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Abstract

The Boussinesq equations with partial or fractional dissipation not only naturally generalize the classical Boussinesq equations,
but also are physically relevant and mathematically important. Unfortunately, it is not often well understood for many ranges
of fractional powers. This paper focuses on a system of the 3D Boussinesq equations with fractional horizontal ( - [?] h ) o u
and (- [?] h ) B O dissipation and proves that if an initial data (u 0, 9 0 ) in the Sobolev space H 3 ( R 3 ) close enough to
the hydrostatic balance state, respectively, the equations with o, 3 [?] (1 2, 1 ] then always lead to a steady solution.
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ABSTRACT. The Boussinesq equations with partial or fractional dissipation not
only naturally generalize the classical Boussinesq equations, but also are physi-
cally relevant and mathematically important. Unfortunately, it is not often well
understood for many ranges of fractional powers. This paper focuses on a system
of the 3D Boussinesq equations with fractional horizontal (—Ap)%u and (—Ap)?0
dissipation and proves that if an initial data (ug, 6o) in the Sobolev space H?(R?)
close enough to the hydrostatic balance state, respectively, the equations with
a, B e (%, 1] then always lead to a steady solution.

1. INTRODUCTION

The system of the 3D Boussinesq equations is one of the most important models
for geophysical fluids such as atmospheric fronts and oceanic currents as well as
fluids in our daily life such as the Rayleigh-Bénard convection. It arises from the
density-dependent fluid equations by using the so-called Boussinesq approximation
which consists in neglecting the density dependence in all the terms but the one
involving the gravity (see, e.g., [8,12,14,20,22]).

For the 3D incompressible generalized Boussinesq system with fractional dissipa-
tion and diffusion,

Ou+u-Vu=—v(=A)u—VP, zeR3 t>0,
00 +u-VO =—k(-A)PO, 2R3 t>0, (1.1)
V-u=0, xR t>0,

where a, 8 > 0 is real parameter, and u = u(z,t) € R? is the velocity, 8 = 0(z,t) €
R? is the temperature and P = P(x,t) € R is the scalar pressure, v > 0 denotes
the kinematic viscosity and x > 0 denotes the thermal diffusivity. For notational
convenience, we write 0; for the partial derivatives 0,,(i=1,2,3). The fractional
Laplacian operator (—A)® is defined via the Fourier transform,

(=) (€) = | F(e)
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for
iy 1 —iz-
f(é) = —(27)(1/2 /Rd e Ef(x)dx.

The Boussinesq equations given by (1.1) have recently attracted considerable in-
terests, due to their mathematical importance and physical applications. In physics,
Hydrostatic balance is an important equilibrium of many geophysical fluids. In fact,
our atmosphere is mainly in hydrostatic balance, between the upward-directed pres-
sure gradient force and the downward-directed force of gravity. Understanding the
stability of perturbations near the hydrostatic equilibrium may help gain insight into
certain severe weather phenomena (see, e.g., [18,22]). In mathematics, The partial
differential equation system concerned here models fractional dissipation and involve
only partial dissipation.

When o = 8 = 1, (1.1) reduces to the standard 3D incompressible Boussinesq
equations, the issue of whether (1.1) has a unique global-in-time solution is an
outstanding open problem. In two dimensions, there have been a great deal of
researches on the global regularity issue concerning the 2D Boussinesq equations
with fractional Laplacian dissipation or with partial dissipation (see, e.g. [1,2,5-7,
9-11, 15-17]). In three dimensions, if o > %, B = 11in (1.1), the hyperdissipative
Boussinesq equations always possess a unique global solution [26]; if o > %, k=0
in (1.1), the global existence and regularity result actually holds (see, e.g. [19, 23,
25,28]). Nevertheless, the stability of (1.1) remains unknown.

