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Abstract

In this paper, we investigate the nonlinear Schödinger equations with cubic interactions, arising in nonlinear optics. To begin,

we prove the existence results for normalized ground state solutions in the L 2 -subcritical case and L 2 -supercritical case

respectively. Our proofs relies on the Concentration-compactness principle, Pohozaev manifold and rearrangement technique.

Then, we establish the nonexistence of normalized ground state solutions in the L 2 -critical case by finding that there exists a

threshold. In addition, based on the existence of the normalized solutions, we also establish the blow-up results are shown by

using localized virial estimates, and a new blow-up criterion which is related to normalized solutions.
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1 Introduction

In this paper, we consider the following Cauchy problem for the system of nonlinear Schrödinger equations

with cubic interation
iut + ∆u− u+

(
1

9

∣∣u2∣∣+ 2
∣∣w2
∣∣)u+

1

3
ūw = 0, x ∈ Rn, t ∈ R,

iσwt + ∆w − µw +
(
9
∣∣w2
∣∣+ 2

∣∣u2∣∣)w +
1

9
u3 = 0, x ∈ Rn, t ∈ R,

(u(x, 0), w(x, 0)) = (u0, w0),

(1.1)

where 1 ≤ n ≤ 3, u,w : R× Rn → C , u0, w0 : Rn → C, and the parameters σ, µ > 0.

The system (1.1) comes from nonlinear optics. In nonlinear optics, as light incident on the atom, the

electric field of light will make the negative charge do simple harmonic vibration with respect to the positive

charge, thus generation a time varying dipole moment.

Dipole moment is a microscopic concept, which can be summed to obtain the macroscopic physical

quantity of polarization vector ~PNL. That is to say, the electric field in the incident light will polarize the

material, and then the polarization amount ~PNL will be generated. For linear optics, ~PNL is proportional to

electric field ~E, and the two meet ~PNL = ε0χ~E, where χ is the polarizability of the material. In Franken’s

opinion, if the light is very strong, the corresponding electric field will be strong, and the strong electric field

may cause the response of the material to be nonlinear rather than linear, that is, the polarization ~PNL of

the material is no longer in direct proportion to ~E, but contains E1, E2, E3 and higher order items. Then it

can be written as
~PNL = ε0

[
χ(1)E1 + χ(2)E2 + χ(3)E3 + · · ·

]
,

∗Corresponding author: yingxin−d@163.com(Y. Duan)
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such a simple expression, which can be considered as a simple correction of the response of linear optical

materials. The coefficient χ(j) depends on the electric field frequency ~E and is called the jth optical sus-

ceptibility (j = 1, 2, 3, · · · ). Therefore quadratic media arise from approximation of the type ~PNL ∼ χ(2)E2,

and similarly one can define cubic media as ~PNL ∼ χ(3)E3. In addition, we refer to [ [3], [4] , [19], [18], [11]],

and references therein, for more insights on physical motivations and physical results.

Let us mention, main difference between χ(2) and χ(3) is that in the case of the latter, the cubic non-

linearity is L2-supercritical, while in the former, the secondary nonlinearity is L2-subcritical. The so-called

non-centrosymmetric crystals and Kerr-materials are typical examples of χ(2) and χ(3) materials respectively.

These two mediums reflect the possibility of global well posed problem, and the stability/instability proper-

ties of solitons are different. For further discussion and strict analysis of solitons in secondary media, see [6]

and [15].

We are more concerned with the solutions in the cubic medium. In the so-called cascade nonlinear

process, we can get the system in the form of (1.1) related to physics. In particular, we are interested in

the qualitative properties of the solutions of (1.1). Under the slowly-varying amplitude approximation and

introducing the dimensionless variables, we can obtain the system
iut + ∆u− u+

(
1

9

∣∣u2∣∣+ 2
∣∣w2
∣∣)u+

1

3
ūw = 0, x ∈ Rn, t ∈ R,

iσwt + ∆w − µw +
(
9
∣∣w2
∣∣+ 2

∣∣u2∣∣)w +
1

9
u3 = 0, x ∈ Rn, t ∈ R,

where µ =
(

3 + α
β

)
σ. Remark that µ = 3σ is called the mass resonance condition, where the parameters

σ, µ > 0.

