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Abstract

A computational study of Non-Newtonian (Casson) free convective MHD unsteady fluid flow has been highlighted in this article

with mass and heat transit property through a vertical infinite porous plate. A sinusoidal boundary conditions have been

considered as well as chemical reaction and thermal radiation. Using a collection of non-dimensional variables, the flow related

equations are also turned into non-dimensional form. The EFDM algorithm is employed in order to arrive at a numerical

solution via Compaq Visual Fortran 6.6a. The reliability of the numerical solution has been confirmed using stability testing

and convergence analysis. The whole system is convergent at the value of and . A visual depiction of the impact of the pertinent

factors on dimensionless velocity, temperature, and concentration profiles is displayed along with thorough explanations and

graphical representation as well as tabular representation. Key finding of this work is that when the magnetic component is

regarded in sinusoidal form, it greatly affects the heat transfer factors of Casson fluid and the heat rises as the results of heat

source parameter, radiation parameter and Eckert number. It is also found that the Sherwood number is increased as the

impact of chemical reaction parameter and the Lewis number, also the skin friction is decreased as the influence of porosity

term got accelerated. As a last step in verifying the earlier study, the present results are contrasted with the results that were

previously published.
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Abstract 

A computational study of Non-Newtonian (Casson) free convective MHD unsteady fluid flow has 

been highlighted in this article with mass and heat transit property through a vertical infinite porous 

plate. A sinusoidal boundary conditions have been considered as well as chemical reaction and 

thermal radiation. Using a collection of non-dimensional variables, the flow related equations are 

also turned into non-dimensional form. The EFDM algorithm is employed in order to arrive at a 

numerical solution via Compaq Visual Fortran 6.6a. The reliability of the numerical solution has 

been confirmed using stability testing and convergence analysis. The whole system is convergent 

at the value of 0.075rP   and 0.025eL  . A visual depiction of the impact of the pertinent factors on 

dimensionless velocity, temperature, and concentration profiles is displayed along with thorough 

explanations and graphical representation as well as tabular representation. Key finding of this 

work is that when the magnetic component is regarded in sinusoidal form, it greatly affects the 

heat transfer factors of Casson fluid and the heat rises as the results of heat source parameter, 

radiation parameter and Eckert number. It is also found that the Sherwood number is increased as 

the impact of chemical reaction parameter and the Lewis number, also the skin friction is decreased 

as the influence of porosity term got accelerated. As a last step in verifying the earlier study, the 

present results are contrasted with the results that were previously published. 

Keywords: Nanofluid, MHD, Thermal Radiation, Sinusoidal Boundary Conditions and Chemical 

Reaction. 
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1. Introduction 

Convective heat transfer of magnetohydrodynamics flow has drawn a lot of interest due to its 

importance in the fields of research, technology, and several manufacturing processes In 

manufacturing industries like the extrusion of molten polymers, production of plastic sheets, solar 

power absorbs, thermal energy storage, etc., mixed convective flow through a porous surface is 

significant. The last few years have seen major advancements in the study of Magento-hydro 

dynamics in the fields of engineering and the natural sciences following Hartman’s pioneering 

work. Numerous scientists are fascinated by the study of magneto-hydrodynamic fluid flow in a 

porous media that is not Newtonian due to its application to the processing of metals and alloys, 

the evaluation of geothermal sources, and the management of nuclear fuel debris. 

Magnetohydrodynamic (MHD) flows are crucial for a variety of industrial and technical 

applications including MHD generators, the architecture of nuclear reactor and flow meters. The 

study of how electrically conducting solutions move when a magnetic field is present is known as 

magnetohydrodynamics. The introduction of a magnetic phenomenon dramatically changes the 

mass transportation and heat transfer capabilities of common electrically conducting flows, 

according to a number of anticipated experiments. The study of magneto-hydro-dynamics has 

numerous important applications, including the induction pressure gauge, which depends on fluid 

potential differences orthogonal to motion and the magnetic field, and the cooling of nuclear power 

plants utilizing liquid sodium, among others. Due to different applications in scientific and 

technological advancements, the experiment of non- Newtonian laminar flow has garnered a lot of 

interest. A wide variety of sectors depend on materials, such as those used in petrochemical 

engineering and medicine. In addition, there are several uses in the manufacture of paints, syrups, 

oils, gases, juices, and cleansers, among other products. Additionally, a large number of other 

molten polymers and salt solutions, including starch suspensions, custard, toothpaste, ketchup, and 

shampoo, among others, are non-Newtonian fluids. A fluid's viscosity can change depending on 

how quickly it deforms, and certain fluids have an elastic component that makes them technically 

not fluids. Non-Newtonian fluid characteristics are challenging to analyze, as they differ from 

those of Newtonian fluids, and on those numerous applications, several scientists, researchers, and 

engineers have collaborated. Casson fluid's interaction between stress and strain makes it non-

Newtonian in terms of rheological features. This fluid is a strong option for share thinning 

applications due to its high share viscosity and yield stress. The common Casson fluids are honey, 
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soup, jelly, concentrated fruit juices. It is very much significant in the field of petroleum industry, 

power generators, paints, purification of crude oil, heating of aerodynamics etc. 

Under the impact of a first-order chemical transformation and the slip effect, the investigation by 

Saqib et al1 looked at the methods by which mass and heat are transmitted while Casson fluid flows 

across an endless oscillating plate. They focused on researching the mechanics of the slip 

phenomenon near an edge of vertical plate and solved by Laplace transform technique. An 

unsteady boundary layer Casson fluid flow and heat transfer across a vertical plate that oscillates 

with Newtonian heating were investigated by Hussanan et al2. They recognized that as Casson 

parameters are increased, velocity drops, and thermal boundary layer thickness grows as a 

proportion of the Newtonian heating parameter. Rafique et al3 by Keller-Box Method, determined 

a numerical solution for the Casson nanofluid flow over such an inclination surface that is not 

linear with the impacts of Soret and Dufour. They claimed that the Dufour effect lowers the Nusselt 

and Sherwood number as a result of the Soret influence. Again, for exponentially permeable 

surface Raju et al4 used MATLAB bvpc package for numerical simulating the mass and heat transit 

of MHD flow of Casson fluid. They compared to Newtonian fluid, Casson fluid has superior heat 

transfer capability. Recently, MHD Casson fluid flow study over a permeable stretching sheet with 

heat and mass transfer was carried out by Asogwa et al5. Numerical approach was performed by 

MATLAB bvpc solver in their paper. The influence of heat radiation and chemical reaction on the 

MHD non-Newtonian (Casson fluid) flow across an increasingly sloped stretched surface were 

also documented by Rao et al6 in their study. A widely used shooting method was taken for 

numerical calculation. Study with the chemical reaction-related MHD radiant mobility of Casson 

and Williamson nanofluids along an inclination surface which was cylindrical was interpreted by 

Sarker et al7. FDM was applied for numerical approach. Ullah et al8 developed another Casson 

fluid in an unsteady MHD slip flow with mixed convection over a nonlinearly extending sheet. 

The Keller box approach was used to a numerical simulation of a porous media containing thermal 

radiation, heat generation/absorption, chemical reaction, and convective boundary conditions. 

