1

}

𝑗=0,1,...,𝑄−1
⊂ 𝑋, 𝑄 = 15, 𝜃 = 0.05, 𝜖1 = 0.001, 𝜖2 = 0.0001, and 𝜈 =

0.5. Our routine is initialized with the admissible array of controls C0
𝑖 = [𝑐∗𝑖 , ..., 𝑐

∗
𝑖 ]

𝑇 and of values V0
𝑖 = [ℎ𝑈𝑖(𝑦1), ..., ℎ𝑈𝑖(𝑦𝑄)]𝑇 ,

for 𝑖 = 1, 2, where 𝑐∗𝑖 and 𝑈𝑖 are the model inputs introduced in section 2.

Table 1 Model inputs: functions and parameters.

𝑟 𝑎1 𝑎2 𝜎 𝐷𝑖 𝑐∗𝑖 𝑈𝑖 𝜌𝑖

Homogamous

−2

1 1

1.75

(𝑐𝑖−𝑐∗𝑖 )
2

2
0.2 5 ln (𝑥 + 1) 0.1

1.25
0.5
0

Heteterogamous 1.75 1

1.75
1.25
0.5
0

4.1 Preliminary analysis: the effect of uncertainty
In Figures 3 and 4, we show the effort feedback policies and the value (well-being) functions for each partner, for two types
of couples, homogamous and heterogamous, respectively. They differ here only in the effort efficiency of each partner, which
is represented by 𝑎1 and 𝑎2. Homogamous couples are formed by partners with 𝑎1 = 𝑎2, otherwise, they are heterogamous.
Different implications of this asymmetry are discussed in detail in28. The effort and value curves in Figures 3 and 4 correspond
to different levels of stochasticity, i.e. 𝜎 = 0.5, 1.25, 1.75. The curves corresponding to the deterministic case (𝜎 = 0) are also
provided, so our results can be compared with those in28, where the non-stochastic case is analyzed. It allows us to study the
impact of stochasticity on effort policies and well-being compared with the benchmark case of deterministic feeling dynamics.

It follows from the analysis that, as the uncertainty, 𝜎, about the actual state of the relationship increases, both partners’ effort
curves monotonically shift upwards and their welfare curves (value functions) shift downwards. As a consequence, in the face
of uncertainty, couples must make more effort and expect less reward in terms of well-being. This qualitative effect holds in
general for both homogamous and heterogamous couples, as Figures 3 and 4 show.

4.2 Love at Risk
To assess the probability of the breakup of a romantic relationship we now pay attention to the model parameter 𝑥𝑚𝑖𝑛 below
which the feeling variable must remain to guarantee a sufficiently rewarding relationship –see section 1. This is the threshold
feeling level for the relationship to start facing a risk of breakup (see Figure 1). A suitable version of that threshold value can
be thought of as a “value at risk", which is defined in finance as a probabilistic measure of incurring a given loss29. In a similar
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Figure 3 Computational feedback analysis of a homogamous couple (𝑎1 = 𝑎2 = 1) at different 𝜎 values.
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Figure 4 Computational feedback analysis of a heterogamous couple (𝑎1 = 1, 𝑎2 = 1.75) at different 𝜎 values.
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fashion, for a given probability 𝛼 ∈ (0, 1), we define Love at Risk (LaR) (at time 𝑘 > 0) as the feeling value such that

ℙ
(

𝑥♡𝑘 ≤ LaR
)

= 𝛼
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where 𝑥♡𝑘 is the (optimal) solution of the computational couple’s problem defined in section 3, and ℙ is its probability function,
so that LaR is the 𝛼-percentile of the distribution of 𝑥♡𝑘 .

In order to illustrate our methodology, we consider realistic estimates of the probability of divorce in the US. They are shown
in Figure 5, where different values of 𝛼 = 𝛼(𝑘) are given, for different cohorts of marriages, 𝑘 months after the wedding, for
𝑘 = 60, 120, 180, 240.