The hydrostatic balance given by

L,

u® = (0,0,0), OO =z, P(O):§x3 (1.2)

is a very special steady-state solution of (1.1) with great geophysical and astrophys-
ical importance. To understand the stability of perturbations near the hydrostatic

balance in (1.2), we consider the equations governing the perturbation (u, 6, p) with
§=0-00 p=p—pO),

Ou+u-Vu=—v(=A)u—VP, z€R3 t>0,
00 +u-VO =—k(—-A)PO, xcR3 t>0, (1.3)
V-u=0 ze€R3 t>0.

In this paper, we concern (1.3) with only horizontal fractional dissipation

Ou+u-Vu=—v(—=Ap)% — VP +0e3, xR t>0,
Ob+u-VO=—r(—ApP0 —usz, z€R t>0,
V-u=0, z€R3 t>0,

(U,0)|t:0 = (Uo,eg).

with a, 5 € (%, 1]. The concept of horizontal dissipation comes from geophysical fluid
dynamics(see [22]), meteorologists modelize the turbulent diffusion with anisotropic
viscosity —v, Ay — v303, where the horizontal kinetic viscosity coefficient v, and the
vertical kinetic viscosity coefficient v3 are empiric constant and satisfy 0 < v5 < vp,.
In this paper, we take the limit case v, = v and v3 = 0.

A natural consideration is how the parameters a and § are determined, and
this is what we choose to do in our tentative estimation work, based primarily on

(1.4)
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energy estimate method. When we bound the H?*-norm of (u, d), we plan to utilize
a series of anisotropic inequalities derived from a Sobolev embedding inequality
and the Gagliardo-Nirenberg (G-N) interpolation inequality [4,13,21]. Based on
the relationship between the parameters of these inequalities, we ended up choosing
a, € (%, 1]in (1.4) to study the stability of the Boussinesq equations with fractional
horizontal dissipation.

To construct steady solution of (1.4), we make use of the bootstrap argument by
anisotropic energy

E(t) = sw {HU(T)H%ﬁH@(T)H?{s}

+21// | Afu ||H3d7'+277/ HAﬁé’ (7|35 d. (1.5)

Here A;, = (—Ah)% denote the zygmund operator. Our precise result is stated in
the following theorem.

Theorem 1.1. Consider (1.4) with initial data (ug,0y) € H>*(R3) satisfies V - ug
and «, 8 € (3,1]. Then there exists a constant § = 6(v, k) > 0 such that, if

[[(wo, 6o) | 5 < 0, (1.6)

then (1.4) has a unique global classical solution satisfying,

t t
sup () + 10 ) + 20 | IAGu() o dm+ 20 | IAZO) s r < €,

for anyt >0 and C = C(v,K) is a constant.

A natural starting point is to bound ||u(t)|| s + ||0(t)|| gz via energy estimate. We
are able to derive the following energy inequality

E(t) < E(0) + CE(t)?. (1.7)

Combined with the bootstrapping argument (see [24]), we can prove Theorem 1.1.
However, the proof of Theorem 1.1 is not superficial, due to the lack of the vertical
dissipation and vertical magnetic diffusion, some nonlinear terms are not easy to
be controlled in terms of ||u(t)| gz + ||6(¢)|| s or the dissipation parts ||Afu| gs and
|AZ6]| 5. One of the most difficult terms is

Dzup, - V3050 - 030 dx

R3
11— anll 38
<927 90 un |5 193011 | G3AL61 2219053612 | V026 2.
(Clearly, it does not appear possible to bound the subterms

1—L 1—L
105un| 2 > 10501 (1.8)

1—L
directly in terms of [|A} uHHf“HAfBQHH3 but in terms of ||u(t )HH32“H9( M ™
Therefore, we hope the sum of the correspondmg exponents of the two subterms to
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be less than or equal to 1 for all given o and 3, which is

1 L +1 L <1 (1.9)
20 268 — '
To establish the inequality of (1.7), we choose «, 5 € (%, 1]. In the case of
1 1
l——+1—-==1
200 * 203 ’

the subterms of (1.8) can be estimated directly by
lu(@)[ s + 10() || zs-

For the case ) |
l——+1—- =<1,
2a 206
with the exponent is not enough to 1. Our strategy is to extract part from the rest
subterms

19w 22 (V42261

to fill the subterms of (1.8) by G-N interpolation inequality. One reason which
can not be ignored is that ||0sAfup| 2 could bounded by either |ul|gs or ||Aful gs
and [|V;,030]| 2 could bounded by either ||6]|gs or ||[A%0]|gs. In the last section of
our paper, we have successfully used this method to solve all similar difficulties in
proving stability and obtain inequality (1.7).

