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Abstract

Long-term operation of autonomous robots creates new challenges to the Simultaneous Localization and Mapping (SLAM).

Varying conditions of the vehicle’s surroundings, such as appearance variations (lighting, daytime, weather, or seasonal) or

reconfigurations of the environment, are a challenge for SLAM algorithms to adapt to new changes while preserving old states.

When also operating for long periods and trajectory lengths, the map should readjust to environment changes but not grow

indefinitely, where the map size should be dependent only on the explored environment area. Long-term SLAM intends to

overcome the challenges associated with lifelong autonomy and improve the robustness of autonomous systems. Although

several studies review SLAM algorithms, none of them focus on lifelong autonomy. Thus, this paper presents a systematic

literature review on long-term localization and mapping following the Preferred Reporting Items for Systematic reviews and

Meta-Analysis (PRISMA) guidelines. The review analyzes 142 works covering appearance invariance, modeling the environment

dynamics, map size management, multi-session, and computational issues including parallel computing and timming efficiency.

The analysis also focus on the experimental data and evaluation metrics commonly used to assess long-term autonomy. Moreover,

an overview over the bibliographic data of the 142 records provides analysis in terms of keywords and authorship co-occurrence

to identify the terms more used in long-term SLAM and research networks between authors, respectively. Future studies can

update this paper thanks to the systematic methodology presented in the review and the public GitHub repository with all the

documentation and scripts used during the review process.
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Abstract

Long-term operation of autonomous robots creates new challenges
to the Simultaneous Localization and Mapping (SLAM). Varying
conditions of the vehicle’s surroundings, such as appearance varia-
tions (lighting, daytime, weather, or seasonal) or reconfigurations
of the environment, are a challenge for SLAM algorithms to adapt
to new changes while preserving old states. When also operating
for long periods and trajectory lengths, the map should read-
just to environment changes but not grow indefinitely, where the
map size should be dependent only on the explored environment
area. Long-term SLAM intends to overcome the challenges asso-
ciated with lifelong autonomy and improve the robustness of au-
tonomous systems. Although several studies review SLAM algo-
rithms, none of them focus on lifelong autonomy. Thus, this paper
presents a systematic literature review on long-term localization
and mapping following the Preferred Reporting Items for Sys-
tematic reviews and Meta-Analysis (PRISMA) guidelines. The
review analyzes 142 works covering appearance invariance, mod-
eling the environment dynamics, map size management, multi-
session, and computational issues including parallel computing
and timming efficiency. The analysis also focus on the experimen-
tal data and evaluation metrics commonly used to assess long-
term autonomy. Moreover, an overview over the bibliographic
data of the 142 records provides analysis in terms of keywords
and authorship co-occurrence to identify the terms more used
in long-term SLAM and research networks between authors, re-
spectively. Future studies can update this paper thanks to the
systematic methodology presented in the review and the public
GitHub repository with all the documentation and scripts used
during the review process.
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1 Introduction

An autonomous mobile robot requires a representation of its sur-
roundings to localize itself relative to the environment. Simul-
taneous Localization and Mapping (SLAM) addresses this prob-
lem by incorporating the robot state estimation (pose and possi-
bly other state variables) concurrently with the mapping process.
This process builds a representation of the environment perceived
by the robot originating a map incrementally built when exploring
unknown areas or refined on passages through known locations.

In a static scene, the robot would only need to map once be-
cause it would be always consistent with the environment. How-
ever, autonomous systems deployed in industrial locations, out-
door environments, or even service-oriented applications such as
shopping centers or homes deal with moving elements in the scene
(humans, objects), environment reconfiguration (logistics loca-
tions, warehouses), and appearance variations (lighting, weather,
seasonal, or daytime changes). These varying conditions are a
challenge for the SLAM system, where the system should decide
how and when to update the map; e.g., consider the most current
state versus only the most permanent changes instead of tempo-
rary ones, and when the variations occur versus after a certain
time, respectively. This challenge is also known as the stability-
plasticity dilemma, where the long-term localization and mapping
should both adapt to new environment changes and preserve old
states over time (Biber and Duckett 2009).

Furthermore, the map would grow indefinitely when gathering
new information from the environment. This ever-growing prob-
lem poses another challenge for the SLAM system in the long-
term due to the limited computational resources of the mapping
vehicle. Indeed, the map size should be dependent on the envi-
ronment area and not on the trajectory length of the mapping
process nor operation time, only growing when the robot would
explore unknown locations (Kretzschmar and Stachniss 2012).

Although several studies overview SLAM literature, only a sub-
set of those studies mentions long-term challenges of perform-
ing SLAM. Cadena et al. 2016 has a brief survey on the robust-
ness and scalability of autonomous systems focused on loop clo-
sure validation, dynamic environments, pose graph sparsification,
and parallel and distributed computing for metric and semantic
SLAM. In contrast, Lowry et al. 2016 limits the study to vision-
based topological SLAM discussing also the challenge of vary-
ing conditions. While Bresson et al. 2017 overviews autonomous
driving trends in terms of scalability, map updatability, and dy-
namicity, the survey limits the discussion to algorithms that have
both odometry and mapping modules, excluding localization-only
works. Also, Bresson et al. 2017 focuses more on the modules of
the SLAM (relocalization, localization against a map). Kunze
et al. 2018 gives a brief overview of Artificial Intelligence (AI)
-related works for robustness to appearance changes and learning
dynamics of the environment, discussing areas in which AI en-
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ables long-term operation of autonomous systems. As for Zaffar
et al. 2018, the study evaluates the long-term autonomy of sen-
sors such as monocular and stereo cameras, and LiDAR. However,
to the best of the authors knowledge, none of the existing stud-
ies overviews the trends for dealing with long-term challenges in
SLAM. Also, the studies that overview some of the challenges of
lifelong SLAM do not clarify the process for identifying the cited
works, not allowing other researchers to repeat the identification
process of records when searching in bibliographic databases.
Therefore, this paper presents a systematic literature re-

view on long-term localization and mapping following the
Preferred Reporting Items for Systematic reviews and Meta-
Analysis (PRISMA) (Page et al. 2021) statement. The systematic
method followed in this review allows the replication of the results
by other researchers and leads to the inclusion of 142 works for
discussion and analysis. Also, this paper makes available a public
GitHub repository1 with all the documentation and scripts used
during the process of systematic revision of the literature. The
main contributions of this paper relative to the existing studies
on SLAM are the following ones:

• discussion on methodologies and trends focused on appear-
ance invariance, dynamic elements, map sparsification and
multi-session techniques, and other computational concerns;

• comparative analysis on the public datasets and experimental
data used in the included works in terms of environment
conditions, sensorization, and distance and time properties;

• presentation of common evaluation metrics used by the in-
cluded works in the experimental results.

This review does not intend to review the fundamentals of
SLAM nor the main formulations. The reader should refer to
Durrant-Whyte and Bailey 2006 and Bailey and Durrant-Whyte
2006 for the Extended Kalman Filter (EKF) and particle filter
probabilistic formulations, and to Grisetti et al. 2010 for the pose
graph formulation of SLAM.

1.1 Paper organization

The rest of this review is organized as follows. Section 2 discusses
the limitations of existent studies and reviews and presents the
purpose and motivations of this paper. Section 3 explains the
methodology followed in this review to search and select the in-
cluded records, and the data extraction process for synthesis and
analysis. In Appendix A, Table 7 presents the data extraction
results of the included records. Next, Section 4 analyzes the bib-
liographic information of the 142 included works in this review in
terms of the identification results of each data source considered
in the methodology, keywords co-occurrence and co-authorship
relations, the year of publication, and the publication venue. Sec-
tion 5 discusses the methodologies found in the included records
related to long-term localization and mapping and analyzes the
experimental data and evaluation metrics used in the experiments
by the authors. Then, Section 6 outlines challenges and future
directions. Section 7 discusses possible limitations of this study.
Lastly, Section 8 presents the conclusions.

2 Purpose of the study

2.1 Limitations of current studies

The main studies reviewing the SLAM literature are presented
in Table 1. In terms of introductions to the problem formula-

1https://github.com/sousarbarb/slr-ltlm-mr

tion, these studies focus on explaining different frameworks for
performing SLAM. Durrant-Whyte and Bailey 2006 and Bai-
ley and Durrant-Whyte 2006 perform an in-depth discussion on
Bayesian-based probabilistic formulations, namely, EKF and the
Rao-Blackwellized particle filter frameworks, also categorized as
filtering approaches to the SLAM problem. Filtering approaches
model the problem as an online state estimation, where the state
being the robot pose (and possibly other variables) and the map.
In contrast, Grisetti et al. 2010 explains in detail a smoothing for-
mulation, the graph-based SLAM, characterized by estimating the
full trajectory of the robot from the set of sensor measurements,
also known as full SLAM. Thrun 2008 introduces both proba-
bilistic (EKF and particle filter) and smoothing (graph) formula-
tions of SLAM. Focusing on vision sensorization, Scaramuzza and
Fraundorfer 2011 and Fraundorfer and Scaramuzza 2012 present
an extensive tutorial on visual odometry for estimating relative
motion from visual data, where the study discusses camera mod-
eling and calibration, motion estimation, and feature matching.
Yousif et al. 2015 extends the previous visual odometry tutorial to
include methodologies for vision-based SLAM. Although the in-
troductions mentioned here provide comprehensive explanations
of the problem formulation itself, none of these introductions fo-
cus the discussion on possible long-term challenges of SLAM.

Table 1: Existent Literature Reviews, Surveys, and Tutorials on
SLAM.

Year Topic Reference

2006 Probabilistic formulations (EKF,
particle filter)

Durrant-Whyte and Bailey 2006,
Bailey and Durrant-Whyte 2006

2008 Probabilistic and pose graph for-
mulations

Thrun 2008

2010 GraphSLAM Grisetti et al. 2010

2011 Observability, convergence, consis-
tency (feature-based SLAM)

Dissanayake et al. 2011

2012 Visual odometry Scaramuzza and Fraundorfer 2011,
Fraundorfer and Scaramuzza 2012

2014 Underwater navigation and local-
ization

Paull et al. 2014

2015 Visual SLAM Yousif et al. 2015

2016 Observability, convergence, con-
sistency (feature and graph-based
SLAM)

S. Huang and Dissanayake 2016

Multi-robot SLAM Saeedi et al. 2016

Visual place recognition Lowry et al. 2016

SLAM literature overview Cadena et al. 2016

2017 Autonomous vehicles Bresson et al. 2017

2018 Kuutti et al. 2018

2018 AI for long-term autonomy Kunze et al. 2018

Long-term sensorization Zaffar et al. 2018

2020 Deep learning Fayyad et al. 2020

Multi-robot search and rescue Queralta et al. 2020

2021 Self-driving vehicles Badue et al. 2021

2022 Underground navigation Ebadi et al. 2022

Moreover, other studies focus on theoretical aspects of the
SLAM formulation. Dissanayake et al. 2011 discusses the funda-
mental properties of SLAM, namely, observability (if the problem
is solvable), convergence (if the state uncertainty converges to a
finite value), and consistency (if the estimated state is unbiased).
S. Huang and Dissanayake 2016 extends the previous work to pro-
vide an in-depth explanation of the fundamental properties while
defining criteria for the performance evaluation of SLAM algo-
rithms in terms of consistency, accuracy, and computational effi-
ciency. In contrast to Dissanayake et al. 2011 that focuses mainly
on filtering-based SLAM, S. Huang and Dissanayake 2016 also
discusses the properties in the context of smoothing approaches.
Both studies focus only on theoretical aspects, not discussing the
problem of long-term localization and mapping.

https://github.com/sousarbarb/slr-ltlm-mr
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In terms of surveys in the literature on SLAM trends, Cadena
et al. 2016 provides a broad overview of metric and semantic
SLAM works. This study also briefly discusses the localization
and mapping robustness in terms of loop closure validation and
dealing with a dynamic environment, and the SLAM scalability
concerning pose graph sparsification, and parallel and distributed
computing. On the contrary, Lowry et al. 2016 focus on topo-
logical SLAM providing a comprehensive review on visual place
recognition. Although the study discusses the challenges on nav-
igation in varying conditions, the discussion is limited to vision
sensors. Bresson et al. 2017 surveys trends regarding single and
multi-vehicle SLAM and large-scale experiments for autonomous
vehicles. Although the study compares the methods over ac-
curacy, scalability, availability, recovery, map updatability, and
scene dynamicity, Bresson et al. 2017 only refers to approaches
composed at least by odometry and a mapping module, not dis-
cussing localization-only algorithms. Also, the discussion is more
focused on loop closure and relocalization modules and leveraging
existing data, not on the methodologies for dealing with the long-
term challenges of continuous SLAM. Similarly to Bresson et al.
2017, Kuutti et al. 2018 and Badue et al. 2021 analyze trends
for self-driving vehicles. While Kuutti et al. 2018 focuses on sen-
sorization and cooperative localization between vehicles, Badue et
al. 2021 concentrates on the architecture of autonomous driving
systems. However, none of those two studies discuss challenges
for accomplishing long-term SLAM. Saeedi et al. 2016 presents
a review on multi-robot SLAM discussing several solutions and
techniques. Even though the authors identify large-scale and dy-
namic environments, multi-session, and agent scalability as chal-
lenges for multi-robot SLAM, the study does not overview exis-
tent methodologies to tackle those problems. Paull et al. 2014
and Ebadi et al. 2022 also overview the SLAM literature but are
more specific in terms of the domain, where the former focus on
autonomous underwater navigation and the latter on SLAM in
extreme underground environments. However, those two studies
not discuss long-term SLAM.

The surveys of Kunze et al. 2018 and Zaffar et al. 2018 are
focused on some challenges of long-term autonomy. Kunze et al.
2018 provides a brief overview on how AI can enable the long-
term operation of autonomous systems. Although the survey dis-
cusses challenges such as environments with varying appearance
and learning the dynamics of moving elements, the discussion
is limited to AI-related works and only briefly analyzes the lo-
calization and mapping tasks due to also focusing on reasoning,
human-robot interaction, and planning. As for Zaffar et al. 2018,
the study only focuses on reviewing, discussing, and comparing
different sensors in terms of sensor lifetime, field operability, ease-
of-replacement, and suitability to different types of environment.

Nevertheless, none of the existent studies presented in Table 1
describe their methodology to select the works for discussion.
This limitation does not allow other researchers to repeat the
reviewing process for, e.g., updating existent studies to maintain
an up-to-date knowledge on the current state-of-the-art in SLAM.

2.2 Motivation and goals

This study reviews the literature on long-term localization
and mapping for mobile robots. The review follows the
PRISMA (Page et al. 2021) guidelines defining a systematic
methodology to ensure the repeatability of the selection and data
extraction processes while allowing future updates over the dis-
cussion and the review’s methodology presented in this study.
Furthermore, the literature review presented in this paper does

not focus on any specific strategy or time interval of publication.
These considerations improve the coverage of the review over the
long-term localization and mapping topic.

In summary, this review intends to understand the following
questions:

• main challenges inherent to lifelong SLAM;
• main strategies for accomplishing long-term operations with
mobile robots;

• public datasets commonly used for evaluating long-term lo-
calization and mapping algorithms;

• how the researchers evaluate the performance of autonomous
systems in long-term operations.

When framing the review in the Population – Intervention –
Comparison – Outcome (PICO) framework to summarize the pop-
ulation, which approaches and the kind of experimental results
the review is interested in (Borrego et al. 2014), the template
specific to this review’s topic is the following one:

• Population: mobile robots;
• Intervention: localization, mapping, SLAM;
• Comparison: not applicable to this study ;
• Outcome: long-term operation, lifelong autonomy, robust.

3 Methodology

A systematic literature review uses explicit, rigorous, and repro-
ducible systematic methods to synthesize the findings of stud-
ies related to a particular research question, topic area, or phe-
nomenon of interest. This type of review assures the quality
and trustworthiness of the review’s findings by presenting a com-
plete, organized, and summarized analysis of all works considered
while allowing others to replicate or update the reviews. The
most common standard for performing a systematic review is the
PRISMA (Page et al. 2021) statement. Although the PRISMA
statement has been designed originally for evaluating the effects
of health interventions, the checklist items of the methodology are
general and applicable to other subject areas. Thus, the method-
ology used in this systematic review follows the PRISMA (Page
et al. 2021) guidelines.

This section presents the detailed methodology used in this
study. First, the eligibility criteria decide which studies to include
in the review. Next, the search strategy details the information
sources considered in the review and the base string and search
fields used for inquiring these sources. Furthermore, the selection
process focuses on describing its stages and the quality evaluation
criteria used to select works for the synthesis and analysis phase
of the review. Lastly, the data extraction process details the rel-
evant data collected for synthesis and analysis. Parsifal (Freitas
2014) is the online tool used to support the literature review in
designing the methodology protocol, removing duplicates, screen-
ing and selecting works including their quality assessment. Addi-
tional documentation and scripts developed within the scope of
this review related to removing duplicates, checking and process-
ing the bibliographic references, and data extraction are available
in the public GitHub repository.

3.1 Eligibility criteria

Table 2 presents the exclusion criteria used to determine the el-
igible studies for the selection process. These eligibility criteria
focus mainly on the type of paper and availability. The index
criterion rejects all publications not indexed in a scientific pub-
lication venue. This rejection guarantees that the eligible works
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were peer-reviewed by the scientific community. Also, the ex-
clusion criteria reject short papers and gray, secondary, and ter-
tiary literature. Short papers do not usually present a detailed
methodology of their scientific contribution. As for only consid-
ering primary literature in the review, this criterion increases the
relevance of search results by favoring original articles and si-
multaneously guaranteeing peer-revision of the works. In terms
of language, only considering studies with English full-texts in-
creases the scope and visibility of the review. Similarly, the eli-
gibility criteria reject studies not available in digital libraries for
reproducibility and accessibility reasons.

Table 2: Exclusion criteria for the selection process.

E# Criteria Statement

E1 Index
Papers not indexed in a scientific publication
venue

E2 Language Full-text of the papers not published in English

E3 Subject Area
Papers not classified in the databases as Com-
puter Science, Engineering, Mathematics, or
Multidisciplinary

E4 Short Papers
Papers classified as short papers accordingly to
the publication venue

E5
Gray, Secondary, and
Tertiary Literature

Books, preprints, reports, reviews, thesis, ...

E6 Availability
Full-text of the papers not available in digital li-
braries

E7 Dataset Papers that focus only on data collection

E8 Coverage Papers using only odometry for localization

E9 Scope
Papers that focus on different and not related
subjects

Another exclusion criterion considered in the review is rela-
tive to the studies’ categorization of their subject areas by bibli-
ographic databases. The ones considered in the review are Com-
puter Science, Engineering, Mathematics, or Multidisciplinary ar-
eas. In the list provided by the Clarivate’s Journal Citation Re-
ports2, these four subject areas include the artificial intelligence,
interdisciplinary applications, electrical and computers engineer-
ing, robotics, and applied mathematics categories, among others.
These categories are intrinsically related to the localization and
mapping problem for long-term operation of mobile robots.
The final three criteria presented in Table 2 focus on the sci-

entific contribution of the studies. The dataset criterion rejects
all works that focus only on sharing a data collection. Although
these works are important for the evolution of localization and
mapping algorithms in providing a benchmark for comparison
and reference purposes, their scientific contribution is not directly
comparable to research articles. Odometry-only approaches are
unusable over long distances invalidating their use for long-term
operations with mobile robots. As for the scope criterion, this
review does not consider as eligible papers not related to long-
term localization and mapping that do not fall under the other
exclusion criteria.

3.2 Search strategy

The search phase consists of identifying the data sources that
could be relevant for this literature review, and defining the base
string and which search fields considered to obtain the results
for the review. Web of Science and Scopus are traditionally the
two most widely used bibliographic databases. However, previous
studies demonstrate that different databases differ significantly
in their scientific coverage (Mongeon and Paul-Hus 2016; V. K.
Singh et al. 2021). Thus, the data sources considered in this

2https://jcr.clarivate.com/jcr/browse-categories

review are the following ones: ACM Digital Library , Dimensions,
IEEE Xplore, INSPEC , Scopus, and Web of Science.

Moreover, May 17, 2022, is the date of the last full inquiry.
Future reviews on the topic of this study should consider this
final date as theirs initial one. As for inquiring the data sources,
the base string used is the following one:

(robot* OR vehicle*) AND

((locali* AND map*) OR "slam") AND

("long term" OR "life long" OR lifelong)

The first terms, robot* OR vehicle*, attempt to focus the
search results to the desired population. These two terms
have multiple synonyms within the scope of autonomous mo-
bile robots: mobile robots, autonomous vehicles, robotics, agri-
cultural robots, intelligent robots, service robots, unmanned
aerial/ground/underwater vehicles, among other terms. There-
fore, by adding the asterisk to the end of the terms robot and
vehicle (robot* and vehicle*, respectively), and by only con-
sidering the terms with asterisk in the inquiry, all the synonyms
are covered for the desired population. Given the incompatibility
of the Dimensions database with wildcards (e.g., using the as-
terisk), the first part of the base string becomes as follows when
searching in this database: robot OR robots OR robotics OR

vehicle OR vehicles.
The next part of the query focus on the intervention side

of the systematic review. Given the interest of this review on
searching for localization and mapping algorithms, locali*

and map* summarize all the synonyms for the localization and
mapping terms, respectively. For example, locali* not only is
agnostic to the US versus UK spelling differences (localization
vs localisation, respectively) but also resumes several synonyms:
localization, localize, or localizing. The term map* also attempts
to cover its respective synonyms such as map, maps, or mapping.
Also, the acronym "slam" is another alternative to search
for localization and mapping algorithms. Even though its
definition is compatible with locali* AND map*, some authors
only refer to SLAM. Similarly to the inquiry’s first part, the
second one becomes as follows for searching in Dimensions:
((localize OR localization OR localizing OR localise

OR localisation OR localising) AND (map OR maps OR

mapping)) OR "slam".
As for "long term" OR "life long" OR lifelong, this part

of the base string is relative to the outcome of the PICO frame-
work, presented in Section 2. The reason for having both "life

long" and lifelong terms is the existing confusion in which term
is grammatically the correct one.

Furthermore, the Title, Abstract, and Keywords are the fields
considered for obtaining the search results. The third one in-
cludes the author keywords, the indexed terms by the databases,
and the uncontrolled ones if they are available. The selection of
these search fields for this review improves the relevance of the
results compared to using all fields and the full text by focusing
the search on the summary items of the works. Indeed, the main
contributions of scientific works should be summarized in at least
the title, abstract, or the author keywords. The indexed terms
also help in obtaining records only related to the base string used
in this review. However, not all data sources have available the
search fields considered in the review or some of them require
an adaptation when performing the search. Although the ACM
Digital Library allows searching within multiple search fields, in-
cluding the ones considered in this review, the advanced search

https://jcr.clarivate.com/jcr/browse-categories
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query on this library sets by default an AND operator between
the different fields. This setting must be changed manually in
the query syntax to the desired OR operator. Also, there are
two options to search items in the ACM Digital Library : The
ACM Full-Text Collection and The ACM Guide to Computing
Literature. Given that the latter includes all the content from
the former, the identification process in this source performs the
search using The ACM Guide to Computing Literature option.
Other than searching in the publications’ full data, Dimensions
only has the title and abstract search fields compatible with this
review. Given the limitation of IEEE Xplore to 7 wildcards, the
search results of this digital library using the base string for the
inquiry are the grouping of different searches considering only a
search field at a time, importing each search results to Parsifal
and removing the duplicates. As for INSPEC , Scopus, and Web
of Science, these databases have available all the search fields
considered in the review.

In terms of the publication date, this review does not restrict it
to avoid ignoring important works and to improve the discussion.
Indeed, to best of the authors knowledge, there is not available
a systematic review on long-term localization and mapping for
mobile robots to provide an initial date for rejecting older publi-
cations. Even though the number of publications per year could
indicate an initial date on when the topic gained relevance, the
date filtering could still reject important works.

3.3 Selection process

The selection process of this review summarized in Figure 1 has
three phases: identification, screening, and quality assessment.
The first phase consists of inquiring each data source discussed
previously with the base string and adapting it if needed. The sec-
ond phase requires screening the papers. In this review, screening
is equivalent to reading the publications’ title and abstract and
deciding whether the study is eligible or not based on the exclu-
sion criteria. Then, a set of evaluation criteria assesses the quality
of the eligible records. The records obtained after the three phases
of the selection process are for the data extraction phase.

3.3.1 Identification

In the identification phase of this review, the search strategy is
applied to all data sources. ACM Digital Library , Dimensions,
INSPEC , Scopus, and Web of Science data sources only require
a single inquiry to obtain the search results. Given the limitation
of the IEEE Xplore for using wildcards mentioned in Section 3.2,
the number of records for this source presented in Figure 1 rep-
resents the results of 7 inquiries (using the fields title, abstract,
author keywords, IEEE terms, INSPEC controlled terms, and the
INSPEC uncontrolled ones, respectively) after removing the du-
plicates with the support of Parsifal. Although the total number
of search results found is 2160, Parsifal is used to remove dupli-
cates from different data sources, excluding 1339 records. Fol-
lowing the duplicates removal, the exclusion criteria defined in
Section 3.2 exclude 232 works from the review. This exclusion is
possible due to INSPEC , Scopus, or Web of Science having filters
related to the publication’s type, subject area, and language.

The works excluded from the search results also include the
ones that do not meet the exclusion criteria E4 and E7. For
the first one, a Python script available in the GitHub repository
of this review searches studies with a number of pages lower or
equal to 4. Even though short papers have a maximum num-
ber of 3 pages, the papers with 4 pages do not usually present
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Figure 1: PRISMA flow diagram for the selection process.

a detailed methodology. As for the E7 exclusion criterion, some
works are possible to remove from the review by searching in
their title for the term “dataset”. All excluded articles of this
review are double-checked to certify if the exclusion criteria are
correctly applied. For example, articles published in the Remote
Sensing journal from MDPI do not meet the E3 criterion. In-
deed, the Journal Citations Reports from Clarivate classifies it by
the following categories: Remote Sensing, Geosciences Multidis-
ciplinary, Environmental Sciences, and Imaging Science & Pho-
tographic Technology. However, most search results from this
journal found in the identification phase are directly related to
the topic of this review and the respective subject areas. Thus, in
these cases and in other ones related to the remaining exclusion
criteria, the decision is reverted to consider the initially rejected
studies for the next phase of the review.

3.3.2 Screening

Next, the screening phase in this review consists of reading the
title and abstract of the publications and rejecting the ones that
meet the exclusion criteria. However, the initially rejected papers
have another assessment for validating the exclusion. The analysis
of the results and conclusions of these publications considering the
exclusion criteria either confirms the exclusion decision or reverses
it to eligible works for quality assessment. As a result of the
screening phase, 178 studies are rejected from the initial identified
589 works. The duplicate records found in screening and removed
manually are due to titles with invalid characters originated by
exporting the search results from the Dimensions database.

3.3.3 Quality assessment

The quality evaluation in this review of the selected works from
screening follows the 8 Quality Evaluation (QE) criteria presented
in Table 3. All of them are subjective criteria derived from the
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analysis of the eligible works. The score column establishes the
possible values for the QE criteria, in which the minimum, inter-
mediate, and maximum values correspond to none, partial, and
full compliance, respectively. Furthermore, QE1, QE2, QE4, and
QE8 focus on the details provided in the papers, specifically, if
the discussion of the related work, the proposed methodology, the
experimental setup, and the results are detailed and thoroughly
analyzed in the publication, respectively. The possible scores for
QE3 are twice the value of QE1, QE2, QE4, and QE8 due to this
criterion being directly related to the topic of the review. A work
focusing on both localization and mapping problems will have a
score of 2.0 (full compliance). If the study only focuses on one
of these problems or none of them, the scores will be 1.0 or 0.0,
i.e., partial or no compliance, respectively. QE5 evaluates the
long-term results of the eligible studies and is either 2.0 (full) or
0.0 (no compliance). This criterion has the same range as QE3
for similar reasons, given the focus of this review on long-term
localization and mapping algorithms. The definition of long-term
experiments for assigning full compliance in QE5 is the follow-
ing one: dynamic changing environments (e.g., dynamic elements
or semi-static ones), increasing environments or feature maps in
terms of their size, redundant data removal, or varying conditions
(e.g., different seasons of the year or lighting conditions). QE6
and QE7 can only be 1.0 or 0.0. The former criterion intends
to highlight works that compare themselves to the state of the
art and/or ground-truth data. The latter emphasizes the impor-
tance of having available either the implementation of the pro-
posed methodology or the data used in the experiments for other
works to be able to compare the proposed methodologies. Lastly,
considering the possible scores for the QE criteria in Table 3, each
work can only have a maximum score of 10.0.

Table 3: Quality evaluation criteria and score range.

QE# Criteria Score

QE1
Does the paper have an updated state of the art on
long-term localization and mapping?

{0.0, 0.5, 1.0}

QE2 Is the methodology appropriate and detailed? {0.0, 0.5, 1.0}

QE3
Does the methodology consider both localization and
mapping problems?

{0.0, 1.0, 2.0}

QE4
Is the hardware and/or software used in the experiments
detailed?

{0.0, 0.5, 1.0}

QE5
Does the paper presents any kind of long-term experi-
mental results?

{0.0, 2.0}

QE6
Does the paper presents comparative results with other
methods and/or ground-truth data?

{0.0, 1.0}

QE7
Does the work’s implementation and/or the data used
in the experiments are publicly available?

