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ABSTRACT 
An organism’s phenome results from expression of its genome (nature) under certain environment and 

management effects (nurture) and interactions between these factors, as well as measurement error. For 

over 30 years, DNA sequencing and genomics tools advanced to where it’s now feasible to saturate 

genomes of segregating individuals, such that polymorphisms at nearly any position can be determined 

from other known positions. This is due to structure, linkage disequilibrium (LD), or linkage and is a 

powerful tool for genomic prediction and investigating biological phenomena. In contrast, most phenomics 

to date focuses on automating previously known “traits” as measurable and interpretable phenotypes; akin 

to focusing on measuring a single DNA marker rather than measuring an entire saturated genome. Viewing 

phenomics as a platform for discovery, similar to genomics, opens new methods for capturing phenomena 

in nature and nurture. Saturating a phenome would mean that an individual’s fitness, performance, 

responses to environment and/or specific phenotypes could be accurately predicted in untested 

environments. To date, our experience with phenomic prediction for cumulative, complex phenotypes such 

as grain yield suggests it’s possible to predict organismal performance in untested environments, possibly 

better than genomic methods despite less advanced tools and data. Factors limiting to saturating a phenome 

are evaluating enough individuals and environments, but more importantly, tools and methods to extract or 

“sequence” more phenomic features. Successfully saturating phenomes will impact every aspect of science 

and society, in biological disciplines from germplasm curators, physiologists to breeders, to education, the 

courtroom and policy. 
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1. INTRODUCTION 
A grand challenge is an impending threat, often existential, that a community must address. The closest 

thing to a grand challenge yet discussed in phenomics is connecting an organism’s genotype or genome, to 

their phenotype and their phenome1-5. While genomics has had nearly half a century of research, organismal 

phenomes, going beyond measuring a few targeted phenotypes, remain a relatively new concept6. In the 

plant research community, this links to applications for societal grand challenges, such as sustainable food 

security under climate change. A moonshot, in contrast, is a large and audacious project. Two notable 

moonshots in genomics have been to sequence the human genome, which succeeded beyond measure 

despite some bumps7,8, and the Arabidopsis 2010 project9, to determine the function of all genes in 

Arabidopsis by 2010, which proved overly-ambitious and infeasible. Regardless of success, moonshots can 

serve as guideposts for a community of researchers to work towards, discovering new barriers along the 

way. One clear moonshot for the phenomics community is to saturate the phenome. Saturating a phenome 

of an individual or population would mean that no new measurements of an organism can be made that 

cannot already be predicted from other measures. In other words, the depth of physiological responses of 

the organism across any possible environment, management, or scenario (within reason) can be reduced to 

numbers and predicted at any point in time. This is an audacious goal and requires predicting not only 
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nature (the genome), but nurture (the response of an organism to environment and management conditions) 

as well as interactions between the two.  

 In many ways, the phenomics community is already indirectly working towards saturating 

phenomes. Controlled environment research seeks to create specific conditions to accurately assess 

organismal responses under varied conditions throughout time10. Computer models are developing 

synthetic plants, in silico, to mimic actual plant growth and responses, with goals of prediction, AI training, 

and understanding gaps in physiological knowledge11,12. New software packages can easily create dozens 

or hundreds of measurements based on imaging tools for field, root, or controlled environments13-16. These 

disparate activities are all integrable into a larger goal of saturating the phenome. Controlled environments 

reduce environmental, management, and error noise in phenomic measurements and add a level of precision 

to understanding the phenome. Controlled environments also have the potential capacity to collect more 

measurements within environments through fully automated systems that are impractical under field 

conditions17-18. However, highly controlled systems cannot screen the number or diversity of environments 

or the number of individuals needed to saturate phenomes, so this paper focuses primarily on field systems.  