We consider a heterogamous marriage, as specified in Table 1, which may be facing a certain uncertainty 𝜎 in their feeling
dynamics (1). To estimate the value LaR for such kind of marriage, five years after the wedding, we proceed as follows. We
compute a large sample of realizations of the optimal solution 𝑥♡(𝑘) for the computational stochastic model in section 3, and
for 𝜎 = 0, 0.5, 1.25, 1.75. Given that the time variable 𝑘 in our computational model corresponds to months, we generate an
estimate of the probability densities of the random variable 𝑥∗(60) for the different values of 𝜎. They are displayed in Figure
6. According to Figure 5, 𝛼(𝑘 = 60) ≈ 0.10, on average, over the marriage cohorts. The LaR level at five years can thus be
estimated as the first decile of the feeling distribution corresponding to each 𝜎 value in Figure 6.

Figure 5 Share of marriages ending in divorce in the US: percentage of straight couples who divorced after a given number of
years of marriage (Source: Our World in Data and37).

In general, the LaR level fluctuates with the type of couple, the time after the wedding, and the noise term in the feeling
dynamics. For the heterogamous couple under consideration, it is apparent from Figure 6 that the LaR level after five years
decreases as 𝜎 increases, both in absolute value and relative to the mean of the feeling values.

Notice that both the probability estimates of rupture 𝛼 = 𝛼(𝑘) in the US, given in Figure 5, and the distribution of the
(controlled) feeling variable 𝑥♡ = 𝑥♡𝑘 of the couple’s problem vary with 𝑘. As a consequence, the LaR level also varies with 𝑘,
LaR=LaR(𝑘), and it can be estimated in a dynamic fashion using our computational model. To obtain the sequence LaR(𝑘) for
the different levels of uncertainty 𝜎, we proceed as follows. Given 𝜎, we generate the distribution of the feeling levels 𝑥♡𝑘 for
each 𝑘 from a sample of 10 000 realizations of the following stochastic numerical scheme obtained in section 3:

(SM1)
⎧

⎪

⎨

⎪

⎩

𝑐𝑖,𝑘 = �̃�ℎ
𝑖
(

𝑥𝑘
)

, 𝑖 = 1, 2,
𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓 (𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘) +

√

ℎ𝜎𝜉𝑘,
𝑥0 ∈ 𝑋.
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Figure 6 Love at Risk (LaR) for a heterogamous couple with 𝑎1 = 1,𝑎2 = 1.75 at 𝑘 = 60 for different 𝜎 values. Empirical
densities are obtained from a sample of 10 000 feeling trajectories. The gap –in relative terms– between the LaR and the mean
feeling level of the process is also provided, for each value of 𝜎.
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The scheme above defines a stabilization mechanism for the relationship since the control policies, computed by the stochastic
feedback Nash maps, allow partners to react optimally to perturbations of the feeling at any time. We note that the feedback
control maps �̃�ℎ

𝑖 in (SM1) are defined for any 𝑥 ∈ 𝑋 using 𝑅𝐵𝐹 approximation, in the same fashion as in Section 3 –see (14).
That is, �̃�ℎ

𝑖 (𝑥) is computed for any 𝑥 ∈ 𝑋 from the array of controls C♡

𝑖 as 𝑅𝐵𝐹
[

C♡

𝑖
]

(𝑥) ≡
∑𝑄

𝑗=1 𝜇𝑖,𝑗Φ
(

‖

‖

‖

𝑥 − 𝑦𝑗
‖

‖

‖

)

, being

�̄�𝑖 =
[

𝜇𝑖,1, ..., 𝜇𝑖,𝑄
]𝑇 , for 𝑖 = 1, 2, a vector of weighting coefficients obtained from A�̄�𝑖 = C♡

𝑖 , where A is the matrix with entries
A𝑗,𝑙 = Φ

(

‖

‖

‖

𝑦𝑙 − 𝑦𝑗
‖

‖

‖

)

, 𝑗, 𝑙 = 1, ..., 𝑄.
Once the distribution 𝑥♡𝑘 is simulated, we estimate LaR(𝑘) from the condition ℙ(𝑥♡𝑘 ≤ LaR(𝑘)) = 𝛼(𝑘), where the probability

values 𝛼(𝑘) are obtained from the data source of Figure 5.
In Figure 7 we show the simulation of the model above for the heterogamous couple under study and for initial feeling 𝑥0 = 3.