Lemma 1.2. Assume that o, 8,7 € (3,1], f,g,h, A} f, A w9, N hoand Osh are all in
L*(R3). Then,
/ Fghl dz S 117112 IS F11 3 gl 2ﬂHA QHLzl\hHLzHa?ﬁHLz,

/ Fohl de S 1A AL FIZE Nl ™ IAZgl 22 1Al A3 2

Here we write A < B to mean that A < CB for some constant C' and Ag = (—833)%.

The rest of this paper is divided into two sections. Section 2 provides the proofs
of Theorem 1.1 and Lemma 1.2. Section 3 derives the energy inequality (1.7).

2. PROOF OF THEOREM

This section proves Theorem 1.1 and Lemma 1.2.

2.1. Proof of Theorem 1.1.
Roughly speaking, the bootstrap argument starts with an ansatz that E(t) is
bounded, say

E(t) <M
and shows that E(t) actually admits a smaller bound, say
1

B(t) < 5M
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when the initial condition is sufficiently small. A rigorous statement of the abstract
bootstrap principle can be found in T. Tao’s book [24].
It follows that

E(t) < E(0) + CE(t)?, (2.1)

for some pure constants C. To initiate the bootstrapping argument, we make the
ansatz

B(t) < M= —

= (2.2)

We then show that (2.1) allows us to conclude that E(t) actually admits an even
smaller bound by taking the initial H3-norm F(0) sufficiently small. In fact, when
(2.2) holds, (2.1) implies

E(1) < B(0) + SE()

or

E(t) < 2E(0). (2.3)

Therefore, if we choose § > 0 sufficiently small such that

82 <=M, (2.4)

=~ =

then

E(t) < =M. (2.5)

N

E(t) actually admits a smaller bound in (2.5) than the one in the ansatz (2.2). The
bootstrapping argument then assesses that (2.2) holds for all time when E(0) obeys
(2.4). This completes the proof. [J

2.2. Proof of Lemma 1.2.
The proof makes use of the following version of Minkowski’s inequality,

g |y < 2zl g gy

for any 1 < ¢ < p < oo, where f = f(z,y) with z € R™ and y € R" is a measurable
function on R™ x R™ and the following basic one-dimensional Sobolev embedding
inequality [27], for f € H*(R),

1—L =
[l < ClUFIl @y L2(m)

A°f
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where s > % By the above inequality and Holder’s inequality;,

r277T3 17Ty 1Ty

/ Fohldo <l o, ez ol e o2 [llcz 121
RS

1—L 1
<c |z assE |,

\ngnm 5 IALgl 7

L2

r1x3

17% A %
7 IAZRIGS,

L2

11“72

1—-L

<CI 1 IAS 15 Nz A3 g||L2HhHL2 2”II/WlH
Let v = 1, we obtain

/R3Ifgh!dr§||f\|m“|\/\“f|| PR PA TN

I A AU gl ALl 22 1A 9ahl .

Here || f]| L2, 12, Tepresents the L-norm in the 2;-variable, followed by the L2, -
norm in z and the L2 -norm in x3. This finishes the proof of Lemma 1.2. O

3. THE H3-STABILITY

Due to the equivalence of ||(u,8)||zs with ||(u,0)| 2 + ||(u,8)||zs, it suffices to
bound the L:norm and the H3-norm of (u,f). By a simple energy estimate and
V -u =0, we find that the L2>-norm of (u,6) obeys

t
lu(®)IZ2 + 10122 + 2V/0 AR u(r)Z2 dr

t
+ 277/0 IARB(T) |7 dr = IluolZ: + 1607 (3.1)

