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Abstract

With advancements in automation and high-throughput techniques, complex materials discovery with multiple conflicting ob-

jectives can now be tackled in experimental labs. Given that physical experimentation is greatly limited by evaluation budget,

maximizing efficiency of optimization becomes crucial. We discuss the limitations of using hypervolume as a performance indica-

tor for desired optimality across the entire multi-objective optimization run and propose new metrics specific to experimentation:

ability to perform well for complex high-dimensional problems, minimizing wastage of evaluations, consistency/robustness of

optimization, and ability to scale well to high throughputs. With these metrics, we perform a comparison of two conceptually

different and state-of-the-art algorithms (Bayesian and Evolutionary) on synthetic and real-world datasets. We discuss the

merits of both approaches with respect to exploration and exploitation, where fully resolving the Pareto Front could be the

main aim for greater scientific value in understanding materials space, and thus provide a perspective for materials scientists

to implement optimization in their platforms.

Corresponding author(s) Email: kedar@ntu.edu.sg

Introduction

Materials science as a field is being disrupted with advances in machine learning and automation,(Lookman
et al., 2015; Liu et al., 2017; Correa-Baena et al., 2018) where high-throughput experimentation (HTE)
capabilities accelerate discovery of materials in more complex search spaces. Users not only save time on
experimentation by virtue of automated workflows with faster processing, but also leveraging on equipment
with larger batches of experiments to increase throughput and thus minimise experimental time. (Zhang
and Block, 2009; Mennen et al., 2019) There have been many successful applications of HTE, particularly in
the single objective problem space alongside machine learning-assisted optimisation strategies. (Sun et al.,
2018, 2019; Burger et al., 2020; Dave et al., 2020; Gongora et al., 2020; Langner et al., 2020; Li et al., 2020;
Shimizu et al., 2020; Wang et al., 2020; Bash et al., 2022; Deneault et al., 2021; Mekki-Berrada et al., 2020)
However, many real-world problems are more complex, specifically with multiple conflicting properties to be
optimized, for example: strength vs ductility in metal alloys, (Li et al., 2016) device thickness vs fill factor
in photovoltaics, (Ramirez et al., 2018) or selectivity vs current density in catalysts. (Ren et al., 2019) In
addition, such problems may include constraints that restrict the space of feasible solution. This motivates
the need for multi-objective optimisation strategies with constraint handling capabilities to be integrated
in HTE setups. (Alsharif et al., 2020; Bash et al., 2020; Grizou et al., 2020; Abdel-Latif et al., 2021) The
first step could consist of formulating complex material science problems as constrained multi-objective
optimisation problems (CMOPs).
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A CMOP with m objectives and (q+k) constraints, can be defined as:

min[?]F (x) = (f1(x), . . . , fm(x))T

st gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , k

x[?]Rn

where F(x) defines the multi-dimensional objectives to be optimised, and gi(x) and hj(x) define the inequality
and equality constraints, respectively. A solution is an n-dimensional vector of decision variables, x . To
determine the objective value of a solution, a Pareto-optimal solution x1 dominates another solution x2 if
F(x1) [?] F(x2) where they are feasible. A total set of all feasible and Pareto-optimal solutions can then be
defined as the Pareto Set, or Pareto Front (PF) when mapped onto the objective space. This PF represents
all solutions with the optimal trade-off between objectives.

A commonly defined materials discovery problem is usually of combinatorial nature with unexplored regions
of objective space, given some mixture of chemicals, precursors, and other process parameters. This problem
can be formulated as a CMOP with an unknown PF to be extrapolated to, with minimal evaluation bud-
get. (Yong et al., 2022; Lim et al., 2021; Sabharwal et al., 2016; Klein et al., 2015) This is achieved through
selection and evaluation of available solutions , where each solution represents the set of experimental input
parameters (chemicals, temperature settings etc.) used in the screening. The number of data points is
typically low, with most works generally limited to around 102-103 data points due to practical bottlenecks
such as time taken to synthesize and characterize, or simply due to a limited time/cost budget.

In addition, the PF can be discontinuous with multiple infeasible regions due to underlying property lim-
itations such as phase boundaries/solubility limits, or engineering rules, for example summing mixtures to
100%. (Gopakumar et al., 2018) Such constraints can also be knowledge-based, where a domain expert with
prior knowledge sets them to pre-emptively ‘avoid’ poor results and converge faster. (Niculescu et al., 2006;
Asvatourian et al., 2020; Liu et al., 2022) Figure 1 illustrates an example of such a problem.

f1

f2

Unconstrained Pareto Front

Infeasible regions

Constrained Pareto Front

Figure 1: Illustration of constrained multi-objective (f1 and f2) space for a convex minimization problem in
bi-objective space. The addition of infeasible regions in grey shifts the original PF from solid red to blue.

CMOPs can be solved in various ways, but recently, two classes of algorithms have shown promises in solving
such problems with a high level of success, namely: multi-objective evolutionary algorithms (MOEA) and
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multi-objective Bayesian optimisation (MOBO).