Different percentile trajectories (from 10 to 80) of the feeling variable 𝑥♡𝑘 for the different levels of 𝜎, as well as the corresponding
effort trajectories of each partner, are displayed in the figure. The curve in pink corresponds to the dynamic LaR levels estimated
by the computational model. As in the static exercise above (𝑘 = 60), it can be seen that, for every 𝑘 > 0, the LaR curves are
convex, monotonically decreasing as 𝜎 increases, and they eventually approach a stationary value. Our numerical experiment
allows us to obtain synthetic long-term feeling trajectories for different couples in a variety of uncertainty scenarios. It is worth
mentioning that they seem to be a good approximation to the feeling trajectories of real couples. In fact, longitudinal studies
using survey data –see e.g. p.149 in38 and Figure 4 in39– find that the typical trajectories of marital happiness, a proxy of our
feeling variable, show a steep decline at first and then a tendency to stabilize, like the feeling curves in Figure 7. This is a piece
of evidence that our model can reproduce stylized facts that other researchers find empirically.

4.3 Estimating the probability of breakup in the face of a shock
Regarding the odds of survival of a relationship whose evolution is described by our control model, we may also analyze how
the couple reacts optimally in the face of a shock. This is a relevant question since relationships are subjected to external shocks
over the life course (see e.g.40). Notice that the feedback control mechanism provided by our analysis in section 3 is particularly



Jorge Herrera & José-Manuel Rey 11

Figure 7 Simulations of the stochastic process 𝑥♡(𝑘) of the feeling for different values of 𝜎, together with the corresponding
optimal effort trajectories of both partners, for a heterogamous couple with 𝑎1 = 1 and 𝑎2 = 1.75. The sequence LaR(𝑘) is plotted
in pink, for the different 𝜎 values. Values of 𝛼(𝑘) are approximated using data from Table (2). The trajectories corresponding to
the 10th to 80th percentiles of the process are also shown in the graphs (the trajectory in black corresponds to the mean value).

useful here, since it allows partners to adjust their effort levels after a perturbation of the feeling to drive it back to a successful
path.

We address the shock problem by estimating the change in the probability of breakup after a shock of the feeling has occurred
at a given time 𝑘 > 0. In general, the feeling may be affected by a certain sequence of different shocks 𝑠− = {𝑠𝑘}𝑘≥0. Then the
stabilization mechanism provided by the feedback analysis reads as follows

(SM2)
⎧

⎪

⎨

⎪

⎩

𝑐𝑖,𝑘 = �̃�ℎ
𝑖
(

𝑥𝑘
)

, 𝑖 = 1, 2,
𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓 (𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘) +

√

ℎ𝜎𝜉𝑘 + 𝑠𝑘,
𝑥0 ∈ 𝑋.

Again, the feedback maps �̃�ℎ
𝑖 can be computed here for any 𝑥 ∈ 𝑋 using 𝑅𝐵𝐹 approximation, as described above for the

scheme (SM1).
Even though the stabilization mechanism (SM2) is working, the perturbed feeling trajectory may enter the zone of risk of

breakup at a certain moment 𝑘 (that is, below the level LaR(𝑘) with some probability), and then remain within the risk zone
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for some time. This is a critical period that can be painful, or even impossible to get through, so it can eventually cause the
relationship to break up. Thus the probability that a perturbed trajectory controlled by (SM2) spends a certain period below the
curve LaR(𝑘) –see Figure 7– serves as a measure of the risk to the survival of the relationship. This probability can be estimated
from an ensemble of realizations of the process steered by (SM2).

Figure 8 Left: Feedback response to a one-period negative shock of size 𝑠−, proportional to 𝜎, five years after the wedding
(𝑘 = 60) for a heterogamous couple with 𝑎1 = 1, 𝑎2 = 1.75, and for 𝜎 = 0.5, 1.25, 1.75. Feeling trajectories are obtained using
the numerical scheme (SM2). Right: Empirical distribution for the feeling variable obtained from a sample of 10 000 trajectories
before the shock (𝑘 = 60) and over one year after the shock (60 < 𝑘 ≤ 72) for the different values of 𝜎. The values LaR
correspond to the unperturbed process, as shown in Figure 6.