Recently, Hasnain et al9 inspected the investigation of sand-filled Casson fluid flow bearing power 

laws for temperature and magnetic field over a permeable stretching sheet.  Also, Pramanik et al10 

analyzed heat transfer and fluid flow of non-Newtonian (Casson) fluid through a porous stretched 

surface which expand with exponentially by using numerical technique. They figured out the 

effects brought about by heat radiation and suction/blowing combinedly. Recently, Oke et al11 
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investigated the behavior of Casson fluid flow on a non-uniform spinning surface because of 

Coriolis force. They have been using the Runge-Kutta-Gills strategy with the financial support of 

the shooting technique for their research and investigation of the significance of Coriolis force as 

the properties of Casson fluid flow through the non-uniform thickness surface. Sulochona et al12 

addressed Casson fluid flowing with an unsteady MHD rate through vertical plate with exist of 

Hall current. Perturbation technique was used for analytical analysis. Two non-Newtonian Casson 

solutions for fluid flow and heat transfer across an exponentially permeable shrinking sheet with 

viscous dissipation exist was developed by Zaib et al13. Sohail et al14 researched entropy generation 

of magnetized flow of Casson fluid through non‑linear bi‑directional stretching surface with 

variable heat conductance and thermal conductivity. A proficient numerical technique optimal 

homotopy analysis method (OHAM) was used in their paper. Mondal et al15 provided a simulation 

on MHD flow of Casson fluid with varying viscosity and thermal conductivity characteristics. For 

additional analysis in this study, the explicit finite difference method was applied. Abro et al16 

published a research work on mathematical analysis of the Casson fluid flow under magnetic field 

using unique functions with embedded heat and mass transport. By using newly developed 

generalized Robotnov-Hartley, Wright, and Mittage-Leffler functions, they correspondingly 

presented the relevant results of mass concentration, temperature distribution, and velocity 

profiles. However, Prameela et al17 demonstrated free convective MHD fluid flow with non-

Newtonian (Casson) phenomena across a vertical plate oscillating. Numerical investigations were 

conducted by employing Finite Element approach. Ogunseye et al18 presented a computational 

analysis of the mass and heat transferred by a reactive Casson-Williamson nanofluid via a 

moveable cylinder in the vertical direction and they develop a ground-breaking bivariate 

overlapping multi-domain technique using the spectral quasi-linearization method for analyzing 

non - dimensional mathematical nonlinear specified flow equations in their article. Recently, a 

stretchy electromagnetic plate that affects the dynamics of the MHD Casson nanofluid in aspects 

of radiation, chemical reaction, and suction was produced by Asogwa et al19 by imposing a 

stagnation point flow. MATLAB bvp4c was used for numerical result. On the extending Riga 

surface, they discovered that chemical reaction increased while, on the other hand, the thickness 

of the concentration boundary layer decreased due to Lewis number and Brownian motion. Khalid 

et al20 demonstrated the turbulent MHD free convection of Casson fluid via a rotating vertical plate 

enclosed in a porous substance. Kumar et al21 explored the consequences of cross diffusion in 
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Casson fluid nonlinear radiative heat transfer and MHD mixed convection flow over a vertical 

plate. They resolved the system of equations numerically with the help of RKF45 Method along 

with shooting method and discovered that the temperature and concentration component rise in 

accordance with the influence of the Dufour and Soret parameter. Qayyum et al22 expressed slip 

analysis via porous media at the fluid-solid boundary of squeezing flow in MHD Casson fluid. 

Using FEM, over a vertical plate that is oscillating, impacts of viscous dissipation was expressed 

by Reddy et al23 on flow of a viscous MHD fluid in an unstable condition with spontaneous 

convection. They employed the computational FEM to obtain boundary layer PDE’s as non-

dimensional form. Skin friction is very much important for industry. They found that the fall of 

velocity distribution and the Skin-friction coefficient due to increasing of Casson. Recently, with 

inclined non-linear surface thermal energy impacts on Casson fluid which was magnetized using 

a non-linear inclined surface Forchheimer porous medium was presented by Shoaib et al24. The 

Levenberg Marquardt algorithm was choose, together with a backpropagated learning mechanism 

to obtain numerical outcomes. Their key finding is the temperature profile drops for the rise of 

Forchheimer porous media parameter. Moreover, Effect of radiation on MHD Bejawada et al25 

modeled Casson (non-Newtonian) fluid flow over an elevated non-linear surface including 

chemical reaction in a Forchheimer porous medium. They solved the coupled ordinary differential 

equation by using Runge-Kutta method along with the shooting technique. It was discovered that 

the plate's temperature drops as the value of Forchheimer porous medium parameter rises. Kataria 

et al26 developed combined effects of radiation and chemical reaction on MHD Casson fluid flow 

through a vertical plate that is in motion was embedded in porous medium with analytic solution 

using Laplace transform technique. It has been discovered that when heat radiation climbs, velocity 

increases and temperature falls. The Casson fluid flow with changeable thermo-physical properties 

including suction along an exponentially stretched sheet and exponentially declining internal heat 

production were described by Animasaun et al27 using homotopy analysis. To demonstrate the 

impact of several relevant parameters on the fluid velocity and temperature profiles within the 

boundary layer, they developed a parametric research. In addition, recently thermal features and 

heat transfer enhancement of a Casson fluid across a porous stretching/shrinking sheet: Analysis 

of dual solutions was presented by Khan et al28. Utilizing MATLAB's bvp4c tool, the dual 

solutions for the dimensionless ODEs have been found. They discovered that, although declining 

with increased heat generation parameter, the heat transfer rate improved with increased radiation, 
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Biot number, and Prandtl number. Hussain et al29 provided a thermal analysis of a gold 

nanoparticle-containing Casson rheological fluid under the effect of magnetic and gravitational 

forces. They found that through the inclined channel, magnetized Newtonian particulate 

suspension is more prominent. Zhou et al30 analyzed unsteady convective slip flow of the MHD 

Casson fluid across a stretched permeable surface that was simultaneously being heated unevenly. 

The MATLAB bvp4c function also employed to calculate the system of ODEs. With rising levels 

of the porosity parameter and inclination angle, the velocity profiles decrease. In addition, Darcy 

Forchheimer variation in Casson type MHD nanofluid flow across non-linear stretching surface 

was examined by Rasool et al31. Raju et al32 figured out MHD Casson fluid in a suspension of 

convective conditions and cross diffusion across a surface of paraboloid of revolution. They 

discovered that mixed convective circumstances are beneficial for enhancing the mass and heat 

transfer phenomena. Thermal radiation, viscous dissipation, and heat sources/sinks are present 

during the MHD flow of a Casson fluid with slip effects across an exponentially porous stretched 

sheet was discussed by Saidulu et al33. They also used the keller box method. Reza-E-Rabbi et al34 

studied out the investigation of heat transfer and fluid flow of a periodic MHD nano non-

Newtonian fluid with Arrhenius activation energy and nonlinear radiation. They applied the 

explicit finite difference (EFD) approach for further analysis. Anwar et al35 introduced unsteady 

MHD Casson fluid flow with natural convection of combining heat injection/suction and thermal 

radiation flux with varying wall constraints. They solved the coupled ordinary differential 

equations by dint of Laplace transform technique. Moatimid et al36 look at the Casson nanofluid 

flow phenomena in the conical gap between the rotating surfaces of a cone and a horizontal disc. 

The Homotopy perturbation method is implemented to analytically evaluate the systems of 

equations. They discovered that the fluid's temperature and radial velocity both decrease as a result 

of the rotational parameters. Ahmad et al37 used Fick’s and Fourier’s Laws for time fractional 

analysis of channel flow of couple stress Casson fluid. Production of entropy in MHD For non-

linear bi-directional stretching surfaces, Sohail et al38 described Casson fluid flow with variable 

thermal conductivity and heat conductance. They showed the solutions by implementing the 

optimal homotopy analysis method (OHAM). In order to examine the combined Hall current and 

heat radiation hydromagnetic flow of a Casson nanofluid, Sahoo39 constructed an analysis of 

entropy production and dissipative heat transfer. An efficient spectral quasi-linearization method 

was applied for numerical analysis. In addition, Shah et al40 expressed over a previously 
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nonlinearly stretched surface, a radiative MHD Casson nanofluid flowed with activation energy 

and chemical reaction through entropy generation. For the evaluation of results homotopy analysis 

method was applied. They figured out that activation energy corresponds to augmented 

concentration. Kataria and Patel41 analyzed Heat and mass transfer in magnetohydrodynamic 

Casson fluid flow over an oscillating plate which placed as vertically and also embedded in porous 

medium with ramped wall temperature. A numerical investigation on the pulsating flow of a 

micropolar-Casson fluid through a constrained channel driven by a magnetic field and a Darcian 

porous medium was presented by Ali et al42.  When nonlinear radiation and convective boundary 

conditions were present, Hussain et al43 conducted MHD thermal boundary layer flow of a Casson 

fluid across a penetrable stretched wedge. They applied Homotopy analysis method (HAM). 