MOEAs (Deb, 2011) work by maintaining and evolving a population of solutions across an optimisation run.
For example, Genetic Algorithms (GA) are a specific subset that utilise ‘operations’ alike biological processes:
members of the population are selected to become parents based on a specific selection criterion, and then
undergo crossover and mutation to form a children population. (Mitchell, 1998) Within the field of MOEAs,
various constraint handling techniques have been proposed (Fan et al., 2019; Xu and Zhang, 2020; Tian et al.,
2022) as well as extensions of MOEAs to many-objective (m>2) problems. (Li et al., 2015) MOEAs are well
suited to implementations where solutions can be tested in parallel, given their population-based approach,
where each generation’s population can be treated as a batch. MOEAs have been successfully applied
in materials-specific multi-objective problems: experimental data is used to construct a machine learning
model which is then treated as a computation optimisation problem to be solved, and the results evaluated
physically. (Zhang et al., 2021b; Patra et al., 2017; Menou et al., 2016; Coello and Becerra, 2009; Ganguly
et al., 2007; Mahfouf et al., 2005) The use of MOEAs relevant to materials science has seen computational
and inverse design problems. (Wu et al., 2020; Avery et al., 2017; Berardo et al., 2018; Pakhnova et al., 2020;
Carvalho et al., 2020; Jennings et al., 2019; Salley et al., 2020)

MOBOs leverage on surrogate models to cheaply predict some black-box function, and then utilise an ac-
quisition function to probabilistically compute a predictive function and return the best possible candidate
where gain is maximised. (Shahriari et al., 2016) The choice of surrogate model can depend on the user, but
in recent literature, it has become synonymous with ‘kriging’ which refers specifically to the use of Gaus-
sian Processes (GP) as the surrogate model, taking advantage of its flexibility and robustness. (Rasmussen,
2003) The extension of MOBOs to CMOPs is less mature, with relatively new implementations that cover
parallelization, multi-objective and constraints. (Garrido-Merchán and Hernández-Lobato, 2019; Belakaria
et al., 2020; Daulton et al., 2020; Suzuki et al., 2020) On top of these, there are also hybrid variants such as
TSEMO (Bradford et al., 2018) or MOEA/D-EGO (Zhang et al., 2010) which integrate the use of MOEAs
to improve the prediction quality of the underlying surrogate models. In general, BO as an overarching
optimisation strategy has already been established as an attractive strategy for use in both computational
design problems, (Mannodi-Kanakkithodi et al., 2016; Solomou et al., 2018; Yuan et al., 2018; Karasuyama
et al., 2020; Janet et al., 2020; Hanaoka, 2021) as well as experimentation problems (MacLeod et al., 2022,
2020; Cao et al., 2021; Schweidtmann et al., 2018; Christensen et al., 2021; Epps et al., 2020; Erps et al.,
2021) due to its sample efficient approach.

As previously discussed, the PF defines the set of optimal solutions of a CMOP. For optimisation of CMOPs,
hypervolume (HV) is often used as a performance indicator. It defines the Euclidean distance bounded by
a point, and the reference point in a single dimension, and a HV in multiple dimensions. It directly shows
the quality of the solutions since a solution set with high HV is closer to the true PF and is diverse as it
effectively dominates more objective space. An illustration of the HV measure for a multi-objective (two
dimensions for illustration) convex minimization problem is presented in Figure 2, where HV is computed
by finding the area of non-dominated solutions, i.e. the solutions closest to PF without any competitor,
bounded by a reference point.

Aside from being a performance metric to compare optimisation strategies, HV can also be directly evaluated
to guide convergence of various algorithms. Hanaoka et al showed that scalarization-based MOBOs may be
best suited for clear exploitation and/or preferential optimisation trajectory of objectives, whereas HV-based
MOBOs are better for exploration of the entire search space. (Hanaoka, 2022) Indeed, HV-based approaches
empirically show a preference in proposed solutions towards the extrema of a PF, (Auger et al., 2012;
Guerreiro et al., 2020) and thus can better showcase extrapolation. In contrast, scalarization approaches to
reduce multi-objective problems to a single-objective such as hierarchically in Chimera (Häse et al., 2018)
or any user-defined function (Zhang et al., 2021a) have limitations: i) it is difficult to determine how to
properly scalarize objectives; ii) single objective optimisation methods cannot propose a set of solutions that
balance trade-off.

Within the context of multi-objective optimisation and material science implementation, two state-of-the-
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art algorithms were compared in the present work: q-Noisy Expected Hypervolume Improvement (qNE-
HVI) (Daulton et al., 2021) and Unified Non-dominated Sorting Genetic Algorithm III (U-NSGA-III). (Seada
and Deb, 2016) They are MOBO and MOEA-based algorithms, respectively, and were chosen based on their
reported performance in solving complex CMOPs (with respect to HV score), and the fact that they are
capable of highly parallel sampling, making them suitable for integration within an HTE framework. Fur-
thermore, both algorithms are chosen from open-source Python libraries, making them easy to implement
and enabling reproducibility of results presented.

f1

f2

Non-dominated solu�ons

True Pareto Front

Proposed solu�on

Hypervolume
Hypervolume
Improvement

Reference Point

Figure 2: Illustration of hypervolume for a convex minimization problem in bi-objective space. The red line
represents the ground truth PF, while the blue points and region reflect the best-known solutions and their
associated hypervolume, respectively. The green point and region are then used to illustrate the contribution
of a new evaluated solution. The computation of hypervolume in objective space is performed with respect
to a lower bound with a reference point, shown by the red star.