To illustrate the method described above, consider the case that 𝑠− consists of a large one-period shock (of size 𝜎) taking place
five years after the wedding (𝑘 = 60). In Figure 8 (left) we show the percentile trajectories of the stochastic process steered by
the stabilization mechanism (SM2) for a particular heterogamous couple and for different values of 𝜎. They coincide with the
corresponding trajectories of Figure 7 before the shock at 𝑘 = 60. Computing a large ensemble of trajectories, we produce an
estimate of the distribution of the feeling values for the perturbed process over a whole year (60 < 𝑘 ≤ 72) after the shock. In
Figure 8 (right) we show the empirical distributions of the feeling variable before the shock and over one year after the shock.
Using the LaR level at 𝑘 = 60 as the benchmark, the probability of breakup over a year after the shock can be estimated from the
empirical distribution after the shock (in pink) for different values of 𝜎. As shown in Figure 8 (right), given that the one-period
shock is of size 𝜎, the probability of breakup over one year after the event increases significantly as 𝜎 increases.

We also analyze how the probability of breakup after a shock varies with respect to the size of the shock and the uncertainty of
the feeling dynamics. For the same type of heterogamous couple considered above, Table 2 shows the probabilities of breakup
for different values of 𝜎 and different sizes of a one-period shock occurring five years after the wedding. Our estimates show that,
for any level 𝜎, the probability of breakup increases as the size of the shock increases. Also, a higher level of uncertainty entails
a lower LaR level and, in addition, it makes it more likely that the level of feeling remains in the secure zone (i.e. over LaR).
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Table 2 Probability of breakup of a heterogamous relationship with 𝑎1 = 1, 𝑎2 = 1.75 for different uncertainty levels 𝜎 and a
-period shock 𝑠− of different sizes, five years after the wedding (𝑘 = 60). The simulation is obtained using the scheme (SM2).

𝜎 LaR 𝑠− ℙ (𝑏𝑟𝑒𝑎𝑘𝑢𝑝)

0.5 1.51

−0.1 0.1488
−0.5 0.4304
−1.25 0.8636
−1.75 0.9593

1.25 1.02

−0.1 0.1334
−0.5 0.3080
−1.25 0.6195
−1.75 0.7505

1.75 0.77

−0.1 0.1339
−0.5 0.3135
−1.25 0.6114
−1.75 0.7266

5 CONCLUSIONS

In this article, we have introduced an algorithm to find feedback Nash equilibria for a class of stochastic differential games. The
algorithm extends the idea of a previous scheme for deterministic games (called RaBVItG) to a stochastic environment. It builds
on a combination of two iterations: a first one to find the Nash equilibrium by fixing the value of the game, and a second iteration
to find the value of the game given a Nash equilibrium. The algorithm can be applied to a general class of 𝑁-player infinite
horizon stochastic games. We have also addressed a substantial issue in the applied sciences, namely the design of a happy
long-term romantic relationship. We formulate this problem as a two-person optimal control problem to govern the feeling of
the relationship in a stochastic environment. The algorithm allows us to find approximate solutions to a computational version
of the control problem for different stochastic dynamics. In particular, we have focused on estimating the risk of the breakup of
a long-term relationship at a certain time after the initial commitment. Using divorce data in the US, the proposed algorithm
gives an estimate of the feeling level at different times below which the relationship can probably break up -called Love at Risk
here. Also, the computational model allows us to estimate the probability of breaking up in the face of an external shock. The
numerical analysis can be applied to different types of couples and different levels of stochasticity in the feeling dynamics. While
actual breakup data is used to synthesize a stochastic process that allows us to estimate the LaR parameter, no other data is used
in the article. Once the model has been calibrated using longitudinal data on marital quality, the methodology presented in the
article can be used to provide accurate estimates of Love at Risk for romantic relationships. This seems an intriguing topic for
future work.
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APPENDIX

We present here numerical evidence of the convergence and accuracy of the stochastic RaBVItG algorithm. Below we first
consider two benchmark problems with known analytical solutions. These are the problems discussed in14 but adapted to an
infinite-horizon context. We then perform a further test that serves to evaluate the accuracy of the algorithm in solving our
problem, i.e. we show that the numerical value functions rendered by the feedback scheme of the algorithm satisfy the discretized
versions of the HJB equations. We thank an anonymous referee for suggesting this numerical test.

All experiments were performed on a computer with an Intel(R) Core(TM) i7-4600U CPU and 4 Gb of RAM. Additionally,
we used the following set of parameters: 𝜃 = 0.05, 𝜖1 = 1 × 10−4, 𝜖2 = ℎ2.