Additionally, Nandeppanavar et al44 expressed an examination of the thermal properties of a 

Casson nanofluid flowing past an exponential stretching sheet in a porous medium using 

theoretical methods.  

          Motivated from the aforementioned studies, heat and mass transform on MHD free 

convective Casson fluid flow with unsteady form past in an infinite vertical porous plate in the 

presence of radiation and chemical reaction with sinusoidal boundary conditions was investigated. 

The momentum equation includes the influence of magnetic force, whereas the energy equation 

incorporates the effects of heat radiation. Using the appropriate similarity methodology, the 

leading coupled nonlinear PDE’s are reduced into ODE’. The explicit finite difference strategy is 

utilized to numerically solve these nonlinear ordinary differential equations. Plotted graphs and 

tables are used to analyze and discuss the many parameters of the present flow problem in detail. 

For sinusoidal boundary conditions, when the radiating heat flux is taken into account, the Lorentz 

force for magnetic parameters has reduced the flow profiles. The impacts of Grashof number and 

radiation parameter have been encapsulated by the advanced visualizations better known as 

streamlines and isotherms for flow fields. Table 1 has been specifically made to show how the 

current approach contrasts with prior published research in the field. 
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TABLE 1.  

Authors NNF MHD RP HSP CR NF PT 

Raju et al4 Yes Yes Yes Yes Yes No No 

Asogwa et al5 Yes Yes Yes No Yes No No 

Sarkar et al7 Yes Yes Yes No Yes Yes No 

Ullah et al8 Yes Yes Yes No Yes No Yes 

Sulochana et al12 Yes Yes Yes Yes Yes No No 

Reza-E-Rabbi et al34 Yes Yes Yes Yes No Yes No 

Current work Yes Yes Yes Yes Yes Yes Yes 

Abbreviations: NNF (Non-Newtonian Fluid); MHD (Magnetohydrodynamics); RP (Radiation Parameter); NF (Nano 

Fluid); HSP (Heat Source Parameter); CR (Chemical Reaction); PT (Porous Term). 

Applications 

The present research has applications across a wide range of technical fields, including the creation 

of thermal nanotechnology components. Additionally, control of heat transmission in the polymer 

production business must depend on the thermal radiation component. High temperatures then lead 

to the development of a variety of novel technical processes, including solar energy technology 

and energy technologies based on the combustion of fossil fuels. Therefore, it would appear crucial 

to study heat radiation. Here, thermal radiation with linear patterns have been thoroughly 

investigated. The treatment of prostate cancer is one area where the recent study has application. 

Magnetic fields frequently help to regulate the drug's particle emission, which is one application 

of nanoparticles in the treatment of cancer. 

2. Methodology 

Influenced by prior research and experiences as well as the magnificence of nanofluid and MHD 

exploration, this investigation depicts the effects of chemical reaction as well as radiation on 

unsteady MHD nanofluids moving towards sinusoidal boundary conditions. This research, which 

is based on a numerical simulation, must be completed with the use of an effective numerical 

technique. This leads to the use of the EFD (Explicit Finite Difference) procedure. The biggest 

benefit of adopting an explicit finite approach is how much faster it computes. Computing-wise, 

the process is comparatively quick and affordable. In spite of this, making it work and 

programming it are fairly simple. As soon as the approach is implemented, a stability test is 

conducted, which clarifies the problem. The structure of the present project is as follows: 
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• A collection of fundamental equations, including continuity, momentum, and energy 

equations, have been developed using the fundamental concept of fluid mechanics. 

• A number of dimensionless components are used to make the produced equations non-

dimensional. The suggested equations are numerically resolved using the EFD method. 

• To guarantee that the solution converges, a thorough stability and convergence criteria has 

been constructed. 

• A program named Visual Fortran is used to acquire the numerical data. 

• The graphical depiction and evaluation of the numerical data are done using Tecplot 9.0. 

• Finally, the findings and discussion section compare the traditional form of various flow 

fields with the velocity, isothermal, and streamline profiles which all are sinusoidal form. 

Here, it has been looked at how physically different parameters are. 

Methodology of the problem can be depicted through the following flow chart, 

 

  

 

 

 

 

 

 

 

 

 

 

 

3. Mathematical Analysis  

The MHD unsteady Casson nanofluid flow with mass and heat transformation through in a vertical 

porous plate which is taken as infinite is explored in this paper with existing the Chemical reaction 

and Radiation. The sinusoidal conditions 1 sinA x+ is taken with wall temperature and wC  is 

taken as concentration near the wall, respectively at 0t  . As opposed to, T and C are the fluid 

FIGURE 1. Flow chart (Methodology). 
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temperature and Concentration at everywhere. Now for the Casson nanofluid flow, the rheological 

equation is underived, 

1

2        when  
2

2      when   ;
2
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Here, ij  and ij  are (i, j)th factor of the deformation rate and the stress tensor, respectively, c  is 

the plastic dynamic viscosity of the Casson fluid,   represents the product of the component of 

deformation rate with itself, b  denoted the critical value of this product, and yP  indicates the 

yield stress of fluid. 

Now, by applying the boundary layer approximation and under the above consideration the system 

of governing equations of the Magneto-hydro-dynamics nanofluid flow is provided by 
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FIGURE 2. Physical diagram and 

Coordinate system. 
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Concentration Equation 
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Where, u  and v  indicate the velocity components,   be the Casson term, the magnetic field 

component is defined by 0B , T  and C  are the thermal and concentration expansion coefficient, 

the wall temperature and the species wall concentration are represent by wT  and wC ,   indicates 

the kinematic viscosity, the density, thermal conductivity, specific heat at constant pressure and 

unidirectional radiative heat flux are defined by  ,  , pc and rq , respectively. BD  and TD  are the 

Brownian and thermophoresis diffusion coefficient. The Rosseland approximation becomes, 
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

                   (6) 

Dimensionless equations must be used because the finite difference technique will be used to solve 

the governing equations (1) through (4) under the boundary conditions (5). For this intention the 

non-dimensional components listed below,  

2

0 0 0

0 0

, , , , , ,
w w

xU yU tU C C T Tu v
X U Y V

U U C C T T
  

  
 

 

− −
= = = = = = =

− −
                                   (7) 
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In terms of non-dimensional variables, the following system of partial differential equations with 

nonlinearity is produced: 

0
U U

Y X

 
+ =

 
                                                                                                                                (8) 

( ) ( )
2

1 1

2
1 1 p r m

U U U U
V U MU K U G G

Y X Y
   



− −   
+ + = + − − + + +

   
                                     (9) 

( )
2 22

1

2

(1 )
1d

b t c

r

R U
U V N N E Q

X Y Y Y P Y Y Y

      
 



−+            
+ + = + + + + +     

            
         (10) 

( )
2 2

2 2

1 pt
r

e b

N
U V K

X Y L N Y Y

    




      
+ + = + −  

      
                                                              (11) 

With matching initial and boundary conditions are 

0,  0,  0,    0,  0                 everywhere

0,  0,  0,    0,  0                  at    0

1,  1 sin ,  0,  1,                 at    0

0 ,  0,    0,                       as  

U V

U V X

A X V U Y

U V

  

  

  

 

 = = = =

 = = = = =

= = + = = =

→ → = =   Y






→ 

                                                      (12) 

The dimensionless parameters such as Thermal Grashof number, Magnetic parameter, Mass 

Grashof number, Radiation parameter, Prandtl number, Lewis number, Brownian parameter r, 

Eckert number, porous term, Thermophoresis parameter, Heat source parameter and Chemical 

reaction are defined by  

3

0

( )T w
r

g T T
G

U

 −
= , 

2

0

2

0

B
M

U

 


= , 3

0

( )C w
m

g C C
G

U

 −
= ,  

316

3
d

s

T
R

k




= , 

p

r

c
P




= , e

B

L
D


= , 

( )B w
b

D C C
N




−

= , 
2

0

( )
c

p w

U
E

c T T

=
−

, 
2

2

0

p

s

K
k U


= , 

( )T w
t

D T T
N

T








−
= , 0

2

0p

Q
Q

c U




=

1

2

0

( ) p

s w
r

k C C
K

U

 −

−
= . 