{0.0, 1.0}

QE8
Is the discussion of the results and conclusions appro-
priate and detailed?

{0.0, 0.5, 1.0}

After evaluating the 411 eligible works accordingly to the previ-
ously discussed QE criteria (the scores of each record are available
in the GitHub repository), the first conclusion of the authors is
that works with a non-detailed or not appropriate methodology,
results’ discussion, or conclusions should not be included in the
review. Another conclusion is relative to rejecting works that do
not consider either localization or mapping problems, or do not
present any long-term experimental results, given the focus of this
review on the long-term localization and mapping problem for
mobile robots. Furthermore, the quality assessment phase should
consider a cut-off score to filter works with low quality scores.
Consequently, the assessment phase considers the following two
reasons to reject a record:
1. QE2, QE3, QE5, QE8: reject works with a 0.0 (no compli-

ance) score;
2. cut-off score: reject works with a score lower or equal to

7.5/10.0.

The distribution of the evaluation scores and the QE criteria
itself justify the selection of a 7.5/10.0 cut-off score. Figure 2 illus-
trates the scores distribution for all eligible works versus the scores
of the ones that pass the first criterion defined previously for the
QE phase (related to the compliance on the QE2, QE3, QE5, and
QE8 criteria). The assessment of this criterion rejects 116 records
(28%) of the 411 eligible works (see Figure 1). Even though the
distribution of the evaluation scores changes significantly in the
range of scores lower or equal to 7.5/10.0, as observed between
Figures 2b and 2a, only one work with a score higher than 7.5
is rejected due to not having a detailed and appropriate discus-
sion of the results. This result indicates that interesting works
are associated with high scores, as intended when using a quality
assessment methodology, while also suggests that the range be-
tween 8.0 and 10.0 have the most interesting and quality works
compatible with the focus of this review on long-term localization
and mapping. Although only assessing the eligible works would
seem to lead to the same results in terms of records included in
the review, the rejection criterion on QE2/3/5/8 prevents out-
liers related to the quality assessment. From the remaining 295
eligible works, cut-off scores from 7.5 up to 8.5 have the following
corresponding rejection rates:

• 7.5/10.0 120 records (40.7%) 175 records

• 8.0/10.0
reject−−−→ 160 records (54.2%)

include−−−−→ 135 records

• 8.5/10.0 203 records (68.8%) 92 records

(a)

(b)

Figure 2: Distribution of the quality evaluation scores obtained
from assessing the eligible works considered in the review: (a) all
eligible works; (b) works that pass the rejection criterion during
the QE assessment related to QE2/3/5/8 = 0.0 (no compliance).
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The 8.5 cut-off score would not be suitable because methods
that focus only on localization or mapping, or not having either
the implementation or the experimental data publicly available
would be obligated to have maximum scores in the other criteria
to be included in the review. In these cases, a work would have
a maximum score of 9.0 due to partial compliance on QE3 or no
compliance on the QE7 criteria. Likewise, a cut-off score of 8.0
would only leave a margin for having a single partial compliance
on QE1, QE2, QE4 or QE8 criteria in similar cases, even though
it would reject 160/295 (54%) records. Therefore, the 7.5/10.0
cut-off score is more appropriate for the quality assessment phase
in this review by leaving margin for works to have partial compli-
ance in more than one criterion. Indeed, this cut-off score allows
an article with no public data and/or implementation (e.g., due
to confidentiality agreements) to have up to four criteria with par-
tial compliance, depending on the criterion’s maximum score or if
the work has available the experiments data and/or implementa-
tion. Another example is articles that only focus on localization
or mapping. In these cases, the work could have no public imple-
mentation, even though requiring a maximum score on all other
criteria, or, if the work has public data or implementation avail-
able, two other criteria could have partial compliance.

Overall, as illustrated in Figure 1, the quality assessment of
the 411 eligible works considering the two rejection criteria pre-
viously mentioned leads to rejecting a total of 236 (57%) records.
As a result, the remaining 175 records will be analyzed for data
extraction.

3.4 Data extraction

The data extraction process analyzes the records selected after
the quality assessment phase and extracts information from these
works. In the scope of this review, the Data Extraction (DE)
items required for each record are the following ones:

• [DE1] Long-term considerations – long-term factors the
works consider in their proposed approach and experiments.
Considering the knowledge obtained in the previous phases
of this review’s methodology, the authors considered the fol-
lowing factors for categorizing the included works:

– appearance: varying conditions, appearance changes;
– dynamics: environment dynamics, dynamic elements;
– sparsity: map pruning, redundant data removal;
– multi-session: map management;
– computational: memory management, efficiency.

• [DE2] Localization – how the robot localizes itself and the
type of localizer;

• [DE3] Mapping – type of the map;
• [DE4] Multi-robot – if the proposed methodologies con-
sider multi-robot systems;

• [DE5] Execution mode – offline, online, if requires both,
or if no information on this item;

• [DE6] Environment and domain – type of environment
(indoor, outdoor) and domains (air, ground, water) tested
with the proposed methodologies;

• [DE7] Sensory setup – which sensors considered in the
methodologies;

• [DE8]Non-public experiments – if the authors performed
experiments or tests with non-public data;

• [DE9] Ground-truth – how ground-truth for non-public
data is obtained or its type, if available;

• [DE10] Distance and time characteristics – relative to
the non-public experiments if available, as follows:

– total distance (km) of the non-public experiments;

– path (km), in the case of repetitive paths;
– total time (h) in terms of continuous operation;
– time interval (day/week/month/year, or d/w/m/y) be-

tween the first and the last run.
• [DE11] Datasets – if and which public datasets are used in
the experiments;

• [DE12] Evaluation metrics – which metrics are used for
evaluation.

In Section 5.6, a comparison table of the public datasets identi-
fied by the DE11 will contain the sensory setup, ground-truth data
availability from the datasets, and the distance and time charac-
teristics, similar to the data extraction items for non-public data,
among other aspects. As a result, the distinction between public
and non-public data availability represented in DE8, DE9, and
DE10 allows to understand the distance and time characteristics
of non-public data independently from the public datasets.

Although the data extraction phase in a systematic literature
review usually does not remove any records, 33 of the analyzed
175 works have extended versions of the proposed methodologies,
more detailed ones, or equivalent methods applied in different
conditions. Thus, these records are not included in the review to
improve the discussion section in terms of singularity and origi-
nality of proposed approaches for the long-term localization and
mapping problem. The extracted information helped identifying
the corresponding extended and more complete versions of these
works. A document containing the association of the removed
versions to the records included in the review is available in the
public GitHub repository, including their bibliographic references.
Consequently, 142 original works are included in this review for
an overview of these records in Section 4, and their synthesis and
discussion in Section 5. The information relative to the 12 data
items for each of the included records is available in Appendix A
and also in the repository. The included works represent 34.55%
of the 411 eligible records for this review. This result indicates
that the methodology followed in this review led to a high per-
centage of quality results.

4 Results Overview

In this section, the main goal is to overview the results not in
terms of their scientific contribution but in terms of their biblio-
graphic data for presenting an overview of the included records in
the review. First, statistic results of the data sources in which the
142 included records could be identified in the methodology allow
the evaluation of the coverage between the sources. Next, the tool
VOSviewer (van Eck and Waltman 2010, 2014) is used to obtain
the co-occurrence analysis for the keywords and the authors. The
former focus on the keywords recency and their occurrence in the
sources, while the latter discusses the research networks between
the authors, and the ones with more publications in long-term
localization and mapping. Lastly, two analysis are presented rel-
ative to the evolution of the publication year and most relevant
publication venues.

4.1 Data source

The results on the identification phase are exported to BibTeX
files from each data source. This exportation considers all the
information available in the data sources, such as citation (e.g.,
author, title, publication venue, and type of record) and biblio-
graphic (e.g., affiliation and the publisher) information of each
record, the abstract, and author and indexed keywords. Next,
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using the bibtexparser3 Python library, the BibTeX files are
processed to identify uncompleted records. For example, the DOI
must be specified and, if not available, the record’s information
must be manually completed with a corresponding URL. Then,
considering the 142 included records in this review, a Python
script searches each record in the BibTeX files corresponding to
each data source. This search uses the DOI, URL, and title data
to identify if a data source had in its identification results the
searched record. Given that these three fields can contain lower
and upper letters, the respective strings must be compared only
after converting them to lower cases. As a result, the number of
identified records by each data source of the 142 included ones in
the review are the following ones:

• ACM Digital Library : 25 records (17.6%);
• Dimensions: 84 records (59.2%);
• IEEE Xplore: 67 records (47.2%);
• INSPEC : 102 records (71.8%);
• Scopus: 120 records (84.5%);
• Web of Science: 105 records (73.9%).
The database Scopus is the source that identified the greatest

number of included records. This result was expected given that
Scopus is considered as one of the largest curated databases (V. K.
Singh et al. 2021), indexing more than 25000 active titles (e.g.,
conferences proceedings, journals) and 7000 publishers4. Two
other sources with more than 70% of identified records are IN-
SPEC and Web of Science. Similarly to Scopus, these two
databases index also records from thousands of journals, confer-
ences, and publishers5,6. Although Dimensions is also a biblio-
graphic database covering millions of publications from thousands
of sources, this database is the newest one (created in 2018) rel-
ative to the other three considered in this review (INSPEC , Sco-
pus, andWeb of Science) and could be a factor to why it obtained
a lower percentage (59.2%) than the other three databases. An-
other possible reason is that Scopus and Web of Science have the
majority of their coverage in Life Sciences, Physical Sciences, and
Technology Area (including the Engineering subject area related
to the topic of this review), while Dimensions has better cover-
age in Social Sciences and Arts & Humanities (V. K. Singh et al.
2021). Even though IEEE Xplore is a digital library and only in-
dexes works published by IEEE and its partners, this data source
returns 47.2% of the include records in the review. The main
reason is that this library indexes publications related to elec-
trical engineering and computer science, subject areas related to
long-term localization and mapping7. Finally, the ACM Digital
Library using The ACM Guide to Computing Literature collec-
tion only finds published records by ACM and possible links to
other records focused exclusively on computing8 and not directly
related to the Computer Science or Engineering subject areas, ex-
plaining why this source obtained a lower coverage percentage of
the included results than the other sources for this review.
Furthermore, Table 4 presents a coverage analysis of the iden-

tified results from each data source for the 142 included records
in this review. Table 4a presents the pairwise overlap between
sources. The corresponding percentage is the ratio of records
identified by both sources to the one between the two that has
the smallest number of results: #{A∩B}/min{#A,#B}, where
#A and #B is the number of results for a data source A and

3https://bibtexparser.readthedocs.io/en/master/
4https://www.elsevier.com/solutions/scopus/how-scopus-works
5https://www.elsevier.com/solutions/engineering-village/content/inspec
6https://clarivate.com/webofsciencegroup/solutions/web-of-science/
7https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/

about-ieee-xplore
8https://libraries.acm.org/digital-library/acm-guide-to-computing-literature

B, respectively, and #{A∩B} is the intersection results between
the two sources. For example, if the pairwise results is 100%, it
means that the data source with more records found was capable
of obtaining all the results, i.e., had full coverage over the other
source. Table 4b reports the percentage of records identified by
at least one of two data sources over all 142 included records:
#{A ∪B}/142, where A ∪B is the union correspondence results
of the sources A and B. This percentage represents the joint
coverage of two databases over the 142 included records.

Table 4: Pairwise coverage analysis of the data sources considered
in the review over the 142 included records: (a) identification
only on both pairwise sources (#{A∩B}/min{#A,#B}); (b) on
either ones (#{A ∪ B}/#records). Legend: dim – Dimensions,
ieee – IEEE Xplore, insp – INSPEC , scop – Scopus, wos – Web
of Science.

(a)

A ∩B acm dim ieee insp scop wos

acm – 96.0% 44.0% 88.0% 96.0% 96.0%

dim – – 68.7% 77.4% 97.6% 96.4%

ieee – – – 89.6% 91.0% 74.6%

insp – – – – 87.3% 69.6%

scp – – – – – 89.5%

wos – – – – – –

(b)

A ∪B acm dim ieee insp scop wos

acm – 59.9% 57.0% 73.9% 85.2% 74.6%

dim – – 73.9% 85.2% 85.9% 76.1%

ieee – – – 76.8% 88.7% 85.9%

insp – – – – 93.7% 95.8%

scp – – – – – 92.3%

wos – – – – – –

Analyzing the coverage results in Table 4, the first observation
is that the pairwise union results of two sources increase the inde-
pendent coverage of each source. This observation validates the
need identified in the methodology (see Section 3) to consider sev-
eral data sources in the identification phase of a review. Moreover,
the pairwise union coverage of INSPEC , Scopus, and Web of Sci-
ence is greater than 90% of the included records. When evaluating
the joint coverage of these three databases, they identify all 142 of
the included records, i.e., a 100% coverage. Although this result
could indicate that those three sources guarantee full coverage of
the long-term localization and mapping research topic, it is always
advisable to consider as most as possible sources in the method-
ology. Another observation is relative to the overlap of Scopus
with the other sources, which is greater than 85%. This overlap
indicates that Scopus covers results not only on the topic of this
review but also the results obtained by the other sources consid-
ered in the methodology. Lastly, INSPEC and Web of Science
achieve a pairwise overlap percentage of 69.6% between them-
selves, while their union represents 95.8% of the included records.
This discrepancy indicates that these two sources identify unique
results between themselves. Indeed, INSPEC identifies 31/142
records not found by Web of Science, and vice-versa for Web of
Science, with 34/142 unique records.

https://bibtexparser.readthedocs.io/en/master/
https://www.elsevier.com/solutions/scopus/how-scopus-works
https://www.elsevier.com/solutions/engineering-village/content/inspec
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
https://libraries.acm.org/digital-library/acm-guide-to-computing-literature


A Systematic Literature Review on Long-Term Localization and Mapping for Mobile Robots 9

4.2 Keywords co-occurrence

Next, VOSviewer (van Eck and Waltman 2010, 2014) is used to
analyze the co-occurrence of keywords in the included articles.
This co-occurrence is the relatedness of items determined based on
the number of documents in which the keywords occur together.
For this analysis, first, a Python script processes the BibTeX file
containing the citation and bibliographic information, the author
and the indexed keywords, and the abstract of the records to
join the author with the indexed keywords in the same keywords
field. Then, an online tool9 converts this processed BibTeX to
a RIS file. Even though VOSviewer supports file types directly
exported from Dimensions, Scopus, or Web of Science as input,
none of these data sources obtained all the 142 included records
of the review in the identification phase. Given that VOSviewer
does not support BibTeX files, the conversion to RIS file is re-
quired for using as input. The disadvantage of using this file
format in VOSviewer is only allowing to perform co-occurrence of
items (e.g., keywords or authors), while bibliographic data from
Dimensions, Scopus, or Web of Science in CSV files would allow
other analysis such as citation, co-citation, or bibliographic cou-
pling. However, the creation of these CSV files follow different
templates depending on the data source. So, RIS files allow the
integration of all 142 included records for obtaining the two co-
occurrence analysis presented in this review (namely, keywords
and co-authorship).

In Figure 3a, the network presents the overlay visualization
of the keywords co-occurrence in the included records weighted
by the number of occurrences of each term, using full counting
for the links’ strength. The latter computes the strength of the
links directly by the number of co-occurrences of the respective
two terms. The overlay visualization colors the keywords differ-
ently according to the average publication year of the included
records in which each of the keywords appears. This coloring al-
lows analyzing which are the ones that are associated with the
most recent publications. As for the keywords’ weighting, the
number of occurrences dictates the size of the circles. Further-
more, the minimum number of occurrences of a keywords set in
VOSviewer for obtaining the graph is 5 originating the 34 key-
words illustrated in Figure 3a. This parameter was selected for
visualization purposes while also filtering uninteresting keywords.
Similarly, setting the attraction and repulsion parameters to 2 and
0, respectively, distances the terms more from each other than us-
ing the values recommended in the VOSviewer manual10 (2 and
1, respectively). These two parameters only interfere in the lo-
calization of the terms in the map, not in the graph connections.
Lastly, a thesaurus of the keywords (available in the repository)
is used to join similar terms: spelling differences (e.g., localiza-
tion – localisation), full terms versus abbreviations (simultaneous
localization and mapping – SLAM), while also allowing the con-
catenation of long keywords for visualization reasons.

Overall, the keyword robot is the one that appears more times
in the included records: 109 occurrences, links with 33 other
terms, and has a total link strength of 390 (sum of co-occurrences
of all of its links). This result is expected due to the relation of
this review’s topic to robotics. Similarly, three other keywords in
the network related to long-term localization and mapping topic
with high values of occurrence, number of links, and total link
strength are slam (74, 33, and 280), mapping (47, 32, and 196),
and localization (46, 31, and 188, respectively). The method-

9https://www.bibtex.com/c/bibtex-to-ris-converter/
10https://www.vosviewer.com/documentation/Manual VOSviewer 1.6.8.

pdf

ology for the search strategy discussed in Section 3.2 considers all
of these four keywords. Thus, the significant influence of robot,
slam, mapping, and localization in the keywords co-occurrence
analysis indicates that, after all the phases executed in this re-
view’s methodology, the 142 included records have a high corre-
lation with the keywords considered in the search query. Given
that the keywords are usually selected or indexed to capture the
essence of the document, this correlation indicates that the search
query is appropriate to obtain the search results, even considering
only the keywords as search fields.

As for keywords related to the outcome of the PICO frame-
work, long-term autonomy occurs only 6 times in the included
records, linking with 16 other keywords and having a total link
strength of 27. This low occurrence could indicate that the term
long-term autonomy is not usually used by the authors nor in-
dexed by the databases. However, the specific term of long-term
autonomy does not summarize all the possibilities for the outcome
of the PICO framework (see Section 2). Indeed, for this reason,
the search query for the identification phase uses only the follow-
ing single terms: "long term" and "life long" (resumes the
possibility of having a space or a hyphen), and lifelong. Fig-
ure 3b presents the keywords co-occurrence analysis using the
same parameters for obtaining Figure 3a. The difference to the
latter network is using a thesaurus that summarizes all the key-
words that contain long-term and lifelong into the terms them-
selves, obtaining 35 keywords with a minimum of 5 occurrences
in the 142 included records. In terms of occurrences, number of
links, and total link strength, the impact of the thesaurus key-
word long-term is 25, 27, and 103, and for lifelong 6, 17, and 31,
respectively. These values are much higher than the ones respec-
tive only to long-term autonomy from Figure 3a. The reason
is that long-term in Figure 3b compiles the occurrences of key-
words such as long-term autonomy, long-term mapping, and
long-term localization (6, 2, and 2 occurrences, respectively),
and lifelong sum up, for example, three different versions of
lifelong learning (using lifelong, life-long and life long

with 2, 1, and 2 occurrences, respectively) and lifelong slam (1
occurrence). Hence, these results proves that the third AND part of
the search query ("long term" OR "life long" OR lifelong)
covers well the PICO framework’s outcome. Plus, they also show
no consensus among the authors and by the databases indexation
on how to define a keyword for the topic of long-term localization
and mapping.

In terms of the average year of publication, analyzing the dia-
grams in Figure 3 on its colorization, the first observation is the re-
cency of terms related to visual localization. The keywords visual
SLAM (vslam), visual navigation (visual nav), and visual lo-
calization (visual localiz) have all an average publication year
higher than 2017. This recency indicates that recent approaches
related to the topic of this review, long-term localization and
mapping, are more inclined to use vision as a sensorization input.
Another sensor that appeared with high relevance in the network
is radar, with 15 occurrences and an average publication year of
2019.20. This sensor is agnostic to the environment changes such
as illumination and season changes intrinsically associated with
vision and could be the reason why the recent works related to
long-term localization and mapping are using it. Moreover, place
recognition (place recog) stands out not only by its recency but
importance. The keyword itself (place recog) occurs 31 times
and an average publication year of 2017.77, with terms related to
place recognition such as loop closure and global localization
(global localiz) with recent average publication years (2017.82
and 2018.75, respectively) and strong link to place recognition (5

https://www.bibtex.com/c/bibtex-to-ris-converter/
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf
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(a) (b)

Figure 3: Keywords co-occurrence analysis on the 142 included records generated by VOSviewer with overlay visualization by
the average publication year: (a) original keywords; (b) all keywords containing long-term and lifelong summarized by the terms
themselves. Parameters used for generating the co-occurrence network: minimum number of occurrences = 5, attraction = 2,
repulsion = 0, scale = 1.49, circles size variation = 0.5, lines size validation = 1.0. Legend: cnn – Convolutional Neural Networks,
env – environment, localiz – localization, nav – navigation, nn – Neural Networks, recog – recognition, vslam – visual SLAM.

co-occurrences for each of the links between loop closure and
global localiz with place recog). Lastly, machine learning
also seems to be used in recent works included in this review.
The keywork learning occurs 7 times with an average publication
year of 2017.00. Neural Netowrks (nn), Convolutional Neural
Networks (cnn), and deep learning have a similar number of
occurrences (6, 5, and 8) and publication years higher than 2017
(2017.83, 2018.00, and 2019.12, respectively). These results could
mean a more recent trend of using machine learning to improve
the long-term autonomy of mobile robots.

Although the recency of keywords related to dynamic environ-
ments is lower than 2017 (2015.50 and 2016.75 for dynamic env

and env change), they have a high occurrence (14 and 12, re-
spectively), located close to each other in the network, and have a
strong link between them (4 co-occurrences). Three keywords also
located near each other are graph and marginalization while
having similar average publication years (2014.70 and 2014.60,
respectively). Even though the number of occurrences of these
terms is low (10 and 5 for graph and marginalization, respec-
tively), their map proximity could indicate a focus in the past
on the topic of graph sparsity, i.e., maintaining the graph in the
long-term to only depend on the environment size and not on the
robot’s operation time.

The keywords co-occurrence analysis also relates to the cat-
egories of DE1 (see Section 3.4). Works associated with place
recognition, global localization, and loop closure terms require
invariance to the appearance changes in the environment, equiv-
alent to the appearance category. The dynamics category is asso-
ciated with works focused on dynamic environments. As for the
other group of keywords with a high occurrence and strong links
between each other, the ones related to graph and marginaliza-
tion, the respective works focus on removing uninformative data
from the map (Kretzschmar and Stachniss 2012), which is re-

lated to map sparsification, and so, to the sparsity category of
DE1. These relations between the appearance, dynamics, and
sparsity categories to the semantic analysis of the keywords co-
occurrence supports the categorization of DE1 considered in this
review, while also indicating that the discussion on the proposed
methodologies should focus on each one of the categories. Even
though the two remaining categories of DE1 (multi-session and
computational) are not represented in the keyword analysis, the
execution of the data extraction phase identified the need for hav-
ing these two categories, given the importance of multi-session
handling and computational efficiency for long-term localization
and mapping. However, each category of DE1 will be discussed
in Section 5 in further detail.

4.3 Co-authorship analysis

The other analysis obtained using VOSviewer is the co-authorship
network presented in Figure 4. Similar to the keywords network
illustrated in Figure 3, the co-occurrence of the authors’ names
creates links among them in the graph. The strength of these links
is dictated by the number of documents the two authors of a link
are co-authors in the same record, and the number of co-authored
works determines the size of the circles respective to each author
in the graph. In contrast to Figure 3, the network in Figure 4 does
not have any overlay specific to coloring depending on the aver-
age publication year. Instead, the main goal of the co-authorship
analysis in this review is to present possible research networks de-
tected in the 142 included records. Thus, the coloring in Figure 4
represents the clusters of authors detected by VOSviewer. This
network only considers authors with a minimum of 3 works for
relevance and visualization reasons, resulting in 27 authors. Also,
authors identified only by the initial of the first name and by the
surname can lead to incorrect correspondences in terms of co-
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authorship. VOSviewer detects 392 authors in the 142 included
records using the original RIS file used in Section 4.2 compared
to 413 after checking the authors names. Indeed, a manual check
is performed on all authors of the included records to guaran-
tee no false correspondences for the co-authorship analysis with
VOSviewer. This manual check ensures each author has its full
first and surname and any middle initials while also using the
same name for an author in different records.

Figure 4: Co-authorship analysis on the 142 included records
generated by VOSviewer. Parameters used for generating the
co-occurrence network: minimum number of occurrences = 3, at-
traction = 4, repulsion = -2, scale = 1.49, circles size variation =
1.0, lines size validation = 1.0.

Analyzing Figure 4, the co-authorship network presents 8 clus-
ters. These clusters are separated from each other, i.e., no link
exists between authors from different clusters. However, this sep-
aration does not mean that there is not any co-authorship between
authors from different clusters only indicating that for a minimum
of 3 co-authored documents there is not a connection between the
authors of these 8 clusters. Even so, the graph presented in Fig-
ure 4 allows the identification of the most relevant research net-
works in terms of number of co-authored documents and in the
context of long-term localization and mapping, considering the
142 records included in this review. As a results, the following
enumeration presents the authors that belong to each cluster in
the format of < author 11, 12(#co-authored documents) >:

1. Rong Xiong , (7), Yue Wang , (7), Huan Yin ,

(6), Li Tang (5), and Xiaqing Ding , (4);

2. Hao Zhang (6), John J. Leonard , (5), Michael Kaess

(5), Fei Han (3), Guoquan Huang (3), José Neira
, (3), and Ryan M. Eustice , (3);

3. Wolfram Burgard , (7), Cyrill Stachniss , (4), and

Tayyab Naseer , (3);

11ORCID ID of the author
12Google Scholar ID of the author

4. Roland Siegwart , (6), Igor Gilitschenski , (3),

Marcin Dymczyk , (3), Michael Bosse (3), and Paul

Furgale , (3);
5. Tom Duckett , (6), Cheng Zhao , (3), and Tomáš

Krajńık , (3);
6. Gordon F. Wyeth , (4) and Michael J. Milford , (3);
7. Paul Newman (4);
8. Timothy D. Barfoot , (3).

When analyzing the affiliations of the authors mentioned pre-
viously at the time of publication, all authors of the first cluster
belonged to the State Key Laboratory of Industrial Control and
Technology (SKLICT) and the Institute of Cyber-Systems and
Control at Zhejiang University in China. Even though Huan Yin,
Yue Wang, Xiaqing Ding, Li Tang, and Rong Xiong mention their
affiliation to the Joint Centre for Robotics Research between Zhe-
jiang University, China, and the University of Technology Sydney,
Sydney, in the work H. Yin, Y. Wang, et al. 2020, this specific
affiliation only appeared in this article. The total link strength
(sum of all links weights) of each of the authors in that cluster
is higher than 16, meaning a high co-authorship between them.
Indeed, all five authors have links between all of them. Simi-
lar to the first cluster, the third, fourth, fifth, and sixth clusters
have common affiliations within each one: the Autonomous In-
telligent Systems at the University of Freiburg in Germany, the
Autonomous Systems Lab (ASL) at ETH Zürich in Switzerland,
the Lincoln Centre for Autonomous Systems (LCAS) at the Uni-
versity of Lincoln in UK, and the School of Electrical Engineering
and Computer Science at Queensland University of Technology
(QUT) in Australia, respectively. However, the interlinking be-
tween the authors is not as strong as in the first cluster, as shown
in Figure 4 by the authors of these clusters not being connected
between all the ones within each cluster. Even so, the common
affiliation shows there is considerable interest by these research
units in the long-term localization and mapping topic.

The affiliation analysis in the second cluster is more complex
given that there was no affiliation common to all authors at the
time of the records’ publication. Instead, the following affilia-
tions were found: Fei Han and Hao Zhang with the Department
of Computer Science at Colorado School of Mines in the USA,
Guoquan Huang with the Department of Mechanical Engineer-
ing at the University of Delaware in the USA, John J. Leonard
and Michael Kaess with the Computer Science and Artificial In-
telligence Laboratory (CSAIL) at the Massachusetts Institute of
Technology (MIT) in the USA, Ryan M. Eustice with the Percep-
tual Robotics Laboratory (PeRL) at the University of Michigan
in the USA, and José Neira with the Instituto Universitario de
Investigación en Ingenieŕıa de Aragón (I3A) at the Universidad
de Zaragoza in Spain. Although there are 5 different affiliations
to which the 7 authors stated in the respective records, 4 of the
research institutions noted for the second cluster are in the USA,
indicating a possible reason for facilitating the linkage between
these authors from different research units.

In terms of the clusters composed by single authors, the affili-
ations of Paul Newman and Timothy D. Barfoot are the Oxford
Robotics Institute at the University of Oxford in UK and the Au-
tonomous Space Robotics Laboratory (ASRL) at the University
of Toronto Institute for Aerospace Studies (UTIAS) in Canada,
respectively. Even though these two authors are not linked with
any others in the network, the co-authorship analysis indicates
that they have an interest in long-term localization and mapping.
This interest is shown by their number of co-authored records: 4
and 3 by Paul Newman and Timothy D. Barfoot, respectively.
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As for the number of co-authored publications, considering the
142 included records, the authors that appeared to have more
research on the review’s topic are Rong Xiong, Yue Wang, and
Wolfram Burgard, given the 7 co-authored publications of each
one. However, Rong Xiong and Yue Wang have co-authored the 7
documents attributed to each of them. This relation and similar
ones can biase the analysis of which authors are having more
impact in the review’s topic. The clustering shown in Figure 4
allows a more unbiased analysis relative to the co-authorship links
between authors. Thus, based on the clustering and which author
from each cluster has the most co-authored publications, the most
influential authors in long-term localization and mapping are the
following ones: Rong Xiong (or Yue Wang), Hao Zhang, Wolfram
Burgard, Roland Siegwart, Tom Duckett, Gordon F. Wyeth, Paul
Newman, and Timothy D. Barfoot.