Test 1: Stochastic Linear Quadratic
Consider a two-player SDG such that the 𝑖-th player seeks to determine 𝑢𝑖 that minimizes the following quadratic cost functional

𝐽𝑖(𝑦, 𝑢𝑖) = 𝔼
⎧

⎪

⎨

⎪

⎩

∞

∫
0

[

𝑞𝑖𝑥(𝑡)2 + 𝑟𝑖𝑢𝑖(𝑡)2
]

d𝑡|𝑥(0) = 𝑦

⎫

⎪

⎬

⎪

⎭

, 𝑖 = 1, 2,

subject to the stochastic linear differential equation

d𝑥(𝑡) =
[

𝑎𝑥(𝑡) + 𝑏1𝑢1(𝑡) + 𝑏2𝑢2(𝑡)
]

d𝑡 + 𝜎𝑥(𝑡)d𝑤(𝑡),

where 𝑥(0) = 𝑦 and 𝑦 ∈ ℝ, and 𝑞𝑖, 𝑟𝑖, 𝑏𝑖, for 𝑖 = 1, 2, are parameters.
According to41, the analytic feedback Nash equilibrium for this game is defined by the linear expressions

𝑢∗1(𝑡) = 𝑘1𝑥(𝑡), 𝑢∗2(𝑡) = 𝑘2𝑥(𝑡),

where 𝑘1, 𝑘2 are solutions to the following scalar Riccati algebraic equations:

2𝑝1(𝑎 + 𝑏2𝑘2) + 𝑞1 + 𝜎2𝑝1 + 𝑘1𝑏1𝑝1 = 0, 𝑘1 = − 1
𝑟1
𝑏1𝑝1,

2𝑝2(𝑎 + 𝑏1𝑘1) + 𝑞2 + 𝜎2𝑝2 + 𝑘2𝑏2𝑝2 = 0, 𝑘2 = − 1
𝑟2
𝑏2𝑝2.

In Table 3, we present the accuracy results of our algorithm for this particular problem. We consider here 𝑋 = [0, 1] and
𝑄 = 5. Also, 𝜈 = 0.5. The set of model parameter values is as follows: 𝑎 = 2, 𝑏1 = 𝑏2 = 1, 𝑞1 = 𝑞2 = 4, 𝑟1 = 𝑟2 = 1. We show
the error values for different time steps, ℎ =∈ {0.2, 0.1, 0.05, 0.001}, and different stochasticity levels, 𝜎 ∈ {0.1, 0.3, 0.7}. The
error values are given by

𝐿∞ − error ∶= max
𝑦𝑗∈�̃�

[

|𝑢∗1(𝑦𝑗) − 𝑐ℎ1 (𝑦𝑗)|, |𝑢
∗
2(𝑦𝑗) − 𝑐ℎ2 (𝑦𝑗)|

]

, (17)

where C♡

𝑖 =
[

𝑐ℎ𝑖
(

𝑦1
)

, ..., 𝑐ℎ𝑖
(

𝑦𝑄
)]

, 𝑖 = 1, 2, are the arrays of optimal controls computed by the algorithm. The error values
decrease as the time step gets smaller, and it is not significantly affected by the value of 𝜎. We also report the average CPU
time obtained for each experiment. The good error values reported in the Table serve to illustrate the relative precision of the
numerical solutions. Additionally, the computational times are all below 1 second.

As expected, the algorithm does not always converge. For some experiments (not reported here), with ℎ > 0.1 or 𝜎 > 0.9,
convergence is not attained in general. The values 𝜎 and ℎ must be studied a priori to achieve the convergence of the algorithm.

Test 2: Vidale-Wolfe advertising Model
In the literature on differential games for marketing problems (see42), the Vidale-Wolfe model is used to find feedback advertising
policies of minimal cost. In the infinite-horizon stochastic version, the following cost functions are considered:

𝐽1(𝑥0, 𝑢1) = 𝔼
⎧

⎪

⎨

⎪

⎩

∞

∫
0

𝑒−𝜌1𝑡
[

𝑚1𝑥(𝑡) + 𝑐1𝑢1(𝑡)2
]

d𝑡|𝑥(0) = 𝑥0

⎫

⎪

⎬

⎪

⎭

,
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Table 3 Results obtained with RaBVItG for a stochastic linear quadratic problem. In each cell, we report two values for the
corresponding experiment: (top) 𝐿∞–error (17) and (bottom) number of iterations until convergence.