The velocity components in the terms of stream function are 
d

U
dY


=  and 

d
V

dX


= − , where 

Stream function   satisfies the continuity equation (8). 
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FIGURE 3. Finite difference space grid. 

The important physical phenomena of the fluid flow are skin-friction coefficient, the Sherwood 

number and the Nusselt number, things are outlined below ( )1

0

1
1

2 2
f

Y

U
C

Y
 −

=

 
= − +  

 
,  

0

1

2
h

Ye

S
YL



=

 
=  

 
and ( )

0

1
1

2
u d

Yr

N R
YP



=

 
= +  

 
. 

4. Numerical Solutions 

In this section, we attempt to solve numerically the governing dimensionless partial differential 

equations by using the EFD (Explicit Finite Difference) with the flow related initial and boundary 

conditions.  

 In order to calculate the finite difference equations, the flow zone is divided by a grid or mesh of 

lines that are perpendicular to the X and Y axes and measured along the X and Y axes, respectively. 

Here, we assume that the plate has a maximum height of Xmax(=100), i.e., X varies between 0 and 

100, and we consider Ymax(=25) to equate to Y varying between 0 and 25.  

 

 

 

 

 

 

 

According to Fig. 2, there are grid spacings of m = 125 and n = 125 in the X and Y axes, 

respectively. Let ,  X Y   are the constant mesh size in the X and Y dimensions, the following is 

taken into consideration: 

0.2(0 25); 0.8(0 100) Y x X x =    =    utilizing the shorter time-step, 0.0005 = .  
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Let us consider ,U  and   stand for the respective values of ,U  and   at the conclusion of a 

time-step. We get the following from the explicit finite difference approximation,  

, 1, , , , 1 , , , 1

, , , ,

 ,  ,  ,  ,
i j i j i j i j i j i j i j i j

i j i j i j i j

U U U U U U V VU U U V

X X Y Y Y Y 

− + −− − − −          
= = = =       

              
 

, 1 , , 1, , ,

, , ,

,   ,  
i j i j i j i j i j i j

i j i j i jY Y X X

       

 

+ −− − −       
= = =     

          
 

, 1 , , , , 1,

, , ,

,  ,  
i j i j i j i j i j i j

i j i j i jY Y X X

       

 

+ −− − −       
= = =     

          
                                             (13) 

( ) ( ) ( )

2 2 2
, 1 , , 1 , 1 , , 1 , 1 , , 1

2 2 22 2 2

, , ,

2 2 2
, ,

i j i j i j i j i j i j i j i j i j

i j i j i j

U U UU

Y Y yY Y Y

      + − + − + −− + − + − +       
= = =     

         
 

We construct a suitable set of finite difference equations from the system of PDE’s (8–11) by 

substituting the aforementioned relations into the respective differential equation,  

, 1, , 1 ,i j i j i j i jU U V V

X Y

− −− −
=

 
                                                                                                             (14) 

( )
( )

( )

, , , 1 , , 11

, , ,2

, 1 , , 1, 1

, , ,

2
1

                                        1

i j i j i j i j i j

r i j m i j i j

i j i j i j i j

i j i j p i j

U U U U U
G G MU

Y

U U U U
V U K U

Y X

  




+ −−

+ − −

− − +
= + + + −

 

− −
− − − +

 

 

( )
( )

( ), 1 , , 11 1

, , , , , ,2

, 1, , 1 ,

, ,

2
1 1

                                                

i j i j i j

i j i j r i j m i j i j p i j

i j i j i j i j

i j i j

U U U
U U G G MU K U

Y

U U U U
U V

X Y

    



+ −− −

− +

 − +
 = + + + + − − + 

  

− − 
− + 

  

  (15) 

( )

( )

2

, , , 1 , , 1 , , 1 , 1 , , 1 ,

2

r

2

, 1 , , 1 , , 1,1

, ,

21

P

                               1

i j i j i j i j i j i j i j i j i j i j i jd
t b

i j i j i j i j i j i j

i j c i j

R
N N

Y Y YY

U U
V E U

Y Y X

          



   


+ + − + +

+ + −−

− − − + − −   +
= + +  

      

− − − 
− + + − 

   
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( )

( )

2

, 1 , , 1 , , 1 , , 1 , 1 ,

, ,2

r

2

, 1 , , 1 , , 1,1

, ,

21

P

                      1

i j i j i j i j i j i j i j i j i jd
i j b t i j

i j i j i j i j i j i j

i j c i j

R
N N

Y Y YY

U U
V E U

Y Y X

        
  

   
 

+ + + − +

+ + −−

 − − − + −   +
 =  + + +    

      

 − − − 
− − + +  

    





  (16) 

( )( ) ( )( )

( )( ) ( )( ) ( )

2 2, ,

, 1 , , 1 , 1 , , 1

1 2

, , , 1 , 1, , ,

1
2 2

                                     +

i j i j t
i j i j i j i j i j i j

b e e

p

i j i j i j i j i j i j r i j

N
Y Y

N L L

V Y U X K

 
     



    

− −

+ − + −

− −

+ −

−
= − +  + − + 



−  + −  −

 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

1 2 2

, , 1 , , 1 , 1 , , 1 ,

1 1

, , 1 , , , 1, ,

2 2

                                 

t
i j e i j i j i j i j i j i j i j

b e

p

i j i j i j i j i j i j r i j

N
L Y Y

N L

V Y U X K

        

     

− − −

+ − + −

− −

+ −

 
 =  − +  + − +  + 

 

 −  −  + −  +
  

        (17) 

Corresponding boundary conditions are 

, , ,

, , ,

1;          1 sin ,        where 0 

0;          0,                         where 

n n n

i S i S i S

n n n

i S i S i S

U A X S

U S

  

 

= = = + = 


= = = →

                                                         (18) 

4.1. Stability and Convergence Analysis 

The analysis won't be complete because an explicit approach is being employed until we discuss 

how the finite difference approach converges and remains stable. The stability conditions of the 

scheme may be established as follows for constant mesh sizes. 

Apart from a constant, the basic terms for ,U   and   as the Fourier expansion at a time 

conventionally called 0 =  are all i X i Ye e  , where 1i = − . These words eventually become 

( )

( )

( )

:       

:       

:       

i Y i X

i X i Y

i Y i X

U D e e

E e e

F e e

 

 

 



 

 







                                                                                                                 (19) 

and following the time-step, these words will change to 
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( )

( )

( )

:       

:       

:       

i Y i X

i Y i X

i X i Y

U D e e

E e e

F e e

 

 

 



 

 







                                                                                                                 (20) 

Substituting (19) and (20) into equations (14) – (17), we get the following equations by treating 

for each particular time step, the coefficients of U and V, 

( )
( )

( )

( )

( ) ( )
( )

1

2

1

2 cos 1
1

1 1
1

i Y i X i Y i X

i X i Y i Y i X

r m

i Y i Y i X i Y i X i X

i Y i X i Y i X

p

e D D e e De Y
G e Ee G e Fe

Y

De e e De e e
Me De V U De K e

Y X

   

   

     

   








−

 − 

−

−  −
= + + +

 

− −
− − − − +

 

 

( )
( )

( )

( ) ( )
( )1 1

2

1 12 cos 1
[1 { 1 1 } ]