The rest of the proof focuses on the H3-norm. Applying 92 to (1.4) and then dotting
by (92u,036), we obtain

1d <
577 D 19%ully +118%0113) + VIIOPAGully + PN = I+ Lo+ I, (3:2)
=1
where
3
I = Z - D20es - Osu + OPus - 030 du,
=1
3
12:—2 0 (u - Vu) - Pudz,
i=1 /R®
3

==Y [ 0¥u-V0)-0}0dz,.

i=1 vR?
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Note that, by integration by parts,
[1 - O

To bound I,, we decompose it into three pieces,

3
IQZ—Z O} (u-Vu) - dPudx
i=1 /R

3
:—Z( Ou-Vu-OPudr+3 | Ofu-Vou- Budr+3 [ Ou-VOiu-diudr)
R3

i=1 R3 R3
=191 + 3192 + 313, (3.3)

where we have used the fact that [, u- VO3u - 95udr = 0. I is naturally splitted
into three parts,

3
I :—Z OPu - Vu - OPudr
i=1 /R

2
=— Z OPu - Vu - Pudr — O3uy, - Vyu - O5udr — [ O3uzdsu - Osu
i—1 /R3

— R3 R3
=111 + Is12 + Io13.

By Lemma 1.2 and G-N interpolation inequality,

2
| Io11| =] —Z/ Ou - Vu - OPudx|
=1 /R3

2
9_1 1 1 1
S 03l [10F Ajull [V ul| 2 [V sl 2

i=1

1
2-1)

2
(2-1) (1) 1 4 1
S lOEAullz = 02N ull e T 0P Al | Vul 22V O
1=1

Sllull s [|AR wl e (3.4)
Where we have applied inequality

10l e < IAgul T IAL s (i =1,2) (3.5)
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for a € (%, 1] by interpolation inequality. We now turn to Is1o, by Lemma 1.2,

|I212] =| —/ D3uy, - Vyu - O3u d
R3
1-L 1-L
Slo3unll 2> ||33A?fuh|| 103ul| > ||33A?fu|| ||th||L2||Vh83u||L2
1—— 1_i
Slo3unl 2> ||33A?fuh|| ||33U||L2 ||33A?fu||

X thquf?”AZéu m HA}L—I—auHLZ )(m)

I

202 (=52) (1-9)(125)
X ||V adsul| 25 | AL Dsul| 2 | AFFBul .

Sl aall A7 ullZs- (3.6)

1 1
In fact, we separate ||Vjul/7.||Vi0sul|;. into two parts and combine with (3.5) to
reach our desired bound. Next, we consider the term I5;3,

|1213| :‘ — /3 8§’u383u : 8§udx]
R‘
2
= /R 030;u;05u - Ou daf
j=1

2
< 1080517 03NS 051025 1050l 12> Al 75 105l 2™ |9 Al 75

2
(1-55) 1-55) _— 1—
<S03 T ORAL ) T O3 Al A 02N 2
% Ha 1_i aAa é_l 8Aa l_i 83 % aSAa
yul| 122 |95 Al s (195 A 22 || 03ull . > | huH
Sllull gs || Ag s, (3.7)
where we used V - u = 0,
o 1_q 1_q
[0sApullfs ™ < lull s
and
105AS 05w 2 < |OFATull T 05 ull 27 (G =1,2; v = ). (3.8)

As a matter of fact, (3.8) can be verified via G-N interpolation inequality and
Plancherel theorem,

105A50;u; || 2 < |1€57°|&n a2

< l1€51enl " all g l1€51en1 " Hall 2
= |05 AR ul|Z= 105 A7l 12°
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To deal with I55, we split it into three parts,

3
Iy = — Z/ Ou - Vou - dudx
i=1 /R

2
=— Z/ O - Vou - OPudx dr — / d3uy, - V0su - Oqu dw — / OFuzdiu - O3u dx
- R3 R3 R3

