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Lifespan is a key attribute of a species’ life cycle and varies extensively among major lineages of animals.
In fish, lifespan varies by several orders of magnitude, with reported values ranging from less than one year
to approximately 400 years. Lifespan information is particularly useful for species management, as it can
be used to estimate invasion potential, extinction risk and sustainable harvest rates. Despite its utility,
lifespan is unknown for most fish species. This is due to the difficulties associated with accurately identi-
fying the oldest individual(s) of a given species, and/or deriving lifespan estimates that are representative
for an entire species. Recently it has been shown that CpG density in gene promoter regions can be used
to predict lifespan in mammals and other vertebrates, with variable accuracy across taxa. To improve accu-
racy of lifespan prediction in a non-mammalian vertebrate, here we develop a fish-specific genomic lifespan
predictor. Addressing previous issues of low sample size and sequence dissimilarity, we incorporate more
than eight times the number of fish species used previously (n = 442) and use fish-specific gene promoters



as reference sequences. Our model predicts fish lifespan from genomic CpG density alone (measured as
CpG observed/expected ratio), explaining 64 % of the variance between known and predicted lifespans. The
results demonstrate the value of promoter CpG density as a universal predictor of fish lifespan that can
applied where empirical data are unavailable, or impracticable to obtain.
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Introduction

Lifespan is the approximate maximum age that individuals of a given species are expected to attain under
favourable environmental conditions. Derivations of a species’ lifespan are varied, including the maximum
recorded age of any single individual , the age to which a proportion of the population survives , or, in fish,
the age at which 95 % of the maximum or asymptotic length is reached . Lifespan derived in any way is a
fundamental life history parameter, allowing for approximation of mortality and rate of population growth .
Lifespan can also provide an upper limit for an animal’s reproductive life phase, except in the small number
of species that undergo reproductive senescence. The age at which sexual maturity is attained and either
age at death or age of reproductive senescence vary more extensively than maximum lifespan, and rates of
reproduction and mortality even more so . Lifespan, in contrast, is a relatively stable trait within a given
species and can therefore be used to obtain generalisable information about that species .

Lifespan’s utility in approximating life history makes it valuable for species management. For example, it can
be used to model sustainable harvest levels for wild populations, such as in fisheries , but also assessments
of invasion potential , and extinction risk . Despite its simplicity as a population parameter, and great
value for a range of animal population and species management applications, lifespan is often not considered
because there are no reliable estimates available. Reported vertebrate lifespans range from eight weeks in
the coral reef pygmy goby (FEviota sigillata ) to approximately 400 years in the Greenland shark (Somniosus
microcephalus ) Identification of the oldest individuals of a given species is often very difficult because age
information is sparse or absent. Long-lived species present a range of practical difficulties for determining
lifespan, as in the absence of indirect estimation methods, research programmes rarely last as long as the
oldest individuals . Thus, despite its central importance to species management and conservation, lifespan
is unknown for most animals .

The ageing process is hypothesised to be an unintended consequence of cell programming, involving molecular
changes that leave traceable genomic signatures . Consistent changes in a well-studied epigenetic modifica-
tion, DNA methylation, can be used to predict age in a growing number of species . This is because, over the
lifespan of an individual, patterns of DNA methylation change, whereby highly methylated regions become
demethylated and sparsely methylated regions become methylated . Along with other important epigenetic
changes, these changes in DNA methylation result in a loss of cellular functioning that is thought to con-
tribute to processes of aging . The term DNA methylation is generally used to refer to methylation that
occurs at cytosine-phosphate-guanine (CpG) sites, or ‘CG’ sequences in the genome, where its occurrence
and function has been most extensively studied . CpG sites are concentrated around transcription start
sites and in promoter regions of genes, where their density and DNA methylation levels are associated with
changes in gene activity . The elevated frequency of CpG sites in gene promoters has been hypothesised to
act as a buffer against age-related DNA methylation changes and therefore correlate with species maximum
lifespan .