Experimental Section/Methods

We thus propose 4 different metrics.

Firstly, dimensional contour plots – 10 runs at a relatively large evaluation budget (100 iterations x 8 points
per batch) are plotted for number of dimensions versus total evaluations, colored by HV score. This is
done for the scalable synthetic problems only, and allows us to illustrate performance when dimensionality
is scaled up to represent more complex combinatorial problems.

Secondly, optimisation trajectory – a single optimisation run at high evaluation budget (100 iterations x
8 points per batch) is plotted in objective space to illustrate the trajectory of proposed solutions at each
iteration towards the PF. This allows us to graphically analyze how either algorithm traverses the objective
space, and provides a different perspective in understanding the exploration-exploitation trade-off.

Thirdly, probability density map – 10 runs at a lower evaluation budget (24 iterations x 8 points per batch)
are plotted together in objective space, and colored with a Gaussian kernel density estimate to illustrate
the probability distribution of solutions. This is an alternative to optimization trajectory, where instead we
consider the consistency and robustness during optimization for different random starts.
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Lastly, batch sizing – various batch sizes are compared using log HV difference to illustrate their HV improve-
ment, and thus illustrates the performance of both algorithms when considering different throughputs, as well
as whether more gradual optimization (smaller batches but higher iterations) or vice versa is appropriate.

In all cases, we initialised with a Sobol sampling of 2*(variables+1).

Results

Synthetic Problems

For synthetic benchmarks, we select two-objective scalable problems for comparison as described in Table
1. The ZDT test suite (Zitzler et al., 2000) provides a range of PF shapes, while the MW test suite (Ma
and Wang, 2019) provides constraints and uniquely shaped PFs to challenge the optimisation algorithms.
Both test suites rely on a similar construction method for minimization problems: taking a single variable
function f1 against a shape function f2 as such:

min [?]f1(x) = x1

min[?] f2(x) = g(x)h(f1(x), g(x))

The single variable function closely resembles certain real-life multi-objective problems where an input is to
be minimised against some other objective, for example minimizing process temperature, while achieving a
target output. (MacLeod et al., 2022) U-NSGA-III in Figure 3 a) and c) shows a more gradual change in

Name PF Geometry n var n obj n constr ref pt
ZDT1 Convex Scalable 2 0 [11, 11]
ZDT2 Concave
ZDT3 Disconnected
MW7 Disconnected (mixed) 2 [1.2, 1.2]

Table 1: List and details of synthetic problems.

colour and did not reach the maximum values for higher dimensions, indicating a slower rate of convergence
and poorer HV improvement, respectively, which scale with dimensions. In contrast, results presented in
Figure 3 b) and d) for ZDT1 and ZDT2, respectively, indicate that qNEHVI converges fast at a high HV
improvement, as illustrated by the bright yellow coloration which appears early and maintains this up to
dim=12 with little loss in initial performance. qNEHVI, while showing superiority in overall HV score for the
ZDT3 and MW7 problem, had a lower rate of convergence and maximum HV improvement as dimensions
increase, illustrated in Figure 3 f) and h) by the colour gradient. Although we note that in other literature,
GP models tend to perform poorly at high dimensionalities, (Moriconi et al., 2020; Eriksson and Jankowiak,
2021) this was not observed here, to the limit of 12 dimensions. We believe that the underlying stochastic
QMC sampling used is what drives the optimisation and hence the performance remains robust.

It should be noted that in Figure 3 e), U-NSGA-III’s HV score on the ZDT3 problem scales inconsistently
with dimensionality: dim=5 shows better HV improvement (brighter colour) compared to dim=2 to 4.
We attribute this to the disconnected PF being strongly affected by differences in initilisation, where entire
regions can be lost as the evolutionary process fails to extrapolate and explore sufficiently. Lastly, we observe
in Figure 3 g) for MW7 that U-NSGA-III performs significantly worst as compared to qNEHVI, regardless
of dimensionality. The presence of more complex constraints in the problem means that many solutions
are likely to be infeasible and require more iterations to evolve to feasibility according to the evolution
mechanism. Infeasible solutions do not contribute to HV improvement at all, and we note that this is one
of the limitations of plotting using HV as a metric, where feasibility management is not clearly reflected.

5
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Figure 3: Contour plots for dimension vs evaluation budget. a-b) ZDT1. c-d) ZDT2. e-f) ZDT3. g-h)
MW7. The colour bar illustrates the mean cumulative HV score with respect to cumulative evaluations, over
a total evaluation budget of 100 iterations x 8 points per batch. Results are averaged over only 5 runs due
to high computational cost of searching over many dimensions. The results here show that qNEHVI is a far
superior method when looking at only HV as a performance metric.

In order to investigate why qNEHVI presented a higher HV improvement for qNEHVI, we then proceed
to plot the optimization trajectory to observe solutions in objective space, as shown in Figure 4. We set
the number of dimensions to 8. This is representative of a range of experimental parameters that materials
scientists would consider practical. We first performed a single optimisation run of 100 iterations x 8 points
per batch. The evaluated solutions are plotted onto the objective space and coloured by their respective
iteration from dark to bright.