              

i Y i X

p

r m

e eY
D M V U K D

Y XY

G E G F

 


  

 

 − 

− −
− − −

= + + − − − − + 
 

+  + 

 

1 2 3D A D A E A F = + +                                                                                                               (21) 

( )
( )

( )

( ) ( )
( )1 1

1 2

1 12 cos 1
1 { 1 1 }

i Y i X

p

e eY
A M V U K

Y XY

 


  

 − 

− −
− − −

= + + − − − − + 
 

 

2 3;r mA G A G =  =   

( ) ( )

( )

( )

( ) ( ) ( )

( )
( )

( )

2

r

2

1

12 cos 11

P

1 1 1
             

1 1
        1

i X i Y i X i Y i Yi X

i Yd
b

i X i Y i Y i X i Y i Y i X i Y i Y

t

i X i X i Y i X i Y

c

e E E e Ee e eEe YR
e N

YY

Fe e e Ee e e Ge e e
N V

Y Y Y

Ee e e De e e
U E

X

    



        

    









  

−  

−

− − − +
= + 

  

 − − −
 + −
   
 

− −
− + +



2
i Y

i X i YQEe e
Y



 
 
  +
 
 

 

( ) ( ) ( )( ) ( ) ( )
2 1

r

1
2 cos 1 1

P

i X i Y

i X Y i X i Y i Yd
b

E E e e R
Ee Y Y N Ee e e Y

 

    


− −+ 
−  +

=  −  + −  
  
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( ) ( ) ( )

( )
( ) ( )

2

2

1

1 1 1
             

1 1
       1

i Y i X i Y i X i Y i Y i X i Y i Y

t

i Y i X i Y i X i X i Y

i X i Y

c

F e e e Ee e e Ge e e
N V

Y Y Y

D e e e Ee e e
E U QEe e

Y X

        

     

 

  

 − 

−

 − − −
 + −
   
 

 − −
 + + − +
  
 

 

( )

( )
( )( ) ( )

( ) ( )
( )

( )
( )

2 2

2

r

1

2

2 cos 11
[1 { 1

P

1 1 1
     } ] 1

i Yd
b t

i Y i X i Y

c

YR
E N N e Y

Y

e e e
V U Q E E U D

Y X Y



  


 

  

−

 −  

−

 − +
= + + + −  

 

− − −
− − +  + + 

  

 

4 5 6E A D A E A F = + +                                                                                                              (22) 

( )
( )
( )

1

4 2

1
1

i Y

c

e
A E U

Y



 



−
−

= + 


; 6 0A =  

( )

( )
( )( ) ( )

( ) ( )

2 2

5 2

r

2 cos 11
1 { 1

P

1 1
        }

i Yd
b t

i Y i X

YR
A N N e Y

Y

e e
V U Q

Y X



 


 



−

 − 

 − +
= + + + −  

 

− −
− − + 

 

 

( ) ( )
( )

( )

( )

( )

( ) ( )
( )

2 2

2 cos 1 2 cos 11

1 1
           

i X Y i X i Y i Y i X

t

e b e

i Y i X i Y i X i X i Y
p

i X i Y

r

F F e Fe Y e e Ee YN

L N LY Y

F e e e F e e e
V U K Fe e

Y X

     

     

 

 



+

 − 

−  −  −
= +

  

− −
− − −

 

 

( )

( )

( ) ( )
( )

( )

( )

1

2

2

1 12 cos 11
[1 { } ]

2 cos 1
       

i Y i X

p

r

e

t

b e

e eY
F V U K F

L Y XY

YN
E

N L Y

 


 

 

 − 

−− − −
= + − − − 

 

  −
+



7 8 9F A D A E A F = + +                                                                                                               (23) 
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7 0A = ; ( ) ( ) ( )
1 2

8 2 cos 1t b eA N N L Y Y 
− −

=  −    

( )( ) ( )( ) ( ) ( ) ( )
1 1 1 1

9 1 { 1 1 2 cos 1 }
pi Y i X

e rA V e Y U e X L Y K    
− − − − − = + −  − −  +  − −   

and these equations (21)-(24) are expressed in matrix notation, 

1 2 3

4 5 6

7 8 9

D A A A D

E A A A E

F A A A F

     
     

=     
         

                                                                                                          (24) 

That is, T = ; where 

D

E

F



 
 

=  
 
 

,

1 2 3

4 5 6

7 8 9

A A A

T A A A

A A A

 
 

=
 
  

 and 

D

E

F



 
 

=
 
  

 

Finding the eigenvalues of the amplification matrix T  is necessary to determine the stability 

condition, but doing so is challenging since the matrix T  is a third order square matrix with 

unique components throughout. The dimensionless time difference   for this explicit finite 

difference solution is very tiny, tending to zero. 

Under this condition, 2 3 4 6 0A A A A= = = →  and 8 0A → . 

1

5

9

0 0

0 0

0 0

A

T A

A

 
 

 =
 
  

 

The eigenvalues of the augmentation matrix are generated as 1 1 5 2,A A = =  and 9 3A =  after 

simplification. Each eigenvalue's modulus cannot exceed unity for the stability test. The 

stability criteria are as follows when taking this into account: 1 51, 1A A   and 5 1A  . 

Let ( ) ( )
1 1

1 2 3, ,a a U X a V Y  
− −

=  =   = −   and ( )
2

4 2a Y
−

=   . Here, 1 2 3, ,a a a  and 4a are 

all real and nonnegative. Considering " "U = + and " "V = − . Therefore, when 1X m  =  and 

2Y m  = , with m1 and m2 being odd numbers, the highest modulus of 1 5,A A  and 9A  happens. 
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( ) ( )1 11 1
1 4 2 31 2 1 1

2 2
p

a a
A a M a a K − − 
= − + + + + + + 

 
 

1
5 4 4 4 3 2

r

1
1 2

P 2

d
b t

R a
A a N a N a a a Q 

  +
= − − − + + −  

  
 

( )
1 1

9 4 3 2

1
1 2

2

p

r

e

a
A a a a K

L


− 
= − + + + 

 
 

The most detrimental significant value of 1 5,A A  and 9A  is 1− . 

The stability requirements are as follows: 

( )
( )

( )1 1

2

2
1 1 1

2 2
pM V U K

Y XY

    
 − −    

+ + + − + + + 
 

( ) ( ) ( )
2 2 2

r

1 2 2 2
+ 1

P 2

d
t b

R
V N N U Q

Y XY Y Y

     
 

 +      
− − − + +  

    

( )
( )

1

2

1 2
1

2

p

r

e

V U K
L Y XY

   


−   
+ − + + 

 
 

The primary boundary criterions are 0U V  = = = =  at 0 = . For 0.075rP   and 0.025eL  , the 

convergence condition for the present issue would be determined, when 0.0005, 0.80X =  =  

and 0.20Y = . 

5. Validation of Outcomes 

A comparative numerical research with Reza-E-Rabbi et al45 (Table 2) published work has been 

shown to verify the evaluation and analyze the veracity of the existing findings. The results have 

also been validated for the magnetic parameter, Prandtl number, Grashof number, radiation 

parameter, Lewis number, and Eckert number, and in-depth agreement exists between the recent 

findings and past findings in the literature. The Figure 4 depicted the comparative study with the 

Reza-E-Rabbi et al34 for magnetic parameter. It is observed that there is also great agreement with 

the result. 

 



21 
 

-1.88

-1.86

-1.84

-1.82

-1.8

M = 1  M = 2  M = 3
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FIGURE 4. Comparative diagram with previous work with respect to Magnetic. 

Parameter. 

 

 

 

 

   

 

 

TABLE 2. A tabular comparison of the results with Reza-E-Rabbi et al45. 