=101 + I992 + I293.
Similarly to (3.4),

2
|201] =| — Z/ 3i2u -Vou - af’u dx|
i—1 /R3

2

1—-L 1,i
<3 N0Bul22 02 AGul 35 05ull 2> 93 Aqu] 35 | VOl .| Oi0sul .
i=1
- (1-35) (1=
<3 Iogul = oagreul s 02 Agu 2
x 02 Al oR ALl 03 AG w3 VOl . | D Oudsull
Sllullsl|AG s (3.9)

Applying Lemma 1.2 and G-N interpolation inequality, we obtain

|I200] =| — / O3uy, - V,0su - Osu du|

1_i

1_i
Slo5unll. >

108G 75 195l 105 A w351V 4Dl £V 2Bl
1—— 1_i
SN05unll g2 > 105 A5 s 75 ||33u||L2 l3Agull33

2a 2 [e% " 2a «@ - -5
% [V h05ul|25 2 | ADsul 182 AL au ) 02

a 1—5 P a (1—y)(1—
X (V02252 [ Aga2u| 7820 || AL g2y {072
Sl s (| Aful s (3.10)

1 1
Note that, we separate out part of ||V,05ul|2,||V,r03ul 2, and make it controlled by
|Af || gs. Similarly,

| 1203 =| — /3 O3uzd3u - Odu dx|
R
2
=| Z /R3 D30;u;05u - qu dz|
j=1

2
17— 1,i
SZHaZUhHLZ ||82A unllz3 ||63u||L2 Ha3 u“ 1050; UJ||L2||82({9 UJ“L2
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2
- -5k =
S S 10%unll 2 02 A wn 125 | 03ul 7= 93 AG w25
j=1
11 1_7 1— L
X 1050501252 [[Ds A 152 @y AL 0 2
1 1 _ 1 _ _L
X 182055125 (|02 G| 1S 2 g2 A Lo (o)
Sllull s | A w2 (3.11)

We deal with I»3 in the same method, I3 is naturally splitted into three parts,
3
=1 R3

2
=— Z Ou-Voru-Budr — | Oup - Viydsu - dsudr — | Ozuzdiu - dsudx
R3

]R3 ]R3
=131 + Ia30 + Io33.

By Lemma 1.2 and G-N interpolation inequality, we have
2
[ I231] =| —Z Ou - Voiu - OPudzl
i=1 /R?

2
1—L 1 1
S IVOull > VO Aul| 73 5 [102ullys 2 0 AGull 23 [19yull 22 |9:dsul 2.

=1
<Z||vaA 1872 wa,AL )| v a2 Ay %5
Y(1-5) o )1-5-)
x [02Agu| 182 a2 AL 2 9B A 25 Dy 2 | Ossu 2
SJull s 1Al %5 (3.12)

We estimate [o35 similarly as I3 which yields

| Ioga| =| — / Osuy, - Vy03u - Osu d)|

1
<020 27 V502G 25 (| Osunl| o2 2 (DAL un]| 25 ||a3u|rL22a||a3A ul| %
(1-5 1—5) 1-
< Aga2ul 182 ALz 03 | 9 A 73+ |02 AL |y )%

1_i

1-L 1
X | Ogunl[ 2> (|05 A% uh||L2 B Ay Ful 2 | B3 AS UIIZ%

Sl s | ARl (3.13)
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We next consider the term Iy33, utilizing the incompressible condition again, we
have

|1o33| =| —/ Osus0su - O da|
R3
2
=] Z/ Oju;Oqu - Dyu dx|
j=1 /R
2

g 1 1 1 1
S l103ull 2 = |05 A ull 21 05us]1 2. 19505151 22
j=1

2
2-1 1 -1 (1-54) (1-7)(1-54)
< S l1ulz O ATl 9y 125 2 IAGus 182 A o)) 02
J=1

11 1—L 1—)(1—-
X 0505|232 [|DaAgus |15 2 | g AL |y P2

Sl mallAfullZs- (3.14)
Combined with (3.3)-(3.14), we obtain
L(r) Sllullas | Ajulzs.