The general observations in Figure 4 a)-h) comparing qNEHVI to U-NSGA-III are consistent with results

6
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previously reported in Figure 3, specifically in terms of HV scores and convergence rate. In all sub figures,
qNEHVI was able to propose solutions at the PF within the first 20 iterations, as shown by the darker
colour of points along the red line (true PF). This suggests that it is very sample efficient. However, it was
unable to fully exploit the region of objective space close to the PF, and solutions in later iterations are
non-optimal. In fact, in Figure 4 b) and d), ZDT1 and ZDT2 respectively, a large portion of solutions lie
along the f1=x1=0 line. This is explained by the choice of reference point, which we explore in more detail
in SI 1.

We hypothesize that qNEHVI is unable to identify multiple bi-objective points along the PF because the
underlying GP surrogate model did not accurately model the PF for ZDT1-3. As for MW7, despite the algo-
rithm being able to propose many solutions near the unconstrained PF, it failed to overcome the constraints,
as seen by the failure to adjust to the new dotted red line. We observed that qNEHVI’s superior HV score
(Figure 3) could be attributed to the stochastic nature of QMC sampling, which is used to provide a pool
of candidates for the surrogate model and acquisition function to determine the next ‘best’ batch of points
to evaluate. This hypothesis is supported by results reported in SI 2, where it can be observed that the GP
model did not fully learn the objective function.

In contrast, U-NSGA-III, while requiring a significantly larger number of iterations to reach the PF, had a
more consistent optimisation trajectory towards the PF, as seen by the gradual colour gradient in Figure 4
a), c), e), g). This suggests that there are less wasted evaluations for MOEAs, as the latter iterations are
targeted towards the PF. However, despite having more solutions near the PF, the HV score is lower for
U-NSGA-III than qNEHVI. This is a limitation of using HV as a performance metric: it strictly rewards
non-dominated solutions across the entire search space, i.e. a handful of solutions at the PF extrema are
preferred, as shown previously in Figure 3 where U-NSGA-III showed poorer HV improvement compared to
qNEHVI for ZDT1, ZDT3 and MW7.

Notably, we observe in Figure 4 e) and g) that the disconnected PFs for ZDT3 and MW7 can lead to entire
regions of objective space being omitted. This is clearly seen in both sub-figures where solutions only have
a single trajectory towards the nearest PF region. We previously made the statement, based on results
reported in Figure 3 c) and d), for the same synthetic problems, that the disconnected spaces are strongly
influenced by initilisation, where U-NSGA-III’s mechanism of tournament selection rewards immediate gain
over coverage, i.e. exploitation over exploration. This is both a strength and weakness of U-NSGA-III in
comparison to qNEHVI, where the stochastic QMC sampling enables greater exploration of the overall search
space, but not the PF.

Results reported in Figure 5 further reinforce the observation that qNEHVI produces a large pool of non-
optimal solutions for all benchmarks problems, where many points exist away from the PF. Additionally, the
darker coloration for qNEHVI in Figure 5 b), d), f) and h) indicates a much lower probability of occurrence,
which reinforces our hypothesis, that HV improvement can be partially attributed to the stochastic nature
of QMC sampling. Additionally, Figure 5 b) and d) for ZDT1 and ZDT2 respectively also show that there
were many solutions being proposed at the extrema of f1=x1.

This is the same behaviour as that observed for a single run in Figure 4 b) and d), and we further elabo-
rate upon it in SI 1. In contrast, the heuristic nature of U-NSGA-III provides more consistency between
optimisation runs, which is shown by the brighter regions of points near the PF in Figure 5a), c), e) and
g). indicating a higher probability density. Notably, the bright regions are not spread across objective
space evenly. There is a preference for the lower range of f1=x1 since it is easily tunable, i.e. it is simple to
derive improvement by simply decreasing x1. This is in line with our previous discussions based on results
reported in Figure 4, where U-NSGA-III prefers solutions with immediate improvement. Furthermore, we
observe that the bright regions are concentrated near the PF, which indicates that U-NSGA-III was able
to consistently approach the PF and maintain a larger pool of near-Pareto solutions over the optimisation
runs, despite the limited evaluation budget.

In contrast, qNEHVI had relatively few points, although they are lying directly on the PF, which is then

7
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Figure 4: Optimisation trajectory in objective space for a single optimisation run of 100 iterations x 8 points
per batch. a-b) ZDT1. c-d) ZDT2. e-f) ZDT3. g-h) MW7. The red line represents the true PF, while MW7
being a constrained problem has an additional blue line to show the unconstrained PF. The colour of each
experiment refers to the number of iterations. All problems clearly show a more gradual evolution of results
as the number of iterations progress in U-NSGA-III whereas qNEHVI rapidly approaches PF and then fails
to converge further.

shown as a higher mean HV compared to U-NSGA-III. In a real-world context, the larger pool of near-
Pareto solutions could have scientific value, especially for users looking to build a materials library and
further understand the PF. However, this is not reflected by the HV performance indicator.

Optimisation trajectory in objective space for a single optimisation run of 100 iterations x 8 points per
batch. a-b) ZDT1. c-d) ZDT2. e-f) ZDT3. g-h) MW7. The red line represents the true PF, while MW7
being a constrained problem has an additional blue line to show the unconstrained PF. The colour of each

8
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experiment refers to the number of iterations. All problems clearly show a more gradual evolution of results
as the number of iterations progress in U-NSGA-III whereas qNEHVI rapidly approaches PF and then fails
to converge further.