4.4 Year of publication

The relevance of the long-term localization and mapping topic
can be evaluated by the evolution of the number of publications.
Figure 5 presents this evolution from the earliest year of publi-
cation of the included records to the year at the time of writing
this article. The latter has its respective data dashed to indicate
that the last year is not completed at the time of writing. Ana-
lyzing Figure 5, this review’s topic seems to have gain relevance
in 2009 with 6 works, compared to only one publication in 2007
and another in 2002 in the previous years to 2009. From that year
onwards, the graph has an almost linear tendency reaching a max-
imum of 23 records in 2021, while already having 8 publications
in 2022 until May 17, 2022. This tendency shows that long-term
localization and mapping is gaining interest throughout the years
and, consequently, supports the importance and relevance of this
review for the scientific community.

Figure 5: Evolution of published records per year considering the
142 included records in this review. The time interval is between
the smallest publication year found in the included records (2002)
and the year of last full inquiry’s date (2022). The latter is with
a dotted line due to the fact that the last full inquiry does not
consider the whole year.

4.5 Publication venue

Finally, the last overview of the 142 included records in the review
is relative to the publication venue. Table 5 presents the venues
with more than 1 publication, separating the journals and con-
ferences in two different tables (Tables 5a and 5b, respectively).
The columns µ present the average year of publication of the
records associated to a certain venue, while max columns display
the publishing recency by the year of the most recent publication

in the venue. For comparing to the average value (µ), the third
column (σ) of each table presents the standard deviation based
on the publication year data. The last column state the number
of records published in the venue from the 142 records included
in the review for discussion.

Table 5: Publication venues of the included records in this review
with more than one record published in the venue: (a) journals;
(b) conferences. Legend: µ – average year of publication, σ – stan-
dard deviation of the publication year, max – maximum year of
publication, # – number of records published at a certain venue.

(a)

Year

Journal µ σ max #

Robotics and Autonomous Systems 2016 3.9 2021 13

IEEE Robotics and Automation
Letters

2019 1.7 2022 12

International Journal of Robotics
Research

2014 3.2 2022 11

Journal of Field Robotics 2017 3.5 2022 8

Autonomous Robots 2017 2.2 2020 7

IEEE Transactions on Intelligent
Transportation Systems

2021 0.8 2022 4

Sensors 2019 0.8 2020 4

IEEE Transactions on Robotics 2017 3.1 2022 4

IEEE Sensors Journal 2020 1.5 2021 2

International Journal of Advanced
Robotic Systems

2020 1.5 2021 2

(b)

Year

Conference µ σ max #

IEEE International Conference on
Robotics and Automation (ICRA)

2016 3.9 2021 22

IEEE/RSJ International Confer-
ence on Intelligent Robots and Sys-
tems (IROS)

2017 3.6 2021 17

IEEE International Conference on
Robotics and Biomimetics (RO-
BIO)

2019 2.1 2021 3

IEEE International Intelligent
Transportation Systems Conference
(ITSC)

2018 2.4 2021 3

European Conference on Mobile
Robots (ECMR)

2014 0.9 2015 3

IEEE Intelligent Vehicles Sympo-
sium (IV)

2019 0.5 2019 2

International Conference on 3D Vi-
sion (3DV)

2018 1.5 2019 2

International Conference on Ad-
vanced Robotics (ICAR)

2011 2.0 2013 2

In terms of journals, the Robotics and Autonomous Systems,
IEEE Robotics and Automation Letters, and the International
Journal of Robotics stand out with more than 10 publications.
Also, these journals have a high standard deviation (greater than
1.5), indicating that the publications spread out throughout the
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years. In the case of the IEEE Robotics and Automation Letters,
these results gain more relevance indicating a recent trend on
publishing on this journal, considering that its creation was only
on 201513. With more than 5 publications, the Journal of Field
Robotics and the Autonomous Robots have recent average of pub-
lication (2017) with a high standard deviation (greater than 2.0),
similarly indicating that authors have been publishing in these
two journals along the years. In contrast, the IEEE Transactions
on Intelligent Transportation Systems and Sensors journals have
a standard deviation lower than 1 year, with an average publica-
tion year of at least 2019. The recency of publication on these
two journals with a very low deviation suggests a recent interest
of the authors to publish in these two journals works related to
long-term localization and mapping.
As for conferences, the data in Table 5b shows a high discrep-

ancy in the number of publications related to this review’s topic
in ICRA and IROS compared to the other venues. Indeed, all the
other conferences have only a maximum of 3 records published
in them, compared to 22 and 17 papers in ICRA and IROS, re-
spectively. When considering that 60 of the 142 included records
are published in conferences, ICRA and IROS with a total of 39
published works related to this review’s topic represent 65% of
works published in conferences and 27.5% of all included records.
This result expresses the high relevance of ICRA and IROS in the
topic of long-term localization and mapping.

5 Discussion

The main goal of this review is to synthesize methodologies fo-
cused on long-term localization and mapping. Therefore, the dis-
cussion first analyzes the techniques proposed in the 142 included
works for the five categories of DE1 (see Section 3.4). Section 5.1
discusses methodologies related to dealing with the varying ap-
pearance of environments for localization and place recognition.
Section 5.2 analyzes works focused on modeling the environment
dynamics or identifying dynamic objects within the environment.
Section 5.3 focuses on approaches for removing redundant data
from the map or identifying novelty data to keep the map size
constrained to the environment size. Section 5.4 discusses how
methods handle multi-session in terms of mapping. Section 5.5
reviews works related to computation concerns over long-term lo-
calization and mapping, in addition to the ones relative to map
sparsification discussed in Section 5.3. However, the discussion
should also focus on how the included works evaluated their re-
sults in long-term operations. Thus, Section 5.6 analyzes the
experimental data and datasets used in the experiments, and Sec-
tion 5.7 presents the evaluation metrics used for evaluating the
proposed methodologies.

5.1 Appearance variance

Next, the discussion focuses on included works categorized in DE1
as appearance (see Table 7). The different methodologies found
in these works deal with variable lighting changes, perspective
or viewpoint variance, moving elements in the scene, different
weather conditions, or changes caused by the year’s seasons. In
order to improve the discussion, the analysis of the proposed tech-
niques related with appearance invariance is organized into the
following topics: experience maps for treating different appear-
ances as multiples experiences, handcrafted features, features ex-
tracted using Convolutional Neural Networks (CNN), assessment

13https://www.ieee-ras.org/publications/ra-l

of feature stability, multi-modal features, leverage of temporal
coherence by image sequence matching, and a discussion of the
different sensors modalities used in the included works for appear-
ance invariance.

5.1.1 Experience maps

One way to deal with the appearance variance of environments
is by treating different conditions as multiple experiences. The
biologically inspired RatSLAM (Ball et al. 2013) introduces the
experience map as a semi-metric topological map, where each ex-
perience is a view of the environment at a certain position and
wheel odometry provides the relative pose for the links. New ex-
periences are created when none of the previous ones saved in the
map are sufficiently similar in appearance to the current scene.
Glover et al. 2010 combines the mapping of RatSLAM with the
place recognition of FAB-MAP (Cummins and Newman 2008b).
The latter improves the loop closure detection of the original Rat-
SLAM due to FAB-MAP having light invariant characteristics
for data association by learning a generative model for the Bag of
Words (BoW) model (Sivic and Zisserman 2003). Both RatSLAM
and the hybrid RatSLAM+FAB-MAP systems uses visual data
to retrieve information from the environment. Although Martini
et al. 2020 uses also experience-based mapping, the main sensor
is a radar, where an experience is represented by a point cloud
from the sensor and the point descriptors retrieved from it. Radar
is known for being less affected by environment changes such as
different illumination or weather conditions compared to vision
sensors (Hong et al. 2022).

The concept of adding the environment changes to the map
upon degradation in localization is also employed by Konolige and
Bowman 2009 and Tang, Y. Wang, Ding, et al. 2019. The former
implements a keyframe SLAM created from the Visual Odome-
try (VO) module, where each keyframe represents a view of the
environment, while a place recognition module tries to match the
current frame to similar views already in the map for loop clo-
sure. The latter applies a similar idea to experience maps based
on the 2D manifold assumption for locally smooth navigation.
Even though the proposed topological local-metric framework en-
codes geometric information in the edges, the nodes do not require
global pose, i.e., no restriction for global consistency. New nodes
are triggered from localization failure. The goal is to restrict the
erroneous alignment computed from odometry locally.

Instead of considering an experience as a location or a view
of the current scene, Churchill and Newman 2013 defines it as a
whole sequence of the saved poses and related features directly
obtained from VO. In this case, the topological mapping links
experiences not geometrically but instead if two experiences ob-
serve the same space. However, the method does not implement a
specific place recognition module for loop closure, assuming that
the robot will subsequently return to a place that can have suc-
cessful localization. Gadd and Newman 2016 builds on the work
of Churchill and Newman 2013 for multi-robot systems. This
method adds FAB-MAP (Cummins and Newman 2008b) for place
recognition in the existing map maintained by a centralized ver-
sioning framework. The selection of the most relevant experiences
by the centralized framework for localizing multiple agents in the
system assumes that appearance change is only driven by the
passage of day time.

Another example of experience maps is Visual Teach & Re-
peat systems using spatial-temporal pose graphs, as implemented
in MacTavish et al. 2018 and N. Zhang et al. 2018. Similar to
Churchill and Newman 2013, an experience is the output of the

https://www.ieee-ras.org/publications/ra-l
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VO module defining the appearance of a scene throughout a path.
In the teaching phase, the robot is teleoperated by humans creat-
ing privileged experiences in the graph. Autonomous experiences
are the ones relative to the repetition phase. These experiences
are linked either temporally or spatially if they are sequential in
time or related metrically by multi-experience matching, respec-
tively. Unlike Churchill and Newman 2013, new experiences have
a known metric pose relative to the others in the pose graph.

In general, experience-based navigation methods try to gener-
ate new experiences if the environment changes, expecting that
at a certain point in time the robot will be able to localize it-
self relative to previous experiences, not requiring new ones to be
added to the map. Although experience-based methods have ap-
pearance invariant properties due to the accumulated knowledge
on different changes in the same location, these approaches are
not scalable in the long-term time frame nor to deal with dynamic
elements, even using central servers as in Gadd and Newman 2016
with more computational resources than the robots. Pruning al-
gorithms would be required to remove redundant or outdated in-
formation, as in Konolige and Bowman 2009 or Tang, Y. Wang,
Ding, et al. 2019. Also, other methods should be employed to deal
not only with long-term appearance changes (weather conditions
or seasonal changes) but also with dynamic elements in the scene.

5.1.2 Illumination transformations

As a preprocessing step, illumination invariant transformations
can be applied to color images for increasing the robustness of
visual localization to changing lighting conditions and shadows.
One example is the illumination invariant space that combines
the log-responses of the 3 color channels into an one-dimensional
space with a weighting parameter conditioned by the peak spec-
tral responses of each channel, usually available in the camera
specifications. This one-dimensional space is only dependent on
the sensor and elements in the scene, while being independent of
the intensities and colors. Both works of Arroyo et al. 2018 and
Z. Yang et al. 2021 use this transformation for preprocessing the
color images into grayscale ones demonstrating the robustness of
the illumination invariant space when lighting changes appear.

An alternative to using predefined illumination invariant trans-
formations is to learn them. Clement et al. 2020 learns a nonlin-
ear transformation mapping function from the RGB color space
to grayscale also combining the three-channel log-responses, but
relaxing the constraints of the one-dimensional space due to the
original weighting parameter used in Arroyo et al. 2018 and Z.
Yang et al. 2021. Instead of using the same parameters inde-
pendently of the image content, Clement et al. 2020 trains an
encoder to predict the optimal transformation weighting param-
eters of the three-channel log-responses. The objective function
chosen for maximization is based on the number of inlier feature
matches from a vision localization pipeline. The learned nonlin-
ear RGB to grayscale transformation helped achieving a full-day
cycle using a single mapping experience and the applying the op-
timized transformation to the color images.

Even though the Gamma correction does not transform an im-
age to an invariant color space, this transformation can be used
to strengthen low-illumination changes. Li Sun et al. 2021 uses
the Gamma transform to synthesize low-illumination night-time
images from daytime ones. Applying the transformation in the
HSV (Hue, Saturation, Value) space, the gamma parameter ad-
justs the value channel without distorting the colors. Then, the
synthesized images are used for training the DarkPoint descriptor
proposed by Li Sun et al. 2021 to improve day-to-night matching.

5.1.3 Handcrafted features

Many localization and mapping algorithms rely on detection and
extraction of features. The designation of handcrafted features
refers to properties derived from the sensors data as a two-step
process: a keypoint detector to locate the features and their char-
acterization by computing a descriptor capable of distinguishing
each feature from the others (Nanni et al. 2017). Algorithms
for long-term localization and mapping using handcrafted feature
should be robust to changing conditions such as illumination, ap-
pearance, weather and seasonal changes.

Visual features A way to improve long-term feature-based vi-
sual localization is to enhance the descriptiveness of visual feature
descriptors and their long-term stability. Kawewong et al. 2013
defines the Position Invariant Robust Features (PIRF). In a slid-
ing window framework, PIRF tracks the motion of local features
such as Scale-Invariant Feature Transform (SIFT) or Speeded Up
Robust Features (SURF) selecting the stable ones. Using an in-
cremental tree-like PIRF (with inverted index as in BoW) dic-
tionary, the method has shown robustness to viewpoint variance
and unstable features. Also, PIRF-based localization improved
the recall on place recognition over FAB-MAP (Cummins and
Newman 2008b) in the experiments.

Moreover, Histogram of Oriented Gradients (HOG) features
have been used in different works to improve robustness to ap-
pearance variance, given that HOG descriptors capture local gra-
dient information robust to seasonal changes (Naseer, Suger, et
al. 2015). Li et al. 2015 computes local HOG descriptors from
visually-salient image patch features in an underwater environ-
ment. Using a trained Support-Vector Machine (SVM) to clas-
sify the matching between corresponding patches, the method
achieved approximately 80% accuracy with dramatic appearance
changes. Although Naseer, Suger, et al. 2015 computes HOG de-
scriptors from each cell of a partitioned image, a global descriptor
for the whole image joins all the cell ones. The global descriptor
proved to be robust to foliage color changes, occlusions, and sea-
sonal changes. Vysotska et al. 2015 uses the same global HOG
descriptor as in Naseer, Suger, et al. 2015, but applied to image
sequence matching requiring a rough global pose estimation for
the images (e.g., GPS) for efficient matching.

Local Difference Binary (LDB) features also include gradient
comparisons. These features are used in the Able for Binary-
appearance Loop-closure Evaluation (ABLE) (Arroyo et al. 2018)
approach to achieve higher descriptiveness power for appearance
invariance. ABLE outperformed FAB-MAP (Cummins and New-
man 2008b) in terms of precision-recall evaluation metrics. An
advantage of using binary features such as LDB is the possibility
of using the Hamming distance to compute descriptor similarity,
improving the computational efficiency of this process over cosine
similarity or Euclidean distance.

Another work from the included records focused on improving
the long-term performance of handcrafted visual features is from
Karaoğuz and Bozma 2016. Their approach uses bubble descrip-
tors for preserving the relative S2 geometry of visual features,
being rotationally invariant. The experimental results demon-
strated improvements on viewpoint and illumination invariance
of bubble features-based localization.

Instead of preserving the long-term appearance-invariance of
visual descriptors, Neubert et al. 2015 introduces the SuperPixel-
based Appearance Change Prediction (SP-ACP) to predict ex-
treme appearance changes across seasons. SP-ACP extracts de-
scriptors (combination of color histogram in Lab color space with
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upright SURF descriptor) from the image superpixels and clusters
the descriptors into seasonal-specific vocabularies using hierarchi-
cal k-means. With training images with pixel-accurate alignment
between images, the known pixel association creates a transla-
tion dictionary between seasons to synthesize a predicted image
for cross-season place recognition. SP-ACP was able to improve
cross-season place recognition performance compared to not com-
paring with the predicted image, although the method has the
limitation of requiring pixel-wise alignment in training.

The work of Griffith and Pradalier 2017 considers GPS and
compass data in addition to visual data. Griffith and Pradalier
2017 builds on SIFT Flow to find dense correspondences among
images for survey registration in long-term lakeshore monitoring.
SIFT Flow combines the precision of point-based feature match-
ing with the robustness of whole-image matching, while GPS, the
feature tracks from a visual SLAM, and the compass measure-
ments bias the image registration. The proposed method was
able to match images from different surveys separated by several
months with dramatic changes relative to lighting, occlusions,
seasonal changes, and even the sun glare.

Even though F. Cao, Zhuang, et al. 2018 and F. Cao, Yan,
et al. 2021 require a 2D or a 3D laser for place recognition and
not a visual sensor, these methods use 2D image representations
of a point cloud to extract visual handcrafted features. F. Cao,
Zhuang, et al. 2018 transforms the 3D point clouds of a 3D laser
into 2D images using the bearing angle 2D representation (image
according to the relative position among adjacent laser points,
without projecting the point cloud onto a certain surface). Us-
ing a BoW approach with the dictionary learned using Oriented
FAST and Rotated BRIEF (ORB) features, the query image is
matched to the database ones, while performing geometric ver-
ification by reprojecting the ORB features into the 3D coordi-
nate frame. One main advantage of using 3D LiDAR in the ex-
periments was its less sensitivity to lighting conditions relative
to visual sensors while not being incapacitated in dark environ-
ments. The proposed method outperformed Multiview 2D Pro-
jection (M2DP) (He et al. 2016) – global descriptor for point
clouds –, given that M2DP could not deal with situations where
the point clouds distributions were centralized and similar to each
other. As for F. Cao, Yan, et al. 2021, the proposed method ac-
cepts also 2D laser data by accumulating a sequence of scans. The
2D representation used differs from F. Cao, Zhuang, et al. 2018 by
projecting the point cloud into cylindrical coordinates and using
the centroid of the point cloud to ensure viewpoint invariance.
Using Gabor filters to detect and describe the contours of the
images, F. Cao, Yan, et al. 2021 generates Binary Robust Inde-
pendent Elementary Features (BRIEF) descriptors for matching
images using a nearest neighbors search. In addition to show-
ing the seasonal appearance variance in laser data (e.g., different
foliage in the scene), the proposed methodology outperforms Se-
qSLAM (Milford and Gordon. F. Wyeth 2012b) (sequential place
recognition) and PointNetVLAD (Uy and Lee 2018) (CNN-based
place recognition for 3D point clouds) on precision-recall.

In terms of visual features from radar data, Hong et al. 2022
extracts visual features used for tracking using a blob detector
based on a Hessian matrix. These features are extracted from
a 2D cartesian image transformed from the polar image repre-
sentation of radar, while also compensating the distortion from
the vehicle’s motion. As for loop closure detection, the peaks
in intensity from the polar radar image are evaluated to remove
noise of areas without a real object due to speckle noise. Then,
the processed polar image is transformed into a point cloud and
the M2DP descriptor adapted to 2D point clouds is used to de-

tect loop closure. The proposed methodology improved the radar
odometry tracking, while also outperforming ORB-SLAM2 (Mur-
Artal and Tardós 2017).

Environment structure features The structure of the envi-
ronment defined by its geometry is more robust to appearance
variance than the appearance itself. Common structure features
extracted from sensors data are line and edge features. Biswas
and Veloso 2013a extracts 2D line segments corresponding to the
walls from depth and 2D laser sensors. The line segment-based
localization had a low failure rate on an over-a-year long-term
indoor deployment even in areas with movable objects, due to
the long-term stability of the line segment features. Nuske et al.
2009 extracts 3D edge features of the scenes using a monocu-
lar camera to get the edges of the buildings in the environment,
while employing an exposure control to maximize the strength of
edges corresponding to the mapped ones. The proposed method
was able to successfully track the edges of the buildings along
an all-day outdoor experiment. Instead of using the walls of the
buildings, An et al. 2016 formulates a visual node descriptor based
on ceiling salient edge points. Even though the method achieved
good results in lighting changing conditions, the method’s per-
formance decreases using low and inclined ceilings, due to the
image perspective effect that may lead to matching failure in the
implemented Iterative Closest Point (ICP) framework.

Furthermore, Meng et al. 2021 extracts edge and planar fea-
tures by evaluating the large and small values of the local surface
smoothness over the points of a 3D laser, respectively. ICP esti-
mates the laser odometry while the histogram cross-correlation of
the Normal Distribution Transform (NDT) that computes local
probability density functions of the surface smoothness identifies
the loop closures. The proposed methods outperformed an ICP-
based SLAM approach on Absolute Trajectory Error (ATE) in the
experiments. As for Bosse and Zlot 2009, 2D point clouds seg-
mented into connected components are clustered at regions of high
curvature to get high curvature keypoints from multiple scans.
The proposed descriptor based on the moment grid improves out-
door place recognition relative to SIFT or Hough transform peaks
due to the moment grid descriptor includes higher order of mo-
ments relative to other descriptors.

Poles are structures also used for long-term localization. Schae-
fer et al. 2021 retrieves the 2D coordinates of poles registered with
a 3D laser. Results demonstrated the ability of reliable long-term
localization over more than one year. In addition to poles, Berrio,
Ward, et al. 2019 extracts also corner features from the 3D laser
point cloud, being able to localize over a 6 month experiment at
different times of the day.

Another possible application of environment structure features
found in the included works is in crop fields for agriculture. Che-
brolu et al. 2018 formulates an aerial image registration algorithm
based on the positions of the crops and the gaps between them re-
maining the same over time. The method computes a vegetation
mask by exploiting the Excess Green Index (ExG) of RGB images.
Using the Hough transform to find lines between vegetation, the
center of the crops are the peaks on vegetation histograms perpen-
dicular to the rows. The testing results demonstrated invariance
of the registration algorithm to changing conditions caused by
weather and crop growth over one month.

5.1.4 Convolutional Neural Networks (CNN)

A more recent direction noted in the included works is the use
of CNN. The evolution of deep learning in computer vision led
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to researching how CNN could be used for generating feature
representations robust to appearance variance, as an alternative
to handcrafted features. CNN-based features are known to offer
more discriminate power compared to handcrafted features while
being able to be more robust in challenging environments (Taisho
and Kanji 2016). The feature representations can be retrieved
from the layers of CNN, with earlier ones usually extract low-level
features such as edges or corners, while deeper layers extract high-
level ones such as semantic structures (Chen, L. Liu, et al. 2018).
In addition to using the CNN feature maps, the included works
also used CNN for semantic segmentation to extract semantic
information from sensor data and appearance-content disentan-
glement for generating appearance-invariant descriptors.

CNN feature maps One application of CNN features is for
image place recognition as a classification task. Instead of com-
paring pairs or triplets of images, the place recognition is formu-
lated as a classification problem (Chen, L. Liu, et al. 2018). In
Taisho and Kanji 2016, the layer fc6 (fully connected) of AlexNet
extracts 4096-dimensional CNN features from box regions in the
query image, then reduced to 128-dimensional features with Prin-
cipal Component Analysis (PCA). Comparing these features to
the ones extracted from the reference images in a cross-domain li-
brary (collected in different routes and seasons), Taisho and Kanji
2016 defines the query image as a set of nearest neighbor library
features (similar to BoW) and employs the image-to-class distance
with the Naive Bayes Nearest Neighbor (NBNN) method. The
proposed PCA-NBNN descriptor outperformed BoW (Sivic and
Zisserman 2003) and FAB-MAP (Cummins and Newman 2008b)
on a cross-season experiment in precision-recall metrics. Chen, L.
Liu, et al. 2018 also formulates a classification task for place recog-
nition, using a VGG16 network for generating local features, while
adding a convolutional a fully-connected, and a softmax layer to
learn the correct label output for classification. The proposed ar-
chitecture outperformed FABMAP and SeqSLAM (Milford and
Gordon. F. Wyeth 2012b) on seasonal changing conditions.
Place recognition can also be formulated as a coarse to fine

image matching problem. An initial set of reference image candi-
dates is obtained based on nearest neighbor distances of image-
wise global descriptors (Camara et al. 2020; B. Liu et al. 2021;
Xin et al. 2017), while local features are used for obtaining a
more accurate estimation based on spatial matching (Camara et
al. 2020; Xin et al. 2017) or geometrical verification (B. Liu et al.
2021). Xin et al. 2017 extracts both global and local features us-
ing a convolutional layer (conv3 ) of the AlexNet network, where
local features are extracted from regions of the image with candi-
date regions sorted by the objectness score (improves viewpoint
invariance). Instead of using AlexNet, Camara et al. 2020 uses
layers from VGG16 for feature extraction, specifically, conv5-2
and conv4-2 layers for global and local features, respectively. As
for B. Liu et al. 2021, the MobileNetV2 network is selected for
global feature extraction due to its computational efficiency. How-
ever, their work uses grid-based motion statistics with ORB local
features instead of CNN features.
Deep features can be combined with handcrafted features and

preprocessing techniques to facilitate learning and further en-
hance their discriminative properties. K. Zhang et al. 2022 uses
the Key.Net network for keypoint generation, given that combines
handcrafted and learned filters to detect keypoints at different
scale levels, helping reduce the number of learnable parameters.
Combined with HardNet for descriptor extraction, the method
outperformed a BoW approach in viewpoint and illumination
changing conditions. H. Yin, Y. Wang, et al. 2020 proposes a

handcrafted rotational invariant feature to be the input of a Loc-
Net network for 3D laser-based place recognition. The proposed
handcrafted feature reduced the complexity of the network and
improved the efficiency on similarity evaluation. As for prepro-
cessing techniques to help in training, Li Sun et al. 2021 uses a the
Gamma transform and other transformations (translation, scale,
in-plane rotation, and symmetric perspective distortion) to gen-
erate day-nigh image pairs from daytime ones. These images are
used for training the proposed visual descriptor DarkPoint on the
keypoints generated by the SuperPoint keypoint detector. Dark-
Point achieved approximately 1.7× more inliers during navigation
than the original SuperPoint in day-night experiments.

Given that feature maps can extract different types of features
depending on the deepness of the respective layers, J. Zhu et al.
2018 extracts features from three layers (conv3-3, conv4-4, conv5-
3 ) of a VGG16 network and concatenates these to form a global
descriptor for an image. A cross-season experiment showed an in-
creasing performance in precision-recall when the single layer gets
deeper. These results are conformal to ones obtained in Z. Yang
et al. 2021. The conv5-3 achieved higher accuracy than conv4-4
and conv3-3, indicating that the spatial information increases in
deeper layers improving the place recognition. J. Zhu et al. 2018
also showed that fusing the three layers used in their work by con-
catenating them into a global descriptor improves even further the
place recognition performance. Moreover, Yu et al. 2019 chooses
DenseNet for feature extraction due to this network reusing fea-
ture maps, i.e., connecting all layers with the same map sizes
directly with each other. Then, Yu et al. 2019 uses the Weighted
Vector of Locally Aggregated Descriptor (WVLAD) encoding for
obtaining a global descriptor of the image. The proposed descrip-
tor improved precision-recall over other architectures (VGG16,
ResNet50) and to a BoW place recognition method.

The included works also focus on 3D LiDAR and radar place
recognition with CNN features. However, the raw point cloud
data is not directly suitable for the CNN inputs. The most
common solution is to project the point clouds onto the surface
plane, the so-called Bird’s-Eye View (BEV). P. Yin, L. Xu, et al.
2018 encodes directly the BEV of a 3D LiDAR into a low di-
mensional global feature using a bidirectional Generative Adver-
sarial Network (GAN). Using the extracted features within the
SeqSLAM (Milford and Gordon. F. Wyeth 2012b) framework,
the proposed method improved the precision-recall metrics over
the original SeqSLAM in changing conditions. Similarly, Mar-
tini et al. 2020 extracts a global descriptor from the BEV using
NetVLAD but with the point cloud from a radar sensor. G. Kim,
B. Park, et al. 2019 formulates the point cloud descriptor Scan
Context Image (SCI), also known as ScanContext. The 3D point
cloud is converted to a polar representation of BEV named Scan
Context (SC) matrix, where each cell of the 2D matrix contains
the maximum height of points around a scene. Using the jet col-
ormap to transform the SC into the SCI as a three-channel image
suitable for the CNN inputs, G. Kim, B. Park, et al. 2019 uses
a LeNet network for feature extraction and place classification.
The proposed architecture outperforms PointNetVLAD (Uy and
Lee 2018) and the handcrafted point cloud feature M2DP (He
et al. 2016) in precision-recall. Based on SCI (G. Kim, B. Park,
et al. 2019), X. Xu et al. 2021 proposes the Differentiable Scan
Context with Orientation (DiSCO) descriptor. This method dis-
tinguishes from SCI by applying the Fast Fourier Transformation
(FFT) to convert the polar BEV representation to the frequency
domain. Given that frequency spectrum is translation-invariant,
DiSCO becomes rotation invariant. The results showed a superior
performance to SCI and PointNetVLAD in changing conditions.
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Similar to DiSCO (X. Xu et al. 2021), H. Yin, X. Xu, et al. 2021
also uses SCI and FFT for feature extraction of point clouds. The
difference is the use of a shared U-Net architecture to extract
features of 3D LiDAR and radar data, training simultaneously
the radar-to-radar, LiDAR-to-radar, and LiDAR-to-LiDAR place
recognition tasks. The proposed method had similar or improved
performance in these three recognition tasks relative to SCI and
DiSCO. In addition to BEV, P. Yin, J. Xu, et al. 2021 also uses
the spherical view. Using two separated 2D CNN following the
convolutional layers in VGG16 to encode local features, a VLAD
layer extracts place features from each view (BEV and spheri-
cal). A tightly-coupled fusion network fuses the features of each
view. The proposed FusionVLAD descriptor outperformed Point-
NetVLAD (Uy and Lee 2018) and M2DP (He et al. 2016) on the
recall metric in appearance variant conditions.
Lastly, a trend found in the included works to improve the dis-

criminative power of CNN features is the use of triplets (B. Liu
et al. 2021; Martini et al. 2020; Piasco et al. 2021; Li Sun et al.
2021; H. Yin, X. Xu, et al. 2021; P. Yin, J. Xu, et al. 2021) in
training. A triplet consists in an anchor image, a positive corre-
sponding match, and an unrelated negative example. Triplet loss
tries to minimize the matching distance between positive pairs
(anchor, positive) and maximize that between negative ones (an-
chor, negative) (Li Sun et al. 2021). Additionally, Piasco et al.
2021 uses also depth information during training, given that depth
maps and their geometric information remain more stable across
time than visual ones. A CNN encoder aggregates local features
to produce a global descriptor, while a decoder reconstructs the
scene geometry from the features obtained by the encoder. Then,
triplet loss during training uses the fusion of image and depth map
descriptors. In the experiments, the depth map training supervi-
sion provided building shapes understanding while improving the
performance compared to not using side information.