ℎ = 0.2 ℎ = 0.1 ℎ = 0.05 ℎ = 0.01

𝜎 = 0.1 0.81
9

0.19
29

0.09
42

0.02
210

𝜎 = 0.3 0.82
10

0.19
27

0.09
42

0.02
188

𝜎 = 0.7 0.79
15

0.20
27

0.10
48

0.02
195

Avg. CPU time (s) 0.44 0.52 0.69 0.75

and

𝐽2(𝑦0, 𝑢2) = 𝔼
⎧

⎪

⎨

⎪

⎩

∞

∫
0

𝑒−𝜌2𝑡
[

𝑚2𝑦(𝑡) + 𝑐2𝑢2(𝑡)2
]

d𝑡|𝑦(0) = 𝑦0

⎫

⎪

⎬

⎪

⎭

,

subject to the stochastic dynamical system –here 𝑥(𝑡) and 𝑦(𝑡) are the market shares of each player at time 𝑡 ≥ 0–

d𝑥 =
[

𝑟1𝑢1
√

1 − 𝑥 − 𝑟2𝑢2
√

𝑥 − 𝛿(𝑥 − 𝑦)
]

d𝑡 + 𝜎
√

𝑥𝑦d𝑤,

d𝑦 =
[

𝑟2𝑢2
√

1 − 𝑦 − 𝑟1𝑢1
√

𝑦 − 𝛿(𝑦 − 𝑥)
]

d𝑡 − 𝜎
√

𝑥𝑦d𝑤,

where 𝑥(0) = 𝑥0, 𝑦(0) = 1 − 𝑥0 with 0 ≤ 𝑥0 ≤ 1 and 𝑥(𝑡) + 𝑦(𝑡) = 1 for all 𝑡 ≥ 0, and 𝜌𝑖, 𝑚𝑖, 𝑐𝑖, 𝑟𝑖, 𝑖 = 1, 2, and 𝛿 > 0 are
parameters.

According to10, the analytic solution is given by

𝑢∗1(𝑥) = 𝛽1𝑟1

√

1 − 𝑥
2𝑐1

, 𝑢∗2(𝑦) = 𝛽2𝑟2

√

1 − 𝑦
2𝑐2

,

where, in our case, 𝛽𝑖 =

√

(𝜌𝑖+2𝛿)2+
12𝑟2𝑖
4𝑐𝑖

𝑚𝑖−(𝜌𝑖+2𝛿)
3𝑟2𝑖
2𝑐𝑖

. For our numerical test, we use the following parameter values (similar to those

chosen in the literature): 𝜌1 = 𝜌2 = 0.1, 𝑚1 = 𝑚2 = 1, 𝑐1 = 𝑐2 = 0.1, 𝑟1 = 𝑟2 = 1 and 𝛿 = 0.5. We test the performance of the
algorithm for three levels of stochasticity 𝜎 ∈ {0.5, 1, 1.5}. Additionally, 𝑥, 𝑦 ∈ [0, 1], with 𝑄 = 5. Also, we use 𝜈 = 0.1 Notice
that the explicit solution is independent of 𝜎.

In Table 4, we report the results of the experiments in the same format as Table 3.
Test 2 again illustrates the accuracy of the numerical solutions obtained by the algorithm. Error estimates are already small for

relatively high values of the time step ℎ and they decrease as ℎ approaches zero. Also, the accuracy does not depend on the level
of stochasticity. We note that for some experiments (not reported here), with 𝜎>2 or ℎ > 0.2, the algorithm does not converge.

Table 4 Results obtained with RaBVItG for a version of the Vidale-Wolfe advertising model. In each cell, we report two values
for the corresponding experiment: (top) the value of the 𝐿∞–error (17) and (bottom) the number of iterations until convergence.

ℎ = 0.2 ℎ = 0.1 ℎ = 0.05 ℎ = 0.01

𝜎 = 0.5 0.0087
6

0.0109
12

0.0062
25

0.0043
121

𝜎 = 1 0.015
6

0.0085
11

0.0032
24

0.0047
121

𝜎 = 1.5 0.013
11

0.0052
12

0.0035
24

0.0046
120

Avg CPU time (s) 6.4 9.3 19.2 64.7
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Test 3: Double-checking the value functions.
When analytical solutions are not available, an alternative way to test the accuracy of the algorithm consists of double-checking
the value functions of the problem. That is, checking whether the approximate values of the problem given by (7) using the
feedback scheme (SM1) –see section 4.2– satisfy the discretized versions (11) of the HJB equations.