 

1.1   Six major approaches to phenomics and high throughput phenotyping 

 Goals and use of high-throughput field phenotyping and phenomics across environments, 

specifically field phenomics with drones or rovers, can be grouped into six major approaches. The first, and 

most common, is automating existing measurements such as plant height, disease lesions, lodging, and plant 

population counts19-23. While this helps scale traditional biological knowledge to more genotypes, it is like 

envisioning high performance computing just to complete thousands of peoples taxes. A second approach 

is making new measurements that were previously infeasible or impossible manually, for example plant 

growth over time or novel spectral signatures24,25. This approach hypothesizes that there are valuable traits 

that have not previously been measured, inviting new insights into biology that could never be gained 

without novel phenomic tools. A third is phenomic selection, viewing phenomics as a platform to quantify 

and characterize biology, requiring a complete shift in philosophy of how to approach these phenomics 

tools to maximize measurements. This is a more difficult concept, but one that motivates saturating 

phenomes. A fourth is the use of deep learning (often called artificial intelligence) to find patterns directly 

from images26,27. The fifth and sixth are applications and use cases of the first four with high interest among 

plant and crop scientists. Fifth is the discovery of new physiology, biology and genetics to help science and 

scientists advance basic knowledge in these areas, for which new predictive phenotypes are valuable. Sixth 

is discovering new traits or signatures for intervention that can be deployed on farm. For instance, detecting 

disease early to deploy pesticides28,29, or drought signatures for irrigation before yield is lost30-32. 

 

2.1 Phenomic selection  

 Phenomic selection was first coined, proposed and explored by Rincent et al. (2017)33 using 

laboratory near infrared reflectance spectroscopy (NIRS) measures of wheat grain and poplar bark. 

Incredibly, through cross-validation, they showed that using many reflectance bands from these products 

could accurately predict yields in a population. This was validated directly or indirectly in multiple other 

studies34-36. Most incredibly, Rincent et al. (2017)33 demonstrated that phenomic selection approaches could 

outperform genomic selection, the gold standard in predicting phenotype, and with less cost. In the case of 

NIRS, thousands of reflectance bands are treated similarly to genomic markers in genomic selection; quasi-

independent repeatable measures separating individuals. In field studies however, even with the most 

intense measurement of known phenotypes (e.g., height, leaf angle, flowering time, etc.) a rich enough 

dataset cannot be created to repeatably separate and predict each genotype. Furthermore, most traditional 

phenotypes are endpoint measures, where interactions with environment are integrated over the organisms 

life. Unoccupied aerial systems (UAS, UAV, drones) have provided new ways to collect massive amounts 

of data across large numbers of individuals and environments, extracting novel features22. Yet unless 

hyperspectral bands are used, challenges remain in collecting enough features to use in phenomic 

prediction. Adak et al. (2022)37 overcame this hurdle by using dense measurements of temporal features, 

which was multiplicative in the number of phenomic features and allowed earlier near real-time prediction 
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ability. This showed that temporal phenomic prediction can indeed perform similarly, perhaps better than 

genomic prediction. However, even with the largest reported UAS dataset, only 896 phenomic features 

were extracted compared with 11,000 genomic markers. Phenomic saturation demands more features.  

 

2. CONCEPT 
2.2 Phenomic selection and phenomics as a platform  

A cultural shift throughout science and society is required to understand and justify phenomics grand 

challenge and moonshot. In molecular quantitative genomics, radical changes in application and thought 

came from shifting goals of genetic mapping, trying to find loci controlling specific traits variation, to 

genomic selection, using all loci across the genome to find “the best” individual38. Notably, in both, more 

genetic markers were always seen as beneficial to characterize more thoroughly what was occurring in the 

genome. Marker number was initially limited by technology and resources (e.g. RFLPs and SSRs) 

compared with current financial limitations to screen for SNPs. In maize genetic mapping, the number of 

DNA markers went from 190 in 200239, to 1329 in 200640, to 12.2 million in 202241. Despite these advances, 

we seem little closer to the stated Arabidopsis 2010 goal of determining the function of every gene in the 

genome. It is somewhat paradoxical that capturing as many phenomic features as possible, without a priori 

knowledge of the underlying biology is considered by some a fishing expedition. Scientific communities 

have yet to fully consider the benefits of such “random” phenomic measures. Humans are a good example 

of how such random phenomic measures can be extended to discover nature and nurture over time. 