Semantic segmentation Instead of using the feature maps
of CNN, the networks can also segment raw data to extract se-
mantic information. Naseer, Oliveira, et al. 2017 uses the Fast-
Net network for extracting saliency maps for stable structures.
These structures considered in training are man-made ones such
as buildings or signs that are presumable to be stable in long-
term. Then, the salient maps boost the importance of features
retrieved from a convolutional layer (conv3 ) for place recogni-
tion. The proposed method improved the precision-recall metrics
compared to HOG and place recognition without boosting stable
structures on a cross-season experiment.
The included works also use semantic features from pixel-wise

labeling of image data. T. Qin et al. 2020 modifies an U-Net for se-
mantic feature detection specifically trained for parking lots. This
network generates pixel-wise segmentation of lanes, parking lines,
guide signs, speed bumps, free space, obstacles, and wall, used
in both localization and feature mapping. In the experiments,
the semantic features were robust to light changes, texture-less-
regions, motion blur, and appearance change. Berrio, Worrall, et
al. 2021 also segments an image with pixel-wise labels, discrim-
inating 12 classes: pole, building, road, vegetation, undrivable
road, pedestrian, rider, sky, fence, vehicle, and unknown. Using
the extrinsic parameters of the 3D laser–camera, the pixel-wise
semantic information from the labeled images is transferred to the
3D point cloud. Then, pole and corner features are retrieved from
the projected point cloud onto the horizontal plane based on the
Inertial Measurement Unit (IMU) data for localization and map-
ping. The long-term evaluation of the map corrections showed a
decrease over time demonstrating the stability of these features

in outdoor environments. In addition to pixel-wise segmenta-
tion, G. Singh et al. 2021 connects the regions of each instance
of the semantic classes to characterize them in terms of their
centroid in 3D camera coordinates (using also depth information
from a stereo camera) and connections to other regions. The
proposed global semantic-geometric descriptor defines a location
in terms of how the pairs of semantic entities are distributed in
the scene. The proposed method obtained higher accuracy when
compared to SeqSLAM (Milford and Gordon. F. Wyeth 2012b),
FAB-MAP (Cummins and Newman 2008b), and a BoW (Sivic
and Zisserman 2003)-based place recognition methods in a highly
dynamic outdoor experiment.

Similar to G. Singh et al. 2021, graph embedding of semantic
features also tries to integrate the relationships between features
for improving the robustness of place recognition. Han, Beleidy,
et al. 2018 proposes the Holism-And-Landmark Graph Embed-
ding (HALGE) descriptor. In the training phase, an image is
represented by its global HOG descriptor and semantic features
(static or stable elements such as houses, traffic signs, trees). A
graph relates the training images from different domains and lo-
cations, where the nodes are images or the semantic classes, and
the edges represent the presence of a semantic class in an im-
age or if two images represent the same location. Then, HALGE
learns a projection matrix of each template database image from
the graph to generate an appearance invariant feature from the
original global HOG descriptor. The proposed method improved
the performance over HOG, SURF, and color and AlexNet-based
descriptors in changing conditions. As for Gao and Hao Zhang
2020, the proposed method formulated the place recognition task
as a graph matching problem. The graph represents each seman-
tic feature (same classes as in G. Singh et al. 2021) by its cen-
tral position in the image coordinate frame, while the edges that
relate the features represent theirs spatial distance and angular
relations, and their appearance similarity (Euclidean distance of
local HOG descriptors). Then, a graph optimization optimizes
a correspondence matrix between the features in the query to
the ones in the template images for obtaining the final match-
ing scores, assuming a long-term worst-case scenario (maximizes
the distance and angular similarities of features that have the
least similar appearance). The proposed method outperformed
Han, H. Wang, et al. 2018 and an HOG-based place recognition
method on recall at higher precision in outdoor experiments with
seasonal and weather changing conditions.

Semantic information can also be retrieved from other sensors
such as 3D LiDAR. Z. Wang et al. 2021 uses the RangeNet++
network for inferring semantic labels of 3D point clouds from 3D
LiDAR data. Even though the network can label 10 categories,
the method only used the categories representative of pole-like
objects (poles, tree trunks). The method achieved a higher local-
ization accuracy than SCI (G. Kim, B. Park, et al. 2019) in an
outdoor experiment with moving elements and dense vegetation.

Appearance-content disentanglement A location has dif-
ferent representations due to weather or seasonal changing con-
ditions in the long-term perspective, among other factors. In
terms of image data, the information retrieved from these rep-
resentations could be separated in terms of its contents and ap-
pearance. The included works studied this possibility by learning
the appearance-content disentanglement for feature representa-
tion that assumes the decomposition of the images latent space
into apperance and content spaces (C. Qin et al. 2020).

Oh and Eoh 2021 adopts the Variational AutoEncoders (VAE)
architecture that uses an encoder to generate the appearance and
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content feature vectors, while a decoder reconstructs the origi-
nal image from these vectors. Instead of using a single encoder,
C. Qin et al. 2020 proposes the Feature Disentanglement Network
(FDNet) consisting of independent content and an appearance en-
coders, a decoder, and also an appearance discriminator to ensure
the vectors are unrelated. Even though the content feature vector
demonstrated to invariant to seasonal changes, the method signifi-
cantly reduced its performance on high viewpoint variance, where
the content vector changed greatly while the appearance one did
not changed at all. This results indicated that viewpoint change
is considered to be content in the proposed algorithm. With a
similar architecture to C. Qin et al. 2020, Tang, Y. Wang, Tan,
et al. 2021 also considers a place domain discriminator to ensure
that the content discriminator only contains the place information
and not also its appearance, while also using data augmentation
in training to increase robustness against viewpoint changes. In
the experiments, all images generated from a zero-appearance fea-
ture vector looked similar, while their place information remains
conserved indicating that the proposed method can disentangle
the input image across appearance changes.

Even though Hu et al. 2022 does not extract appearance and
content independent features from the images, the proposed archi-
tecture builds on the same assumption of appearance-content dis-
entanglement that a content representation of a location is shared
across multiple domains. Hu et al. 2022 adopts a multi-domain
image-to-image architecture that expands the CycleGAN to mul-
tiple domains, with domain-specific encoder-decoder pairs and
discriminators. For obtaining a shared-latent feature across dif-
ferent domains, the descriptor is learned using the feature consis-
tency loss for domain-invariance. In the experiments, even though
night-time images were not included in the training, the model
was able to learn the content space of the places and outperformed
FAB-MAP (Cummins and Newman 2008b).

5.1.5 Feature stability

Although long-term handcrafted or CNN-based features intend
to remain invariant to changing conditions of the environment,
their long-term stability is not guaranteed to be the same for
all detected features. In this context, Dymczyk, Stumm, et al.
2016 proposes a CNN architecture based on AlexNet for evalu-
ating the feature stability for long-term visual localization. The
network is trained using a set of labeled data pairs (image patch
around the feature keypoint, label) or triplets (adds depth infor-
mation), where the feature label is binary – stable or unstable
– computed for training by assessing the number of the feature
observations over multiple sessions. In the experiments of over
15 months and changing conditions, the proposed method out-
performed random selection of features for localization in terms
of f-score, while the addition of depth information improved the
method’s performance.

Other approaches in the included works define predictor func-
tions for evaluating the feature stability. Berrio, Ward, et al. 2019
defines the following predictors to evaluate the pole and corner
features extracted from a 3D laser: the number of observations,
maximum detected and possible spanning angle, maximum length
driven while observing the feature, maximum detection area, and
concentration ratio. A regression algorithm adjusts the weights
of each predictor based on the number of observations across ses-
sions to define the scoring function. A threshold based on the
histogram of the feature scores determines which features to in-
clude in the long-term map. Although Berrio, Worrall, et al. 2021
also uses the concentration ratio and maximum driven length as

predictors, their approach simplifies the selection by including
features that have been observed for more than 1m and conserv-
ing the ones in sparse density areas to avoid localization failures.
Berrio, Worrall, et al. 2021 also defines a visibility measure re-
lated to the maximum range from where the feature is detected
at a particular angle and the respective probability of detection
to compute only the feature metrics when it is a match or if both
not detected and not occluded.

Furthermore, Egger et al. 2018 and Derner et al. 2021 propose
methodologies for updating the map upon detecting changing con-
ditions of the environment. Egger et al. 2018 defines a minimum
time interval between evaluations and the number of reconfirma-
tions before updating the map with new stable and persistent
features. The change in the conditions is determined by an over-
lap measure between the current view and the existing map that
measures the relative amount of matched surfels extracted from
a 3D laser. The proposed methodology led to a successful de-
ployment of a robot over 18 months in changing conditions. Even
though Derner et al. 2021 does not add features after creating
the visual database used as a map, the method updates the fea-
ture weights saved that represent their stability and reliability
for localization. After computing the transformation between the
current view and the best database match, the descriptors of the
latter are compared with their transformed counterparts, i.e., re-
projecting the keypoints of the database on the query image us-
ing the transformation and re-compute the respective descriptors.
The descriptors similarity, a spatial and temporal constraints, and
the number of successful matches determine if the environment
changed to update the feature weights based on their previous
value and on the descriptors similarity. The method outperformed
the localization without the weights update.

Instead of assuming observability independence, the observa-
tion of the features may be correlated between them. Nobre et
al. 2018 models the feature persistence using a Bayesian filter in
a time-varying feature-based environmental model. The model
considers the correlation between features without assuming no
specific-sensor feature descriptor. The approach follows a surviv-
ability formulation where each map feature has a latent survival-
time (represents the time when the feature ceases to exist) and a
persistence variable. The marginal persistence is estimated prob-
abilistically given the detection sequence of all features, following
the intuition that if a set of features is co-observed and geometri-
cally close, the likelihood that they belong to the same semantic
object is high. The marginal feature persistence weights the data
associations. The method was able to maintain track of the local-
ization and updating the map accordingly in a semi-static chang-
ing environment. Luthardt et al. 2018 proposes the Long-term
Landmarks (LLamas) as persistent features, where the candidate
points are the inlier feature tracks from visual odometry (short-
term stable points). Considering that the map holds quality and
viewpoint information, the correlated quality between neighbor-
ing viewpoints is modeled by Markov Random Field. The exper-
iments showed that the identified LLamas over a 2 month exper-
iment consisted on persistent structures in the environment such
as curbstone, sign, or a street lamp, discarding varying structures
like vegetation, parked carts or shadows. As for Bürki et al. 2019,
the proposed appearance equivalence class measure models the
probability of observing the feature given the past map sessions.
This model expects to observe again the same features together
with those already co-observed in the past. Although the pro-
posed selection measure outperformed the random selection of
features in changing environments, the method suffered from the
lock-in effect due to abrupt changes in the environment not being
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reflected in the observation sessions.

5.1.6 Multi-modal features

Another type of approach to feature-based localization and map-
ping is the use of multi-modal features, given that these features
can be more discriminative than only considering a single fea-
ture space (Latif, G. Huang, et al. 2017). Filliat 2007 proposes
a two-stage voting scheme for localization integrating 3 different
feature spaces: SIFT, and local color and normalized gray level
histograms. First, each feature space votes for the estimated lo-
cation based on an incremental dictionary, without considering
features seen in all known locations. Then, the votes of the dif-
ferent modalities are joined into a score that determines which
location is the correct one. On the contrary, Latif, G. Huang, et
al. 2017 tested the use of multi-modal features – gist descriptors
and feature maps from a CNN – by concatenating their descrip-
tors into a single vector. In both Filliat 2007 and Latif, G. Huang,
et al. 2017, using multiple feature spaces improved the localization
performance over considering a single feature space.
The included works also cover a more specific approach to

multi-modal features by formulating the place recognition task
as a regularized sparse optimization problem. The optimization
uses training data for learning the weight of each feature modal-
ity when computing the matching score between the query and
database images (Han, H. Wang, et al. 2018; Han, X. Yang, et
al. 2017; Siva, Nahman, et al. 2020; Siva and Hao Zhang 2018).
Han, X. Yang, et al. 2017 formulates the Shared Representative
Appearance Learning (SRAL) for fusing multi-modal visual fea-
tures from 6 different spaces applied on downsampled images as
scene descriptors: color histograms, gist, HOG, Local Binary Pat-
terns (LBP), SURF, and AlexNet (conv3 ). SRAL outperformed
the individual feature spaces and also the concatenation of the 6
spaces into a single descriptor. Han, H. Wang, et al. 2018 pro-
poses the RObust Multimodal Sequence-based (ROMS) loop clo-
sure detection, that is the adaptation of the regularized optimiza-
tion to image sequence matching. The modalities considered are
LDB (Arroyo et al. 2018), gist, Faster R-CNN, and ORB. ROMS
outperformed both FAB-MAP (Cummins and Newman 2008b)
and SeqSLAM (Milford and Gordon. F. Wyeth 2012b) in ap-
pearance changing conditions, while improving the performance
over considering a single feature space. In addition to learn dis-
criminative modalities, Siva and Hao Zhang 2018 formulates the
Fusion of Omnidirectional Multisensory Perception (FOMP) that
learns the weights representative of discriminative views (omnidi-
rectional vision) and considers both image and depth modalities of
features. The feature spaces considered are gist, HOG, LBP, and
AlexNet (conv3 ). In a cross-season experiment, the depth-related
modalities had more importance than the image ones, indicating
that the latter are more susceptible to appearance change. Also,
FOMP outperformed feature concatenation and only using the
front field of view. As for Siva, Nahman, et al. 2020, the proposed
Voxel-Based Representation Learning (VBRL) method identifies
representative feature modalities and voxels from 3D point cloud.
The feature spaces considered are the HOG in the XY, XZ, and
YZ planes, the subvoxel occupancy scene descriptors, and the co-
variance points containe within each voxel. VBRL outperforms
only considering discriminative voxels or features, and also out-
performed descriptor concatenation in changing conditions.

5.1.7 Image sequence matching

The temporal coherence of a sequence of visual data improves the
performance of long-term place recognition in appearance variant

conditions due to higher discriminative properties while exploring
the temporal sequential relationships of the images (V. A. Nguyen
et al. 2013; Ouerghi et al. 2018). Ouerghi et al. 2018 builds on Se-
qSLAM (Milford and Gordon. F. Wyeth 2012b) by proposing the
Sequence Matching Across Route Traversals (SMART) system.
The original SeqSLAM defines a location as a sequence of images
by searching first for the best sequence match and then perform-
ing a local search for place recognition. Given the SeqSLAM’s
drawback on lack of viewpoint invariance due to global matching,
SMART introduces a variable offset in the image match to com-
pare each frame with the database within a range of image offsets,
while also fusing the place recognition with visual odometry using
an Extended Kalman Filter (EKF). The fusion of topological with
local metric localization improved the mean error distance error
over visual odometry in changing conditions, while SeqSLAM only
provides a location-wise estimation. Han, H. Wang, et al. 2018
compared frame-to-frame matching to the proposed ROMS al-
gorithm that models frame correlation and formulates the image
sequence matching problem into a regularized sparse optimization
(in addition to learning the features modalities). ROMS improved
the place recognition over frame-to-frame matching, while outper-
forming SeqSLAM (Milford and Gordon. F. Wyeth 2012b) and
FAB-MAP (Cummins and Newman 2008b).

Moreover, Vysotska et al. 2015 defines image sequence match-
ing between a query and a database as a data association graph,
encoding in the graph the cost proportional to the similarity be-
tween two images given by a HOG descriptor (Naseer, Suger, et
al. 2015). Instead of formulating the sequence matching as a net-
work flow optimization problem, Vysotska et al. 2015 estimates
the shortest path in the graph. This approach requires a rough
global pose estimation for the images (e.g., GPS) to search ef-
ficiently through the graph for possible matches. Naseer, Suger,
et al. 2015 leverages the temporal sequence of images by requiring
ordered sequential images in the database. The state transition
model of the Bayes filter allows transitions between all places but
modeled with different probabilities, while a sequence filtering
searches for sequences of local peaks of matching images. The
sequential information is accounted by imposing a minimum se-
quence length and maximum gap in frames between two matches
to avoid false-positives. Both Vysotska et al. 2015 and Naseer,
Suger, et al. 2015 outperformed SeqSLAM (Milford and Gor-
don. F. Wyeth 2012b) and network flow in the experiments.

Although an image sequence is a set of images, the sequence
itself can be described by a descriptor. In both Arroyo et al. 2018
and J. Zhu et al. 2018, the sequence descriptor is the concatena-
tion of the single images, and the sequence matching is the com-
putation of Hamming distance between the descriptors. Arroyo et
al. 2018 uses the LDB binary descriptors for single images, and the
experiments showed a lower accuracy for single image matching
in long-term compared to the sequence descriptor. Also, the pro-
posed method outperformed FAB-MAP (Cummins and Newman
2008b) and SeqSLAM (Milford and Gordon. F. Wyeth 2012b)
in terms of precision-recall metrics. As for J. Zhu et al. 2018,
the feature maps from VGG16 are normalized into a binary de-
scriptor. The method outperformed FAB-MAP, SeqSLAM, and
ABLE (Arroyo et al. 2018) in a cross-season experiment.

Lastly, V. A. Nguyen et al. 2013 proposes an approach to iden-
tify topological places based on an image stream. The method
uses a clustering scheme K-iteration Fast Learning Neural Net-
work (FLANN) to organize the visual input images into scene to-
kens. These tokes are the input to a Spatio-Temporal Long-Term
Memory (LTM) architecture equivalent to an NN-based memory
structure, in which the topological locations defined as image se-
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quences are stored in the memory structure (LTM cells). Then,
the proposed architecture models the topological structure of an
environment by linking the scene clusters into a temporally or-
dered sequence using a one-shot learning mechanism and only
requiring a single representation of the sequence. A pooling sys-
tem determines the current topological location of the robot. The
method was able to localize different topological sequences in ap-
pearance changing conditions.

5.1.8 Sensor modalities

The appearance variance in the environments affects visual sen-
sors as well as ranging-based ones such as 2D/3D lasers or radar.
Visual data is affected by the illumination changes of day-night
situations, the weather changing conditions, and the changes on
visual data caused by the different seasons of the year. Laser-
based localization does not suffer from illumination variance.
However, the laser is affected by low reflections or occlusions in
unfavorable conditions such as fog, direct light, or moving ele-
ments in the scene. As for radar, the sensor is invariant to lighting
and weather changes. Still, noisy measurements affect the per-
formance of radar-based localization and mapping in long-term
scenarios (H. Yin, X. Xu, et al. 2021).

Consequently, long-term localization and mapping algorithms
should also consider fusing different sensor modalities to use
the advantages of each one and improve the overall robustness
to appearance changes. In addition to the works already dis-
cussed previously,Pérez et al. 2015, Coulin et al. 2022, and T.-M.
Nguyen, M. Cao, et al. 2022 also focus on appearance invariance
upon changing environments while using more than one modal-
ity. Pérez et al. 2015 introduces an appearance-based particle
injection in the Monte Carlo Localization (MCL) framework to
account the visual place recognition of FAB-MAP (Cummins and
Newman 2008b). The BoW model of FAB-MAP is created us-
ing visual data recorded at different hours and changing condi-
tions. Then, using the BoW model and a 2D occupancy grid
as prior, the MCL fuses the odometry (wheel encoders and IMU
data), the 2D laser, and the loop closure detection from FAB-
MAP. The method did not need any manual recovery even in the
case of global localization in a crowded environment with signif-
icant lighting changing conditions. Coulin et al. 2022 proposes
the use of a magnetic map with a Multi-State Constraint Kalman
Filter (MSCKF). The magnetic map is built offline using visual-
inertial SLAM in conjunction with global optimization to provide
ground-truth positions for the map readings. As for localization,
the tightly-coupled visual-inertial MSCKF reuses the magnetic
map, while simultaneously estimating the magnetometer bias to
avoid calibrating it every session. The experiments compared
the proposed method to a visual-inertial SLAM algorithm with
a visual map on a run one year after the creation of the map.
The proposed method outperformed the other one given that vi-
sual data was variant to appearance changes in the environment,
while reducing the ATE from 2.4m to 0.033m compared to us-
ing vision-only in the MSCKF. As for T.-M. Nguyen, M. Cao,
et al. 2022, the proposed Visual-Inertial-Ranging-Lidar (VIRAL)
sensor fusion algorithm includes an IMU, 3D LiDAR, a camera,
and Ultra-Wide-Band (UWB) data for localizing an aerial vehicle
in indoor environments, with the first three sensor modalities for
odometry and UWB for absolute positioning in the world frame.
VIRAL formulates cost functions of the sensors evaluated at every
time step for inclusion in the optimization. The method improved
over ORB-SLAM3 (Campos et al. 2021) in the experiments per-
formed with an aerial vehicle in changing lighting conditions.

5.2 Dynamics modeling

This section analyzes included works focused on modeling and
identifying dynamic elements in the environment, categorized in
DE1 as dynamics (see Table 7). Even though Section 5.1 already
discusses appearance changes in the environment that can include
moving elements in the scene, this section focuses on how the
methods identify these elements and handle them for long-term
localization and mapping. The discussion on dynamics modeling
is organized into the following topics: specific map representa-
tions used to model or deal with dynamic elements in the scene,
identification of dynamic elements matching the current observa-
tion to the current map, future prediction of dynamic properties
of scene elements, and semantic identification of dynamic objects.

5.2.1 Map representation

Inspired by the human memory, Dayoub, Cielniak, et al. 2011
and Bacca et al. 2013 adapt the multi-store model of Atkinson
and Shiffrin 1968 for robot mapping. This model divides the
memory into three stores: Sensory Memory (SM) to save the per-
ceived information, Short-Term Memory (STM), and Long-Term
Memory (LTM). Three mechanisms move information between
memories: selective attention for SM to STM, rehearsal to com-
mit information from STM to LTM or which one is forgotten,
and the retrieval mechanism to move unused information from
LTM back to STM. Dayoub, Cielniak, et al. 2011 implements two
types of state machines for rehearsal and retrieval mechanisms of
the STM and LTM. In rehearsal, a STM feature moves closer to
LTM or moves back to the initial state (or forgotten if already
in that state) when observed consecutively or if not, respectively.
Similar for retrieval, where a feature in LTM moves to the ini-
tial state or closer to forget if observed in the current view or
not. Consequently, LTM and STM save the most static and dy-
namic features based on their observability in the current view,
respectively. In a changing environment, the method decreased
the localization failure rate compared to a static view. Instead
of using a state machine, Bacca et al. 2013 implements a Feature
Stability Histogram (FSH) depending on the feature observabil-
ity to distinguish between STM and LTM features using k-means
clustering. This modification allows that an input feature in SM
can bypass STM and become part of LTM depending on the fea-
ture strength. The method was able to filter out pedestrians from
2D laser and camera data and achieved a more accurate repre-
sentation of the environment compared to a static approach.

Although Biber and Duckett 2009 does not adopt specific mem-
ory mechanisms, they implement STM and LTM maps. The
method implements a dynamic map as a set of local maps,
each maintaining submaps representing different timescales. The
timescale parameter of each submap determines probabilistically
when to add samples from 2D laser scans. The dynamics of the
environment are represented by using 5 different timescales, where
the smaller one (∼3.1s) represents an STM map updated at every
instant and the other 4 timescales (∼0.43runs, 0.43days, 3.1days,
and 13.5day) are LTM submaps updated after each season or
daily. Instead of only localizing on the LTM maps as inDayoub,
Cielniak, et al. 2011 and Bacca et al. 2013, Biber and Duckett
2009 selects the best representation of both STM and LTM maps
that best explain the sensor data. In a 5 weeks experiment, the
localization with a dynamic map improved while a static repre-
sentation degraded over time, while the timescales led to static
parts as walls emerging in LTM and dynamic elements disappear-
ing from the STM maps.

Similar to Dayoub, Cielniak, et al. 2011 and Bacca et al. 2013,
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two maps can represent a more stable and a more dynamic repre-
sentations of the environment. In Walcott-Bryant et al. 2012, an
active map represents the most current state of the environment,
including parts that did not change from previous passes and ob-
jects added to the environment. A dynamic map only saves the
points of a 2D laser scan that changed over time. K. Wang et
al. 2019 uses a tracking map with short-term static points and
a long-term map only containing long-term static points identi-
fied by a semantic segmentation module with ORB-SLAM2 (Mur-
Artal and Tardós 2017). Also, S. Zhu et al. 2021 creates offline a
semi-dynamic map and a static one, where the former has semi-
dynamic objects (parked cars in a parking lot environment) and
the latter has both static and semi-dynamic objects. The main
goal of representing two different dynamics is usually to favor the
most stable one in the long-term. Walcott-Bryant et al. 2012
and K. Wang et al. 2019 only use static parts in the most cur-
rent representation of the environment (active and the long-term
maps, respectively) for localization. In the experiments, Walcott-
Bryant et al. 2012 showed that their method was able to identify
static parts, although it was affected by false positives and neg-
atives, and by the blur effect in the 2D grid map. K. Wang et
al. 2019 improved the ATE in a dynamic environment over ORB-
SLAM2 (Mur-Artal and Tardós 2017) and DynaSLAM (Bescos et
al. 2018). As for S. Zhu et al. 2021, its MCL framework reduces
the weight corresponding to observations of moved semi-dynamic
objects. The method improved the localization in a parking lot
compared to a standard MCL.

5.2.2 Map matching

Environment dynamics can be identified by comparing the current
observation to the map. Assuming a prior vector map as a per-
manent map, Biswas and Veloso 2017 determines the probability
of observed features being long-term ones by the 2D laser scan-
to-map matching distance. Short-term features are determined
by the scan-to-scan matching distance, while the remaining ones
are considered dynamic features and not considered for localiza-
tion. Compared to MCL with a static map and to Tipaldi et al.
2013, Biswas and Veloso 2017 had lower localization error in a
parking-lot environment. However, the method would not han-
dle semi-static changes. Instead of using a permanent map, M.
Zhang et al. 2019 maintains a Signed Distance Field (SDF) rep-
resentation based on a prior occupancy map. The method rejects
dynamic points identified by range flow and updates the SDF-
based map with semi-static changes observed in the scan-to-map
difference. Compared to MCL in a semi-static environment, the
proposed method had lower pose errors and an improved repre-
sentation of the environment. Boniardi et al. 2019 detects semi-
static changes leveraging the ICP scan-to-map consistency and a
CAD prior of the environment, and updates the map accordingly.
The method was capable of maintaining a consistent map when
dealing with substantial reconfiguration of the environment. Du
et al. 2022 minimizes the Gibbs energy defined on the proposed
Long-term Consistent Conditional Random Field (LC-CRF) for
detecting dynamic points, considering that these points have often
a large reprojection error in frame-to-map matching and points
tend to have the same dynamic properties as the neighbor ones.
In a dynamic scene, LC-CRF achieved lower ATE than ORB-
SLAM (Mur-Artal, Montiel, et al. 2015).

Furthermore, Pan et al. 2019 and Ding, Y. Wang, Xiong, et al.
2020 leverage clustering properties of the observations evaluating
the observations count. Pan et al. 2019 segments the points of a
3D LiDAR point cloud into different clusters assuming that dy-

namic points do not appear frequently in the same place. The
map only considers clusters that appear in same location more
than 10 times. As for Ding, Y. Wang, Xiong, et al. 2020, the
method build on the assumption that dynamic and static parts of
the environment have a clustering property relative to its neigh-
bors (similar to Du et al. 2022). The number of observations
in different sessions combined with its consistency relative to its
neighbors determine if a map point is static throughout the ses-
sions. Both representations of the environment in Pan et al. 2019
and Ding, Y. Wang, Xiong, et al. 2020 were stable to structural
changes in the environment.