The association between promoter CpG density and lifespan was first revealed in mammals and its predictive
value was subsequently demonstrated among all vertebrates . McLain and Faulk (2018) revealed significant
correlations between promoter CpG density and mammalian lifespan for 1000 gene promoter regions; 5
% of the total examined. Mayne et al. (2019) developed a model that used the CpG densities of 42
gene promoters to predict lifespan in vertebrates, accounting for 76 % of the variation between known and
predicted lifespans. The vertebrate model highlighted unique relationships between CpG density and lifespan



in all major vertebrate groups, including fish, birds, mammals and reptiles. However, because the prediction
accuracy was lower in non-mammalian vertebrates, these differences were attributed to low sample size (n [?]
63) and high sequence divergence . Previous lifespan analyses have used human gene promoters as reference
sequences, resulting in fewer sequence matches, greater bias and lower accuracy in distant relatives . Previous
studies have also obtained lifespan information from the Animal Aging and Longevity Database (AnAge) .
Although AnAge is a highly comprehensive and well curated database, incorporation of lifespan data from
additional sources (e.g., alternative online databases or manual literature search) is likely to enable increased
sample sizes and improve statistical power.

Fish (aquatic vertebrates with fins and gills) are a paraphyletic group including class Actinopteri (ray-finned
fishes), Chondrichthyes (cartilaginous fishes), Sarcopterygii (fleshy-finned fishes), Cephalaspidomorphi (e.g.,
lampreys) and Myxini (e.g., hagfishes). At present, approximately 7000 fish species are subject to wild
harvest, each typically requiring species-specific life history information to enable adequate fisheries man-
agement . A lack of data for the majority of fished species significantly impedes management of sustainable
fisheries, with an estimated 35 % of global fish stocks now overfished . Lifespan data is of particularly high
value for management of fish populations, as it can be used to approximate natural mortality rates , fisheries
maximum sustainable yield and model population growth .

Here we report the development of a fish-specific genomic lifespan predictor. The model was constructed
using 1804 reported lifespan values and the CpG density (measured as CpG observed/expected ratio) of
promoter regions from 442 fish genomes extracted using experimentally defined zebrafish (Danio rerio )
promoter sequences. The model predicts lifespan for any given fish species from the genome sequence of a
single individual, demonstrating the high value of promoter CpG density alone to predict lifespan in fish.

Materials and methods

Known lifespan database curation

A comprehensive dataset of fish lifespan values [including those reported as longevity or maximum age
(tmax)] Was built by combining information from existing databases, publicly available fisheries data and by
conducting a manual literature search (Table S1). The mean of all recorded values for a given species was
used as an estimate of known lifespan (referred to as ‘known lifespan’ hereafter) as there was high variability
in reported lifespan values. The mean lifespan value was selected as it is more likely to be representative
of the lifespan of all individuals of a given species than the measured value of the single oldest individual
reported .

Genomic data and promoter sequence generation

All available fish genomes were downloaded from the National Centre for Biotechnology Information (NCBI),
filtering for classes Actinopteri, Cladista, Chondrichthyes, Cephalaspidomorphi, Hyperoartia, Myxini and
Sarcopterygii (see Table S2 for accession numbers). If multiple genome assemblies were available for a species,
NCBTI’s ‘representative’ and ‘reference’ genome classes were used to select the most appropriate assembly for
downstream analyses. For species with more than five genome assemblies derived from different individuals
available, all assemblies were downloaded and used to assess within-species variability in lifespan predictions.
Genome completeness was assessed using Benchmarking Universal Single-Copy Orthologs (BUSCO; version
5.2.2), specifying the Actinopterygii lineage dataset (actinopterygii-odb10) and Augustus gene predictor.

Promoter sequences that have been experimentally validated for transcriptional activity in zebrafish were
downloaded from the Eukaryotic Promoter Database (EPD) using the EPDnew selection tool . At present,
zebrafish are the only fish species for which EPD promoter sequences are available. For each gene, the region
£100 nucleotides surrounding the transcription start site (TSS) of the most representative gene promoter was
extracted. This region was selected as it most likely encompasses the core promoter, a region immediately



surrounding the TSS that functions in controlling the activity of RNA polymerase II, and therefore gene
transcription . As described previously , the EPD promoter sequences were used to query each genome via
Basic Local Alignment Search Tool (BLAST+; version 2.12.0) using a minimum sequence identity of 70 %.
The single top hit for each promoter in each species was used to calculate CpG density.