Let us start our rigorous mathmatical discussion about (1.1) in Euclidean space (x, t) ∈ Rn×R, 1 ≤ n ≤ 3.

In L2(Rn), the corresponding norm is defined as

‖f‖2L2(Rn) =

∫
Rn
|f |2dx.

Besides, H1(Rn) denotes the usual Sobolev space in Rn,

H1 (Rn) :=
{
f | f ∈ L2 (Rn) ,∇f ∈ L2 (Rn)

}
,

endowed with the norm

‖f‖H1(Rn) =

(∫
Rn

(|∇f |2 + |f |2)dx

) 1
2

.

Regarding the system (1.1), the existence of ground states were established by Oliveira and Pastor [14].

Assume (u0, w0) ∈ H1(Rn) × H1(Rn), in [14], they proved that the system (1.1) is locally well-posed and

the solutions to the system (1.1) satisfy conservation laws of mass and energy defined, respectively, by

M(u,w) = M(u0, w0),

and

Eµ(u,w) = Eµ(u0, w0),

where

M(u,w) = ‖u(t)‖2L2(Rn) + 3σ‖w(t)‖2L2(Rn), (1.2)

Eµ(u,w) =
1

2

∫
Rn

(
|∇u|2 + |∇w|2 + |u|2 + µ|w|2

)
dx−

∫
Rn

(
1

36
|u|4 +

9

4
|w|4 + |u|2|w|2 +

1

9
Re
(
ū3w

))
dx,

(1.3)
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N(u,w) =

∫
Rn

(
1

36
|u|4 +

9

4
|w|4 + |u|2|w|2 +

1

9
Re
(
ū3w

))
dx.

We rewrite the functional N(u,w) by means of its density, namely

N(u,w) =

∫
Rn
T (u,w)dx, (1.4)

where

T (u,w) =

(
1

36
|u|4 +

9

4
|w|4 + |u|2|w|2 +

1

9
Re
(
ū3w

))
.

The previous conservation law can be formally proved by the usual partial integration, and then it can

be proved by the classical regularization argument, see [5].

For the purpose of our paper, we also define the kinetic energy

K(u,w) := ‖∇u‖2L2(Rn) + ‖∇w‖2L2(Rn). (1.5)

In this paper, due to the dynamics of nonlinear Schrödinger-type equations is strongly related to the

notion of ground states. We consider the existence of normalized ground states of the system (1.1). Recall

that standing waves are special solutions of the form

u(x, t) = eiωtP (x), w(x, t) = e3iωtQ(x).

Plugging into (1.1) we get the system of elliptic equations{
∆P +

(
1
9P

2 + 2Q2
)
P + 1

3P
2Q = (ω + 1)P, x ∈ Rn,

∆Q+
(
9Q2 + 2P 2

)
Q+ 1

9P
3 = (µ+ 3σω)Q, x ∈ Rn.

(1.6)

Thus we arrive at the conclusion that the solutions to (1.6) exist, provided that

ω > −min
{

1,
µ

3σ

}
,

which was proved in [14]. Moreover, it is easy to check that solutions of (1.6), are called ground state related

to (1.6) if it minimizes the action functional

Sω,µ,σ(f, g) := Eµ(f, g) +
ω

2
M3σ(f, g),

over all nontrivial solutions. And the set of ground states denoted by

G(ω, µ, σ) := {(φ, ψ) ∈ Aω,µ,σ : Sω,µ,σ(φ, ψ) ≤ Sω,µ,σ(f, g),∀(f, g) ∈ Aω,3σ,σ} 6= ∅,

where Aω,3σ,σ is the set of all non-trivial solutions to (1.6).

Our task now is to push forward their achievements to prove the normalized solutions of (1.1) in different

critical states under the mass resonance condition, namely µ = 3σ, and (1.6) can be written as{
∆P +

(
1
9P

2 + 2Q2
)
P + 1

3P
2Q = (ω + 1)P, x ∈ Rn,

∆Q+
(
9Q2 + 2P 2

)
Q+ 1

9P
3 = 3σ(ω + 1)Q, x ∈ Rn.