The concept of ray tracing is also used by the included works
to handle dynamic changes. Lázaro et al. 2018 uses ray tracing to
exploit the free space information. When comparing two 2D point
clouds from a viewpoint, the ray tracing evaluation identifies new
objects added to the scene (observed point closer to viewpoint
than the old one) and outdated information (observed point fur-
ther way), allowing the identification of dynamic changes and
having an up-to-date representation for localization. Given that
ray tracing in 3D is expensive in terms of memory and requires
dense map representations, Pomerleau et al. 2014 uses directly the
sparse point cloud from a 3D laser. The map points are associated
with each single reading in small conical apertures in spherical co-
ordinates, updating the observed points closer than the mapped
ones and the further ones are left untouched. The approximation
of ray tracing results are used to update the probability of points
in the map to be dynamic, based on a Bayesian approach. The
probability of being dynamic can be used in ICP to not trust
dynamic points and indeed, in the experiments, Pomerleau et al.
2014 had a more precise and cleaner map of the environment than
using a standard ICP matching. Instead of weighting the map
points, An et al. 2016 proposes the Dynamic Edge Link (DEL)
to model the dynamics in the edges of a pose graph instead on
the data itself. The observation of moving obstacles between two
poses change the weight of the respective edge, decrease gradually
the weight until not detecting the obstacle. Integrating DEL in
an exploration scheme, nodes with a edge weight average lower
than a certain threshold, meaning frequent moving obstacles or
changed structure near that node, are not considered for explo-
ration due to the robot may be unable to move to that position.

Although the standard NDT representation does not model free
space, Einhorn and Gross 2013, Saarinen et al. 2013, and Einhorn
and Gross 2015 use NDT with occupancy maps to model explic-
itly the free space and adopt exponential weighted moving average
and covariance for new measurements having an higher influence
than old ones. Einhorn and Gross 2015 proposes a generic 2D/3D
mapping using NDT and occupancy maps. The hit cells con-
sidering the current observation are updated incrementally with
exponential weighting. The other cells along the sensor beam po-
tentially empty are updated using the standard update rule of
occupancy maps based on the log-odds of the occupancy value
and on the inverse range sensor model. Instead of using the stan-
dard occupancy map update, the sensor model in Saarinen et al.
2013 depends on the inconsistency between observation and map.
Also, the occupancy value describes the confidence of the NDT
based on past observations. As for Einhorn and Gross 2015, the
method defines two probabilities for the occupancy map: occu-
pancy and statically occupied, where the first is updated based on
the sensor model (2D/3D generic beam sensor), and the second
one is adapted slowly to high probability for static objects in the
environment. The statically occupancy probability follows the
proposed ad-hoc model that is parameterized to control how fast
the static occupancy probabilities are adapted, depending also on
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the occupancy probability itself. Einhorn and Gross 2013 and
Einhorn and Gross 2015 were able to handle semi-static and dy-
namic changes having a consistent and up-to-date representation
of the environment, while Saarinen et al. 2013 favored long-term
static structures in dynamic environments.

5.2.3 Prediction modeling

In the included works, Markov processes are used to predict the
dynamics of the environment. Tipaldi et al. 2013 uses a dy-
namic occupancy grid and exploits the stationary distribution
and the state holding time associated with Hidden Markov Mod-
els (HMM) on a 2D grid. The method uses past observations for
each run to learn the state transition probabilities iteratively to
estimate the HMM parameters. Then, the localization can infer
how often is expected to see a dynamic object in the environment
and for how long. Comparing the proposed HMM-based local-
ization to MCL using a standard grid, the former had a lower
localization failure rate than MCL, capable of dealing with high
dynamics (moving cars) and lower ones (parked cars). Rapp et
al. 2015 implements a semi-Markov process extended by a Levy
process to model a time dependency on the state holding time
of Markov processes, also predicting as Tipaldi et al. 2013 the
expected retention time for each cell being in a specific state. In
the experiments, the proposed model integrated in MCL improved
the classic MCL in a dynamic environment.

The environment dynamics can have periodic patterns associ-
ated with them. Assuming periodic changing patterns, Krajńık,
Fentanes, Santos, et al. 2017 proposes the FreMEn (Frequency
Map Enhancement) to model the probability of occupancy or
feature visibility in a grid as a combination of harmonic func-
tions related to periodic processes. FreMEn uses spectral anal-
ysis (Fourier transform) to compute the harmonic functions and
predict future state with a given confidence. In a changing en-
vironment, FreMEn outperformed a static map and experience
maps (Churchill and Newman 2013) in terms of localization er-
ror by selecting the most likely visible features at each location
for localization. Santos et al. 2016 adopts the FreMEn within
an exploration scheme, where the planner predicts which areas
are more likely to change at a certain time and generate the sub-
sequent locations to explore. The experimental results showed
that considering the environment dynamics increases the amount
of information gathered compared to static models. Unlike Fre-
MEn, L. Wang et al. 2020 models both aperiodic and periodic
changes by an Auto-regressive Moving Average Model (ARMA).
This model describes time series as stationary stochastic processes
in terms of polynomials. While FreMEn is able to update recur-
sively its model online, ARMA only is updated once a day based
on past observations. However, the model achieved a higher pre-
diction accuracy than FreMEn and a lower localization failure
rate than both FreMEn and Tipaldi et al. 2013.

Instead of modeling the dynamics in the map, Thomas et al.
2021 uses a KPConv network to predict online dynamic motion
labels of points with single 3D laser scans as input. The method
is a self-supervised learning approach with two main modules:
PointMap and PointRay. PointMap is an ICP-based SLAM algo-
rithm to provide a point cloud map for the annotation process.
PointRay uses a similar approach to Pomerleau et al. 2014 to
approximate ray tracing using spherical coordinates for obtain-
ing the training annotation of dynamic labels: permanent (static
points over all sessions), ground (to avoid ray tracing ground sam-
ples), and long-term (still objects in single sessions but relocated
between sessions) and short-term (dynamic objects) movables,

with the localization not considering the latter two. In the simula-
tion experiments, PointMap with the proposed prediction module
led to lower localization pose errors than an MCL algorithm.

5.2.4 Dynamic objects detection

In terms of detecting dynamic objects, Yue et al. 2020 proposes a
collaborative dynamic mapping for detecting humans using visual
and thermal images and a 3D LiDAR. The YOLOv3 algorithm
extracts the bounding boxes from the images relative to humans.
The 3D point cloud projection onto the images allows the creation
of a static point cloud for localization and mapping of each robot
by filtering out the points corresponding to humans. In the exper-
iments, the dynamic objects removal generated a more accurate
relative transformation of the collaborative maps compared to not
removing those objects. S. Zhu et al. 2021 also uses YOLOv3 to
extract bounding boxes of dynamic classes (parked cars) from a
RGB image, and the projection of 3D LiDAR points allows the
creation of the static and semi-dynamic maps required for local-
ization. Even though S. Zhu et al. 2021 does not discard the dy-
namic objects, the localization module reduce the importance of
weight of the corresponding observations. Instead of using visual
data, L. Sun et al. 2018 adapts the PointNet for object recog-
nition (pedestrian, cyclist, car, or background) to classify the
scan points of a 3D LiDAR. The proposed Recurrent-OctoMap
maintains the occupancy and semantic information, whereas the
latter specifies the cell semantic state and the probability of the
prediction. The transition between states is learned by a Long
Short-Term Memory (LSTM) Recurrent Neural Network (RNN).
In a long-term experiment, the method was able to improve its
3D semantic map compared to a standard Bayes update.

Moreover, pixel-wise semantic segmentation is another way to
identify dynamic objects. Additionally to the proposed semantic-
descriptor in G. Singh et al. 2021, the method sets lower weights
to features detected on sky and dynamic classes (person, car, etc.)
from the semantic segmentation of EdgeNet. Instead of identify-
ing object classes, Song et al. 2019 proposes the MD-Net CNN
to segment a grayscale image into unstable, static, and moving
pixel points, only using static points for localization. The local-
ization error was reduced compared to not estimated the pixel
dynamic attribute. Ganti and Waslander 2019 proposes the Se-
mantically Informed Visual Odometry (SIVO) to improve the per-
formance of ORB-SLAM2 (Mur-Artal and Tardós 2017) by using
the Bayesian neural network SegNet for segmentation and com-
putation of the network uncertainty. SegNet is trained to distin-
guish different object classes for identifying dynamic objects (sky,
car, truck/bus, person/rider, motorcycle/bicycle, and void) from
static ones (road, traffic sign, building, wall/fence, pole, vegeta-
tion, sidewalk, traffic light, and terrain). Only static keypoints
that reduce the most of the state’s uncertainty (considering the
network uncertainty) are considered as input for ORB-SLAM2.
SIVO was able to remove uninformative and dynamic keypoints
from the current frame. However, the rejection of potential dy-
namic objects without verifying if they are moving reduced the
localization performance of the module in certain scenarios.

Dynamic objects identification can be improved by verifying
geometric constraints. Bescos et al. 2018 proposes DynaSLAM as
a front end for ORB-SLAM2 (Mur-Artal and Tardós 2017) to seg-
ment potential dynamic classes using a Mask R-CNN. The seman-
tic labeling is improved using a multi-view geometry verification.
DynaSLAM outperformed ORB-SLAM2 in highly dynamic sce-
narios while having similar accuracy in static ones. However, its
performance reduced in slower dynamics. Similar to DynaSLAM,
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K. Wang et al. 2019 implements a front end for ORB-SLAM2 to
identify movable objects with a ResNet-based network for seg-
mentation. The segmentation of the previous frame and a geo-
metric verification based on the reprojection error improves the
labeling of dynamic objects. The method improved the ATE over
DynaSLAM and ORB-SLAM2 in a scenario with movable ob-
jects. Instead of using semantic segmentation, the Semantic and
Geometric Contraints Visual SLAM (SGC-VSLAM) (S. Yang et
al. 2020) uses YOLOv3 to extract bounding boxes of dynamic
objects for also improving ORB-SLAM2. A constraint based on
epipolar geometry improves the labeling. SGC-VSLAM decrease
the Root Mean Square Error (RMSE) of the ATE by 96% com-
pared to ORB-SLAM2 in highly dynamic environments. How-
ever, similar to DynaSLAM, its performance decreased in lower
dynamics. Finally, Xing et al. 2022 proposes the DE-SLAM to
deal with Short-Term Dynamics (STD) and Long-Term Dynam-
ics (LTD) at the same time. A MobileNetv2 identifies bounding
boxes of movable objects (cars, persons, etc.) classified as STD.
A motion check of STD elements recognizes all moving objects in
the current keyframe. As for LTD, DE-SLAM uses HOG features
extracted from ORB keypoints to improve its invariance to illu-
mination changes. In the experiments, DE-SLAM improved the
localization over ORB-SLAM2 in a changing environment. All of
these methods using geometric constraints to improve the identi-
fication of dynamic objects only use static features for localization
and mapping.

5.3 Map sparsification

The next subject in this discussion is the analysis of the included
works categorized as sparsity in DE1 (see Table 7). The method-
ologies proposed in those works manage the map size of the en-
vironment representation perceived by the mapping agent, where
the size should be dependent on the operation area and not on
the trajectory length of the robots. Hence, the discussion on map
sparsification is organized into the following topics: sparsification
of graph SLAM to remove redundant nodes or outdated environ-
ment observations, management of the keyframe graph and its
features relative to the keyframe formulation of the SLAM prob-
lem, and generic sparsification methods proposed in the included
works for feature maps.

5.3.1 Pose graph SLAM

In graph-based SLAM, the constant update of the map leads to
the ever-growing problem of the pose graph, where most basic
approaches grow with the length of the trajectory or operation
time. However, this growth should be bounded only by the size
of the mapped environment. Information-theoretic methods focus
on removing redundant nodes based on the concept of mutual in-
formation for limiting graph growth (Kretzschmar and Stachniss
2012). Outdated nodes should also be removed to limit the graph
size and update the current map representation upon changes
in the environment. Additionally, the spatial distribution, time
recency, and fusion of information onto existing nodes can also
enable the reduction of nodes over time.

Mutual information The concept of mutual information from
information theory can be used to determine which nodes to re-
move from the pose graph. Kretzschmar, Grisetti, et al. 2010 and
Kretzschmar and Stachniss 2012 estimate the expected informa-
tion gain of a node based on its entropy contributing to the robot’s
pose belief in the current pose’s neighborhood. The nodes with

the lowest information gain are removed until the value is greater
than a threshold. Kretzschmar and Stachniss 2012 also sets a
limit on the total number of nodes of the graph. However, these
two methods differ on how to marginalize the edges. Kretzschmar,
Grisetti, et al. 2010 removes all N edges of a removed node and
adds N − 1 edges between the removed one and a neighbor node.
The latter is selected as the node that minimizes the edges length
of the affected nodes by the removal. Effectively, the method only
decreases by 1 the total number of edges per node removal. As
for Kretzschmar and Stachniss 2012, this method summarizes the
information of the original edges into the nodes that are kept us-
ing an approximate marginalization that preserves sparsity. This
approximation is based on using Chow-Liu trees to approximate a
local probability distribution of the graph minimizing the relative
entropy, or also known as the Kullback-Leibler Divergence (KLD),
to reduce the number of edges locally. In the experiments, both
Kretzschmar, Grisetti, et al. 2010 and Kretzschmar and Stachniss
2012 stabilize the number of nodes and edges over time, limiting
the computational requirements of online execution, while full
marginalization (densely connected graph after removal) leads to
an increasing number of edges.

The works focused on edge marginalization assume the prior
selection of the node for removal. Carlevaris-Bianco, Kaess, et al.
2014 proposes the Generic Linear Constraints (GLC) to produce
a set of constraints over the subset of nodes affected by the node
removal. These constraints can produce either the full marginal-
ization (dense GLC) or a sparse approximation using a Chow-Liu
tree (sparse GLC). The repeated application of a sparse GLC
node removal only had a low difference in both mean pose error
and KLD compared to the full graph. Ozog et al. 2016 applies
the same graph marginalization as Carlevaris-Bianco, Kaess, et
al. 2014 on a pose graph map obtained with an underwater ve-
hicle. The system also had similar KLD compared to full graph.
G. Huang et al. 2013 formulates an l1-regularized optimization
problem to minimize the KLD of the approximation estimating
GLC from the discarded measurements. The proposed method
did not impact the localization error while also reducing by 77%
the non-zero elements of the information matrix, improving the
sparsity of the graph. As for Mazuran et al. 2016, this work
proposes the Nonlinear Factor Recovery (NFR) edge marginal-
ization, recovering the set of nonlinear factors that best represent
the marginal distribution of the subset of nodes affected in the
removal in terms of KLD, while considering both global and local
linearization points. Mazuran et al. 2016 demonstrated that NFR
is equivalent to GLC when using only relative measurements. In
the experiments, NFR tended to achieve similar or improved per-
formance relative to GLC between the sparsified and full graph,
having similar results or improved KLD depending on good or
poor linearization points, respectively.

Other methods in the included works do not require edge
marginalization. Maddern, Milford, et al. 2012 does not impose
global geometric corrections on loop closure to ensure similar odo-
metric sequences on different passages in the same locations, only
requiring the update on existent odometric edges. The method
sets a maximum limit on the number of nodes eliminating the
ones with lowest relative information content computed by the
negative log of odometric and appearance-based matching like-
lihoods. The algorithm stabilized at a constant execution time
and memory occupation due to the limit of nodes. Ila et al. 2017
proposes an incremental solution to decide whether a node should
be added or not. Only nodes part of informative links or estab-
lishing informative links are added to the graph, avoiding to add
unnecessary edges and thus not requiring edge marginalization.
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Although the method was able to slow the growth rate of nodes
and edges in the experiments, the method was not able to bound
it. Egger et al. 2018 filters all poses with an overlap with their
closest neighbors of the respective submaps higher than a thresh-
old. The removal also updates the scores of affected neighbors
relative to the number of observations required for evaluating the
stability of the 3D LiDAR surfel features. Considering an overlap
threshold of 0.6, the resulting map in the experiments was 9.4MB
compared to the 5GB of the initial point cloud map.

Outdated information Instead of selecting nodes based on
mutual information, the removal of outdated nodes based on the
current information can limit the size of the pose graph. Walcott-
Bryant et al. 2012 removes inactive nodes that do not represent
the current state of the environment, considering the creation
of nodes for each run to be able to create the active and dy-
namic maps required for dealing with dynamic environments. The
removed points labeled in the dynamic map (points no longer
present in the active map) over time allow the identification of
inactive nodes. In the experiments, the method was only able to
remove approximately 50% of the nodes and edges compared to
the full graph. Tang, Y. Wang, Ding, et al. 2019 filters submaps
in the proposed manifold navigation considering the number of
successful localization in each location versus the attempted ones
to indicate the outdated submaps. Even though the number of
nodes stabilizes over time, the stabilization only happens on the
third day, possibly due to the proposed manifold navigation treat-
ing new conditions of the environment as new nodes. Boniardi et
al. 2019 also evaluates the current localization of the robot to se-
lect nodes for removal. The method prunes outdated nodes when
the pose’s belief drops below a tolerance level, possibly related to
changes in the environment. Additionally, upon loop detection,
the method builds a local map from the subset of nodes candidate
for loop closure. This local map allows for discarding candidates
that are not topologically consistent with the local environment
surrounding the robot using ray tracing, avoiding the addition of
unnecessary edges. The method was able to limit the graph size
in the same environment over multiple runs, being dependent on
the size of the operational area and not on the operation time.

Spatial density and time recency The spatial distribution of
the nodes is another approach to evaluate the graph sparsity. Jo-
hannsson et al. 2013 proposes an incremental approach for manag-
ing the addition of new nodes, similar to Ila et al. 2017. However,
Johannsson et al. 2013 only adds a new node if there is no existing
node in the spatial proximity of the current position, instead of
being based on mutual information. If a loop is detected, though
the first one would not generate any new node due to the spatial
constraint, in the case of a second loop, the method compounds
the chain of constraints between the first and second loops to add
a new constraint. In contrast to Johannsson et al. 2013, Zeng and
Si 2021 adds nodes upon revisiting locations for optimizing the
pose graph. Then, the method identifies redundant nodes cluster-
ing loop closure edges to identify similar trajectories. Both works
showed reduced growth compared to the full graph in the number
of nodes in the experiments and the growth seemed to stabilize.
In addition to the spatial density, the time recency of the node

can be another factor for selecting nodes for removal. Kurz et al.
2021 tries to keep the spatial density of nodes below a certain
threshold across the entire map. The proposed scale-invariant
density measure determines to remove the nodes with the high-
est densities, marginalizing their edges with an approach similar
to Kretzschmar, Grisetti, et al. 2010, until the density is lower

than a threshold. The removal process keeps the most recent
nodes from being removed, even though the density measure is
computed considering all nodes. The method reduced the growth
in the number of nodes compared to the full graph, having sta-
bilized over time. Similarly, W. Ali et al. 2021 also favors older
nodes for removal, moving those nodes after a certain traveled dis-
tance from the online graph to an offline database to not lose the
information. Also, upon loop detection, the older submap is sub-
stituted with a new one. Compared to ORB-SLAM2 (Mur-Artal
and Tardós 2017), the proposed method had lower computational
requirements in terms of CPU and memory usage.

Information fusion The information fusion between nodes
and/or with the current observation also allows the reduction of
the graph growth. Both Einhorn and Gross 2013 and Einhorn and
Gross 2015 fuse NDT map fragments that cover a similar region of
the environment, only fusing nodes whose relative pose is known
with low uncertainty. The marginalization of the affected edges
is performed using the same approach as Kretzschmar, Grisetti,
et al. 2010. In the experiments, the number of vertices in both
works did not increase significantly on revisiting locations. As-
suming that a loop closure occurs due to spatial closeness having
overlap between the affected nodes, Lázaro et al. 2018 merges loop
closure-related nodes (including intra- and inter-sessions) follow-
ing a similar methodology to the ray tracing one used for de-
tecting dynamic changes in the environment. The oldest point
cloud is used as a reference for refinement with the newest one
based on their timestamps. Edge marginalization is based on con-
densed measurements where the remaining node is connected to
the neighbors using a star-like topology. The method achieved a
50% node reduction in an experiment while retaining the local-
ization accuracy. Karaoğuz and Bozma 2020 uses a Topological
Spatial Cognition (TSC) model to organize the visual place mem-
ory as a collection of appearances and respective descriptors for
each robot, with a hierarchical organization to cluster places with
a similar appearance. Based on the similarity of the descriptors,
Karaoğuz and Bozma 2020 merges place memories of TSC models
on a multi-robot system, incorporating all places known by other
robots but not known to itself. The merge is performed based on
the nature of overlap of the descriptor hyperspheres in appearance
space. Although the method was able to merge the TSC models
between two robots leading to 18 final locations, the merged lo-
cations are more than the 15 predicted ones due to limited field
of view and appearance changes.

5.3.2 Keyframe SLAM

A specific formulation of the pose graph is the keyframe SLAM,
where the keyframes are selected from the frames usually cap-
tured by a camera, the 3D map points are triangulated consid-
ering features extracted from the camera images, and the edges
determine the keyframes that observe the map points. Odometry
and shared observations of map points induce additional edges be-
tween keyframes (Schmuck and Chli 2019). The keyframe SLAM
also suffers the same ever-growing graph problem as the standard
pose graph formulation. Thus, long-term localization and map-
ping methods using keyframe SLAM should employ policies to
manage the growth of the number of keyframes and map points,
or restricting the selection of the frames from the views captures
from a sensor to ensure the graph sparsity.

Keyframe graph management Clustering techniques are
employed in the included works to identify keyframes for removal.
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Konolige and Bowman 2009 proposes the Least-Recently Used
(LRU) algorithm to limit the keyframes in a local neighborhood,
while preserving their diversity and removing preferably older un-
matched views. LRU clusters keyframes based on its feature
matching closeness, assuming that keyframes capturing similar
environment appearances will be in the same cluster. If the num-
ber of local keyframes exceeds a threshold, older ones are removed
from each cluster. Then, having clusters only with a single view,
LRU removes the oldest exemplars. LRU reduced significantly
the number of views and edges relative to having no management
rule for keyframes while preserving the mean number of clusters
in local neighborhoods, i.e., preserving the diversity. Instead of
evaluating single keyframes, Bouaziz et al. 2022 exploits the simi-
larity between traversals in the keyframe map that represent runs
possibly in different environment conditions. Hierarchical cluster-
ing on a proposed similarity matrix between traversals identifies
which one to remove when their number exceeds a predefined
threshold, trying to maintain the map diversity as possible as in
Konolige and Bowman 2009. The limitation on the number of
traversals bound the computational requirements of the method.

Moreover, Gadd and Newman 2016 implements a merge process
in its centralized versioning framework to measure the relevance of
discovered segments by every single agent using stereo matching
from visual odometry. The merging strategy with multiple agents
built the map in an experiment in 3.6h, while a single agent would
require 12.4h, while the size of the merged database was smaller
than a single agent due to the redundancy check. Similar to
methods for sparsification of the standard pose graph, Ding, Y.
Wang, Tang, et al. 2019 uses the KLD measure to determine
which keyframe to remove based on their contribution. When
adding a new one, the method updates the KLD of each keyframe
that has common features to the new frame. The keyframes with
KLD lower than a threshold are removed using GLC (Carlevaris-
Bianco, Kaess, et al. 2014) for edge marginalization if needed.
The proposed sparsification approach reduced the map size for
transmitting it between an external agent and the robot.

Although the keyframe management removes map points in-
directly, e.g., when the points are not well constrained with less
than 2 observations (Schmuck and Chli 2019), management tech-
niques on the keyframe graph can also remove points directly
from the feature map. LLamaSLAM (Luthardt et al. 2018) con-
siders only high-quality Long-term LandMarks (LLama) points
(persistent features selected from the tracked ones with VO) for
adding to the map, while ensuring their spatial coverage in a
2D grid selecting only the best 10 points within each cell. The
keyframe selection is based on the overall quality threshold of
the observed LLama points in the frame. Furthermore, ORB-
SLAM (Mur-Artal, Montiel, et al. 2015) implements keyframe
and feature addition and removal rules. ORB-SLAM only adds
a keyframe if the current view tracks at least 50 points in the
sliding window and less than 90% of the points of the current ref-
erence keyframe, while discards all keyframes whose 90% points
are seen in at least more than 3 other keyframes. As for map
points, the points are only retained if the tracking finds them in
more than 25% of the frames which are predicted to be observed
in and must be observed from at least 3 keyframes. Hui Zhang
et al. 2018 implements the same map management method as
ORB-SLAM in a multi-robot system to reduce redundant data,
where each robot executes independently monocular SLAM and
communications their map with other robots. Instead of using
thresholds, Schmuck and Chli 2019 modifies ORB-SLAM with a
redundancy score to classify the map points. The method defines
a maximum score of 1 for features seen in more than 5 keyframes

(also removing these points from the map) and a score of 0 for the
minimum of 2 observations, while scoring the keyframes by the
normalized sum of their features’ scores. Considering a maximum
limit of keyframes, the algorithm was able to compress up to 50%
relative to no management while also outperforming the original
ORB-SLAM in RMSE.

The selection process of features for removal in the keyframe
graph can use more than a single scoring function. Dymczyk, Ly-
nen, et al. 2015 scores the map points on the number of observa-
tions (considering a lower bound for removal, while restraining the
deletion in rarely visited areas and not well-constrained points),
the descriptors variance (rejecting the ones with high variances),
and the number of observations between different sessions. The
method also sets a minimum number of keypoints to retain a
keyframe and a total limit on the number of map points. These
policies led to an approximately constant number of keyframes
and map points in posterior sessions in the same environment.

Representative keyframes Another approach to reduce the
growth of keyframe graph found in the included works is to re-
strict the selection of the keyframes from the sensor live data.
Pirker et al. 2011 only adds keyframes to the graph if at least
55% of the image area is covered by keypoints used for tracking,
in contrast with the standard rule of adding frames accordingly
to a certain motion relative to the previous keyframe. Also, the
method removes points based on their visibility accordingly to
the Histogram of Oriented Cameras (HOC) descriptor that rep-
resents a map point. The method was able to keep the map size
proportional to explored space stabilizing the number of features.

Topic-probabilistic models used in both Paul and Newman 2013
and Murphy and Sibley 2014 also try to identify the most rep-
resentative keyframes from camera images. Paul and Newman
2013 applies Latent Dirichlet Allocation (LDA) as a probabilistic
topic model to identify perplexing observations and for retrieving
images similar in thematic content, providing a compact represen-
tation of the sampling set to improve the timing efficiency of FAB-
MAP (Cummins and Newman 2008b). Topic models provide
a low-dimensional representation of BoW (Sivic and Zisserman
2003), capturing their thematic content via word-occurrences. Al-
though the method reduced the number of generated keyframes,
Paul did not implemented a deletion or forgetting rule for the map
frames. As for Murphy and Sibley 2014, their approach imple-
ments probabilistic Latent Semantic Indexing (pLSI) as the topic
modeling engine in an incremental manner to expand the vocab-
ulary and perform topic updating online. The topic clustering
using DBSCAN identifies temporally smoothed unique places. In
the experiments, the proposed method retained up to 1.06% of
the image stream while having similar precision and recall metrics
relative to considering all frames, respectively.

5.3.3 Features management

In addition to feature management policies applied in keyframe
SLAM and discussed previously, the included works also propose
techniques for sparsification of feature maps for improving the
mapping scalability in the long-term time frame. Hochdorfer and
Schlegel 2009 and Hochdorfer, Lutz, et al. 2009 focus on ensur-
ing the spatial distribution of the features in the environment,
removing the ones that cover nearly the same region. The first
clusters SURF-based features based on the l1 distance of their 2D
position in the map using k-means with the number of clusters
as 25% of known features in the map. Considering feature infor-
mation content as dependent on the covariance matrix, the pro-
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posed approach selects the cluster with the maximum difference
in information content and removes the feature with the lowest
localization benefit while limiting the number of map features to
50. This limit constrains the computation requirements of the
method. The second work uses DBSCAN instead of k-means be-
cause the former is a density-based algorithm while the latter is a
partitioning one. Even though both Hochdorfer and Schlegel 2009
and Hochdorfer, Lutz, et al. 2009 limit the number of map fea-
tures and improve their spatial coverage, DBSCAN clustering led
to a better spatial distribution of features compared to k-means.

The evaluation on matching observations with the features in
the map versus the number of attempts could indicate unstable
or dynamic features that could be removed from the map and
reducing its size. Davison and Murray 2002 deletes features after
a predetermined number of matching fails when they should be
visible and sets a maximum of two visible features (minimum for
the robot to localize itself) in the map due to the computational
limitations of the experimental setup. Even though the limit was
to improve the computational efficiency with the resources avail-
able at the time, the map should have consider more features to
improve localization robustness. Similar to Davison and Murray
2002, the STM/LTM memory scheme implemented by Dayoub,
Cielniak, et al. 2011 and Bacca et al. 2013 imposes a consecutive
observation of the features for retaining them in the map. Bacca
et al. 2013 showed in the experiments that removing useless and
old features avoided the ever-increasing number of features, lead-
ing to an approximately constant map size over different runs.