Now, we try to bound I3, we split it into three parts,

==Y [ 9}u-V0)-0}0dx
=1 /R
3
==Y (| Pu-V0-0}0dx+3 | 0u-VO,0 0}0dx+3 | V6030 dx)
i—1 JR? R3 R3
2131 + 3[32 + 3[33. (315)

I3; can be divided directly into three parts,

3
Iy ==Y [ 0u-V0-0/0do
i=1 /B

2
==Y | Ou-V0-9%0dx - / D3uy, - V3,0 - 030 dx — / D3ug0s0 - 020 da
=1 JR3 R3 R3

=I311 + I312 + I313.
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By Lemma 1.2 and G-N interpolation inequality,

2
[ I311] =| —Z/ Ou- V0 - 020 dul
i=1 /R

2
1—5m «@ 2
SZII8?UIIL22“||0?AhUII ||839||L2”’||83A59II 2 IV6)12. Va0 2.

=1

17

< - 2 gy [V 2a) 2\ L+ay, 3 (|92 A8 1-35) 2\ 18 (1=7)(1-5p)
S lloragulys | VI e

< [ 9PAT |35 192A7011 22 1911221 061
SOl s | Afyeel s | ARG s (3.16)

and

o =] — / Pup - V46 - 930 da|

<l10unl 2 93 AGwn | 25 ||539||LTB||5’3A69||27§IIVhQIIEzIIVhf?z@HEz
1_i
<[ ||a3A unl 7 05001 26||63A60u
B 148, (=71~ -1
< A761Ls ALl HVhGH

(1—% 1 )1—% —3
||Aﬁ639\|L ||A”Bao,9|| - 19,0125
<lull a2 601125 A 25 | AZ6] = (3.17)

By divergence-free condition V - u = 0 and

Bans L 31
103,007 <1101l
we have

’[313| :’ —/ 8§’u3830 . 8§9d:c|
R3
2
j=1 /R
2 1
< S 1102050511127 0230051135 10501 ™ 105001 23 1036112 02 AL0) 2]
- (1-4) (-7 (1=5%) = (1-7)
§ZH(9§A w3 NBBAL s T A3 | 9R A

< 00117 19sA281 12 19sA081,2 % 193611, 2 Azel 22
<110l I AGul 2 | AGO s (3.18)
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Similarity, I3, can also be divided directly into three terms,

3
Ip=—) 3 O?u - Vo0 - 020 dx
i=1 VR

2

==Y [ OPu-Vo0-020de— | Ojuy-Vi0s0-050de — | us030 - 030 d
R3 R3 R3

=131 + I320 + I323.

Then Lemma 1.2 and G-N interpolation inequality implies

2
|I301] =| — Z/ OFu - Vo0 - 020 dx|
i=1 /R?

2
1—5- 2 2
< S 02ull 27 02 Al 2 9801 |02 A0S V40 2. [V 0,06
=1
2
Y(1-5) o Y(1—55) o
SILEE ull8 7 oAd el 02 A7
HW@H”“ Pl AN TR NN A NN
<116l |Gl e | A o (3.19)
and
‘[322’:‘—/ 3§uhvh83(98§’9dx’
1_* « 2
<0Bunllya ™ 03AGunl 22 193612 |O3AZO 2 1974000 221905361
1_* « 2
Slogunl 1035 HaSeHLﬂHa?*ABeH
2 (1-y( %_%
< [IAfas0ls AL a0l 90,0012
Y(1-3k) )1-3) -3
AP o P
Sl 101135 1AG ul 5 AR 7 (3.20)

I393 can also be bounded via V-u = 0, Lemma 1.2 and G-N interpolation inequality,

R3
2
=y / D30;u;020 - D30 dx|
j=1 /R
2

<> 162012 102AL6) 23 102611 03 ALOII 22110500, 2 | 02051
~ 31| 12 3RV 12|03V 12 3 LUl 12 3Juj||L2||3]u]||L2
7j=1
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2
1—L 1 1_ L 1
Z 102611, 9200112311036 | 930761 22