Calculation of CpG observed/expected ratio

The observed/expected ratio of CpGs (CpG O/E) was used as a measure of under- or over-representation
of the density of CpG dinucleotides in fish genomes and promoter regions. This measure was developed by
to identify CpG islands. CpG O/E is calculated by first obtaining the CpG density [i.e., the total number of
CpG dinucleotides (CpG) divided by the sequence length (N)] and dividing it by the expected CpG density,
or the C density [i.e., total number of cytosines (C) divided by N] multiplied by the G density [i.e., total
number of guanines (G) divided by N] as follows:

CpG density
E =
CpG Observed/Expected C density *+ G density

Is equal to:
CpG
CpG O/E = N e
NXN
Which can be simplified to:
CpG
CpGO/E_C’xGXN

Using this equation, values for CpG O/E were calculated for each promoter sequence and genome in each
species. If no matching promoter sequence was obtained during the BLAST search, CpG O/E was given as
0 in the lifespan prediction model.

Lifespan prediction modelling

To predict fish lifespan from CpG O/E, an elastic net regression model was developed using 10-fold nested
cross-validation in R version 4.1.2 . First, lifespan values from all fish species with genomic information
available were natural log transformed to enable the data to fit a linear model. Based on the percentiles of
the transformed values, the data was then split 70/30 for training and testing, respectively. The split was
performed 10 times to create 10 outer folds. Within each of the 10 outer folds, the glmnet and glmnetUtils
packages were used to perform the elastic net regression, including 10-fold inner cross validation to determine
the optimal values for alpha and lambda (hyperparameter optimisation). Using the minimum value of alpha,
the model was fitted to the training data for 100 values of lambda. The resulting model was then used to
predict lifespan values for the training and testing data, specifying the optimal lambda.lse (lambda “one
standard error”; the largest value of lambda within one standard error of the minimum lambda value) from
the previous cross validation step. Pearson correlation coefficients between known and predicted lifespan
values were calculated for both the testing and training datasets. Comparisons between the testing and
training data correlations and residuals were identified using Fisher’s z test (cocor R package) and Students
unpaired t-test, respectively. The results of each of the 10 models where then bagged (bootstrap aggregated)
to produce more accurate lifespan predictions . To enable correlations between prediction error and distance
from the zebrafish last common ancestor, a tree including all chordates was obtained using TimeTree . The
chordate tree was then subset for all fish species in our data set, and pairwise distances between zebrafish
and all other species were calculated using the ape package .



Gene ontology and analysis

Gene ontology (GO) enrichment was performed using gprofiler2 (an interface to the gprofiler tool g:GOSt)
specifying zebrafish as the reference organism. The analyses were performed on all promoters used to predict
lifespan, divided into two groups based on the weighting of their average coefficient values (negative or
positive).

Results

Fish lifespan prediction

Final data set

A total of 1804 reported lifespan values were obtained from six online databases, ten published data sets
and over 100 additional species-specific publications (Figure S1, Table S1). The reported lifespans were used
to calculate known lifespan estimates (i.e., the mean of the reported lifespan values for each species) for 442
fish species with publicly available genome assemblies (Figure 1, Table S1, Figure S2). Known lifespan values
ranged from mean 0.57 (SD 0.46) years for the Turquoise killifish (Nothobranchius furzeri ) to mean 183.33
(SD 33.57) years in the rougheye rockfish (Sebastes aleutianus ) (Figure 1, Table S1, Figure S2). Orange
roughy (Hoplostethus atlanticus ) exhibited the greatest variance in reported lifespan values, with a mean
85.57 (SD 59.24) and a range of 10 to 149 years (Table S1, Figure S2).