Increased Parameter Present Result Reza-E-Rabbi et al45 

U θ ϕ U θ ϕ 

Magnetic Parameter M Dec. Inc. Inc. Dec. - - 

Prandtl number Pr Dec. Dec. Dec. - Dec. - 

Grashof number Gr Inc. Dec. Dec. Inc. - - 

Heat source parameter Q Inc. Inc. Dec. - - - 

Radiation parameter Rd Inc. Inc. Inc. Inc. - - 

Lewis number Le - - Dec. - - Dec. 

Eckert number Ec Inc. Inc. Inc. - Inc. - 

N.B: Dec. for decrease and Inc. for increase. 

 

6. Results and Discussion 

In the involvement of thermal radiation, a heat source, chemical reaction, Brownian motion and 

thermophoresis, numerical analysis is being done on the non-Newtonian (Casson) MHD fluid flow 

for free convectional heat and mass transfer past on a vertical, infinitely permeable plate. The 

numerical outcomes of velocity (U), temperature ( ), and concentration ( ) are generated for 

various parameters in order to understand the actual physical representation of the problem when 

boundary layer conditions are present. The graphs are represented with some constant parameter 

Gr = 4.00, Gm = 2.00, M = 1.00, Pr = 0.71, Le = 5.00, Nb = 0.10, Rd = 2.00, Ec = 0.10, β = 0.10, Kp 

= 0.40, Nt = 0.10, A = 0.50, P = 2.00, Q = 0.10, Kr = 5.00. 
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FIGURE 7. The effect of Gr on U. FIGURE 8. The impact of β on U. 

FIGURE 5. The influence of M on U. FIGURE 6. The impact of Pr on U. 

Velocity Field 

The physical behavior of the magnetic parameter, M, for velocity fields is shown in Figure 5. When 

a magnetic field is present in a system, the Lorentz force is created. This force slows down the 

motion of the fluid. The impacts of Prandtl number, Pr, on velocity distribution is depicted in 

Figure 6. It is shown that when the Prandtl number rises, velocity decreases. Pr quantifies the 

correlation between thermal and momentum diffusivity. Pr regulates the relative momentum and 

thickness of momentum boundary layer. A rise in the Prandtl number, for a certain amount of 

specific heat capacity and thermal conductivity, merely denotes an increase in the degree of fluid 

viscosity. Fluids with low velocity are those whose viscosity value is high.  
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FIGURE 9. The impression of Ec on. 

U. 

FIGURE 10. The impact of Q on θ. 

 

 

 

 

 

 

 

 

 

Figure 7 represents the variation in the velocity profile caused by Thermal Grashof number (Gr).  

As the parameter increases, the velocity increases. Generally speaking, increasing a buoyancy 

parameter makes buoyant forces more dominant in the flow, helping to enhance more particle 

contact and increasing the velocity field. The impact of Casson parameter is presented in Figure 8. 

The greater viscous forces acting on the flow when the Casson fluid is incorporated are the cause 

of this tendency and can contribute to the velocity depreciation. The influence of Eckert number 

(Ec) is depicted in Figure 9. Eckert is the ratio of advective mass transport to heat dissipation. So, 

for the increase of Eckert number, velocity rises.  

Temperature Field 

In many industry processes, thermal radiation is the important one. So, it is a great deal by knowing 

the impacts of different pertinent parameter on temperature profiles. Figure 10 displays the heat 

source parameter (Q). As the heat source parameter is improved, temperature rises. Figure 11 

illustrates how Eckert number (Ec) works. The particles become active and produce a greater 

temperature as a result of the energy storage at high Eckert numbers. Additionally in Figure 12, 

the temperature distribution has also been shown for Prandtl number (Pr). Thermal conductivities 

are higher in fluids with lower (Pr). So, compare to greater number, heat will diffuse from the sheet 

more quickly. Hence, the use of Prandtl number can accelerate cooling in conducting fluids. Figure 

13 displays the distribution in the temperature profile brought on by the radiation parameter (Rd). 
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FIGURE 11. The effect of Ec on θ. FIGURE 12. The impact of Pr on θ. 

FIGURE 13. The influence of Rd on θ. FIGURE 14. The impact of Le on ϕ. 

It demonstrates that higher values of the radiation parameter result in higher temperatures and 

correspondingly thicker thermal boundary layers. Higher values of radiation typically result in 

operating fluid heating up more, which raises the temperature of the surrounding area. 

Concentration Field 

The Lewis number is used to figure out the relative thickness between the thermal and 

concentration boundary layers. The purpose of Figure 14 is to investigate how the Lewis number 

(Le) affects the concentration profile.   
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FIGURE 15. The impression of Nt on ϕ. 

If concentration boundary layer thickness increases, then there is a decrement of Lewis number. 

Figure 14 demonstrates that the heat expands quicker than the solute when 5.0eL  . 

Thermophoresis parameter creates an impact on concentration which is shown in Figure 15. 

Temperature gradients cause the transport force known as thermophoresis parameter to exist. So, 

due to the increasing values of it there is also an increase of concentration. Figure 16 describes the 

influence of Casson parameter on concentration field. Casson parameter values that increase over 

time produce an increasing profile. Physically, the fluid's viscosity causes the fluid's velocity to 

slow down, saturating the nanoparticles close to the stretched sheet. 

 

 

 

 

 

 

 

 

Skin friction, Nusselt and Sherwood Numbers 

Figure 17 illustrates how a magnetic parameter affects skin friction and describes that magnetic 

parameter tends to reduce the stress, which causes the fluid velocity to slow down. Added to that 

Figures 23 and 24 have shown the influence of parameter for chemical change and Lewis number 

on Sherwood number respectively. It has been seen that the effect of both parameter for chemical 

change and the Lewis number cause the Sherwood number to increase. The action of skin friction 

under the influence of porosity term has been depicted in Figure 18. 

 

 

FIGURE 16. The impact of β on ϕ. 
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FIGURE 17. The influence of M on Cf. FIGURE 18. The impact of Kp on Cf. 

FIGURE 19. The influence of Gm on Cf. FIGURE 20. The impact of Pr on Nu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been observed that with the increase of porosity term, skin friction decreases. Impact of 

Grashof number on skin friction is demonstrated in Figure 19. In addition, Figures 20-22 highlight 

the Prandtl number, magnetic parameter and Grashof number on Nusselt number respectively. It 

has been noted that Prandtl number causes an increase in Nusselt number, while magnetic 

parameter and Grashof number cause a drop. 
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FIGURE 21. The impact of M on Nu. FIGURE 22. The impact of Gr on Nu. 

FIGURE 23. The impact of Kr on Sh. FIGURE 24. The impact of Le on Sh. 

 

 

 

 

 

 

 

 

 

     

  

 

 

 

 

 

Streamlines and Isothermal Lines 

Figures 25-28 show an improved picture of fluid movement. Here, a streamline depicts the 

direction of the fluid's velocity. For changing the quantities of the thermal Grashof number and 

radiation parameter, both the flood view and the line view of the fluid flow have been provided 

here.  However, isotherms can be employed to show how the thermal boundary layer varies. 

Figures 25-28 show both streamlines' and isotherms' overall impressions. Streamlines and 

isotherms both decline as both parameters are increased. 
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FIGURE 26. Isothermal lines for 

several values of Gr (flood view). 

FIGURE 28. Isothermal lines for 

different values of Rd (flood view). 

FIGURE 25. Streamlines for different 

values of Gr (line view). 

FIGURE 27. Streamlines for several 

values of Rd (line view). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Curve to curve fluctuation of M, Pr and Ec for a steady-state solution at 3.50 =  is presented in 

Table 3 and also the effect of M, Pr, Gr, Gm, Rd, Le, Ec, Q and β on Sherwood number (Sh), Nusselt 

number (Nu) and skin friction (Cf) at 2.00 = described in Table 4. 
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TABLE 3. Curve to curve fluctuation of M, Pr and Ec for a steady-state solution at 3.50 = . 

Increased 

Parameter 

Velocity 

Profile (U) 

Inc. or 

Dec. 

Temperature 

Profile (θ) 

Inc. or 

Dec. 

Concentration 

Profile (ϕ) 

Inc. or 

Dec. 