(1.7)

The existence of normalized traveling solitary waves of problem (1.1) can be formulated as the following

problem: for some c > 0, we solve the problem (1.7) with the normalized condition:∫
Rn

(
|P |2 + 3σ|Q|2

)
dx = c, (1.8)

where (P,Q) ∈ H1 (Rn)×H1 (Rn) are real functions with a suitable decay at infinity.

3



In order to obtain the normalized solutions of the Cauchy problem (1.7), Eµ(u,w) is restricted in proper

function space under the mass resonance µ = 3σ, and we study the critical points of function defined by

Eσ(P,Q) =
1

2

∫
Rn

(
|∇P |2 + |∇Q|2 + |P |2 + 3σ|Q|2

)
dx−

∫
Rn

(
1

36
|P |4 +

9

4
|Q|4 + |P |2|Q|2 +

1

9
Re
(
P̄ 3Q

))
dx,

on the L2-sphere

Sc =

{
(P,Q) ∈ H1 (Rn)×H1 (Rn) ,M(P,Q) =

∫
Rn
|P |2 + 3σ |Q|2 dx = c

}
,

for some c > 0, and the functional of Eσ above the constraint Sc is expressed as follows:

Eσ|Sc(P,Q) =
1

2

∫
Rn

(
|∇P |2 + |∇Q|2)dx −

∫
Rn

(
1

36
|P |4 +

9

4
|Q|4 + |P |2|Q|2 +

1

9
Re
(
P̄ 3Q

))
dx.

Note that ω is called Lagrange multiplier which plays the main role in our paper. In all normalized solutions,

we are mainly concerned with the ground state solutions, that is, the solutions that minimizes the functional

among all solutions with the same L2- norm. Consider the minimization problem

mc := inf
(P,Q)∈Sc

Eσ. (1.9)

If (Pc, Qc) be the minimizer of the minimization problem (1.9), ω = ωc be as the Lagrange multiplier. Then

(Pc, Qc) is the ground state solution of (1.7). In particular, we call (ωc, Pc, Qc) ∈ R×H1 (Rn)×H1 (Rn) is

a normalized solution of the problem (1.7)-(1.8).

Before introducing the main theorems of the paper, we recall the fact that (1.1) is invariant under the

scaling

uλ(t, x) := λu
(
λ2t, λx

)
, wλ(t, x) := λ2w

(
λ2t, λx

)
, λ > 0.

By a simple calculation, according to the fact that

‖uλ(0)‖Ḣγ = λγ+1−n2 ‖u(0)‖Ḣγ , ‖wλ(0)‖Ḣγ = λγ+1−n2 ‖w(0)‖Ḣγ ,

it follows that it leaves the Ḣγ -norm of initial data invariant where

γc :=
n

2
− 1.

According to the conservation laws of mass and energy, we say the system (1.1) is

L2 −


subcritical, if n = 1,

critical, if n = 2,

supercritical, if n = 3.

We first recall the following Gagliardo-Nirenberg(G-N)-type inequalities as in [21]: suppose (u,w) ∈
H1(Rn)×H1(Rn) and 1 ≤ n ≤ 3,

N(u,w) ≤ CK(u,w)
n
2M(u,w)(2−

n
2 ), (1.10)

we also have the following identity:

Eσ |Sc ≥ CN(u,w)
2
n −N(u,w). (1.11)

Now, we state our main theorems in this paper as follows. Our first goal is to show that some existence

results of normalized solutions for the problem (1.7)-(1.8).

4



Theorem 1.1. (L2-subcritical case) Suppose n = 1 and µ = 3σ, then for any c > 0, we have

mc := inf
(P,Q)∈Sc

Eσ < 0,

and the infimum is achieved by (P,Q) ∈ Sc with ω > 0. Hence, (ω, P,Q) is a normalized solution of the

problem (1.7)-(1.8).