Figure 5: Probability density maps in objective space for 10 runs of 24 iterations x 8 points per batch. a-b)
ZDT1. c-d) ZDT2. e-f) ZDT3. g-h) MW7. The evaluated data points are plotted with a Gaussian kernel
density estimate using SciPy to illustrate the distribution of points across objective space. The colour bar
represents the numerical value of probability density. Results are averaged over the 10 runs and highlight the
lower diversity of points and consistency in optimisation trajectory for qNEHVI compared to U-NSGA-III.

The choice of batch size is another important parameter to consider for materials scientists. It can be tuned
when attempting to scale up for HTE. A larger batch size is usually ideal since it provides higher throughput,
and thus more time savings since lesser iterations are required. However, batch size affects the performance
of optimisation strategies, potentially reducing the number of iterations needed in a run. We thus perform
optimisation on the same synthetic problems for different batch sizes, keeping dimensionality at dim=8 and
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with the same evaluation budget of 192 points and 10 runs as mentioned earlier.

The authors of qNEHVI hypothesised that it operates better at small batch sizes by providing a smoother
gradient descent in sequential optimisation. Results reported in Figure 6 a), b) and d) for ZDT1, ZDT2
and MW7, respectively, support this hypothesis, and we clearly observe that the lowest batch size setting
of 2, as represented by the pink line, has the best performance overall. Interestingly, this is also the case
for U-NSGA-III where the lowest batch size of 2 tends to give better HV for ZDT1-3 as seen by the blue
line. This is also empirically shown in literature where, given a total budget, higher populations may impede
convergence as it effectively limits the number of iterations. (Wang et al., 2019; Hort and Sarro, 2021; Tanabe
and Oyama, 2017)

It is suggested that the same did not apply for MW7 since the disconnected PF was often not fully explored
due to differences in initilisation and how the heuristic search operated, which we discuss previously for
Figure 4 and 5. Instead, a larger batch size i.e. larger population is beneficial in maintaining solutions across
disconnected regions of objective space, as seen by the red line in Figure 6d). We also explain why this did
not apply to ZDT3: since the initial sampling was generally able to cover the search space well, there are
relatively little ‘lost’ regions as seen from Figure 4c). Additionally, we provide optimisation trajectory plots
for U-NSGA-III at different batch sizes in the SI 3 to illustrate this.

Furthermore, we also observe that qNEHVI has greater variance in log HV difference, compared to U-NSGA-
III. This further reinforces our hypothesis that the performance of qNEHVI is in part due to the stochastic
QMC sampling, whilst the heuristic nature of U-NSGA-III means that the evolution of solutions is more
consistent.

Figure 6: Convergence at different batch sizes with the same total evaluation budget of 24 x 8. a) ZDT1.
b) ZDT2. c) ZDT3. d) MW7. We omitted qNEHVI for batch of 16 due to prohibitively high computation
cost when scaling up. Plots are taken with mean and 95% confidence interval of log10(HVmax - HVcurrent),
with HVmax being computed from known PF in pymoo. We follow the same details as for Figure 5. Results
suggest that qNEHVI works better with low batching on disconnected PF.

10
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Real-world Problems

Based on results reported in Figures 4, 5, 6, we formulate the hypothesis that qNEHVI as a MOBO strategy
is very sample efficient, i.e. able to arrive at the PF rapidly with few evaluations and is superior in maxi-
mizing hypervolume as a performance metric. In comparison, we found that U-NSGA-III provides a more
consistent search due to its heuristic evolution nature over that of stochastic QMC sampling in qNEHVI,
and furthermore maintain a larger pool of near-Pareto samples that is not reflected by the HV performance
metric. We also report that smaller batch sizes are generally better in both strategies over the two-objective
jobs used.

To test this hypothesis, we repeated our experiments on real-world multi-objective datasets. (Yeh, 2008;
MacLeod et al., 2022) An unavoidable issue of empirically benchmarking optimisation strategies on real-
world problems is that some surrogate model must be used in-lieu of a black-box where new data is experi-
mentally validated. Alternatively, a candidate selection problem can be used where optimisation is limited
to only proposing new candidates from a pre-labelled dataset until eventually the ‘pool’ of samples is ex-
hausted. (Janet et al., 2020; Hanaoka, 2022; Gopakumar et al., 2018; Liang et al., 2021) The benefit of this
method over surrogate-based methods is that only real data from the black-box is used, rather than data
extrapolated from a model approximating its behaviour. However, the candidate selection approach assumes
that the existing dataset contains all data points necessary to perfectly represent the search space and true
PF. It is generally not possible to prove that this is the case, unless the exact function mapping input to
output of the black box is known, or the dataset contains all possible combination of input/output pairs and
is therefore a complete representation of the problem like that of inverse design.