M       

1.00 0.08895 Dec. 0.10012 Inc. 0.00440 Inc. 

5.00 0.06754 24.00% 0.10272 2.60% 0.00454 3.18% 

10.0 0.05328 21.60% 0.10748 4.63% 0.00475 4.63% 

Pr       

0.71 0.08895 Dec. 0.10012 Dec. 0.00440 Dec. 

1.00 0.05355 39.80% 0.05584 44.23% 0.00359 18.41% 

1.50 0.02532 52.72% 0.02195 60.69% 0.00223 37.88% 

Ec       

0.10 0.08895 Inc. 0.10012 Inc. 0.00440 Inc. 

0.50 0.12424 39.67% 0.14234 42.17% 0.00584 32.73% 

1.00 0.18473 48.69% 0.21737 52.71% 0.00768 31.50% 

 

TABLE 4. Effect of M, Pr, Gr, Gm, Rd, Le, Ec, Q and β on Sherwood number (Sh), Nusselt number 

(Nu) and skin friction (Cf) at 2.00 = .  

M Pr Gr Gm Rd Le Ec Q β Cf Nu Sh 

1.00 0.71 4.00 2.00 2.00 5.00 0.10 0.10 0.10 -

0.79051 

0.05847 0.32306 

5.00 - - - - - - - - -

1.38221 

0.05382 0.32401 

7.00 - - - - - - - - -

1.63335 

0.05191 0.32437 

- 0.71 - - - - - - - -

0.79051 

0.05847 0.32306 

- 1.00 - - - - - - - -

0.84641 

0.06639 0.32183 

- 2.00 - - - - - - - -

0.96268 

0.08234 0.31980 

- - 4.00 - - - - - - -

3.90821 

0.09240 0.64086 

- - 6.00 - - - - - - -

2.36044 

0.07473 0.47324 

- - 8.00 - - - - - - -

1.48791 

0.06484 0.38175 
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- - - 2.00 - - - - - -

0.79051 

0.05847 0.32306 

- - - 5.00 - - - - - -

0.54572 

0.05892 0.32275 

- - - 10.0 - - - - - -

0.13687 

0.05958 0.32225 

- - - - 2.00 - - - - -

0.91276 

0.05824 0.32321 

- - - - 4.00 - - - - -

0.83334 

0.04738 0.32492 

- - - - 6.00 - - - - -

0.78590 

0.04099 0.32590 

- - - - - 5.00 - - - -

0.79051 

0.05847 0.32306 

- - - - - 10.0 - - - -

0.83487 

0.05834 0.42878 

- - - - - 15.0 - - - -

0.85851 

0.05834 0.50037 

- - - - - - 0.10 - - -

0.79051 

0.05847 0.32306 

- - - - - - 0.30 - - -

0.72833 

0.04630 0.32785 

- - - - - - 0.50 - - -

0.67284 

0.03624 0.33171 

- - - - - - - 0.10 - -

0.79051 

0.05847 0.32306 

- - - - - - - 0.20 - -

0.74611 

0.04989 0.32483 

- - - - - - - 0.30 - -

0.69778 

0.04071 0.32663 

- - - - - - - - 0.10 -

0.79051 

0.05847 0.32306 

- - - - - - - - 0.20 0.28606 0.06892 0.32338 

- - - - - - - - 0.30 0.61236 0.07306 0.32367 
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7. Conclusions 

In this paper, an unstable MHD convective flow of non-Newtonian (Casson) fluid through an 

unlimited vertical plate having sinusoidal boundary conditions has been examined in the vicinity 

of chemical reaction as well as thermal radiation. Modeling PDEs with appropriate technique was 

solved using EFD. To make sure the solution was stable, a convergence evaluation was performed. 

Additionally, it was proven that the current outcomes are independent of the grid. Additionally, 

the current numerical model has been validated using previously published findings. The primary 

conclusions yielded from the aforesaid study are as follows: 

1. While the magnetic factor and the Prandtl number have slowed the velocity profile, the 

existence of an Eckert number, Grashof number and Casson parameter has significantly 

increased the velocity. 

2. For the heat source parameter, radiation parameter, and Eckert number, there is an increase 

in heat. 

3. Lewis number causes a fall in the concentration profile, whereas thermophoresis parameter 

and Casson fluid parameter cause increases. 

4. Both chemical reaction parameter and the Lewis number cause the Sherwood number to 

increase. 

5. Prandtl number causes an increase in Nusselt number, while magnetic parameter and 

Grashof number cause a drop. 

6. The increase of porosity term decreases the skin friction. 

Conflict of Interest 

The authors declare no potential conflict of interest.  

References 

1. Saqib M, Ali F, Khan I, Sheikh NA. Heat and mass transfer phenomena in the flow of Casson 

fluid over an infinite oscillating plate in the presence of first-order chemical reaction and slip 

effect. Neural Comp Appli. 2016 

2. Hussanan A, Salleh MZ, Tahar RM, Khan I. Unsteady Boundary Layer Flow and Heat 

Transfer of a Casson Fluid past an Oscillating Vertical Plate with Newtonian Heating. PLoS 

ONE. 2014;9(10):e108763. 



32 
 

3. Rafique K, Anwar MI, Misiran M, Khan I, Alharbi SO, Thounthong P, Nisar KS. Numerical 

Solution of Casson Nanofluid Flow Over a Non-linear Inclined Surface With Soret and 

Dufour Effects by Keller-Box Method. Front Phys. 2019;7:139. 

4. Raju CSK, Sandeep N, Sugunamma V, Babu JM, Reddy RJV. Heat and mass transfer in 

magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng 

Sci Tech Int J. 2016;19(1);45–52. 

5. Asogwa KK, Ibe AA. A Study of MHD Casson Fluid Flow over a Permeable Stretching 

Sheet with Heat and Mass Transfer. J Eng Rese Rep. 2020;16(2):10-25. 

6. Rao EM. The effects of thermal radiation and chemical reaction on MHD flow of a Casson 

fluid over and exponentially inclined stretching surface. J Phys: Conference Series. 

2018;1000;012158 

7. Sarker T, Reza-E-Rabbi S, Arifuzzaman SM, Ahmed R, Khan MS, Ahmmed SF. MHD 

Radiative Flow of Casson and Williamson Nanofluids over an Inclined Cylindrical Surface 

with Chemical Reaction Effects. Int J Heat Tech. 2019;37(4);1117-1126. 

8. Ullah I, Bhattacharyya K, Shafie S, Khan I. Unsteady MHD Mixed Convection Slip Flow of 

Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with 

Chemical Reaction, Thermal Radiation, Heat Generation/ Absorption and Convective 

Boundary Conditions. PLoS ONE. 2016;11(10):e0165348. 

9. Hasnain J, Abbas Z, Sheikh M, Aly S. Analysis of dusty Casson fluid flow past a permeable 

stretching sheet bearing power law temperature and magnetic field. Int J Num Methods Heat 

Fluid Flow. 2019;30(6);3463–3480 

10. Pramanik S. Casson fluid flow and heat transfer past an exponentially porous stretching 

surface in presence of thermal radiation. Ain Shams Eng J. 2014;5(1);205–212 

11. Oke AS, Mutuku WN, Kimathi M, Animasaun IL. Insight into the dynamics of non-

Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. 

Nonlinear Eng. 2020;9(1);398–411 

12. Sulochana C, Poornima M. Unsteady MHD Casson fluid flow through vertical plate in the 

presence of Hall current. SN App Sci. 2019;1(12). 

13. Zaib A, Bhattacharyya K, Uddin MS, Shafie S. Dual Solutions of Non-Newtonian Casson 

Fluid Flow and Heat Transfer over an Exponentially Permeable Shrinking Sheet with 

Viscous Dissipation. Model Simul Eng. 2016;1–8. 