Furthermore, the use of multiple predictors for evaluating fea-
ture stability on changing conditions also helps the sparsification
of the feature map. The removal of features with low scores on
the predictor proposed by Berrio, Ward, et al. 2019 had similar
localization covariance in the experiments while removing up to
70% of the least valuable features in the map. Berrio, Worrall,
et al. 2021 also evaluates the concentration ratio and maximum
driven length predictors used in their work. Features in high
concentration areas and low visibility in terms of the maximum
driven length while observing them are discarded from the map.
The removal method contributed to the map size being approxi-
mately constant in later runs throughout a 24 weeks experiment.
Similar to Berrio, Ward, et al. 2019, Dymczyk, Schneider, et al.
2016 formulates a regression for optimizing the weights given to
the predictors and combining all predictors into a single score.
The method considers as predictors the number of frames the
feature is re-observed, traveled distance while observing the land-
mark and the one between the two most distant keyframes while
tracking, maximum angle between observation rays, the mean
reprojection error, a gravity constant to favor anchored objects
presumable more useful for localization, the vertical coordinate,
and the descriptor appearance classification. The results showed
a 80% reduction on data transfers with similar localization recall
when selecting a subset of the map features compared to retain-
ing all features. Also, Mühlfellner et al. 2016 creates a Summary
Map from a map gathered over multiple traversals in the environ-
ment by selecting a limited number of features, first, based on the
observations in distinct traversals, and then, on the total number
of observations. The authors compared the Summary Map with
1200 features to only selecting features seen during the most re-
cent traversals, features seen in two or more traversals, and to
the works of Konolige and Bowman 2009 and Dayoub, Cielniak,
et al. 2011. The Summary Map, Konolige and Bowman 2009,
and retaining features seen in two or more traversals achieved the
higher localization accuracy, while the Summary Map had higher
accuracy than other methods at the same map size.

In terms of managing a BoW (Sivic and Zisserman 2003) dictio-
nary, Tsintotas et al. 2021 presents an incremental Bow model to
remove multiple codewords of repetitive patterns representing the
same environmental elements at different time instants. A spatial
check identifies the redundant words upon loop closure, where the
words are ignored if not associated with the chosen loop image
and are merged with the ones in the database accordingly to the
median of the descriptors. The incremental approach reduced the
model size compared to other BoW-based approaches while also
improving the timing efficiency due to having fewer visual words
for searching for loop closures. Instead of managing the addition
and removal of words from the BoW model, Opdenbosch et al.
2018 proposes a culling map point algorithm by minimizing the
points coding cost to keep map points that exhibit good com-
pression properties and favor the ones with many visually similar
observations when assigning the features descriptors to its closest
visual word from a pre-trained BoW model. The method allows
the definition of an apriori size of the desired BoW model to
constrain the computation requirements. The integration of the
proposed method in ORB-SLAM2 (Mur-Artal and Tardós 2017)
reduced by 3 times the map size (3MB to 1MB) having a similar
localization success rate, while also reducing the number of points
substantially (17426 to 2370).

Lastly, the works of Schaefer et al. 2021 and Z. Wang et al. 2021
that retrieve pole features from 3D LiDAR data for appearance
invariance in changing conditions also employ feature manage-
ment policies to avoid redundant points in the maps. Schaefer
et al. 2021 merges ambiguous poles by projecting them onto the
ground plane and evaluate their overlap. The merge process com-
putes a weighted average over their center coordinates and widths
over the mean pole score, determined by averaging over the scores
of all voxels that touch the pole. Z. Wang et al. 2021 segments the
point clouds into clusters based on the semantic labels obtained
with the RangeNet++ network. For each cluster, the label is
voted by the statistical number of the point labels in the clus-
ter. Considering the clusters of the global map versus the ones
found in the current laser scan, each cluster of the current scan is
searched by the closest neighbor and is only added into the map
if the cluster is not found in the global map.

5.4 Multi-session

This section analyzes works categorized as multi-session in DE1
(see Table 7) focusing on methodologies for dealing with the start
of the robot in each operation session. A multi-session system
must handle the data acquired in each session by a robot with-
out having a prior initial pose relative to the current map. This
system should avoid the restart of the mapping procedure in all
runs while being capable of localizing the robot in the existing
map (Labbé and Michaud 2019). In the context of long-term lo-
calization and mapping, a multi-session solution is desirable to
integrate new information acquired over different operation runs
without requiring a known initial pose for accomplishing a con-
tinuous autonomous operation in a changing and dynamic envi-
ronment. Even though global localization is required for multi-
session to localize the robot in a known map without any prior
knowledge, Sections 5.1 and 5.2 already discuss methodologies
for topological and metrical localization robust to changes and
moving elements in the scene.

One methodology found in the included works is the implemen-
tation of global multi-session where both localization and map-
ping processes consider a global common frame between all ses-
sions (Ozog et al. 2016). Bürki et al. 2019 implements an offline
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process to localize a new mapping session against an existing map.
This process generates an initial pose estimation for the vehicle
in the new dataset and the feature association between the new
dataset and the features in the map. New map points are created
from unmatched features in the multi-session association step.
Then, the system optimizes the resulting global multi-session map
again with bundle adjustment.

Instead of assuming that the localization is always possible to
perform in the current map similarly to global multi-session, an-
other possibility is considering independent sessions at the begin-
ning of each run. Latif, Cadena, et al. 2012 proposes the Realiz-
ing Reversing Recovering (RRR) algorithm that defines 2 types
of loop closures: intra- and inter-session. If no inter-session loop,
RRR considers all sessions unconnected between them. Assuming
that the front-end of graph SLAM deals with odometry outliers,
the graph error introduced by each constraint would be caused
only by loop closing links. Then, RRR clusters loop hypotheses
accordingly to its impact on the graph error, where small and
similar errors versus greater and contradictory would be caused
by correct and false loop closures, respectively. The method was
able to recover from 600 wrong loop closures in a 4 session ex-
periment. Oberländer et al. 2013 starts a new mapping session in
each run. Eventually, the independent graph will be connected to
previous sessions by matching the submaps of the graph nodes,
similar to the inter-loop considered by Latif, Cadena, et al. 2012.
Similar implementations are considered by Mühlfellner et al. 2016,
Lázaro et al. 2018, and Labbé and Michaud 2019, allowing inter-
loop links connect different sessions when the data association
module of localization and mapping finds a candidate loop be-
tween sessions. Also, the experimental results in Mühlfellner et
al. 2016 showed an improvement in terms of increasing localiza-
tion recoveries from failures when considering a multi-session map
compared to single-session.

The representation of independent mapping sessions can be rep-
resented in the same graph using anchor nodes as Ozog et al. 2016.
Each robot session has an associated anchor node containing the
transformation from the global to the session’s reference frames.
This representation allows individual sessions to optimize their
pose graphs before any links are formed between sessions while
allowing faster convergence than global multi-session in the pose
graph formulation of the SLAM problem. Additionally, Ozog
et al. 2016 uses GLC constraints (Carlevaris-Bianco, Kaess, et
al. 2014) for graph sparsification, as discussed previously. The
method was capable of merging a multi-session experiment with
12 sessions 3 years apart.

5.5 Computational

Next, this section discusses the works categorized as computa-
tional in DE1 (see Table 7). These works focus on computational
concerns of long-term localization and mapping apart from map
sparsification, as the latter subject is already discussed in Sec-
tion 5.3 and belongs to another category in DE1 (sparsity). The
discussion is organized by the following topics: mechanisms to
manage map storage, techniques for reducing the descriptor di-
mensions, parallel computing, and timing efficiency improvements
for place recognition in long-term localization and mapping.

5.5.1 Map management

Although map sparsification techniques try to maintain con-
strained memory and processing requirements by removing re-
dundant or outdated information from the map, these techniques

could not be enough to guarantee computational stability in on-
line execution. Thus, a methodology followed by Oberländer et
al. 2013 and Labbé and Michaud 2019 only maintains a sampled
version of the map in RAM while the remaining part or the whole
map is saved in the disk memory. Oberländer et al. 2013 makes
the proposed multi-session submap graph compatible with seri-
alization, allowing its nodes to be transparently swapped out to
disk. The online execution maintains only a smaller version of
the entire graph in RAM. This version allows faster localization
estimates, where the full-resolution map can be brought back into
memory on demand when detailed comparisons are needed for lo-
calization. The oldest scans are moved to disk upon adding new
ones to limit the memory to a constant size. As for Labbé and
Michaud 2019, the proposed Real-Time Appearance-Based Map-
ping (RTAB-Map) implements a memory system resembling the
one adopted by Dayoub, Cielniak, et al. 2011: STM, Working
Memory (WM), and LTM. However, these memories only define
which nodes of the graph are considered in the online execution.
Indeed, STM assembles the sensor data into a node for adding to
the graph, WM is the nodes considered for operation, and LTM
are nodes transferred from WM to satisfy the online requirements
of RTAB-Map, where LTM is an SQLite offline database. This
transfer is dictated by a weighting mechanism to favor frequently
observed locations to be preserved in WM. Both works satisfied
the online requirements of the respective localization and map-
ping algorithms in the experiments due to capping the memory
and computation requirements of the online execution.

In the context of Earth-scale mapping, C. Kim et al. 2021
presents a Geodetic Normal Distribution (GND) map structure.
A geodetic quad-tree tiling organizes the Earth’s surface into spa-
tial tiles with the same angular size in latitude and longitude
directions, where a unique identification number inferred by lo-
cation allows real-time searching. This tiling organization allows
large-scale localization and a way to manage submaps of differ-
ent locations on the Earth. Also, the 3D LiDAR point cloud
conversion into normal distributions compresses the map size of
each location. The method was able to compress the map size
by 85% relative to only considering a point cloud while satisfying
the localization requirements of the experimental setup. Also, the
method was able to map and localize three different continents
(Europe, Asia, and America) with the GPS information inferring
the quad-key tile of vehicle’s localization.

5.5.2 Descriptor dimension reduction

The reduction of features descriptor dimensions can reduce the
overall map size and increase the efficiency in feature searching
and matching. An example is the work of Bosse and Zlot 2009
that performs a nonlinear normalization on each descriptor while
reducing the proposed moment grid descriptor’s dimensions to re-
move elements with low signal-to-noise ratio. Both normalization
functions and dimension reduction require training their respec-
tive parameters in map data from a similar environment to the
expected one. The method showed that reducing the dimension of
feature descriptors reduces the computation required for nearest
searching neighbors and the map size.

One of the most used techniques for reducing descriptors’ di-
mensions of CNN-based features is Principal Component Analysis
(PCA). This compression algorithm requires learning its model
using extracted features from a database of example images as
training data. Both Taisho and Kanji 2016 and Camara et al.
2020 used PCA for reducing from a 4096-dim AlexNet and a
25088-dim VGG16 descriptors to 128 and 100 dimensions, re-
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spectively. The results presented in both works showed that PCA
does not affect significantly the accuracy of the place recognition
methods while reducing the computation time. Also, PCA can
be combined with whitening as in Piasco et al. 2021 to make the
features less correlated with each other and have all the same
variance while reducing the descriptor dimensions.

Furthermore, the random selection of descriptor components to
reduce its dimensions is employed in Naseer, Oliveira, et al. 2017
and Xin et al. 2017 due to not requiring a learning phase, unlike
PCA. Naseer, Oliveira, et al. 2017 uses Sparse Random Projection
for embedding its FastNet-based descriptor with approximately
130000 dimensions into a reduced 4096-dim descriptor. The com-
pression procedure achieved similar f-score, and precision-recall
metrics compared to the uncompressed descriptor. Xin et al. 2017
evaluated the compressing of the 64896-dim AlexNet-based fea-
ture used in their work using a random selection of the descriptor’s
components. The results showed similar precision while speeding
up 17 times the matching speed and achieving a compression ra-
tio of 93.7% considering descriptors with 4096 dimensions. Also,
max-pooling the descriptors of CNN-based features by channel is
another technique for dimension reduction. Yu et al. 2019 uses 4-
max pooling to reduce 1024-dim descriptors into 256 dimensions.
Even though the accuracy of place recognition was slightly lower
than PCA in the experiments, the pooling reduction scheme had
lower computational complexity.

Semantic hashing implemented in Ikeda and Kanji 2010 fo-
cuses on learning a compact binary code for image retrieval. The
method uses gist scene descriptors as input to the network archi-
tecture that progressively maps the high-dimensional input vec-
tor to lower dimensions. The network’s output is binarized by
a threshold learned in the training phase for obtaining the final
lower-dim binary descriptor, where the binary code allows search-
ing directly in a hash table. In the experiments, the method
achieved a compact feature representation scalable for large envi-
ronments, with an 8KB visual dictionary, and a 5.3MB of visual
words on approximately 20km in mapping and localization trajec-
tories. However, semantic hashing had the same problems as pre-
trained dictionaries as BoW (Sivic and Zisserman 2003), where
there is a semantic gap between the dataset used for learning the
dictionary and the one for localization.

5.5.3 Parallel computing

In terms of improving the overall efficiency of the computational
resources, parallel computing allows the simultaneous execution
of algorithms. Williams et al. 2014 proposes concurrent filtering
and smoothing for pose graph formulations of SLAM to achieve
faster updates of the current solution while optimizing simultane-
ously the full graph even in presence of loop closures. The method
factorizes the graph into three groups: a small number of most
recent states, a large group of states for global smoothing, and
separator states to make the filter and smoother ones condition-
ally independent. If the computation of the filtering stage ex-
ceeds a real-time threshold, the algorithm moves the older states
in filtering to the smoother thread for further optimization. Peri-
odic synchronization exchanges updated information between the
filter and smoother threads after concurrent updates while also
accounting for delays. The method achieved a constant filtering
time update while concurrently performing full optimization of
the graph. Even though the smoother update time increased over
time, the smoother optimization required to improve the consis-
tency of the graph over time did not interfere with the filtering
stage. Z. Yang et al. 2021 also uses multi-threading computing.

The multi-thread approach splits an image into multiple grids for
high parallelism and feature extraction for loop closure. The re-
sults showed a reduction in computational complexity by checking
four candidates in parallel for each frame.

The use of external computation resources allows parallel com-
putation of different algorithms, even though delays may occur.
Ding, Y. Wang, Tang, et al. 2019 divides the localization task
between the robot and the cloud. The latter is responsible to
maintain a map and refine the localization estimation of the robot
considering visual-inertial odometry constraints sent to the cloud.
This refinement performs an alignment of the data received from
the robot to the laser and visual points of the cloud map. As for
the robot, only maintains a local sliding window and implements
a delayed state EKF to account the refined localization estima-
tors computed by the cloud. Even with a network latency of 5s,
the EKF was able to converge and achieve a robust localization
in terms of ATE. Similarly, A. J. B. Ali et al. 2020 stores the
global map in an external computing system, in their case, an
edge device. The method adapts ORB-SLAM2 (Mur-Artal and
Tardós 2017) for mobile-edge parallel execution, where only the
most recent data is kept in the mobile device and the edge device
performs the heavier computation tasks such as global bundle ad-
justment and optimization of the graph relations. The method
achieved constant memory usage and execution time on the mo-
bile device in the experiments due to outsourcing computation
tasks to the edge device.

5.5.4 Timing efficiency

Finally, three other included works focus on improving the tim-
ing efficiency related to the place recognition process. Mohan
et al. 2015 considers 2 discretization levels for the words of a
BoW (Sivic and Zisserman 2003) model: a finer level represent-
ing the images and a coarse one representing environments. The
method implements 2 nested levels of inverted indexes for fast
computation, where one encodes the co-occurrence of words in a
high-level environment index, and another index stores the BoW
image words of the environments. As for place recognition, the
query image is transformed into 2 BoW vectors representing the
fine and coarse levels to perform a coarse-to-fine search in the
respective indexes. Compared to a single inverted-index as in
a standard BoW model, the hierarchical inverted index achieves
similar accuracy in loop recognition while decreasing the execu-
tion time, allowing large dictionaries for the same execution time.
The second work focused on timing efficiency is Latif, G. Huang,
et al. 2017. This method formulates a sparse l1 minimization
problem that is convex for place recognition instead of nearest
neighbor search to find a vector whose elements best explain the
image also represented by a vector. This formulation is indepen-
dent of the representations (e.g., BoW, scene features) leveraging
fast convergent optimizers to ensure real-time generation of loop
closure hypotheses. As for the vector solution of the optimiza-
tion, it is expected to be very sparse (only 1 non-zero, if current
image matches perfectly one of the dictionary). However, the
method only declares a valid loop only when it is globally unique,
to avoid false positives. The experiments showed similar precision
to a BoW-based approach and lower recall due to being more con-
servative on loop closure detection, while being compatible with
a real-time implementation (116.45ms mean time for 4800-dim
image descriptors in a database of 8358 images). As for the third
work, L. Wu and Y. Wu 2019 uses a deep supervised hashing
network to learn hash codes for direct access of similar features
in a hash table, similar to Ikeda and Kanji 2010. Even when
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Figure 6: Evolution of the usage of public datasets per year con-
sidering the 142 included records in this review. he time interval
is between the smallest publication year found in the included
records (2002) and the year of last full inquiry’s date (2022). The
latter is with a dotted line due to the fact that the last full inquiry
does not consider the whole year.

using brute force for matching hash codes, the method achieved
a 6.67ms matching time with a 8192-dim descriptor in a 10000
image database, while having similar precision-recall and f-score
compared to SeqSLAM (Milford and Gordon. F. Wyeth 2012b)
or AlexNet-based place recognition.

5.6 Long-term experimental data

While the previous subsections of the discussion in this review
focus on the methodologies for performing long-term localization
and mapping, this section focuses on the analysis of the experi-
mental data used by the authors in their experiments. The anal-
ysis is organized as follows: identification and discussion of the
public datasets used by the included works in the review, discus-
sion of the distance and time characteristics of the experimental
data, and identification of the types of ground-truth data more
used and proposed for evaluating the proposed methodologies.

5.6.1 Public datasets

The analysis of the data extraction item DE11 (see Section 3.4 and
Table 7) shows that 89 of the 142 (62.7%) included works in this
review used public datasets to evaluate the proposed methodolo-
gies. This percentage indicates the importance of using datasets
in the experiments, possibly due to facilitating the accessibility to
the experimental data and allowing comparisons between works
that use the same datasets and evaluation metrics. Even con-
sidering the 77 works that also performed private experiments,
24 (31%) of those also used datasets for evaluating the proposed
methods. Also, Figure 6 presents the usage of public datasets over
time versus the records published per year. This graph shows sim-
ilar linear tendencies between the two series and an usage over
than 65% in the past 5 years. The latter percentage strengths
the indication of the importance of using public datasets in the
experiments given by the included works in this review.

Although DE11 indicates which datasets are used in the experi-
ments, this item does not characterize the datasets. Thus, Table 6
presents a comparison table with the following items: long-term
characteristics of the dataset in terms of the environment con-
ditions (lighting, day and night sequences, weather and seasonal
changing conditions, dynamic elements, and sparsity), type of
environment (indoor, outdoor, or both), the domain of the agent

used for acquiring data (ground, air, or water, and the commer-
cial unit used if indicated), sensorization, if the dataset provides
intrinsic and extrinsic calibration of the sensor setup used, type of
ground-truth data, format, and long-term characteristics in terms
of distance, time, and the number of runs. Next, the discussion
focuses on comparing the datasets based on the column items
presented in Table 6 and correlating their usage in terms of DE1.

Environment The outdoor environment is the most seen one in
the 43 datasets, with 27 being acquired outdoors compared to 19
indoors, and 3 datasets (Gardens Point Campus of QUT , NCLT ,
and NTU VIRAL) having indoor and outdoor sequences. The
environment changing conditions more present in indoor datasets
are lighting changes and dynamic elements, e.g., in office en-
vironments where the exterior and artificial light influence the
visual perception and moving people increase environment dy-
namics (not only the people, but moving objects taken by per-
sons). Although night periods, weather and seasonal changes
also influence indoor conditions, this influence is mostly in the
lighting conditions and only appear in 4 indoor-only datasets
(COLD , CoBots long-term, MIT Stata Center , and Witham
Wharf RGB-D (LCAS STRANDS)), accordingly to the respec-
tive dataset descriptions. Similarly, the outdoor datasets are
more affected by changing lighting and moving objects. However,
these datasets consider more frequently and are more influenced
by other changes. This influence is not only in lighting condi-
tions but also in visual perception (color of the leaves in different
seasons) and moving elements in the scene (water of the rain or
moving tree branches due to strong wind). In terms of recency,
in the past 5 years, only 2 of the 14 datasets released during that
period are in indoor locations. This recent tendency and the fact
of 27/43 datasets having outdoor sequences indicate more interest
in this type of environment by the included works in this review.

As for the diversity of the acquisition conditions, the most
diverse datasets are COLD , Witham Wharf RGB-D (LCAS
STRANDS), NCLT , USyd Campus, RADIATE , IPLT , and Ox-
ford RobotCar . The latter two have all changing conditions in
the environment, i.e., lighting, day/night sequences, dynamic el-
ements, and weather and seasonal changes. Even though the re-
maining diverse datasets do not consider one of these conditions,
the datasets are still interesting in the long-term localization and
mapping context with a high diversity of environment conditions.

The datasets categorized as sparsity are intended for testing
map maintenance algorithms to constrain the graph size in the
graph SLAM formulation to the operation area and not to the tra-
jectory length due to usually being available the full graph map
of the dataset. Although these datasets are useful for evaluating
map maintenance, they normally lack several other changing con-
ditions that influence long-term localization and mapping while
also all of those datasets being indoors. Only CoBots long-term
and MIT Stata Center datasets seem to be more diverse in terms
of environment conditions by capturing sequences with different
lighting conditions and dynamic elements in the scene.

Sensorization In terms of the type of sensors used for acquir-
ing data, the ones utilized in the datasets are odometry (wheeled,
visual, inertial, laser, or a combination of different odometric
sources), cameras (monocular, stereo, omnidirectional, RGBD,
or thermal), lasers (2D/3D), radar, sonar, IMU, and GPS, simi-
lar to the sensors found in the data extraction phase of this re-
view. The more common type of sensor is camera used in 37/43
(86%) datasets. This predominance is conformal with the high us-
age in 104/142 (73.2%) included works and occurrence of related
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Table 6: Datasets used in the 142 included records for long-term localization and / or mapping experiments. Legend: odo – odometry
(wheeled, laser, visual, inertial, or a combination of odometry sources), dist. – total distance length of the dataset, path – total path
distance if repeated several times, time – total operation time, int. – time interval between the start and end acquisition dates /
time instants (d/w/m/y equivalent to day/week/month/year, 0 if only 1 run), and seq. – number of sequences of the dataset.
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FHW 2001 x indoor (museum) ground (TOUR-
BOT)

x x – CARMEN – – 1.98 – 1

FR079 2003 x indoor (office) ground (robot) x x – CARMEN – – 0.29 – 1

FR101 2003 x indoor (office) ground (robot) x x – CARMEN – – 0.29 – 1

Intel Research
Lab 2003

2003 x indoor (office) ground (robot) x x – CARMEN 0.506 – 0.75 – 1

MIT Killian
Court

2004 x indoor (office) ground (robot) x x x – CARMEN 2.2 – 2.5 – 1

City Center
(FAB-MAP)

2008 x x outdoor (urban) ground (robot) x x x x GPS, manual plain text (non-
img), jpg (img)

2 – – – 1

Lip6Indoor 2008 indoor (office) ground (hand-
held)

x x x manual ppm (imgs) – – 0.11 – 1

Lip6Outdoor 2008 x x outdoor (campus) ground (hand-
held)

x x x manual ppm (imgs) – – 0.3 – 1

New College
(FAB-MAP)

2008 x x outdoor (campus) ground (robot) x x x x GPS, manual plain text (non-
img), jpg (img)

1.9 – – – 1

St Lucia Bris-
bane 2007

2008 x x outdoor (urban) ground (car) x x – – 66 – 1.67 – 1

Bicocca (in-
door)

2009 x x x indoor (office) ground (Robo-
com)

x x x x x x x x x x x map model, laser-
based

plain text (non-
img), png (img)

– – 2.5 3d 5

COLD 2009 x x x x indoor (office) ground (Pioneer
3, ATRV Mini,
PeopleBot)

x x x x x laser-based, man-
ual

plain text (non-
img), jpg (img)

0.92 – 0.99 – 76

Malaga 2009 2009 x x outdoor (parking,
campus)

ground (car) x x x x x x x RTK-GPS Rawlog MRPT 6.358 – – – 6

New College 2009 x x outdoor (campus) ground (Segway) x x x x x x x x x x GPS plain text (non-
img), png, jpg
(img)

2.2 – 0.73 – 1

albert-b-laser-
vision

2010 x x indoor (office) ground (iRobot
B21r)

x x x x – CARMEN (non-
img), jpg (img)

– – 0.18 – 1

CMU-VL 2011 x x x outdoor (urban) ground (car) x x x x x GPS – – 8.5 – 1y 16

Ford Campus 2011 x x outdoor (campus,
urban)

ground (car) x x x x x x x x RTK-GPS LCM log – – – 2m –

UTIAS Multi-
Robot

2011 x indoor (empty
space)

ground (iRobot
Create)

x x x x external tracking
system

jpg (img), dat
(non-img)

– – 4.78 – 9

Alderley Bris-
bane

2012 x x x outdoor (urban) ground (car) x x manual – 16 8 – – 2

TUM RGBD 2012 x x indoor (office, in-
dustrial hall)

ground (handheld,
Pioneer 3)

x x x x x external tracking
system

plain text (non-
img), png (img +
depth), ROS bag

0.285 – 0.35 – 15

CoBots long-
term

2013 x x x x indoor (office) ground (robot) x x x x x – ROS bag 131 – 260 2y3m 1082

KITTI 2013 x x outdoor (urban) ground (car) x x x x x x x x x RTK-GPS png (img), binary
(laser), plain text
(imu, gps)

– – 1.18 8d 61

MIT Stata
Center

2013 x x x x indoor (office) ground (PR2) x x x x x x x map model ROS bag 42 – 38 1y9m 84

Nordland 2013 x x x outdoor (railway) ground (train) x x x GPS mp4 (video
stream), plain
text (gps)

2916 729 39.74 – 4

Gardens Point
Campus of
QUT

2014 x x x indoor, outdoor
(campus)

ground (hand-
held)

x x ground-plane po-
sition

png (imgs), plain
text (ground
plane)

– – – – 3

Witham
Wharf RGB-
D (LCAS
STRANDS)

2014 x x x x indoor (office) ground (SCITOS-
G5)

x x x x – ROS bag – – – 1y1m 368

KAIST 2015 x x x outdoor (urban) ground (car) x x x x x x x RTK-GPS png (imgs), plain
text (imu, gps)

84 – – 18d 36

EuRoC 2016 x indoor (industrial
hall, office)

air (AscTec Fire-
fly)

x x x x x x external tracking
system

ROS bag 0.8936 – 0.37 – 11

NCLT 2016 x x x x indoor, outdoor
(campus)

ground (Segway) x x x x x x x x RTK-GPS,
SLAM-based

binary (laser), tiff
(img), plain text
(non-laser or img)

147.4 – 34.9 1y4m 27

Berlin Ku-
damm

2017 x x outdoor (urban) ground (car) x x manual jpg (img) – – – – 2

Oxford Robot-
Car

2017 x x x x x outdoor (urban) ground (car) x x x x x x x x x x RTK-GPS png (img), binary
(laser), plain text
(imu, gps, odo)

1010.46 10 – 1y8m 133

YQ21 2017 x x outdoor (campus) ground (car) x x x x x x x x RTK-GPS binary (laser), jpg
(imgs), plain text
(gps)

23 – 6.5 1w 21

CMU-Seasons 2018 x x x outdoor (urban) ground (car) x x x x manual jpg (img) – 8.5 – 330d 17

Freiburg
Across Sea-
sons

2018 x x x outdoor (urban) ground (car) x x x GPS, manual jpg (img) 110 – – 3y 3

RobotCar Sea-
sons

2018 x x x outdoor (urban) ground (car) x x x x x manual jpg (img) – 10 – 178d 10

Bonn RGB-D
Dynamic

2019 x indoor (office) ground x x x x external tracking
system

png (imgs, depth),
plain text (imu,
gps)

– – – – 26

CBD 2019 x x outdoor (urban) ground x x x manual png (imgs) – – – – 1

MulRan 2020 x outdoor (urban) ground (car) x x x x x SLAM-based binary (laser),
CSV (global pose,
radar ray), png
(radar polar img)

41.2 – – 2m15d 12

Oxford Radar
RobotCar

2020 x x x outdoor (urban) ground (car) x x x x x x x x x x RTK-GPS,
SLAM-based

png (img, raw
laser, radar), bi-
nary (laser), plain
text (imu, gps,
odo)

280 10 – 1m 32

USyd Campus 2020 x x x x outdoor (campus) ground (car) x x x x x x x x GPS ROS bag – – – 1y 52

IPLT 2021 x x x x x outdoor (parking) ground (car) x x x x x x x GPS ROS bag – 0.2 – 2y 127

RADIATE 2021 x x x x outdoor (parking,
urban)

ground (car) x x x x x x x x x RTK-GPS ROS bag – – 4.98 – –

NTU VIRAL 2022 x indoor, outdoor
(campus)

air (DJI M600) x x x x x x x external tracking
system

ROS bag 1.845 – 0.9 – 9
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keywords in the analysis presented in Figure 3 (both vision and
camera keywords appear in the graph with 18 and 7 occurrences,
respectively), indicating an interest of using camera sensors in
data acquisition and long-term localization and mapping. Also,
the omnidirectional vision used in 5 datasets can be accomplished
by using an hyperbolic mirror (Bicocca (indoor), COLD), joining
the image of several cameras and using their extrinsic calibrated
parameters, or using an omnidirectional camera (Ford Campus,
NCLT , New College) such as the Point Grey LadyBug 2 5-view.
Although the thermal camera is only present in KAIST , this sen-
sor can be interesting for building inspection (Yue et al. 2020).