The maximum number of BLAST hits to a total of 10,230 zebrafish promoter regions was 9447 in the orange
finned danio (Danio kyathit ), and the minimum 8 hits in the Arctic lamprey (Lethenteron camtschaticum )
(Figure 1). The average hit length for the 201 bp region across all 10,230 promoters ranged from 177.11 bp in
D. kyathitto 0.05 bp in L. camtschaticum . According to TimeTree, the estimated divergence time between
zebrafish and orange finned danio, and zebrafish and Arctic lamprey are 16.4 million years and 599 million
years, respectively. CpG O/E values within the promoter BLAST hits ranged from 0 to 28, with a minimum
non-zero value of 0.06 (Figure 1). The number of BLAST hits, BLAST hit length and the average CpG O/E
all decreased with divergence time from zebrafish (Figure 1, Figure S3). Known lifespan increased, although
the relationship was not significant (Figure 1, Figure S3).

Model cross validation

Ten-fold nested cross validation resulted in 10 models with lambda.lse values ranging from 1.79 — 4.34,
where the lower penalty values were associated with lower mean squared error in the training data but
larger differences in the residuals between testing and training model predictions (i.e., overfitting; Figure
S4). Minimum alpha values ranging between 0.01 and 0.03, indicating that lifespan predictions with lower
error are produced using a penalty ratio closer to 0 (ridge regression; L2 penalty) than 1 (lasso regression; L1
penalty) (Figure S4). The lower alpha value indicates that the lifespan model is more accurate where a larger
number of features (here, promoters) are included. The number of promoters included in each model ranged
from 144 to 541, and 126 promoters were represented in all 10 models (Figure S5). Despite the variance
in the promoters used to predict fish lifespan, the correlations between known and predicted lifespans were
consistent across models incorporating different combinations of promoters. Specifically, for all 10 models,
the Pearson correlation coefficient was greater than 0.7 (training: R = 0.8 — 0.87; testing: R = 0.7 — 0.74),
the coeflicient of determination was greater than 0.49 (training: R2 = 0.63 — 0.76; testing: R2 = 0.49 — 0.54)
and the correlation p-value was less than 0.05 (Figure S6).

Lifespan model, prediction accuracy and variability

The final model used a total of 932 promoters to predict fish lifespan with a correlation coefficient of 0.8
(p =< 0.001), explaining 64 % of the total variance between known and predicted lifespans (Figure 2A).
The median relative and absolute error for all predicted lifespans were 3.81 years and 36.78 %, respectively,



and were approximately double the median absolute and relative error of 1.5 years and 20 % for the known
lifespan values (Figure 2B). The least accurate prediction in terms of relative error was for the Neosho
madtom (Notorus placidus ) with a known lifespan of 1 year, a predicted lifespan of 8.97 years and a relative
error of 797.11 %. The least accurate prediction in terms of absolute error was for the rougheye rockfish (S.
aleutianus ), with a known lifespan of 183.33 years, a predicted lifespan of 33.07 years and an absolute error
of 150.26 years (Table S3). The most accurate prediction was for the olive flounder (Paralichthys olivaceus

) with a known and predicted lifespan of 12.5 years, a relative error of 0.02 % and absolute error of 0 years
(Table S3).

Lifespan predictions produced using different genome assemblies (and associated biosamples) for a given
species were highly consistent, with standard deviations of less than one year for all species (Figure 2C;
Table S4). The sole exception was the Japanese eel (Anguilla japonica ), for which one of the assemblies had
a BUSCO genome completeness score of 0.1 % (Figure 2C, Table S5). This resulted in a lifespan prediction
that was approximately 8 years less than that produced by the remaining five eel assemblies (Figure 2C,
Table S5). Genome completeness score did not correlate with error in the predicted lifespans, demonstrating
that the model is highly robust to low quality genome assemblies (Figure S7G). However, the very poor
quality of the Japanese eel genome assembly and associated prediction suggest that a low stringency cut-off
(e.g., 10 % complete) would be beneficial.