We thus compute the following sample approximations of (7):

𝑊 ℎ
𝑖

(

𝑐ℎ𝑖
)

≈ ℎ
𝑇
∑

𝑘=0
𝑒−𝜌𝑖𝑡𝑘

[

1
𝑆

𝑆
∑

𝑗=1

(

𝑈𝑖
(

𝑥𝑘,𝑗
)

−𝐷𝑖
(

𝑐𝑖,𝑘,𝑗
))

]

, 𝑖 = 1, 2, (18)

where, for each 𝑗 = 1, ..., 𝑆, 𝑥𝑘,𝑗 and 𝑐𝑖,𝑘,𝑗 obey (SM1), that is,

⎧

⎪

⎨

⎪

⎩

𝑥𝑘+1,𝑗 = 𝑥𝑘,𝑗 + ℎ
(

−𝑟𝑥𝑘,𝑗 + 𝑎1𝑐1,𝑘,𝑗 + 𝑎2𝑐2,𝑘,𝑗
)

+ 𝜎
(

𝑥𝑘,𝑗
)
√

ℎ𝜉𝑘,𝑗 ,
𝑐𝑖,𝑘,𝑗 = �̃�ℎ

𝑖
(

𝑥𝑘,𝑗
)

, 𝑖 = 1, 2,
𝑥0,𝑗 = 𝑦,

with 𝜉𝑘,𝑗 → 𝑁(0, ℎ) and 𝑦 ∈ 𝑋. Notice that the expectation in (7) is replaced by a (large) sample average of 𝑆 realizations of
the scheme (SM1). We thus expect that, given 𝑦 ∈ 𝑋, the value of the problem 𝑊 ℎ

𝑖
(

𝑐ℎ𝑖
)

obtained as described above gives a
good approximation of the value �̃�ℎ𝑖 (𝑦) obtained by RaBVItG from (11), provided that 𝑇 is sufficiently large.

In Table 5, we show the results of the numerical test for a particular choice of 𝑦 and different values of 𝜎. We report the values
𝑊 ℎ

𝑖 for 𝑖 = 1, 2, obtained for a set of increasing time horizons 𝑇 (ℎ fixed) and, in brackets, the percentage error of each value
with respect to the target values �̃�ℎ𝑖 (𝑦) -shown in the last column of the table. As the numbers in the table show, the discrepancy
between both values becomes very small as the time horizon gets large. Again, the experiment shows that errors do not vary
significantly as the stochasticity of the dynamics increases. Test 3 thus provides further numerical evidence for the accuracy of
the algorithm presented in this paper.

Table 5 Results of the numerical double-check of the value functions. Comparison of 𝑊 ℎ
𝑖
(

𝑐ℎ𝑖
)

(for a increasing sequence of
𝑇 ) with �̃�ℎ𝑖 (𝑦), 𝑖 = 1, 2, for 𝑦 = 3 and for different levels of stochasticity 𝜎. We report -in brackets- the percentage error of
approximation for each trial. We take 𝑆 = 1000, 𝑟 = 2, 𝑎1 = 1, 𝑎2 = 1.75, 𝜌1 = 𝜌2 = 0.10, ℎ = 1∕12, 𝜈 = 0.5.

𝑖 𝑦 𝜎 𝑇 = 2000 𝑇 = 5000 𝑇 = 10000 𝑇 = 20000 �̃�ℎ𝑖 (𝑦)

1

3

0.5

43.08 49.39 49.71 49.73 49.95
(13.7%) (1.1%) (0.5%) (0.44%)

2 37.40 42.78 43.01 43.00 42.89
(12.8%) (0.25%) (0.27%) (0.25%)

1
1.25

42.58 48.86 49.15 49.20 49.46
(13.9%) (1.2%) (0.62%) (0.52%)

2 36.56 41.92 42.07 42.07 42
(12.9%) (0.19%) (0.16%) (0.16%)

1
1.75

41.89 48.10 48.37 48.44 48.92
(14.3%) (1.6%) (1.1%) (0.9%)

2 35.58 40.84 41.05 41.13 41.11
(13.5%) (0.60%) (0.14%) (0.04%)
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