Moreover, datasets used in the included works recently released
also use 3D laser (or 3D LiDAR) and radar sensors. Although the
older dataset with 3D laser is from 2011 (Ford Campus), 5/10
(50%) datasets using this sensor were released over the past 5
years from a total of 14 datasets released in this same period.
This trend is noted also when analyzing the DE7 item of the
included works, where 24/27 (89%) methods using a 3D laser were
proposed since 2018, indicating a recent importance of this sensor
for long-term localization and mapping. As for radar data, all 3
datasets using the sensor (MulRan, Oxford Radar RobotCar , and
RADIATE ) were released since 2020. A corresponding recency is
noted in included works with 3/4 (75%) methods (Martini et al.
2020, H. Yin, X. Xu, et al. 2021, and Hong et al. 2022) using the
sensor are also from 2020 onwards. This recent usage indicates a
recent interest of using radar data within the scope of this review’s
topic, probably due to being less affected by changing lighting or
weather conditions compared to visual sensors (Hong et al. 2022).

As for the other sensors used in the dataset, odometry data,
IMU, 2D laser, and GPS are also extensively used in the datasets.
The first two provide relative motion information of the vehicle
and are used in 16 and 17 datasets and 33 and 19 included works,
respectively. Although the 2D laser is used in 17 datasets, 15 of
those are from 2016 and previous years. However, the sensor is
still used in the included works over the years, especially in indoor
environments, with 21/25 works for indoors using 2D lasers. As
for GPS data, this sensor is usually used as ground-truth data,
as will be discussed later.
Sensor calibration is important for achieving long-term local-

ization and mapping, not only for avoiding the propagation of
inconsistency pose errors between sensors through time, but also
to process the perceived data from the environment in the same
coordinate referential frame. The intrinsic calibration is usually
relative to camera sensors, where 25/37 (68%) datasets with this
sensor provide the intrinsic parameters to the user. Some of the
datasets with cameras do not provide those parameters due to
being intended only for image-based place recognition (e.g., City
Center (FAB-MAP), CBD , or Freiburg Across Seasons). In terms
of extrinsic calibration, 24/43 (56%) datasets provide these pa-
rameters, being useful for evaluating methods where the param-
eters are required to be processed in the same reference frame.

The datasets more diverse in terms of their sensor setup are
Bicocca (indoor), Oxford RobotCar , and Oxford Radar RobotCar ,
with 7, 6, and 6 different types of sensors, respectively.

File format Most of the datasets used by the included works
define a specific format for organizing the respective data. These
formats use standard file types such as plain text, CSV, or binary
files having the advantage of not being tied to any particular soft-
ware. Even so, there are common characteristics between those
specific formats. Images are usually saved in JPG or PNG files,
whereas PNG files are also used in the datasets for saving depth
information of RGBD sensors. The laser data is usually saved

in binary files due to its easiness for parsing by different pro-
gramming languages and size considerations (Geiger et al. 2013;
Maddern, Pascoe, et al. 2017). Another common aspect of spe-
cific formats is the use of plain text or CSV files to save IMU,
GPS, and/or odometry data. As for radar data, the respective
polar representations are saved in PNG files.

However, the datasets also make available standard log formats
compatible with different types of sensor data. The most used one
is ROSbag from the Robot Operating System (ROS) framework in
9 datasets. This log format is compatible with common messages
defined in ROS for different sensors14. The other standard format
used in more than one dataset is CARMEN log files defined in the
CARMEN robot navigation toolkit15. Although this log format
supports different sensor data such as odometry or lasers, the
CARMEN navigation toolkit is not updated since 2008 (version
0.7.4-beta), considered to be deprecated.

Usage relation with the included records As for relating
the datasets usage with this review’s included works, the datasets
can be related with the DE1 categorization of the records. From
the appearance category in DE1, 50/75 (67%) works use 32 differ-
ent public datasets from Tabl 6 to evaluate the proposed method-
ologies. The datasets most used are KITTI , Nordland , NCLT ,
St Lucia Brisbane 2007 , and Oxford RobotCar (13, 11, 9, 8, and
8 usages). KITTI is also the most used overall, given the 26
works utilizing it for evaluation. However, this dataset and St
Lucia Brisbane 2007 do not have seasonal nor weather changing
conditions that greatly influence the appearance invariance of the
methods, as discussed in Section 5.1, even though those datasets
have high usage by the appearance-related works. Indeed, more
recent datasets such as NCLT or Oxford RobotCar already widely
used for evaluation, or also USyd Campus and RADIATE would
be suitable for evaluating the appearance invariance of the local-
ization and mapping algorithms due to the datasets’ diversity in
terms of varying conditions.

Although the works categorized as dynamics and sparsity also
use public datasets for evaluation, the usage is slightly lower than
for appearance-related methods (44% and 51%, respectively, com-
pared to 67%). KITTI , TUM RGBD , and Witham Wharf RGB-
D (LCAS STRANDS) are the only datasets used in more than one
work categorized as dynamic (7, 6, and 2 usages, respectively),
considering a total of 10 different datasets used by these works.
However, KITTI and TUM RGBD could be not the most suit-
able datasets for evaluating the performance over different levels
of dynamics in the environment due to the smaller total operation
time of 1.18h and 0.35h, respectively, compared to other datasets
classified as having dynamic elements in Table 6. For example,
Witham Wharf RGB-D (LCAS STRANDS) has a time frame of
1 year and a month in an indoor office environment capturing dif-
ferent motion frequencies or habits of the persons working at the
scene with an average of 1 daily acquisition run. Oxford Robot-
Car and USyd Campus are also interesting due to the long time
frames of the data acquisition (1 year and 8 months, and 1 year,
with 133 and 52 runs, respectively). Also, IPLT is captured in a
parking lot environment capturing semi-static and dynamic mov-
ing cars in the scene. As for sparsity-related works, 22 different
datasets are used in the experiments, whereas KITTI , Intel Re-
search Lab 2003 , MIT Killian Court , MIT Stata Center , and
EuRoC being the most utilized ones (6, 5, 3, 3, and 3 usages,
respectively). KITTI and EuRoC are used for evaluating feature

14http://wiki.ros.org/common msgs
15https://carmen.sourceforge.net/

http://wiki.ros.org/common_msgs
https://carmen.sourceforge.net/
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management techniques, though these datasets have small oper-
ation time frames and, possibly, trajectory lengths. Although
MIT Stata Center would seem like a good dataset for evaluat-
ing the sparsity due to the long trajectory length and time frame
(42km and 38h, respectively), the dataset’s description indicates
that hardware and calibration problems in the data acquisition
setup may have created inconsistencies in the data. As for In-
tel Research Lab 2003 , MIT Killian Court , and other datasets
classified as sparsity in Table 6, these are widely used for graph
sparsification due to repeated passages in same locations with a
total of 15 usages, even though those datasets have usually only
1 data sequence. Other recent datasets could also be interesting
for evaluation sparsification techniques of the map such as Ox-
ford RobotCar and MulRan, given the repeated passages over the
10km path and the long trajectory length of 41.2km, respectively.

Furthermore, 5/7 multi-session works used datasets, whereas
the MIT Stata Center and Intel Research Lab 2003 being the
most used ones with 2 usages each. While each data sequence of
MIT Stata Center may represent a single session (Lázaro et al.
2018), the unique data sequence of Intel Research Lab 2003 can
be split into different sessions Latif, Cadena, et al. 2012. This
approach is valid for applying to other datasets in Table 6. As for
the computational categorization on DE1, this category does not
relate to the datasets used in the experiments because the compu-
tational efficiency is more dependent on the proposed localization
and/or mapping algorithm than on the data.

In terms of multi-robot works (Gadd and Newman 2016;
Karaoğuz and Bozma 2020; Yue et al. 2020; Hui Zhang et al.
2018) identified by the DE4, even though the dataset UTIAS
Multi-Robot collects data from 5 robots and being the only multi-
robot dataset in Table 6, it is only used in Nobre et al. 2018
to test the reconfiguration of landmarks in the scene in different
runs for single-robot localization and mapping. The only datasets
used in multi-robot works are KITTI in Hui Zhang et al. 2018
and COLD in Karaoğuz and Bozma 2020. These works assume
that different data sequences are acquired by different agents or
segment the sequence in data subsets, similar to the evaluation
with datasets of multi-session works. However, the fact that only
4 multi-robot works are included in this review and only 1 public
dataset used in the included records is acquired with multiple ve-
hicles could indicate that the use of multi-robot systems is not yet
widely studied in the long-term localization and mapping topic.

5.6.2 Distance and time considerations

Next, analyzing the total trajectory length of the private exper-
iments on the included records (DE10 on Table 7) and public
datasets (see Table 6), 5 works and 6 datasets have a length
greater than 100km. Higher values on the trajectory length indi-
cate possibly more interesting data for evaluating sparsity man-
agement techniques discussed in Section 5.3, given that the de-
sired behavior of a mapping algorithm is its scalability being only
dependent on the environment size and not on the trajectory
length. Although the total trajectory length does not necessar-
ily relates directly with the environment area, the latter is rarely
seen in the experiments description, and even for the trajectory
length, only 36/77 works that perform private experiments and
22/43 datasets indicate the length.

The other distance measure considered in this review to char-
acterize the experimental data is the one relative to repeating the
same path, with 7/8 datasets and 3/8 included works that specify
this metric having a repetitive path distance greater than 8km and
more than 1 run. These low numbers do not necessarily indicate

incomplete information in the experimental description due to a
data acquisition can be performed on non-repetitive routes. Even
so, repeating the same exact path under different environment
conditions (i.e., appearance variance) could be a case study for
evaluating the appearance invariance of localization and mapping
algorithms discussed in Section 5.1.

In terms of time-related long-term characteristics of experimen-
tal data, longer total operation times indicate a robust evaluation
of the proposed localization and mapping algorithms over long
continuous periods, and greater time interval suggests data ac-
quired under severe changing conditions (not only in the environ-
ment appearance but also semi-static modifications in the scene).
However, only 2/10 works performing private experiments and in-
dicating the total operation time test their methods over a total of
8h (equivalent to a work day), while also only 4/23 datasets that
define the total log time in their description have more than 8h of
data. On the contrary, 41/77 works and 18/43 datasets character-
ize the interval between the first and the last data sequence, which
of those 29 works performing private experiments and 17 datasets
have at least a 1 week interval. These results indicate that even
though the included works in this review use experimental data
with greater time intervals, often several days or weeks, not so
much importance is given towards the total operation time.

5.6.3 Ground-truth data

As for the types of ground-truth data found in the included works
(see DE9 in Table 7) and the public datasets used for evaluation
(see Table 6), the manual annotation is one of the most used types
of ground-truth including image to image association (e.g., useful
for evaluating image-based place recognition), manual alignment
of maps (Biswas and Veloso 2013a), or manually segmenting im-
ages (Geiger et al. 2013). Although GPS-based data is also widely
used in the experiments, whereas the RTK-GPS variant improves
the pose precision compared to the basic positioning system, GPS
is meant for use in outdoor environments. The alternative for in-
door environments used in the experiments is external tracking
systems using, e.g., reflective markers put on the robot to track
them through systems such as OptiTrack16 or Vicon17 to provide
precise measurements of the robot’s pose. Simulation data used
in 10 included works can also provide precise ground-truth data
for the robot’s pose or other types of information, even though
not in a real environment.

Moreover, SLAM or laser-based ground-truth data are also
found in the experimental evaluation of the included works and
public datasets. The experimental methodology uses localiza-
tion and mapping algorithms other than the one being evalu-
ated to provide ground-truth data usually using a different sensor
setup, or using the same algorithm but including all data sessions
or global optimization over the entire pose graph. Specifically,
laser-based localization is widely used in the included works as
ground-truth data to evaluate vision-based methods (Nuske et
al. 2009). Similarly to SLAM-based ground-truth data, the ex-
perimental results of localization and mapping methods without
pruning are also used as a reference for evaluating sparsification
algorithms (Carlevaris-Bianco, Kaess, et al. 2014).

As for model-based ground-truth data, the work of Boniardi et
al. 2019 and the datasets Bicocca (indoor) and MIT Stata Center
propose the use of floor plans as a model of the environment to
align the current estimation with the model and obtain a ground-
truth for the trajectory of the robot on the map. Ozog et al.

16https://optitrack.com/
17https://www.vicon.com/

https://optitrack.com/
https://www.vicon.com/
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2016 is the other method using map models in the experimental
evaluation but in the context of ship hull inspection, where the
current map estimation is aligned with the ship hull CAD model
for obtaining the trajectory ground-truth data. However, the use
of map-based ground-truth data to evaluate the mapping process
is not seen in the included works, other than performing a visual
quality evaluation over the mapping results and the sensor data.

5.7 Evaluation metrics

The final topic of discussion over the included works in this review
is the analysis on evaluation metrics used for assessing the per-
formance of the proposed methodologies (see DE12 in Table 6).
This analysis is organized by metrics intended for place recogni-
tion, evaluation of the robot pose, assessment of map sparsity,
and computational performance.

5.7.1 Place recognition

The evaluation of place recognition performance within the con-
text of this review is intrinsically related to the invariance to
changing conditions of long-term localization and mapping, and
so, works categorized as appearance in DE1. The most used met-
rics for place recognition in the included works are precision and
recall, where 50/142 works use these metrics in the experimental
evaluation, and from those works 39 are categorized as appear-
ance. These metrics characterize the performance of recognizing
successfully different places related to the number of true and
false positives and true and false negatives, and also include the
precision-recall curve where a greater area under the curve indi-
cates a better classifier for place recognition.
Other metrics less used in the included works but also impor-

tant are the confusion matrix, the localization success rate, and
the f-score and f-beta measures. The confusion matrix associates
the predicted place to the true value in the case of each data entry
representing a unique place, and a unique diagonal in the matrix
would be the ideal result. This matrix is also used for comparing
the data stream versus a reference database, where the appear-
ance of multiple diagonals in the matrix indicates the capability
of the place recognition algorithm to perform loop closure relative
to the database. The localization rate is the ratio between the
number of successful localization versus and the attempts. As for
the f-score and f-beta metrics, these measures combines the pre-
cision and recall in an unique value, where the f-beta allows the
weighting of precision versus recall depending on which is more
important for the method’s use case.

5.7.2 Robot pose

Robot pose-related metrics are widely used in works categorized
as appearance, dynamic, and sparsity methods (21/75, 18/32,
and 16/45, respectively). The pose error indicates if the localiza-
tion algorithm is affected by changing conditions over time. For
dynamic-related methods, the pose error is also useful to show
the influence of moving elements in the scene on the localization
performance. As for sparsification techniques, the pose error cn
characterize the influence of the map pruning algorithm over the
localization estimator.
In terms of evaluating the robot pose, the pose error is also

one of the most used metrics in the included works (50/142).
These works evaluate the pose error metric in terms of its instant
measurement over time or relative to a data sequence in terms of
the mean, standard deviation, and/or RMSE values of the pose
error. Also, a specific measure of pose error used in 15/142 works

is the Absolute Trajectory Error (ATE) usually computed over
an entire trajectory. This metric requires the time alignment
between the localization estimation and the ground-truth data
and computes the mean and standard deviation of the estimation
differences between samples with the same time instant18.

The covariance of the pose estimation is also considered in the
included works for evaluating the robot pose error, where the co-
variance matrix represents the uncertainty of the robot’s pose over
an experiment. Also, in Hochdorfer and Schlegel 2009, the covari-
ance matrix’s eigenvalues are used to evaluate the uncertainty of
the estimator, where greater values represent greater uncertain-
ties. Instead of computing the eigen values from the covariance
matrix, Dayoub and Duckett 2008 computes these values from the
inverse covariance matrix, and so, the logic also inverts relative to
Hochdorfer and Schlegel 2009, where smaller eigen values would
mean smaller uncertainties in that case.

5.7.3 Map sparsity

As for evaluating the map sparsity, this evaluation is inherently
related to the sparsity category of DE1. In terms of metrics, the
analysis of the evolution of the number of nodes is widely used in
19/45 sparsity-related works. This metric is useful to study the
evolution of the graph size in the graph formulation of SLAM over
the operation time and/or trajectory length. The number of edges
over time or the edge reduction ratio compared to no pruning data
also indicate growth over time of the edges, while the gamma
index of a graph (ratio between the number of existing edges and
the possible ones) indicates the current sparsity over the graph
connectivity. Another important metric for evaluating the graph
sparsification is the Kullback-Leibler Divergence (KLD) measure
that defines the difference between two probabilistic distributions.
The included works use the KLD to compare the information
loss between the sparse graph and the one without pruning, in
which a 0 value of KLD would mean that the two distributions
have identical information, and so the graph pruning algorithm
was able to remove only redundant data. More generally, the
evaluation of the number of map points over time is also presented
in the results of sparsity-related works.

5.7.4 Computational performance

Finally, the evaluation of the computational performance is widely
analyzed in the included works. This evaluation is not necessar-
ily related to only the computational category of DE1 because an
algorithm’s computational performance impacts its online execu-
tion. Considering the 110 methods with online execution modes
identified in Table 1 by DE5, 76 (69.1%) works evaluate the com-
putational resources required for online execution of the proposed
methodology, indicating the importance of this type of experimen-
tal analysis in the included works. In terms of computational per-
formance metrics, the execution time measurement is most used
one being evaluated in 69 works. However, other metrics such as
the runtime memory or the computational complexity are con-
sidered in the included works for evaluating the computational
resources required to execute the proposed methodologies.

18See definition of ATE in the TUM dataset (https://vision.in.tum.de/
data/datasets/rgbd-dataset/tools#absolute trajectory error ate) and in the
RAWSEEDS benchmarking toolkit (http://www.rawseeds.org/rs/methods/
view//9)

https://vision.in.tum.de/data/datasets/rgbd-dataset/tools#absolute_trajectory_error_ate
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools#absolute_trajectory_error_ate
http://www.rawseeds.org/rs/methods/view//9
http://www.rawseeds.org/rs/methods/view//9
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6 Challenges and Future Directions

The growing interest in mobile robots and their usage in differ-
ent applications and complex environments stress the importance
of improving the robustness of autonomous systems. Although
the localization and mapping algorithms included in this study
help achieve long-term operations, these algorithms are not bul-
letproof. So, in addition to the challenges discussed in Section 5,
other potential challenges related to lifelong SLAM and research
directions are listed below.

Vision-based global place recognition Given the limited
field of view characteristic of vision sensors (apart from omni-
directional cameras), the analysis of the included records shows
that it is still challenging to recognize places using vision-based
global descriptors. The limited field of view influences the vi-
sual content of the image, as shown in the experimental results
of C. Qin et al. 2020, where the method significantly reduced its
performance due to viewpoint variance.
One possible direction could be the usage of data augmenta-

tion as in Tang, Y. Wang, Tan, et al. 2021 for learning global
visual descriptors, even though the latter work does not clar-
ify to what extent augmented data helped in viewpoint variance.
Another possible solution would be the use of omnidirectional
vision, even though the networks traditionally used for learning
CNN-based features (considered more discriminative compared
to handcrafted features, as previously discussed in Section 5.1.4)
may not be directly applicable due to the different aspect ratio
of omnidirectional images retrieve from sensors such as the Point
Grey LadyBug 2 5-view.

Dynamics modeling Most of the included works modeling the
environment dynamics determine the observations as static (per-
manent features), semi-static (short-term static object or static
at the current observation instant), or dynamic (moving object in
the scene) by either representing them in maps associated with
different discrete meanings of dynamics or reasoning the relation
between their semantic class and the expected dynamics. How-
ever, the determination of a dynamics value for the observations
could be interesting to observe its evaluation over time for pre-
dicting the environment dynamics or accounting them in the lo-
calization and mapping processes.
In the included works, Tipaldi et al. 2013 and Rapp et al. 2015

use Markov-based processes for predicting environment dynam-
ics. However, these works assume the independence of observa-
tions, which could not be valid because static and dynamic ob-
jects may influence the dynamics of their surroundings. While
FreMEn (Krajńık, Fentanes, Santos, et al. 2017) estimates the
dynamicity through spectral analysis, this method assumes only
periodic changes in the environment. Even though ARMA (L.
Wang et al. 2020) models both aperiodic and periodic changes,
its offline operation does not allow an online estimation of the
observations’ dynamicity value. So, it remains a challenge esti-
mating online the dinamicity of environment observations unless
the localization and mapping algorithms assume discrete levels
for dynamics.

Online graph sparsification In the graph formulation for the
SLAM problem, the methods GLC (Carlevaris-Bianco, Kaess, et
al. 2014) and NFR (Mazuran et al. 2016) stand out in terms of
their graph sparsification results, obtaining a graph growth ap-
proximately dependent only on the environment area and not on

the operation time or trajectory length. However, these methods
are mostly intended for offline execution (e.g., between operation
sessions) due to their additional computational cost when operat-
ing online. Ila et al. 2017 seems to be an interesting alternative by
proposing an incremental solution focused on the computational
cost of graph sparsification. However, experimental results only
showed that the method slows the graph’s growth rate instead
of bounding when operating in the same environment area. Even
though Boniardi et al. 2019 achieves a bounded computation time
by pruning nodes based on topological consistency, it remains to
be seen the results of graph sparsification without the CAD prior
and in more highly dynamic environments. Thus, online graph
sparsification is still an open research question and important for
extended time periods of continuous operation periods.

Decentralized computation Given the computational com-
plexity inherent to SLAM, an alternative to running locally in
the robot is decentralizing the algorithm’s execution, offloading
some parts to external agents with more computational power.
In the included works, while A. J. B. Ali et al. 2020 implements
a mobile-edge parallel execution bounding the computation time
in the local device, the execution time and memory of the edge
device grow over time. Furthermore, the state of the commu-
nication link influences the quality of localization and mapping,
as shown in Ding when evaluating the proposed cloud-based vi-
sual localization system with different network delays and packet
losses. Although the solution proposed by Ding, Y. Wang, Tang,
et al. 2019 can deal with delays up to 5s, the method requires a
permanent link with the cloud due to the robot only performing
localization.

Overall, the topic of decentralized computing either by using
edge devices or cloud-based solutions is still not well studied in
the context of long-term localization and mapping. For example,
the external devices could be able to perform global optimiza-
tions and searches, improving the initial estimations given by the
robot. Another use case for decentralized long-term SLAM would
be the external agent keeping observations of the same location at
different time instants to evaluate the appearance and dynamic
changes in the scene, while the robot would access the most up-
dated, invariant, and stable map for localization.

Multi-robot long-term SLAM Most of the current research
discussed in this review focuses on single-robot long-term SLAM.
Extending the current research for multi-robot systems would
be interesting for optimizing the autonomous systems operation.
However, the consideration of multi-robots also creates new chal-
lenges. One of would could be the decentralized and distribution
SLAM execution within the multi-robot system (e.g., which infor-
mation to exchange between robots) and the possibility of having
external agents (e.g., edge or cloud devices) to the multi-robot sys-
tem for offloading computation tasks. Another challenge would
be considering the heterogeneous characteristics of the robots (do-
main, sensors, motion constraints) in merging information.

Active exploration Information-driven exploration is an in-
teresting research topic consisting on actively planning the loca-
tions and times for the robot to visit. In the context of lifelong
localization and mapping, active navigation could plan the robot
trajectory, e.g., for avoiding locations that the robot predicts to
be highly dynamic or for generating specific mapping tasks in lo-
cations known to be very susceptible to appearance changes to
maintain an up to date representation of the environment. One
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example found in the included works is Santos et al. 2016 that
uses the dynamic prediction provided by the FreMEn module for
the planner to predict which areas are more likely to change and
define the locations to explore. However, achieving active navi-
gation would require a tightly coupling the planning process with
the robot’s localization and mapping estimations. Also, the rea-
soning and modeling of the environments changes would play an
important role for planning the tasks.

Human-to-Machine Interfaces The persons interacting day-
to-day with autonomous systems may also play an important role
in achieving a successful long-term operation. An operator of the
system can provide a priori information useful for the localization
and mapping tasks. For example, if the relocalization estimation
was not successful based on the current environment representa-
tion, the operator could define the robot’s initial pose. Another
example could be the dynamics modeling accounting also the op-
erator input for specific areas.
However, the interaction with the user should not be through

raw sensor data due to possibly increasing the need for special
training for the operator, especially in industrial applications.
Boniardi et al. 2019 presents an interesting work in terms of us-
ing CAD prior for localization and mapping while facilitating the
interaction with the user. Another potential direction could be
using higher levels of information for interaction such as high-level
geometric and semantic features perceived by the robot.

7 Limitations of the Study

Although this study follows a systematic methodology for select-
ing the included works in the review, the methodology followed by
this study has limitations. One limitation is related to the goal
of overview the long-term SLAM topic instead of providing an
in-depth analysis, discussion, and comparison focused on a single
challenge intrinsic to lifelong autonomy. This limitation leads to
an extensive and complex discussion of the included works that
may possibly not cover all the details of the proposed methods
in the included records. However, none of the existent reviews in
SLAM focus on the long-term localization and mapping problem
nor clarify the selection methodology of the works included in
their studies. Also, not focusing on a single challenge related to
long-term SLAM provides a broader and interesting discussion of
the topic, given that some challenges may be related between each
other. For example, removing elements from the current map es-
timation considered to be outdated due to appearance changes is
related to both environment changing conditions and map man-
agement. Even so, the broader discussion itself is a limitation of
the study, and future ones may prefer to focus only on method-
ologies related to a single challenge of lifelong SLAM.
Furthermore, the quality assessment in the selection phase of

this study only considers 2 criteria associated with the topic of
this study, namely, QE3 and QE5. While the remaining quality
criteria evaluate the eligible records in terms of their scientific con-
tribution, only 2 out of 9 being related to the topic of the review
may be considered a limitation of this study. This limitation is
related to the previous one. Indeed, the QE not considering spe-
cific challenges and characteristics of long-term autonomy tries
to avoid the a priori knowledge of the authors to the review on
lifelong SLAM biasing the methods’ selection methodology. How-
ever, even though the followed methodology obtained two distinct
peaks in the QE scores (see Figure 2) that could be interpreted
as belonging to 2 different clusters – records to exclude versus the

ones to include in the review –, the inclusion of more QE criteria
would perhaps improve the distinction between the clusters.

The other limitation of this study is the discussion of the public
datasets. Instead of considering a different query to find and se-
lect datasets, the discussion focused only on the ones used in the
experiments by the included works. While this selection approach
allowed the identification of 43 different datasets, it does not mean
that these datasets are the best to use to evaluate methodolo-
gies related to long-term SLAM due to the identification of the
datasets discussed in this study may be biased by the included
works themselves. Although the main focus of this systematic
literature review is on ways to achieve lifelong autonomy and not
only on the experimental data, future studies should consider to
review separately the datasets from the methodologies. Still, the
inclusion of an analysis of common used datasets by the included
works improves the interest of this review for researchers inter-
ested in long-term localization and mapping.

8 Conclusions

This paper presents a systematic literature review on long-term
localization and mapping for mobile robots. The review selects
142 works from the literature covering the main strategies to
achieve lifelong SLAM and discussing the experimental data (in-
cluding private experiments and public datasets) and evaluation
metrics commonly used to assess the performance of autonomous
systems in long-term operations. The discussion analyzes the
included works in terms of appearance invariance to changing
conditions in the environment, dealing with dynamic elements in
the scene, multi-session strategies, map sparsification techniques
to bound the computational resources, and other computational-
related topics. Also, an overview over the bibliographic data of
the included works identifies the most used terms in long-term
SLAM and identifying research networks between authors using
the VOSviewer (van Eck and Waltman 2010, 2014) tool, while
also discussing the evolution of the number of publications over
time and the publication venues with more records.

Overall, the methodologies discussed in this study are a step
forward to achieve lifelong autonomy. In terms of dealing with
appearance changes in the environment, CNN-based features are
more discriminative compared to handcrafted features, while con-
sidering both appearance and geometric cues in the descriptor
improve its invariance to changing conditions. Semantic features
and considering different sensorization sources (e.g., cameras, Li-
DAR, and/or radar) can also increase the robustness to appear-
ance changes in the environment. For dealing with dynamic el-
ements, the most common approach is to distinguish between
static, dynamic, and semi-static changes in the perceived environ-
ment, while only using static permanent changes for localization
to improve the reliability of the pose estimator. As for constrain-
ing the map size to the explored environment area instead of the
trajectory length, the evaluation of the mutual information by
using techniques based on information theory or heuristics is the
most currently used technique to bound the map size.