 

 
Figure 1. The author’s family showing resemblance over time. Siblings look similar and have facial 

features suggesting relationships, but exact features and measurements differ due to temporal 

genetics and divergent interactions with environments. Illustration generated by DALL·E 2 42. 

 

2.4 Human siblings as an example of phenomic features being products of both nature and nurture 

Humans have evolved or been trained to recognize resemblances between relatives. However, when asked 

what causes resemblance there is usually a loss for words (Fig 1). Obvious traits like hair color, eye color, 

or other near-Mendelian traits come to mind. However, imaging and computational advances can now 

accurately measure more subtle and quantitative differences, for example the distance between cheek bones, 

the wrinkling around the mouth, the shape of the nose43,44. Such phenomic approaches could now populate 

a matrix with thousands of measurements per individual from RGB camera images. These measurements 

could be used to predict relationships between individuals in the same way kinship matrices use genomic 

SNPs to find relationships in animals, plants and humans45-47 and in a similar way that our brains as humans 

can see these relationships48. These connections are important because we believe that closely related 

individuals tend to perform similarly (although not the same) in many facets such as personality, athletic 
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ability, or health choices49,50. We also know that individuals who grow up in similar environments tend to 

share phenotypic features, for instance time spent in a war zone will decrease children’s height51 or that 

birth months impact human disease probabilities52. Therefore, we expect phenomic measures to capture not 

only genetics but the environment where relatives were raised. It is important to acknowledge the unsettling 

history of eugenics and ongoing pseudo-scientific racism when talking about measuring humans53,54. Yet 

the human example is useful to connect to readers unfamiliar with plant phenotypes. Plant breeders, who 

look frequently and closely at their plant progeny, also often recognize resemblances between progeny of 

their plant crosses that others will not, part of the “breeder’s eye” used in progeny selection. 

 

2.4 Evaluating phenomic measurement success: how will we know if we’ve saturated the phenome? 

In genomics, linkage disequilibrium (LD) is a good measure but also among the most difficult concepts. 

Complete LD means a polymorphism between two DNA base pairs are perfectly associated, if the variant 

at one location is known in a sample then so is the other. Each additional locus measured, when not in 

perfect LD or correlation with others, adds further predictive information. Once additional markers 

measured are all in complete LD, the genome and population are fully characterized, and no additional 

variation could be attributable to the genome. In practice, this remains an unachievable ideal unless every 

base pair is sequenced in every individual. Likewise, in phenomics, a correlation measure similar to LD 

between all measured phenotypes could be maximized. Currently, if new phenotypes are found with 

correlations less than 1 (or greater than -1), the phenome is not saturated. From our published and 

preliminary studies to date, it appears that even with many dozen vegetation indices extracted from a few 

RGB spectral bands, and many closely spaced timepoints, correlations between phenomic features remain 

incomplete (Fig. 2). This supports that additional phenotypic variation can still be discovered and exploited.  

 

 
Fig. 2 Genomic correlations (left) and phenomic correlations (right) on 520 recombinant inbred lines. 

Genomic data had 11,334 SNPs after cleaning55. Phenomic data included 896 features (32 RGB derived 

vegetation indices over 14 flight dates and two management environments, drought and irrigated). Both 

have measures with high and low correlations (+ or -) and are unsaturated24.  

 

CONCLUSION 
“You can’t really know where you are going until you know where you have been.” – Maya Angelou 

For the phenomics community to mature beyond being seen as simply working to increase the throughput 

of measurements, or reduced to service of genomics56,57, a broader vision including a grand challenge and 

a moonshot are needed. The area of phenomic selection has already provided tantalizing new insight into 

how massive amounts of biological phenotypic data can be used to discover unanticipated biological truths. 

For phenomics discovery to succeed, we need to apply similar approaches to areas such as germplasm 

conservation, ecology and ultimately improvements in farmers fields. The history and development of the 

fields of genetics58, statistics59 , and even evolution60 owe a great deal to agricultural improvement research 

interests, and phenomics could follow a similar trajectory. The bottleneck to date, is high volume temporal 

measurements made on a population’s individuals across many environments.  
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