Here, due to the relatively small size of the datasets (˜102 data points), the candidate selection method was
not implemented. Instead, we relied on training an appropriate regressor to model the dataset. The two
real-world benchmarks used in this paper are presented in Table 2. Materials datasets with constraints
are hard to find from available HTE literature, asides from simple combinatorial setups that need to sum
to 100%. (Erps et al., 2021) Another example is Cao L. et al, (Cao et al., 2021) which included complex
constraints in the form of solubility, although we were unable to attain their full dataset and solubility
classifier. Similar to synthetic benchmark experiments, we compare both approaches based on 3 metrics,

Name Problem Model n -
var

n -
obj

n -
con-
str

ref pt

Thin
film

Minimize process temperature and maximize
conductivity of spray coated palladium films

GP regressor 4 2 0 [1.02,
-0.05]

Con-
crete

Slump

Maximize slump and compressive strength in
concrete formulations

Neural
network
ensemble

7 [0, 0]

Table 2: List and details of real-world problems.

omitting dimensional contour plots:

1. Optimisation trajectory in objective space for 100 iterations x 8 points per batch
2. Probability density function in objective space for 24 iterations x 8 points per batch
3. Comparison of batch size for log hypervolume difference

Figure 7 further supports our conclusions drawn from results reported in Figure 4. As seen in Figure 7 b)
and d), qNEHVI is highly sample efficient, with points at or near the PF within the first 20 iterations or so,
indicated by the darker points lying on the red line. However, qNEHVI shows a large random distribution
of non-optimal points away from PF across the entire optimisation as seen by both dark and bright points,
which we attribute to the stochastic QMC sampling. U-NSGA-III performs a gradual evolution of points
towards the PF as seen in Figure 7 a) and c), as well as maintaining a large pool of near-optimal solutions.
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This is reflected by the lower HV scores for U-NSGA-III compared to those of qNEHVI.

Figure 7: Optimisation trajectory in objective space for a single optimisation run of 100 iterations x 8 points
per batch. a-b) Thin Film. c-d) Concrete Slump. across objective space for a single run of 100 iterations
x 8 points per batch. The red line represents the PF. PFs for real-world datasets were virtually generated
using NSGA-II for 500 generations with population size of 100. The colour of each experiment refers to the
number of iterations. The results here corroborate the ‘wastage’ of solutions in qNEHVI, although which
algorithm is superior appears to be problem dependent.

At a smaller evaluation budget, we observe that U-NSGA-III consistently maintains a large pool of near-
optimal solutions, as the bright region is seen nearer to the PF, while reporting a lower mean HV compared
to qNEHVI in Figure 8 a) and e). Figure 8 b) for the Thin Film problem also corroborates our findings that
qNEHVI proposes many non-optimal solutions, as seen by the bright region away from PF, which indicates
a higher probability of occurrence.

Interestingly, in Figure 8d) for Concrete Slump problem, we observe that qNEHVI is consistently converging
to a specific region in objective space, while the U-NSGA-III search follows that of Figure 8b) with con-
centration of solutions at the near-optimal region close to PF. We hypothesize that qNEHVI’s performance
for this problem is influenced by how the underlying GP surrogate model learns the function and strongly
biases solutions to that specific region. We show further proof in SI 2, where we illustrate the expected PF
given by the GP surrogate model.

In contrast, both problems here indicated that U-NSGA-III benefited more from larger batch sizes, as
seen by the green line, which is different from what we observed in Figure 6 for synthetic problems. Our
hypothesis is that the modelled datasets present a more mathematically difficult optimisation problem, with
various ‘obstacles’ that inhibit the evolution of solutions towards the PF. We support this by referring to our
discussions for Figure 7 c) and d) on Concrete Slump regarding local optima, as well as observing a notable
blank region of objective space which U-NSGA-III fails to flesh out in Figure 7 a) for Thin Film problem.
Overall, results reported here suggest that given state-of-the-art implementations in HT experiments, a small
batch-size with MOBO is the right strategy to converge rapidly.

Finally, we also studied the effect of batch size on convergence in Figure 9. Results present both similarities
and differences with what we observe for synthetic benchmarks as in Figure 6. A lower batch size in qNEHVI

12
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y. Figure 8: Probability density maps in objective space for 10 optimisation runs of 24 iterations x 8 points per
batch. a-b) Thin Film. c-d) Concrete Slump. The evaluated data points are plotted with a Gaussian kernel
density estimate using SciPy to illustrate the distribution of points across objective space, with a colour bar
to represent the numerical value of probability density. Results are averaged over 10 runs, taking a smaller
evaluation budget of 24 iterations x 8 points = 192. The results here reinforce the finding that qNEHVI has
a more random distribution of points, but still outperforms U-NSGA-III for a low evaluation budget.

was better for both problems, as seen by the purple line, which is consistent with our findings for Figure 6.

Figure 9: Convergence at different batch sizes with the same total evaluation budget of 24 x 8. a) Thin
Film. b) Concrete Slump. We omitted qNEHVI for batch of 16 due to prohibitively high computation cost
when scaling up. Plots are taken with mean and 95% confidence interval of log10(HVmax - HVcurrent),
with HVmax being computed from known PF in pymoo. The results shown here support our conclusions
for qNEHVI in Fig. 6 but have marked differences for U-NSGA-III.
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Further discussion

We have compared qNEHVI and U-NSGA-III using both synthetic and real-world benchmarks, considering
different experimental parameters such as dimensionality and batch size which materials scientists may face
when implementing closed loop optimisation in HTE. Our results suggest that qNEHVI is extremely sample
efficient in arriving at the PF to maximise HV gain but fails to exploit it. In contrast, we report that
U-NSGA-III has a consistent optimisation trajectory, and better exploits the PF while maintaining more
near-optimal solutions.