Variables associated with error in lifespan prediction

There was no correlation between relative error in the predicted lifespans and: 1) known lifespan; 2) predicted
lifespan; 3) relative known lifespan error or; 4) the number of reported lifespan values used to calculate known
lifespan (Figure S8). However, the number of reported values resulted in a correlation coefficient with relative
error of -0.08 (p < 0.1), suggesting that known lifespan estimates derived from a larger number of input
values may lead to lower percent error in the predictions (Figure S8D). To further investigate this relationship,
generalised linear modelling (GLM) was carried out to model percent prediction error and known lifespan,
the number of known lifespan values and the interaction between the two. The GLM revealed that this trend
(of more input values leading to lower prediction error) was both influential and significant, but only for
shorter lived species (less than 40-year lifespan; Table S6, Figure S9). This likely reflects a general tendency
of smaller measured values to have higher relative error (e.g., Figure S8A; p < 0.1).

No significant correlations were identified between the relative error for predicted lifespans and: 1) the
total number of BLAST hits; 2) mean BLAST hit length; 3) mean sequence identity; 4) genome assembly
completeness (BUSCO completeness score) or; 5) divergence time from zebrafish (Figure S7). However,
the variance in divergence times produced by TimeTree was limited, where the pairwise distances were
uniform for 75 % of species (Figure S10). Nonetheless, negative trends for hit number and hit length suggests
that decreases in promoter sequence information used by the lifespan model led to decreases in prediction
accuracy, although the variance was large (Figure S7). The range of predicted lifespans was smaller than
known lifespan range, most obviously in species of the Sebastes genus (Figure 2A). In general, CpG O/E
values were less variable among Sebastes spp . compared to fish in other genera, although known lifespans
varied considerably (e.g., Figure 3A, Figure S11). Invariable CpG O/E values may have led to an inability
of the model to accurately predict lifespan in fish from this group. This is difficult to measure statistically
due to the over representation of Sebastes species in the data set (57 Sebastes species compared to a mean
of 1.56 for all other genera).

Model composition

Promoter correlations and model weighting

CpG O/E was negatively associated with lifespan for more than 60 % of promoters in the model (Figure
4). Specifically, of a total of 932 promoters in the lifespan model, 582 were negatively weighted, and 350
were positively weighted (Figure 4). These results were consistent with Pearson correlations for negatively



weighted promoters, where 570 promoters were negatively correlated with lifespan, and only 12 were positively
correlated (Figure 4B). The results were more varied for promoters positively weighted in the lifespan model,
where 274 had negative Pearson correlations and 76 had positive Pearson correlations (Figure 4B).

Promoter CpG observed over expected ratios

CpG O/E was 0 for 96 % of all promoters in the complete data set and 82 % of promoters in the model.
Mean CpG O/E values were significantly higher in the selected promoters compared to those not selected by
the model (Figure S12A). However, when zero values derived from the absence of a BLAST hit were removed
from the data set, the pattern was reversed (Figure S12B). These results indicate that the model selects for
promoters with non-zero CpG O/E values, but beyond this does not select for larger CpG O/E values. The
promoter weights were more variable and of larger magnitude for smaller values of mean promoter CpG
O/E, however the data was skewed toward smaller CpG O/E values (i.e., CpG O/E < 0.25; Figure 4C).

Functional analysis

Functional analysis revealed enrichment for genes associated with several GO terms, Reactome pathways
and tissue specificity from the Human Protein Atlas (Figure 5). Promoters positively weighted in the life-
span model were enriched for genes associated with intracellular anatomical structures and catalytic activity
(Figure 5A). Negatively weighted promoters were enriched for genes with functions largely related to intra-
cellular components, including those involved in cellular transport (Figure 5B). Negatively weighted genes
were also enriched for various biological signalling pathways from the Reactome data base. These inclu-
de five with roles in immune system functioning (Downstream signalling evens of B Cell Receptor (BCR),
CLECT7A (Dectin-1) signalling, TCR signalling, Downstream TCR signalling and Activation of NF-kappaB
in B cells), two in signal transduction (GLI3 is processed to GLI3R by the proteasome, Regulation of RAS
by GAPs), two in metabolism (Respiratory electron transport, Complex I biogenesis), two in cell cycling
(Autodegeneration of Cdhl by Cdhl:APC/C, APC/C:Cdc20 mediated degradation of Securin) and one in
gene expression (Transcriptional regulation by RUNX3; Figure 5B).