(1- o =i 353
X [|0sAp ;| Hasf\1+ wllp Has8 ;|7
210 _%)zlm (1-7a 2 353
< 1030517 2 OB AL w1 Ha dyuj| 2
1_1 91
Slull s 101l " 1AR HHaﬁllA%Hm (3.21)
To deal with I33, we rewrite it as
3
i=1 /R?
==Y [ 0u-VO0-0}0dy — | Osuy-V,030-030dr — | Osus030 - 030 da d
i=1 R3 R3 R3

=1331 + I332 + I333.
Again by Lemma 1.2 and G-N interpolation inequality,

2
|I331| =| — Z/ Opu - V20 - 020 du|
i=1 /R

< ST IVaR6|. VO ALOII 10201 a1 0P AL6 22 Orull 0,05
NZH Ol 2 IVOFALON 210761 L2 ™ (107 AL 0| L2 [|Osul | 72| 005wl |

i=1

2
(1-5) (1-7)(1-55) 5
<SS Ivangel.  Ivaart el T 06| %
=1
(1-25) (1—)
< 2020118 2 A L) 5 98 A % 10y 2, 0. 05ul) s

Sl s I A70 13- (3.22)

The estimate for I33, is more complex, utilizing Lemma 1.2 and G-N interpolation
inequality, we have

|]332| :| — / 83Uh . Vh8§0 . 8??0 dl’|
R3

<||aguh||;;iuagA w7 ||a3e||LfB||a3Aﬁe||z€||vhazeuLfﬂ||vh62Aae||
S5l 123612 9 AZ011 27 |V, 02A0) 2]
< 110 A % | (B Agu | 5 %nvheﬁenm ) g8 V)
<uao,uh||L22a||a3e|rL2”|ra3Aﬂen TlosAZOIN T lozas e
x 105 Agun 3 195 A |5 2

A1-5k) =) (1— (I=y)(1=X)(1— )
< (17,0201 7 [ AZaze) 1SV ke gz )
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(1—5o) AL 35)FA1- (1-3) (1-AN)(1—55)+%
Sllwll g 5161 ys * ||A ullys PN P, (3.23)
25 t35—1 2-%
where \ = 22— 1— A\ = —F—. It is worth noting that
3a 251 3a—35 1

|0 Ajyunl| 75 y|Vh829||L2
allows us to extract
At A(1-355)
105 Agun |3 IV h050] s ™

which can be bounded by HuH HC“ HOH H3 ) , and brings us the hope of controlling

1335 suitably. We estimate I333 by the same Way as I393, which is

|]333’ :| - / 33u38§’6 : 8§9dxdac|
—|Z/ D;u;050 - 030 du|

S Z 10301152 13A701 1210y 1 2 N w0y,

J=1
N 32 E 1A BB e (70 A, 53
NZ||839||L2 1054301 £ | AR sl 2 ALyl ||8 ;|7
j=1
7(1-55) (1-7)(1-55) -
X ]|83A“uj]|L2 P05 A, | e 0505yl
2-1 2-1 i
<||u||H3 100 Al 1ARO N e (3.24)

Combining with (3.15)-(3.24), we obtain
Iy(7) Sllull s |78 7
+ H9HH3HA"UHH3HA}BL@Hm
o [l 615 A wl 25 A7) 5™
Flllya ||0||H;E||A ||H3B||A50||H3

(1—5= (1=55)+0(0=55), a0 (1
+ [Jull s > ||9||Hs * | Aguls”

Slallas + 160 me) (AR ullFs + [A7013:).

L —0 1

Adding (3.1), (3.2) and integrating in time, we have

E(t) SE0)+ /t L(1) + I3(r) dr
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and inserting all the bounds obtained above for I, and I3. We obtain (1.7). For
example, the bounds for I, yield

t t
/Wuﬂmsfuwmmw@mT
0 0

t
SMMMWW/MW%W
0

T€[0,t]

<E(t)e.

The time integral of I3 is similarly bounded, which completes the proof of (1.7). O
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