We thus make the case for MOEAs for materials experimentation besides computational design. We also
argue that such implementations would be best when the objective space is mildly discontinuous (which can
be the case for structural problems such as alloys) since small changes in inputs can cause the outputs to
vary wildly in objective space, and an evolutionary-based strategy can navigate with better resolution. This
is consistent with work by Liang Q. et al (Liang et al., 2021) on single-objective optimisation, which noted
that having “multiple well-performing candidates allows one to not only observe regions in design space that
frequently yield high-performing samples but also have backup options for further evaluation should the
most optimal candidate fail in subsequent evaluations”.

Furthermore, MOEAs also scale better in terms of computational cost for a high dimensional and high
throughput context, where they have the means to converge while maintaining both diversity and feasibility.
HV-based MOBOs such as qNEHVI scale poorly to high dimensionality and many-objective problems due to
the cost of computing HV. Depending on the HTE set-up, the ML component may not be able to leverage on
powerful cluster computing for computationally intensive problems/models. MOEAs with lower computation
overhead such as U-NSGA-III would be a better choice in such scenarios. With advancements in HTE set ups
allowing for automation and parallel sampling, we expect research groups to leverage on higher throughput
systems with short turnarounds. This makes the implementation of MOEAs much more practical to explore
complex search spaces when paired with larger evaluation budgets of 103 to 104 data points.

The choice of batch size to balance optimisation performance while minimising experimental cycles is also
important. Empirically, our results obtained suggest that a smaller batch size of around 4 is ideal for the
limited evaluation budget of 192 points, although larger batch sizes are preferred for more complex problems
(with added difficulty from disconnected regions in objective space, or perhaps presence of local optima).

A caveat of our work here is that the synthetic problems we chose are a generalisation of bi-objective spaces
with specific Pareto geometry that may not translate well for real-life experimentation especially for many-
objective (M>3) problems. Newer benchmarks with higher difficulties and complex geometries/PFs (Fan
et al., 2020) are tailored towards challenging MOEAs with massive evaluation budgets of up to 107 total
observations. An example would be MW5 from the MW test suite, which has a narrow tunnel-like feasible
regions that are practically impossible for GPs to model, resulting in MOBOs failing to converge. Indeed,
R. W. Epps et al noted that it is “difficult to impose complex structure on the GPs, which often simply
encode continuity, smoothness, or periodicity”. (Epps et al., 2020) We refer to other publications which study
the differences between surrogate models in BO, (Liang et al., 2021; Lim et al., 2021; Yan et al., 2021) as
well as AI techniques that scale MOBOs to higher dimensional spaces. (Moriconi et al., 2020; Eriksson and
Jankowiak, 2021)

Furthermore, materials experimentation is usually afflicted with real-world imperfections and deviations
during synthesis, or uncertainty due to characterization equipment resolution. For example, MacLeod et
al noted that “the tendency of drop-casted samples to exhibit a wide range of downwards deviations in
the apparent conductivity due to the poor sample morphology”. (MacLeod et al., 2022) The effect of noise
causes deviations in objective values from the ‘true’ ground truth, and although unclear, is an unavoidable
aspect of optimisation which should be tackled. (Koch et al., 2015; Horn et al., 2017) In SI 6, we perform a
comparison of qNEHVI and U-NSGA-III on varying amounts of white noise on outputs.
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Conclusion

In conclusion, our results illustrate that existing performance metrics such as HV do not really reflect the
goal of fleshing out the PF region, where HV-based methods like qNEHVI may not achieve satisfactorily.
This reflects an aspect of optimisation which might be neglected in the purview of multi-objective materials
discovery: which is to find a diverse set of optimal solutions that can adequately convey the trade-offs
between conflicting objectives. We thus present alternative illustrative means such as probability density
maps to better benchmark the performance of optimisation strategies for such purposes. Moving ahead, we
hope that this can spur further improvement for MOBOs as well as a stronger consideration for the use of
MOEAs for materials problems due to its heuristic nature in exploiting the PF.
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Andreia P Guerreiro, Carlos M Fonseca, and Lúıs Paquete. The hypervolume indicator: Problems and
algorithms. arXiv preprint arXiv:2005.00515, 2020.

Kyohei Hanaoka. Bayesian optimization for goal-oriented multi-objective inverse material design. iScience, 24
(7):102781, jul 2021. doi: 10.1016/j.isci.2021.102781. URL https://doi.org/10.1016%2Fj.isci.2021.

102781.

Kyohei Hanaoka. Comparison of conceptually different multi-objective Bayesian optimization methods for
material design problems. Materials Today Communications, 31:103440, jun 2022. doi: 10.1016/j.mtcomm.
2022.103440. URL https://doi.org/10.1016%2Fj.mtcomm.2022.103440.

Daniel Horn, Melanie Dagge, Xudong Sun, and Bernd Bischl. First Investigations on Noisy Model-Based
Multi-objective Optimization. In Lecture Notes in Computer Science, pages 298–313. Springer Interna-
tional Publishing, 2017. doi: 10.1007/978-3-319-54157-0 21. URL https://doi.org/10.1007%2F978-3-

319-54157-0_21.