Theorem 1.2.(L2-supercritical case) Suppose n = 3 and µ = 3σ, then for any c > 0, the problem (1.7)-(1.8)

exists a normalized solution (ω, P,Q) for some ω > 0.

Remark 1.3. There have been extensive study and application of solutions in cubic media, but only lim-

ited to the existence of ground state solutions. In our paper, it is the first time to study the existence of

normalized solutions, which is more meaningful from a physical perspective. When we study the existence

of normalized solutions. As n = 1, Eσ |Sc is bounded from below. As n = 3, the difficulty we have that the

functional is no longer lower bounded, finding a minimum Eσ on Sc is impossible. To overcome it, we make

use of Pohozaev identities and the classical Strauss compactness lemma.

Our next results concerns the nonexistence of normalized solutions in L2-critical case.

Theorem 1.4.(L2-critical case) Suppose n = 2 and µ = 3σ, if there exists a constant c∗ := 1
2CGN

, where

CGN is the best constant satisfying (1.10), Eσ has no critical point on the constraint Sc for each c ∈ (0, c∗],

i.e., the problem (1.7)-(1.8) does not have normalized solutions for each c ∈ (0, c∗].

The trick of the proof is to find a threshold value c∗ separating the existence and nonexistence of critical

points. It is apparent that the threshold value associated with the best constant of (G-N) inequality.

From the mathematical point of view, some global well-posedness, scattering and blow-up results for

system (1.1) have been studied in some papers.

When n = 1, in [17], they established local and global well-posedness results for the associated initial

value problem with periodic initial data. When n = 2, Oliveira and Pastor [14] proved the the system (1.1)

is globally well-posed, provided that the initial mass M(u0, w0) is sufficiently small such that M(u0, w0) <

M(P,Q), where (P,Q) is ground state. Besides, they constructed an explicit solution that blows up forward

in time.

When n = 3, they introduced the following scattering conditions

Eµ (u0, w0)M (u0, w0) <
1

2
Eσ(P,Q)M(P,Q), (1.12)

K (u0, w0)M (u0, w0) < K(P,Q)M(P,Q); (1.13)

and the blow-up conditions

Eµ (u0, w0)M (u0, w0) <
1

2
Eσ(P,Q)M(P,Q), (1.14)

K (u0, w0)M (u0, w0) > K(P,Q)M(P,Q), (1.15)

where (P,Q) ∈ G(ω, 3σ, σ), (u0, w0) ∈ H1
(
R3
)
×H1

(
R3
)
. By using (1.12)-(1.14), Ardila, Dinh and Forcella

[1] get some results for the scattering and blow-up solutions in radial and non-radial cases. If the initial data

satisfies the scattering conditions, the solutions are global and scatters; if it satisfies blow-up conditions, the

corresponding solutions blows-up in finite time. In addition, the main results are about formation in the non

5



radial case, suppose the initial data satisfies (1.12) and (1.13), |σ − 3| < η for some η > 0 small enough, the

solutions scatter; if (u0, w0) is cylindrical symmetry namely (u0, w0) ∈ Σ3 × Σ3 , where

Σ3 :=
{
f ∈ H1

(
R3
)

: f(y, z) = f(|y|, z), zf ∈ L2
(
R3
)}
,

with
(
x = (y, z), y = (x1, x2) ∈ R2

)
and z ∈ R. Σ3 stands for the space of cylindrical symmetric functions

with finite variance in the last direction. Then the corresponding solutions to (1.1) blows-up in finite time.

Our second main results are about formation of singularities in finite time for solutions to the system

(1.1). Alex et al [7] have demonstrated the blow-up results in radial and cylindrically symmetric. As stated

in the previous section, when n = 1, the Cauchy problem (1.1) is globally well-posed. It follows that we

mainly study some blow up results for the normalized solutions exists when n = 2 and n = 3. To conclude,

we obtain the main Theorems as follows.