However, there are still challenges and future directions for the
research on long-term SLAM. Vision-based global recognition is
affected by viewpoint variance, where using omnidirectional sen-
sors to increase the field-of-view relative to perspective cameras
may decrease that variance. Decentralized computation architec-
tures may be an interesting research direction to offload heav-
ier computation tasks from the mapping agent and improve the
scalability of long-term SLAM algorithms. For example, cloud
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and edge computing devices allow the parallelization of tasks and
increase the availability of computational resources, even though
communication constraints should be accounted. Also, the exten-
sion of the methodologies discussed in this study to multi-robots
systems may optimize the operation of autonomous systems while
also increasing their robustness in the long-term.
Lastly, this review can be updated in future studies thanks

to following a systematic review that defines explicitly the time
interval in the selection process (the data of the last full inquiry is
May 17, 2022) and the search query used to identify records from
the literature. Also, all documentation and scripts using during
the review process are available in the public GitHub repository
referred in Section 1 to facilitate replicating of the results and
future updates to this review. This paper may be extended to
focus on single challenges of long-term SLAM for providing an
in-depth comparison with experimental results between different
methodologies.
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A Data Extraction Results of the Included Records in the Systematic Literature Review on Long-Term
Localization and Mapping for Mobile Robots

Table 7: Data extraction items retrieved from the included records in the review
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Davison and Mur-
ray 2002

x EKF (2D, 3DoF) feature (Harris corner detec-
tor)

– x x x wheel odometry, camera
(gray, stereo)

x manual – – – – – innovation covariance, pose
error

Filliat 2007 x image classification (loca-
tion)

dictionary (BoW, location
category)

– x x x x camera (color, mono) x manual – – – 1d – confusion matrix, localiza-
tion rate

Konolige and Bow-
man 2009

x x visual odometry (3D, 6DoF),
vocabulary tree (location)

keyframe (graph, 6DoF
edges)

– x x x camera (stereo) x – – – – 4d – execution time, localization
rate, memory

Bosse and Zlot
2009

x x point cloud matching (2D,
3DoF)

submap (2D point cloud,
graph, 3DoF edges)

– x x x laser (2D) x SLAM-based 245.9 – 6.8 5d – pose error, ROC curves

Biber and Duckett
2009

x point cloud matching (2D,
3DoF)

submap (2D point cloud,
graph, 3DoF edges)

– x x x x wheel odometry, laser (2D) x – 9.6 – – 5w – average point cloud likeli-
hood, covariance eigenvalues,
memory

Hochdorfer and
Schlegel 2009

x EKF (2D, 3DoF) feature (SURF) – x x x wheel odometry, camera
(omni)

x position 0.115 – – – – position error, #map points

Hochdorfer, Lutz,
et al. 2009

x EKF (2D, 3DoF) feature (SURF) – x x x wheel odometry, camera
(omni)

x position 0.15 – – – – covariance eigenvalues, posi-
tion error, #map points

Nuske et al. 2009 x particle filter (2D, 3DoF) feature (building edges) – x x x wheel odometry, camera
(mono)

x laser-based 3.92 – 10.5 1d – execution time, localization
rate, pose error

Glover et al. 2010 x visual odometry (2D, 3DoF),
Bayesian (location)

experience (graph, pose + lo-
cal views, 3DoF edges)

– x x x x camera (mono) – – – – – – St Lucia 07 confusion matrix, precision-
recall, #nodes

Kretzschmar,
Grisetti, et al.
2010

x point cloud matching (2D,
3DoF)

pose graph (graph, 2D point
clouds, 3DoF edges)

– x x x laser (2D) – – – – – – FR079, Intel 2003 execution time, graph con-
nectivity, #edges, #nodes

Ikeda and Kanji
2010

x particle filter (location) dictionary (semantic hash-
ing)

– x x x x camera (mono) x GPS 40 20 – – – execution time, localization
rate, memory

Dayoub, Cielniak,
et al. 2011

x x feature matching (location) keyframe (graph, 6DoF
edges)

– x x x camera (omni) x initial position, laser-based – – – 3d – orientation error, similarity
score, #localization failures

Pirker et al. 2011 x feature matching (3D, 6DoF) keyframe (graph) – x x x x camera (gray, mono) x – 1.2 – – 2w – position error, #map points

Walcott-Bryant et
al. 2012

x x point cloud matching (2D,
3DoF)

pose graph (graph, 2D point
clouds, 3DoF edges)

– x x x laser (2D) x – 8.4 – – 5w – execution time, position er-
ror, #edges, #nodes

Kretzschmar and
Stachniss 2012

x point cloud matching (2D,
3DoF)

pose graph (graph, 2D point
clouds, 3DoF edges)

– x x x laser (2D) – – – – – – FHW, FR079, FR101, Intel
2003

execution time, #edges,
#nodes

Maddern, Milford,
et al. 2012

x wheel odometry (2D, 3DoF),
particle filter (location)

pose graph (graph, 3DoF
edges)

– x x x wheel odometry, camera
(color, mono)

– – – – – – New College (FAB-MAP) execution time, memory,
precision-recall

Latif, Cadena, et
al. 2012

x – pose graph (graph) – x x x x odometry – – – – – – Bicocca (indoor), Intel 2003,
New College

ATE, execution time

Kawewong et al.
2013

x vocabulary tree (location) dictionary (BoW, hierarchi-
cal tree)

– x x x x camera – – – – – – City Center, New College
(FAB-MAP)

execution time, precision-
recall

Bacca et al. 2013 x x Bayesian (2D, 3DoF) keyframe (graph) – x x x camera (omni), laser (2D) x no pruning 1.635 – – 1y – pose error, precision-recall,
#map points

Ball et al. 2013 x visual odometry (2D, 3DoF),
feature matching (location)

experience (graph, pose + lo-
cal views, 3DoF edges)

– x x x camera (mono) – – – – – – New College, St Lucia 07 pose error, #nodes

Einhorn and Gross
2013

x x odometry pose graph (graph, 2D/3D
NDT)

– x x x camera (mono, RGBD), laser
(2D)

x – 7 – 3 2d – execution time, #nodes

Tipaldi et al. 2013 x particle filter (2D, 3DoF) grid (occupancy, 2D) – x x x x laser (2D) x manual, SLAM-based – – – 1d – computational complexity,
localization rate, pose error

G. Huang et al.
2013

x odometry, point cloud
matching (2D, 3DoF)

pose graph (graph, 2D point
clouds, 3DoF edges)

– x x x wheel odometry, laser (2D) x simulation – – – – Intel 2003, MIT Kilian Court pose error, #nodes

Johannsson et al.
2013

x odometry (3D, 6DoF), BoW
(location)

keyframe (graph, 6DoF
edges)

– x x x wheel odometry, camera
(stereo, RGBD), IMU

– manual, no pruning – – – – MIT Stata Center execution time, #localiza-
tion failures, #nodes

Oberländer et al.
2013

x x Fourier-Mellin transform
matching (2D, 3DoF)

submap (2D occupancy grid,
graph, 3DoF edges)

– x x x wheel odometry, laser (2D) – SLAM-based – – – – albert-b-laser-vision, FR079,
Intel 2003

execution time, pose error,
precision-recall

Saarinen et al.
2013

x – 3D NDT, grid (occupancy,
3D)

– x x x camera (RGBD), laser (3D) x – 5 – 17 – TUM RGBD execution time, map similar-
ity

Biswas and Veloso
2013a

x particle filter (2D, 3DoF) feature (2D line segments) – x x x wheel odometry, camera
(RGBD), laser (2D)

– manual – – – – CoBots pose error, #localization
failures

Paul and Newman
2013

x image classification (loca-
tion)

database (images, semantic
visual topics)

– x x x x camera (color, mono) x GPS, manual 28 – – – City Center, New College
(FAB-MAP)

execution time, f-beta,
precision-recall

V. A. Nguyen et al.
2013

x feature matching (location) pose graph (graph) – x x x camera (color, mono) – – – – – – COLD computational complexity,
execution time, localization
rate

Churchill and New-
man 2013

x visual odometry (3D, 6DoF) experience (graph, local
views, observability edges)

– x x x camera (color, stereo) x RTK-GPS 37 0.7 – 3m – execution time, #localiza-
tion failures

Pomerleau et al.
2014

x point cloud matching (3D,
3DoF)

point cloud (laser, 3D) – x x x wheel odometry, laser (3D) x map, targeted speed 3.9 1.3 – 7m – execution time, velocity er-
ror

Murphy and Sibley
2014

x image classification (loca-
tion)

keyframe (graph) – x x x camera (color, mono) x – – – – 1w New College execution time, confusion
matrix, precision-recall,
#nodes
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Table 7: continued from previous page

DE: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12:
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Carlevaris-Bianco,
Kaess, et al. 2014

x odometry, point cloud
matching (2/3D, 3/6DoF)

pose graph (graph) – x x x x x camera (mono), laser
(2D/3D)

– no pruning – – – – Intel 2003, MIT Kilian
Court, NCLT

execution time, KLD, pose
error, #nodes

Williams et al.
2014

x odometry (3D, 6DoF) pose graph (graph) – x x x x wheel odometry, camera
(color, stereo), IMU

x RTK-GPS, simulation – – – – KITTI execution time, KLD

Einhorn and Gross
2015

x x odometry pose graph (graph, 2D/3D
NDT)

– x x x camera (mono, RGBD), laser
(2D)

x – 7 – 3 2d – execution time, #nodes

Pérez et al. 2015 x particle filter (3D, 6DoF) grid (2D, occupancy), dictio-
nary (BoW)

– x x x x wheel odometry, camera
(gray, stereo), laser (2D)

x SLAM-based 11.5 – 3.5 – – pose error

Li et al. 2015 x feature matching (location) pose graph (graph) – – – x x camera (gray, mono) x manual – – – 3y – confusion matrix

Mohan et al. 2015 x BoW (location) dictionary (BoW) – x x x x camera (color, mono) – – – – – – Bicocca (indoor), Ford Cam-
pus, Malaga 09, New College,
Nordland, St Lucia 07

confusion matrix, execution
time, precision-recall

Dymczyk, Lynen,
et al. 2015

x feature matching (location) keyframe (graph) – x x x x camera (mono) x no pruning 1.034 – – 10d – f-score, localization rate,
#nodes

Rapp et al. 2015 x particle filter (2D, 3DoF) grid (occupancy, 2D) – – – x x odometry, radar x – – – – – – pose error

Vysotska et al.
2015

x image sequence matching (lo-
cation)

database (images, sequence) – – – x x camera (color, mono) x manual 3 – – – – computational complexity,
confusion matrix, precision-
recall

Neubert et al. 2015 x feature matching (location) dictionary (translation, win-
ter - summer)

– – – x x camera (color, mono) – – – – – – Nordland precision-recall

Mur-Artal, Mon-
tiel, et al. 2015

x bundle adjustment (3D,
6DoF)

keyframe (graph) – x x x camera (gray, mono) – – – – – – KITTI, New College, TUM
RGBD

ATE, execution time, pose
error, recall, #nodes

Naseer, Suger, et
al. 2015

x image sequence matching (lo-
cation)

– – x x x camera (color, mono) x GPS – – – – New College (FAB-MAP) f-beta, precision-recall

Karaoğuz and
Bozma 2016

x feature matching (location) pose graph (graph, similarity
edges)

– x x x x camera (color, mono) x – 0.325 – – – COLD, New College execution time, precision-
recall

Santos et al. 2016 x – grid (occupancy, 3D) – x x x camera (RGBD) x simulation – – – 5d – environment model error, ex-
ecution time

Dymczyk, Stumm,
et al. 2016

x feature matching (location) – – x x x x camera (gray, mono), IMU x feature labels 4.05 0.15 – 3m NCLT execution time, f-score

Dymczyk, Schnei-
der, et al. 2016

x – keyframe (graph) – x x x camera, IMU x SLAM-based – 0.15 – – – f-score, #map points

Gadd and Newman
2016

x x visual odometry (3D, 6DoF) experience (graph, local
views, 6DoF edges)

x x x x camera (grey, mono) x – 100 – – 1m – memory, #localization fail-
ures

Mazuran et al.
2016

x – pose graph (graph) – x x x – – – – – – – Intel 2003, MIT Kilian Court KLD, #nodes

Ozog et al. 2016 x x particle filter (3D, 6DoF) pose graph (graph, planar
segments, 6DoF edges)

– x x x camera (gray, mono), IMU,
DVL

x map model 10.159 – – 3y – KLD, pose error, #nodes

Mühlfellner et al.
2016

x x reprojection minimization
(3D, 6DoF)

keyframe (graph) – x x x x wheel odometry, camera
(gray, mono)

x RTK-GPS 22 – – 1y – computational complexity,
localization rate, pose error,
#map points

An et al. 2016 x x EKF (2D, 3DoF) pose graph (graph) – x x x wheel odometry, camera
(gray, mono), laser (2D)

x manual, simulation 0.254 – 0.33 – – pose error, #edges, #nodes

Taisho and Kanji
2016

x x image classification (loca-
tion)

database (images, image fea-
tures)

– – – x x camera (color, mono) x manual – – – – – localization rate

Han, X. Yang, et
al. 2017

x feature matching (location) – – x x x x camera (color, mono) – – – – – – CMU-VL, Nordland, St Lu-
cia 07

execution time, precision-
recall

Biswas and Veloso
2017

x Bayesian (2D, 3DoF) feature (2D line segments) – x x x x wheel odometry, laser (2D),
camera (RGBD)

– manual, SLAM-based – – – – CoBots pose error, #localization
failures

Griffith and
Pradalier 2017

x SIFT flow (3D, 6DoF) pose graph (graph, 6DoF
edges)

– x x x camera (color, mono), GPS,
IMU

x manual 100 – – 1y2m – absolute alignment error

Naseer, Oliveira, et
al. 2017

x x feature matching (location) – – x x x camera (color, mono) x manual 100 – – 3y – f-score, precision-recall

Krajńık, Fentanes,
Santos, et al. 2017

x – grid (occupancy, 3D) – x x x x camera (RGBD) x external tracking system – – – 112d NCLT, Witham Wharf RGB-
D

computational complexity,
memory, pose error

Ila et al. 2017 x odometry (3D, 6DoF) pose graph (graph) – x x x x – – simulation – – – – KITTI pose error, #nodes

Latif, G. Huang, et
al. 2017

x x dictionary search (location) dictionary (incremental) – x x x camera (mono) – – – – – – Bicocca (indoor), KITTI,
New College

confusion matrix, execution
time, precision-recall

Xin et al. 2017 x x feature matching (location) – – – – x x camera (mono) – – – – – – CMU-VL, Gardens Point
Campus

computational complexity, f-
score, precision-recall

Bescos et al. 2018 x bundle adjustment (3D,
6DoF)

keyframe (graph) – x x x camera (color, mono, stereo,
RGBD)

– – – – – – KITTI, TUM RGBD ATE, execution time, pose
error

Opdenbosch et al.
2018

x – keyframe (graph, Hamming
distance edges)

– – – x x x camera (mono, stereo,
RGBD)

– – – – – – EuRoC memory

Han, H. Wang, et
al. 2018

x image sequence matching (lo-
cation)

– – – – x x camera (color, mono) – – – – – – CMU-VL, Nordland, St Lu-
cia 07

precision-recall

Han, Beleidy, et al.
2018

x feature matching (location) – – – – x x camera (color, mono) – – – – – – CMU-VL, Nordland precision-recall

F. Cao, Zhuang, et
al. 2018

x odometry (3D, 6DoF), vo-
cabulary tree (location)

pose graph (graph, 2D point
clouds, 3DoF edges)

– x x x wheel odometry, laser (2D,
3D), IMU

x – – – – 1d – execution time, precision-
recall

Nobre et al. 2018 x Mahalanobis distance mini-
mization (2D, 3DoF)

feature – x x x wheel odometry, camera
(color, mono)

x simulation – – – – UTIAS Multi-Robot precision-recall

Hui Zhang et al.
2018

x feature matching (3D, 6DoF) keyframe (graph) x x x x x camera (mono) x – – – – – KITTI localization rate

J. Zhu et al. 2018 x image sequence matching (lo-
cation)

– – x x x camera (color, mono) – – – – – – City Center, Nordland precision-recall
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MacTavish et al.
2018

x visual odometry (3D, 6DoF) keyframe (graph) – x x x camera (stereo) x external tracking system 26.08 0.16 – 4m – execution time, localization
rate, pose covariance, pose
error

L. Sun et al. 2018 x point cloud matching (3D,
6DoF)

grid (occupancy, 3D) – x x x x laser (3D) x manual – – – 2w KITTI map accuracy

Lázaro et al. 2018 x x x point cloud matching (2D,
3DoF)

submap (2D point cloud,
graph, 3DoF edges)

– x x x wheel odometry, laser (2D) – – – – – – MIT Stata Center, Witham
Wharf RGB-D

execution time, #edges,
#nodes

N. Zhang et al.
2018

x visual odometry (3D, 6DoF) keyframe (graph) – x x x camera (stereo) x – 25 0.25 – 4m – matching accuracy

Chebrolu et al.
2018

x feature matching (location) – – – – x x camera (color, mono), GPS x manual – – – 1m – matching accuracy

P. Yin, L. Xu, et al.
2018

x feature matching (location) grid (occupancy, 3D) – – – x x laser (3D) – – – – – – KITTI, NCLT precision-recall

Egger et al. 2018 x x feature matching (3D,
6DoF), odometry (3D,
6DoF)

submap (surfel, graph) – x x x wheel odometry, laser (3D),
IMU

x RTK-GPS – – – 1y6m – execution time, memory

Arroyo et al. 2018 x image sequence matching (lo-
cation)

– – – – x x camera (mono, stereo) – – – – – – KITTI, New College, Nord-
land

confusion matrix, execution
time, precision-recall

Ouerghi et al. 2018 x image sequence matching
(location), visual odometry
(3D, 2DoF), EKF(2D, 3DoF)

keyframe (graph) – x x x wheel odometry, camera
(mono)

– – – – – – KITTI execution time, pose error

Siva and Hao
Zhang 2018

x feature matching (location) – – – – x x camera (omni, RGBD) x GPS 19.15 – – 1y – precision-recall

Luthardt et al.
2018

x x visual odometry (3D, 6DoF) pose graph (graph) – x x x x camera (gray, mono) x GPS – – – – – pose error

Chen, L. Liu, et al.
2018

x image classification (loca-
tion)

– – – – x x camera (color, mono) – – – – – – Nordland, St Lucia 07 precision-recall

Yu et al. 2019 x x vocabulary hashing (loca-
tion)

– – – – x x camera (color, mono) – – – – – – City Center, New College
(FAB-MAP)

confusion matrix, precision-
recall

Boniardi et al. 2019 x x point cloud matching (2D,
3DoF)

pose graph (graph, 2D point
clouds, 3DoF edges)

– x x x laser (2D) x external tracking system,
map model

4.657 – 2.85 4d – execution time, pose error,
#nodes

G. Kim, B. Park, et
al. 2019

x feature matching (location) grid (location, 2D) – – – x x laser (3D) – – – – – – NCLT, Oxford RobotCar precision-recall

Berrio, Ward, et al.
2019

x x point cloud matching (2D,
3DoF)

feature (pole, corners) – x x x laser (3D) x manual – 0.5 – 6m – pose covariance, #map
points

K. Wang et al. 2019 x bundle adjustment (3D,
6DoF)

keyframe (graph) – – – x x x camera (RGBD) x simulation – – – – TUM RGBD ATE, precision

L. Wu and Y. Wu
2019

x image classification (loca-
tion)

– – x x x camera (color, mono) – – – – – – Gardens Point Campus,
Nordland

execution time, f-score,
precision-recall

Tang, Y. Wang,
Ding, et al. 2019

x x BoW (location), point cloud
matching (3D, 6DoF)

submap (graph, manifold) – x x x camera (color, stereo) – SLAM-based – – – – YQ21 execution time, localization
rate, pose error, #nodes

Bürki et al. 2019 x x feature matching (3D, 6DoF) keyframe (graph) – x x x x wheel odometry, sensor
(gray, mono)

x – – – – 1y NCLT execution time, pose error

Labbé and
Michaud 2019

x x BoW (location), odometry
(2/3D, 3/6DoF)

pose graph (graph) – x x x x x wheel odometry, camera
(stereo, RGBD), laser
(2D/3D)

– – – – – – EuRoC, KITTI, MIT Stata
Center, TUM RGBD

ATE, execution time,
#nodes

M. Zhang et al.
2019

x point cloud matching (2D,
3DoF)

grid (signed distance field,
2D)

– x x x laser (2D) x SLAM-based – – – – – execution time, pose error

Schmuck and Chli
2019

x odometry (3D, 6DoF) keyframe (graph) – x x x camera, IMU – – – – – – EuRoC pose error

Ganti and Waslan-
der 2019

x bundle adjustment (3D,
6DoF)

keyframe (graph) – – – x x camera (stereo) – – – – – – KITTI pose error

Ding, Y. Wang,
Tang, et al. 2019

x x EKF (3D, 6DoF) keyframe (graph) – x x x camera (stereo), IMU x laser-based – – 1.32 1y – ATE, communication con-
straints

Song et al. 2019 x odometry (3D, 6DoF) keyframe (graph) – x x x camera, IMU x RTK-GPS – – – – – pose error

Pan et al. 2019 x odometry, reprojection mini-
mization (3D, 6DoF)

feature (point clusters) – x x x x camera (mono), laser (3D) x – – – – 3m KITTI execution time, localization
rate, pose error, reprojection
error

A. J. B. Ali et al.
2020

x visual odometry (3D, 6DoF) keyframe (graph) – x x x camera (RGBD) x laser-based – – 0.5 – TUM RGBD communication constraints,
execution time, localization
rate, memory, pose error

C. Qin et al. 2020 x feature matching (location) – – x x x camera (color, mono) – – – – – – Alderley, FAS, Nordland,
Oxford RobotCar, St Lucia
07

confusion matrix, execution
time, precision-recall

Martini et al. 2020 x feature matching (location),
point cloud matching (2D,
3DoF)

experience (graph) – x x x x radar – – – – – – Oxford Radar RobotCar confusion matrix, local-
ization rate, pose error,
precision-recall

Karaoğuz and
Bozma 2020

x – pose graph (graph) x x x x camera (mono) x – – – – – COLD computational complexity,
precision-recall

H. Yin, Y. Wang,
et al. 2020

x particle filter (2D, 3DoF),
point cloud matching (3D,
6DoF)

pose graph (graph, 6DoF
edges)

– x x x laser (3D) – – – – – – KITTI, YQ21 execution time, f-score, pose
error, precision-recall

Clement et al. 2020 x feature matching (3D, 6DoF) – – – – x x camera (color, mono) – – – – – – Oxford RobotCar confusion matrix, matching
accuracy

L. Wang et al. 2020 x particle filter (2D, 3DoF) grid (occupancy, 2D) – x x x wheel odometry, laser (2D) x simulation, SLAM-based – – – – – execution time, memory,
pose error

Camara et al. 2020 x x feature matching (location) – – x x x camera – – – – – – Berlin Kudamm, Gardens
Point Campus, Nordland

execution time, memory,
precision-recall
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Table 7: continued from previous page
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Gao and Hao
Zhang 2020

x feature matching (location) – – x x x camera (color, mono) – – – – – – CMU-VL, St Lucia 07 precision-recall

S. Yang et al. 2020 x visual odometry (3D, 6DoF) keyframe (graph) – x x x camera (RGBD) – – – – – – TUM RGBD ATE, execution time, pose
error

Siva, Nahman, et
al. 2020

x feature matching (location) – – – – x x laser (3D) x simulation – – – – NCLT precision-recall

T. Qin et al. 2020 x EKF (2D, 3DoF) feature (semantic) – x x x x wheel odometry, camera
(color, mono), IMU

x RTK-GPS 0.324 – – 1m – ATE, memory, recall

Ding, Y. Wang,
Xiong, et al. 2020

x x bundle adjustment (3D,
6DoF)

point cloud (3D) – x x x x camera (color, stereo), laser
(3D)

– – – – – – KITTI, YQ21 ATE, execution time, pose
error

Yue et al. 2020 x – point cloud (3D) x x x x camera (color, mono, ther-
mal), laser (3D)

x – – – – – – ATE, memory

Schaefer et al. 2021 x x particle filter (2D, 3DoF) feature (poles) – x x x x laser (3D) – – – – – – KITTI, NCLT pose error

B. Liu et al. 2021 x EKF (3D, 6DoF), feature
matching (location)

keyframe (graph) – x x x x camera (color, mono), IMU – – – – – – City Center, KITTI, New
College (FAB-MAP)

execution time, memory,
precision-recall

C. Kim et al. 2021 x particle filter, point cloud
matching (3D, 6DoF)

grid (geodetic, NDT) – x x x laser (3D) x RTK-GPS, SLAM-based – – – – KITTI memory, pose error

Derner et al. 2021 x feature matching (3D, 6DoF) database (images, features,
pose)

– x x x x wheel odometry, camera
(RGBD)

x manual 0.198 – – – Witham Wharf RGB-D execution time, localization
rate, pose error

F. Cao, Yan, et al.
2021

x sequence matching (location) – – x x x laser (2D/3D) – – – – – – NCLT, Oxford RobotCar execution time, precision-
recall

G. Singh et al. 2021 x x feature matching (location) pose graph (graph, BoW) – x x x camera (stereo, RGBD) – – – – – – CBD, KITTI execution time, precision-
recall

Kurz et al. 2021 x – pose graph (graph) – x x x wheel odometry, laser (2D),
IMU

– no pruning – – – – MIT Stata Center, Witham
Wharf RGB-D

execution time, pose error,
#nodes

H. Yin, X. Xu, et
al. 2021

x location matching (location) – – – – x x laser (3D), radar – – – – – – MulRan, Oxford Radar
RobotCar

confusion matrix, precision-
recall

Thomas et al. 2021 x point cloud matching (3D,
6DoF)

grid (occupancy, 3D) – x x x x wheel odometry, laser (3D) x simulation – – – – – confusion matrix, execution
time, precision-recall

Berrio, Worrall, et
al. 2021

x x – grid (feature, 2D) – x x x wheel odometry, camera
(color, mono), laser (3D),
IMU

– – – – – – USyd Campus pose covariance

Oh and Eoh 2021 x feature matching (location) – – – – x x camera (color, mono) – – – – – – KAIST, Nordland precision-recall

Tsintotas et al.
2021

x BoW (location) dictionary (BoTW, incre-
mental)

– x x x x x camera (mono) – – – – – – City Center, EuRoC, KITTI,
Lip6Ind, Lip6Out, Malaga 09

execution time, memory,
precision-recall

Li Sun et al. 2021 x feature matching (3D, 6DoF) keyframe (graph) – x x x camera (color, mono) x SLAM-based 0.741 – – 1d – ATE, execution time, match-
ing error, pose error

Tang, Y. Wang,
Tan, et al. 2021

x feature matching (location) – – – – x x camera (color, mono) – – – – – – Alderley, Nordland, Oxford
RobotCar, YQ21

localization rate, precision-
recall

Piasco et al. 2021 x x feature matching (location) – – x x x x camera (RGBD) – – – – – – CMU-VL, Oxford RobotCar precision-recall

P. Yin, J. Xu, et al.
2021

x feature matching, sequence
matching (location)

– – x x x laser (3D) x – 132 11 – – KITTI, NCLT execution time, memory,
precision-recall

Meng et al. 2021 x laser odometry (3D, 6DoF) pose graph (graph) – x x x laser (3D) – – – – – – KITTI ATE, execution time, pose
error

S. Zhu et al. 2021 x particle filter (2D, 3DoF) grid (occupancy, 2D) – x x x x wheel odometry, camera
(color, mono), laser (2D),
IMU

x manual – – – – – pose error

Zeng and Si 2021 x – pose graph (graph) – x x x wheel odometry, camera
(color, mono)

x no pruning – – – – – #edges, #nodes

W. Ali et al. 2021 x point cloud matching, visual
odometry (3D, 6DoF)

keyframe (graph), submap
(image, graph)

– x x x x camera, laser (3D) x – – – – – KITTI CPU usage, memory, pose er-
ror, precision-recall

X. Xu et al. 2021 x feature matching (location) – – x x x laser (3D) – – – – – – MulRan, NCLT, Oxford
RobotCar

execution time, precision-
recall

Z. Yang et al. 2021 x x BoW, feature matching (lo-
cation)

– – x x x camera (color, mono) – – – – – – City Center, KITTI,
Lip6Ind, Lip6Out, Malaga
09, New College

confusion matrix, execution
time, precision-recall

Z. Wang et al. 2021 x x point cloud matching (3D,
6DoF)

feature (poles) – – – x x laser (3D) x GPS 5.52 – – 1m – localization rate, pose error

Hu et al. 2022 x feature matching (location) – – – – x x camera (color, mono) x RTK-GPS – – – – CMU-Seasons, RobotCar
Seasons

execution time, precision-
recall

Coulin et al. 2022 x EKF (3D, 6DoF) magnetic (vector) – x x x x camera (stereo), IMU x SLAM-based 1.665 – – 1y – ATE, execution time

K. Zhang et al.
2022

x feature matching (location) – – x x x camera (color, mono) – manual – – – – City Center, KITTI, Malaga
09, St Lucia 07

execution time, precision-
recall

T.-M. Nguyen, M.
Cao, et al. 2022

x bundle adjustment, sensor
fusion (3D, 6DoF)

– – x x x camera (mono), laser (3D),
IMU, UWB

– – – – – – EuRoC, NTU VIRAL execution time, pose error

Bouaziz et al. 2022 x feature matching (3D, 6DoF) keyframe (graph) – x x x x camera (gray, mono) – – – – – – IPLT, Oxford RobotCar execution time, memory,
#localization failures

Du et al. 2022 x reprojection minimization
(3D, 6DoF)

keyframe (graph) – x x x camera (RGBD) – – – – – – Bonn RGB-D Dynamic,
TUM RGBD

ATE, execution time, pose
error

Xing et al. 2022 x feature matching (3D, 6DoF) keyframe (graph) – x x x x x camera (RGBD), IMU x – – – – – EuRoC, KITTI, TUM RGBD execution time, localization
rate, pose error

Hong et al. 2022 x feature matching (location),
point cloud matching (2D,
3DoF)

keyframe (graph) – x x x radar – – – – – – MulRan, Oxford RobotCar,
RADIATE

ATE, execution time, pose
error
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