Global trends

No significant Pearson correlation between global CpG O/E and species known lifespan or genome size was
observed, however, genome size was negatively correlated with global CpG O/E (Figure 3). A subsequent
GLM revealed the relationship between CpG O/E and lifespan is apparent (despite the absence of a Pearson
correlation) but is influenced by the interaction between global CpG O/E and genome size. More specifically,
while known lifespan increases with global CpG O/E, this relationship is reduced, and even reversed as
genome size increases (Figure 3D, Table S8).

Discussion

Using publicly available data from 442 fish species comprising five vertebrate classes, we developed a model
to predict species maximum lifespan from genomic CpG density alone. The accuracy of the fish lifespan
predictions was consistent across genome assemblies of different samples of the same species, indicating that
the analysis of a single individual is required to predict a species’ lifespan using this method. We anticipate
this novel approach having immediate utility in any fishery management case where lifespan approximation
by other means is impracticable, and here identify areas for future research that may improve the predictive
power of the model for broader application.



Robustness, accuracy and potential application of genomic lifespan prediction

The fish lifespan model demonstrates that there is a strong association between genomic CpG density and
lifespan. Based on this association, the model is robust to sequence differences between zebrafish promoters
and orthologous promoters in distantly related species, as well as differences in genome assembly completen-
ess. The resulting predictions had approximately double the error of the reported values of lifespan, which
require far more intensive research efforts to obtain. To predict lifespan using this method, our results indi-
cate that the genome sequence of just a single individual (no repeated sampling) is required. This involves
the acquisition of a small piece of tissue (e.g., a fin clip), genome sequencing and assembly followed by down-
stream bioinformatic analysis. Contig-level assemblies for genomes up to 1 Gbp in size (i.e., most fish) can
be produced for less than $5000 USD and in under two weeks (R. Huerlimann, pers comm. ). If a genomic
assembly for the species is already available, model predictions can be generated immediately and with no
associated consumable expenses. At present, known lifespan estimation involves either observing the age at
death of fish held in aquaria, repeated sampling in the field to determine maximum observed age , modelling
the maximum based on trends in survivorship with age or estimations based on maximum length . The cost
and time involved in housing animals in aquaria or monitoring enough individuals to confidently identify
or calculate maximum age using current methods likely far exceeds what is required for genomic lifespan
prediction.

Molecular predictors of lifespan

In addition to providing lifespan predictions, the model may provide insight into the molecular biology of
fish lifespan. For example, it has been hypothesised that the association between genomic CpG density
and lifespan is due to a protective effect of increased CpG density against age-related epigenomic changes
. Previous results in mammals showed that CpG density was positively associated with lifespan in 94% of
promoters , providing strong support for this theory. However, the vertebrate model showed this positive
association was only present for 62% of modelled promoters and here we observed positive associations in
just 38%. These results highlight that differences in CpG density are important for predicting lifespan, rather
than simply increases, as previously hypothesised. This is evident in mammals and other vertebrates, but is
particularly pronounced in fish.

Previous functional analyses of lifespan-related promoters in CpG density models have been unable to identify
any significantly enriched gene functions . However, analysis of the lifespan-associated genes here revealed
functions related to intracellular components, transport and immune functioning pathways. Specifically,
we identified a number of pathway components related to T and B Cell functioning as well as NF-KB
signalling pathways, all of which are of central importance in immune functioning. Transcriptional regulation
by RUNX3 was also identified; a gene that functions in the suppression of tumours . Collectively, these
immune system components are protective against toxins, infection, and cancer and thus are highly likely to
influence longevity . These results are consistent with epigenetic age predictors, which commonly select for
genomic regions associated with immune function .

We also observed enrichment for specific signal transduction pathway elements, with many involved in
Hedgehog repression and RAF/MAP kinase pathways, which regulate programmed cell differentiation and
aspects of immune functioning . Interestingly, the analysis revealed enrichment for 44 genes associated with
abnormal hair formation in humans. Due to the presence of many shared signalling pathways, Actinopterygian
scales are thought to be evolutionary precursors to mammalian hair, which is known to degenerate with
increasing age . Fish also have hair cells in their lateral line for sensing prey as well as in their ear canals
for sensing barometric pressure . Promoters for genes that are important for species survival may have been
altered in different lineages under varying selection pressures, leading to lifespan changes among fish species.