Theorem 1.5. Let µ, σ > 0, n = 2, suppose that (P,Q) is any normalized ground state of (1.7)-(1.8)

with µ = 3σ, let (u0, w0) ∈ H1
(
R2
)
× H1

(
R2
)

be the radially symmetric satisfying Eµ (u0, w0) < 0 and

M(P,Q) < M(u0, w0), the corresponding solutions to (1.1) either blows-up forward in finite time, namely,

T ∗ <∞, or it blows-up in finite time in the sense that T ∗ =∞ and

K(u,w) ≥ Ct2. (1.16)

for all t ≥ t0, where c > 0 and t0 � 1 depend only on σ,M (u0, w0) and Eµ (u0, w0). A similar statement

apply to negative times.

Theorem 1.6. Let µ, σ > 0, n = 3, (u0, w0) ∈ H1
(
R3
)
× H1

(
R3
)

satisfy either Eµ (u0, w0) < 0 or

Eµ (u0, w0) ≥ 0. We assume

K (u0, w0)M (u0, w0) > K(P,Q)M(P,Q),

and

Eµ (u0, w0)M (u0, w0) < Eσ |Sc (P,Q)M(P,Q), (1.17)

where (P,Q) is any normalized ground state of (1.7)-(1.8) with µ = 3σ. If the initial data satisfy: either

(u0, w0) is radially symmetric, or (u0, w0) ∈ Σ3 ×Σ3, the corresponding solutions to (1.1) blows-up in finite

time.

Remark 1.7. For the blow-up results, we mainly discuss the (u0, w0) is radial symmetry in n = 2, and

cylindrical symmetry in n = 3. As n = 2, only when the initial mass M(u0, w0) is large enough to be greater

than the mass under the normalized solution M(P,Q), can we get the blow up results. As n = 3, we build

the new blow-up conditions with normalized solutions. The proof of it relies instead on an ODE argument,

in the same spirit of previous work [7], using localized virial estimates and the negativity property of the

Pohozaev functional.

The organizational structure of this paper is as follows. In Section 2 we state preliminary results that will

be needed throughout the paper. In Section 3, we prove the existence of normalized solutions for (1.7)-(1.8)

by giving the proof of Theorem 1.1 and Theorem 1.2. As n = 1, by means of Concentration-compactness

principle and the monotonicity of mc, we obtain the existence of normalized solutions. As n = 3, in addition

to unboundness, we also found other difficulties is that (P,Q) is not radial symmetric and the embedding

H1
(
R3
)
↪→ L2

(
R3
)

is not compact. These difficulties will be overcome by using Pohozaev functional,

rearrangement method and applying the classical Strauss compactness lemma. In Section 4, we proof the

Theorem 1.4, as n = 2, we find a threshold value c∗ related to the sharp constant in (G-N) inequality. It is

straightforward to show that if c ∈ (0, c∗], mc = 0 and if c > c∗, mc = −∞, then Eµ has no critical point

on the constraint Sc for each c ∈ (0, c∗], so that we can conclude the nonexistence of normalized solutions

for each c ∈ (0, c∗]. In Section 5, we eventually prove the blow-up results, by employing the virial estimates

and the blow-up criterion with normalized solutions.
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2 Preliminaries

Firstly, let us establish some Pohozaev-type identities for the solutions of (1.7), which will be useful later.

Lemma 2.1 Suppose 2 ≤ n ≤ 3, (P,Q) ∈ H1(Rn)×H1(Rn) is a solution of the problem (1.7) with µ = 3σ,

then the following identities hold:

(ω + 1)M(P,Q) + (n− 4)N(P,Q) = 0, (2.1)

−K(P,Q) + nN(P,Q) = 0, (2.2)

(n− 4)K(P,Q) + n(ω + 1)M(P,Q) = 0. (2.3)

Proof. Let (P,Q) ∈ H1(Rn) × H1(Rn) be a solution of the problem (1.7) with µ = 3σ. First we multiply

both sides of equation (1.7) by P , the second one by Q, integrate over Rn and make use of integration by

parts, we obtain: ∫
Rn

(
−|∇P |2 − (ω + 1)P 2 +

1

9
P 4 + 2P 2Q2 +

1

3
P 3Q

)
dx = 0, (2.4)

and ∫
Rn

(
−|∇Q|2 − 3σ(ω + 1)Q2 + 9Q4 + 2P 2Q2 +

1

9
P 3Q

)
dx = 0. (2.5)