33 
 

14. Sohail M, Shah Z, Tassaddiq A, Kumam P, Roy P. Entropy generation in MHD Casson fluid 

flow with variable heat conductance and thermal conductivity over non-linear bi-directional 

stretching surface. Sci Rep. 2020;10(1). 

15. Mondal RK, Reza-E-Rabbi S, Gharami PP, Ahmmed SF, Arifuzzaman SM. A Simulation of 

Casson Fluid Flow with Variable Viscosity and Thermal Conductivity Effects. Math Model 

Eng Prob. 2019;6(4);625-633. 

16. Abro KA, Shaikh HS, Khan I. A mathematical Study of Magnetohydrodynamic Casson Fluid 

via Special Functions with Heat and Mass Transfer embedded in Porous Plate. 

arXiv:1706.03829 (physics). 2017; 

17. Prameela M, Gangadhar K, Reddy GJ. MHD free convective non-Newtonian Casson fluid 

flow over an oscillating vertical plate. Part Diff Equ App Math. 2022;5;100366. 

18. Ogunseye HA, Salawu SO, Fatunmbi EO. A numerical study of MHD heat and mass transfer 

of a reactive Casson–Williamson nanofluid past a vertical moving cylinder. Part Diff Equ 

App Math. 2021;4;100148 

19. Asogwa KK, Goud BK, Reddy BS, Ibe AA. Suction effect on the dynamics of EMHD casson 

nanofluid over an induced stagnation point flow of stretchable electromagnetic plate with 

radiation and chemical reaction. Resu Eng. 2022;15;100518 

20. Khalid A, Khan I, Khan A, Shafie S. Unsteady MHD free convection flow of Casson fluid 

past over an oscillating vertical plate embedded in a porous medium. Eng Sci Tech Int J. 

2015;18;309e317 

21. Kumar KG, Archana M, Gireesha BJ, Krishanamurthy MR, Rudraswamy NG. Cross 

diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer 

of Casson fluid over a vertical plate. Resu Phys. 2018;8:694–701 

22. Qayyum M, Khan H, Khan O. Slip Analysis at Fluid-Solid Interface in MHD Squeezing 

Flow of Casson Fluid through Porous Medium. Resu Phys. 2017;7:732–750 

23. Reddy GJ, Raju RS, Rao JA. Influence of viscous dissipation on unsteady MHD natural 

convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Shams Eng 

J. 2018;9:1907–1915 

24. Shoaib M, Kausar M, Nisar KS, Raja MAZ, Morsy A. Impact of thermal energy on MHD 

Casson fluid through a Forchheimer porous medium with inclined non-linear surface: A soft 

computing approach. Alex Engi J. 2022; 61:12211–12228 



34 
 

25. Bejawada SG, Reddy YD, Jamshed W, Nisar KS, Alharbi AN, Chouikh R. Radiation effect 

on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a 

Forchheimer porous medium. Alex Eng J. 2022;61:8207–8220 

26. Kataria HR, Patel HR. Radiation and chemical reaction effects on MHD Casson fluid flow 

past an oscillating vertical plate embedded in porous medium. Alex Eng J. 2016;55:583–595 

27. Animasaun IL, Adebile EA, Fagbade AI. Casson fluid flow with variable thermo-physical 

property along exponentially stretching sheet with suction and exponentially decaying 

internal heat generation using the homotopy analysis method. J Nigerian Math Soci. 

2016;35:1–17 

28. Khan MR, Elkotb MA, Matoog RT, Alshehri NA, Abdelmohimen MAH. Thermal features 

and heat transfer enhancement of a Casson fluid across a porous stretching/shrinking sheet: 

Analysis of dual solutions. Case Stud Therm Eng. 2021;28:101594 

29. Hussain F, Nazeer M, Altanji M, Saleem A, Ghafar MM. Thermal analysis of Casson 

rheological fluid with gold nanoparticles under the impact of gravitational and magnetic 

forces. Case Stud Therm Eng. 2021;28:101433 

30. Zhou JC, Abidi A, Shi QH, Khan MR, Rehman A, Issakhov A, Galal AM. Unsteady radiative 

slip flow of MHD Casson fluid over a permeable stretched surface subject to a non-uniform 

heat source. Case Stud Therm Eng. 2021;26:101141 

31. Rasool G, Chamkha AJ, Muhammad T, Shafiq A, Khan I. Darcy-Forchheimer relation in 

Casson type MHD nanofluid flow over non-linear stretching surface. Prop Power Rese. 

2020;9(2):159e168 

32. Raju CSK, Neeraja G, Dinesh PA, Vidya K, Rushi Kumar B. MHD Casson fluid in a 

suspension of convective conditions and cross diffusion across a surface of paraboloid of 

revolution. Alex Eng J. 2018;xxx;xxx–xxx 

33. Saidulu N, Lakshmi AV. MHD Flow of Casson Fluid With Slip Effects over an 

Exponentially Porous Stretching Sheet in Presence of Thermal Radiation, Viscous 

Dissipation and Heat Source/Sink. ARJM, ISSN(online), 2016;15(2);2378-704X 

34. Reza-E-Rabbi S, Ahmmed SF, Islam S, Arifuzzaman SM, Rana BMJ, Yousuf Ali M, Al-

Mamun A, Khan MS. Characterization of fluid flow and heat transfer of a periodic 

magnetohydrodynamics nano non‐Newtonian liquid with Arrhenius activation energy and 

nonlinear radiation. Heat Transf. 2022;1-38;Wiley.  



35 
 

35. Anwar T, Kumam P, Watthayu W. Unsteady MHD natural convection flow of Casson fluid 

incorporating thermal radiative flux and heat injection/suction mechanism under variable 

wall conditions. Sci Rep. 2021;11(1) 

36. Moatimid GM, Mohamed MAA, Elagamy K. A Casson nanofluid flow within the conical 

gap between rotating surfaces of a cone and a horizontal disc. Sci Rep. 2022;12:11275 

37. Ahmad S, Haq SU, Ali F, Khan I, Nisar KS. Time fractional analysis of channel flow of 

couple stress Casson fluid using Fick’s and Fourier’s Laws. Sci Rep. 2022;12:2956  

38. Sohail M, Shah Z, Tassaddiq A, Kumam P, Roy P. Entropy generation in MHD Casson fluid 

flow with variable heat conductance and thermal conductivity over non-linear bi-directional 

stretching surface. Sci Rep. 2020;10(1);10:12530 

39. Sahoo A, Nandkeolyar R. Entropy generation and dissipative heat transfer analysis of mixed 

convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall 

current. Sci Rep. 2021;11(1);11:3926 

40. Shah Z, Kumam P, Deebani W. Radiative MHD Casson Nanofluid Flow with Activation 

energy and chemical reaction over past nonlinearly stretching surface through Entropy 

generation. Sci Rep. 2020;10(1);10:4402 

41. Kataria HR, Patel HR. Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid 

flow past over an oscillating vertical plate embedded in porous medium with ramped wall 

temperature. Prop Power Rese. 2018;7(3);257–267.  

42. Ali A, Umar M, Bukhari Z, Abbas Z. Pulsating flow of a micropolar-Casson fluid through a 

constricted channel influenced by a magnetic field and Darcian porous medium: A numerical 

study. Res Phys. 2020;19;103544 

43. Hussain M, Ghaffar A, Ali A, Shahzad A, Nisar KS, Alharthi MR, Jamshed W. MHD thermal 

boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of 

nonlinear radiation and convective boundary condition. Alex Eng J. 2021;60;5473–5483 

44. Nandeppanavar MM, Vaishali S, Kemparaju MC, Raveendra, N. Theoretical analysis of 

thermal characteristics of casson nano fluid flow past an exponential stretching sheet in 

Darcy porous media. Case Stud Therm Eng. 2020;21;100717 

45. Reza-E-Rabbi S, Ahmmed SF, Arifuzzaman SM, Sarkar T, Khan MS. Computational 

modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of 

nanoparticles. Eng Sci Tech Int J. 2020;23;605–617 