We observed no Pearson correlation between global CpG O/E and lifespan. This provides support for the
hypothesis that age-related changes in DNA methylation in promoter regions specifically (as opposed across
the genome more generally) are strongly associated with lifespan . We also observed a significant negative



Pearson correlation between genome size and CpG O/E. This is consistent with previous reports that high
levels of DNA methylation (and therefore low CpG O/E) lead to increases in genome size via the suppression
of transposable element (TE) activity . In our results, when genome size and the interaction between genome
size and CpG O/E were controlled for, we observed a positive relationship between global CpG O/E and
lifespan for small genomes and a negative relationship for large genomes. The differing pattern for larger
genomes may be related to increased TE load. However, as this was not the focus of the work, the present
results are inconclusive. The relationship between global CpG O/E, genome size, and how it relates to species
lifespan warrants further investigation.

Limitations and future directions

Despite the broad applicability and predictive power of the fish lifespan model, variable levels of prediction
accuracy may limit its application in its present form. The accuracy of machine learning models, including
elastic net regression, is substantially impaired by poor quality training data (e.g., incorrect, inconsistent,
or missing values) . In many cases, increasing sample size and using techniques such as cross validation
and bagging as applied here will reduce the effects of outliers and increase model accuracy . Our model
predictions would be further improved if the quality of the training data (here, the known lifespan values)
were increased. Maximum age and therefore lifespan values are difficult to determine for many fish species.
The most common aging technique in bony fish, otolith aging, is subject to observation error and is especially
difficult to perform for long-lived species. For example, reported orange roughy lifespan estimates range from
10 to 230 years, and despite extensive investigation the true value is still disputed . For cartilaginous fish
(sharks and rays), lifespan estimation is particularly difficult because a reliable method for aging is yet
to be established . At present, the fish lifespan model relies upon existing lifespan data for training and
validation. As such, improvements in the accuracy of training data would greatly improve the accuracy of
the model’s predictions. There is little research on how to measure data quality for robust machine learning
model development, although software tools for data quality control are emerging in different fields .

The lifespan model training data also suffers inconsistency in taxonomic coverage. For example, the over
representation of Sebastesspecies (n=>57), or the under-representation of chondrichthyans (n=9). To overcome
this, the model could be recalibrated with additional fish genome sequences with broad taxonomic coverage
as they are released from individual sequencing projects, or by collaborative efforts such as Beijing Genome
Institute’s Fish10K . Finally, a lack of sequence similarity between the target species and zebrafish resulted
in reduced length or completely absent BLAST hits (i.e., a large amount of missing data). While we opted
to use fish-specific reference sequences and did not observe any bias towards higher prediction error in more
divergent species, the model primarily selected promoters with non-zero values. Thus, any model using the
same sequence similarity approach is likely to suffer from some degree of bias in divergent species . An
alternative to using gene promoters as reference sequences may be to analyse genomic regions that can be
identified by location. For example, DNA methylation in first introns is highly correlated with gene expression
. However, this approach would require comparable genome annotations and would be computationally
expensive to execute.

The most immediate application for the lifespan predictions is likely for the estimation of natural mortality
for use in fisheries stock assessments. Lifespan (tmax) based estimators consistently perform better than
other methods for calculating natural mortality; one of the most widely used and difficult to estimate stock
assessment parameters . A primary advantage of both lifespan-based estimators of mortality and the lifespan
predictor presented here is the ability to provide rapid and cost-effective analyses. The provision of this
data can assist in overcoming deficiencies in expertise and expenses required to undertake formal stock
assessments (approximately $50,000 USD per species) . The accuracy and precision of parameter estimates
varies markedly between assessments, but error rates of 10 % are reported as optimal . Although the median
error rate for the fish lifespan model was 37 %, the same value for the reported lifespans was 20 %. This re-
emphasises the marked absence of appropriate lifespan estimates available, and the need for better training
data to build a more refined genomic lifespan predictor. In its present form, the model is likely to be most



applicable for data limited or newly targeted fisheries, data deficient species under significant threat, and in
any case where lifespan approximation by other means is impracticable.