Max Hort and Federica Sarro. The effect of offspring population size on NSGA-II. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion. ACM, jul 2021. doi: 10.1145/3449726.
3459479. URL https://doi.org/10.1145%2F3449726.3459479.
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of NSGA-II for the Optimal Design of Water Distribution Systems. Water, 11(5):971, may 2019. doi:
10.3390/w11050971. URL https://doi.org/10.3390%2Fw11050971.

Shuai Wu, Craig M. Hamel, Qiji Ze, Fengyuan Yang, H. Jerry Qi, and Ruike Zhao. Evolutionary Algorithm-
Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials. Advanced Intelli-
gent Systems, 2(8):2000060, may 2020. doi: 10.1002/aisy.202000060. URL https://doi.org/10.1002%

2Faisy.202000060.

Bin Xu and Zonghao Zhang. Constrained Optimization Based on Ensemble Differential Evolution and Two-
Level-Based Epsilon Method. IEEE Access, 8:213981–213997, 2020. doi: 10.1109/access.2020.3040647.
URL https://doi.org/10.1109%2Faccess.2020.3040647.

Yonggang Yan, Dan Lu, and Kun Wang. Accelerated discovery of single-phase refractory high entropy alloys
assisted by machine learning. Computational Materials Science, 199:110723, nov 2021. doi: 10.1016/j.
commatsci.2021.110723. URL https://doi.org/10.1016%2Fj.commatsci.2021.110723.

I-Cheng Yeh. Modeling slump of concrete with fly ash and superplasticizer. Computers and Concrete, 5(6):
559–572, dec 2008. doi: 10.12989/cac.2008.5.6.559. URL https://doi.org/10.12989%2Fcac.2008.5.6.

559.

Wei Yong, Hongtao Zhang, Huadong Fu, Yaliang Zhu, Jie He, and Jianxin Xie. Improving prediction
accuracy of high-performance materials via modified machine learning strategy. Computational Materials
Science, 204:111181, mar 2022. doi: 10.1016/j.commatsci.2021.111181. URL https://doi.org/10.1016%

2Fj.commatsci.2021.111181.

Ruihao Yuan, Zhen Liu, Prasanna V. Balachandran, Deqing Xue, Yumei Zhou, Xiangdong Ding, Jun Sun,
Dezhen Xue, and Turab Lookman. Accelerated Discovery of Large Electrostrains in BaTiO. 30(7):1702884,
jan 2018. doi: 10.1002/adma.201702884. URL https://doi.org/10.1002%2Fadma.201702884.

Guiying Zhang and David E. Block. Using highly efficient nonlinear experimental design methods for opti-
mization ofiLactococcus lactis/ifermentation in chemically defined media. Biotechnology Progress, pages
NA–NA, 2009. doi: 10.1002/btpr.277. URL https://doi.org/10.1002%2Fbtpr.277.

Hongtao Zhang, Huadong Fu, Shuaicheng Zhu, Wei Yong, and Jianxin Xie. Machine learning assisted
composition effective design for precipitation strengthened copper alloys. Acta Materialia, 215:117118,
aug 2021a. doi: 10.1016/j.actamat.2021.117118. URL https://doi.org/10.1016%2Fj.actamat.2021.

117118.

Peng Zhang, Yiyu Qian, and Quan Qian. Multi-objective optimization for materials design with improved
NSGA-II. Materials Today Communications, 28:102709, sep 2021b. doi: 10.1016/j.mtcomm.2021.102709.
URL https://doi.org/10.1016%2Fj.mtcomm.2021.102709.

22

https://doi.org/10.1007%2F978-3-319-54157-0_41
https://doi.org/10.1007%2F978-3-319-54157-0_41
https://doi.org/10.1109%2Ftcyb.2020.3021138
https://doi.org/10.1109%2Ftcyb.2020.3021138
https://doi.org/10.1039%2Fd0cc00064g
https://doi.org/10.3390%2Fw11050971
https://doi.org/10.1002%2Faisy.202000060
https://doi.org/10.1002%2Faisy.202000060
https://doi.org/10.1109%2Faccess.2020.3040647
https://doi.org/10.1016%2Fj.commatsci.2021.110723
https://doi.org/10.12989%2Fcac.2008.5.6.559
https://doi.org/10.12989%2Fcac.2008.5.6.559
https://doi.org/10.1016%2Fj.commatsci.2021.111181
https://doi.org/10.1016%2Fj.commatsci.2021.111181
https://doi.org/10.1002%2Fadma.201702884
https://doi.org/10.1002%2Fbtpr.277
https://doi.org/10.1016%2Fj.actamat.2021.117118
https://doi.org/10.1016%2Fj.actamat.2021.117118
https://doi.org/10.1016%2Fj.mtcomm.2021.102709


P
os

te
d

on
12

D
ec

20
22

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

08
31

58
.8

78
90

58
9/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Expensive Multiobjective Optimization
by MOEA/D With Gaussian Process Model. IEEE Transactions on Evolutionary Computation, 14(3):456–
474, jun 2010. doi: 10.1109/tevc.2009.2033671. URL https://doi.org/10.1109%2Ftevc.2009.2033671.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation, 8(2):173–195, jun 2000. doi: 10.1162/106365600568202.
URL https://doi.org/10.1162%2F106365600568202.

23

https://doi.org/10.1109%2Ftevc.2009.2033671
https://doi.org/10.1162%2F106365600568202