Conclusion

We derived a model that predicts lifespan for any fish species from the genomic CpG density of a single
individual. The model is highly robust to variation in genome quality and is applicable to all classes of
fish; a taxonomically diverse and highly specious group of marked ecological and economic importance. The
predictions are likely to be of use for both commercially valuable and highly vulnerable species, as lifespan
enables approximation of natural mortality and rate of population increase . The work demonstrates the
remarkable power of genomic CpG density alone to predict fish lifespan, and the predictive capacity of the
model is likely to improve as the quantity and quality of available training data increases. Fish lifespan
prediction is a significant problem for many species, and the value of estimating this fundamental life history
parameter has driven interest in developing unconventional lifespan measurement technologies . We envisage
the utility of our novel approach to estimate this central life history trait is likely to be far reaching, with
both commercial and environmental impacts.
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error in predicted and reported lifespan values. Error is calculated as the difference between the known
and predicted lifespans and the known and reported lifespans, respectively. Error is presented as absolute
difference (in years) on the x-axis and relative difference (%) according to the coloured bar. Diamond-
shaped points indicate species from the Sebastes genus, circles indicate all others. C. Variability in lifespan
values predicted for each of nine fish species for which at least five unique genome assemblies and associated
NCBI biosamples were available. Black points and bars indicate mean and standard deviation, respectively.
Additional points represent lifespan predictions for each genome assembly, coloured by their BUSCO genome
completeness score and shaped according to sex, where reported.

A <o 2 B 1o e 2
5 . R=0.095,R*=0.009, p=0.053 R=-021,R?=0.046, p = 1.1e-05
[
4
0.8+
) w
c 3 5
8 @
8 [s%
= 9 06
= 2 )
3 °
< Q
Xy
0.4+
0
0 1 2 3 4 0 i 2 3 a
Genome size (Gbp) Genome size (Gbp)
c D
5 .°R= 0.044,R*=0.0019, p=0.37 44 Known lifespan (In) ~
Global CpG O/E * Genome size (Gbp)
4
: : %
c 3 c
@ ©
o0 o
Q w
£ o 2
<] 3 24
c (=
¥4 ~
1
0
14
04 06 08 10 0.00 0.25 050 0.75 1.00
Global CpG O/E Global CpG O/E
predicted lifespan [ IR Genome size [ 035 [—] 089 [—] 1.43
(Gbp)

(vears) 10 20 30

Figure 3. Relationships between global (genome-wide) CpG observed /expected ratio (O/E), genome size and
fish species lifespan. Pearson correlations are given for: A. genome size in gigabase pairs (Gbp) and known
lifespan; B. genome size and global CpG O/E and; C. global CpG O/E and known lifespan. Diamond-shaped
points indicate species from the Sebastes genus, circles indicate all other species. D. Shows the interaction
between global CpG O/E and genome size on known lifespan as predicted by generalised linear modelling
(formula shown in the top left), where shaded areas indicate confidence intervals. The figure indicates that
the relationship between known lifespan and CpG O/E is dependent on genome size.
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Figure 4. Overview of relationships between modelled promoters and fish species lifespan. A. Mean weighting
for each promoter in the lifespan prediction model ordered by magnitude and directionality (large negative to
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large positive). Bars are coloured by the Pearson correlation coefficient between known lifespan and observed
over expected ratio (CpG O/E) for each promoter. Only every tenth promoter is labelled on this x axis (total
n = 932). B. Pearson correlation coefficients for each promoter compared to mean weighting in the lifespan
model. C. Mean CpG O/E for each promoter compared to mean weighting in the lifespan model. Colours
indicate if both the correlation and model weighting were negative, positive, or varied between the two as
per the legend. Transparent bars and points indicate that the Pearson correlation between promoter CpG
O/E and lifespan was not significant.

Figure . Functional enrichment analysis showing biological functions and pathways over-represented in the
fish lifespan model promoter associated genes for: A. promoters positively weighted in the model and B.
promoters negatively weighted in the model. HP indicates functions derived from the Human Protein Atlas,
and REAC from the Reactome database. A table of these results can be found in Table S7.
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