Summing (2.4) and (2.5), we get

K(P,Q) + (ω + 1)M(P,Q)− 4N(P,Q) = 0. (2.6)

Next, similarly, multiplying the two equations by x · ∇P and x · ∇Q yields∫
Rn

(
(n− 2)

2
|∇P |2 +

n(ω + 1)

2
P 2 − n

36
P 4 + 2Q2Px · ∇P +

1

3
P 2Qx · ∇P

)
dx = 0, (2.7)

and ∫
Rn

(
(n− 2)

2
|∇Q|2 +

3σn(ω + 1)

2
Q2 − 9n

4
Q4 + 2P 2Qx · ∇Q+

1

9
P 3x · ∇Q

)
dx = 0. (2.8)

Then, by using integration by parts, combining (2.7) and (2.8), we deduce

(n− 2)

2
K(P,Q) +

n(ω + 1)

2
M(P,Q)− nN(P,Q) = 0. (2.9)

Finally, (2.1)-(2.3) are consequences of (2.6) and (2.9). The proof of the lemma is thus completed.

By Lemma 2.2, it is worth introducing the functional G : H1(Rn) → Rn which is a special form of

Pohozeav functional defined by

G(u,w) := K(u,w)− nN(u,w). (2.10)

The next Lemma is devoted to the proof of virial estimates, which will be crucial for the proof of the

Theorem 1.5 and Theorem 1.6.

Lemma 2.2. Let µ, σ > 0, 2 ≤ n ≤ 3 and ϕ : Rn → R be a sufficiently smooth and decaying function. Let

(u,w) be a H1(Rn) solution to (1.1) defined on the maximal time interval (−T∗, T ∗). We define:

Mϕ(t) := 2 Im

∫
Rn
∇ϕ(x)∇uū+ σ∇ww̄(t, x)dx. (2.11)

7



Then we have for all t ∈ (−T∗, T ∗),

dMϕ(t)

dt
=−

∫
Rn

∆2ϕ(
∣∣u2∣∣+

∣∣w2
∣∣)dx

+ 4 Re

∫
Rn

∑
1≤k,j≤n

∂2kjϕ(x)

(
∂u

∂xk

∂ū

∂xj
+
∂w

∂xk
· ∂w
∂xj

)
dx

− 4 Re

∫
Rn

∆ϕT (u,w)dx.

(2.12)

where N(u,w) =
∫
Rn T (u,w)dx.

Proof. By definition (2.11), we can rewrite it as

Mϕ(t) = 2 Im〈∆u(t), ϕū(t)〉+ 2σ Im〈∆w(t), ϕw̄(t)〉
: =M1

ϕ(t) +M2
ϕ(t).

For simplicity, we first consider the term on u, and the term on w can be obtained by the same principle.

Through simple calculation, for h ∈ R, h 6= 0 we have

M1
ϕ(t+ h))−M1

ϕ(t) = −2 Im〈∆u(t+ h), ϕ[ū(t+ h)− ū(t)] + Im〈∆(u(t+ h)− u(t)), ϕū(t)〉, (2.13)

equivalently,

M1
ϕ(t+ h)−M1

ϕ(t) =− 2 Im〈∆(u(t+ h)− u(t)), ϕ[ū(t+ h)− ū(t)]〉

−2 Im

∫
Rn
∇ϕ · ∇ū(t)[u(t+ h)− u(t)]dx

− 2 Im

∫
Rn

∆ϕ · ū(t)[u(t+ h)− u(t)]dx

=2 Im

∫
Rn

[ū(t+ h)− ū(t)]∇ϕ · ∇(u(t+ h)− u(t))dx

− 2 Im

∫
Rn
∇ϕ · ∇ū(t)[u(t+ h)− u(t)]dx

− 2 Im

∫
Rn

∆ϕ · ū(t)[u(t+ h)− u(t)]dx.

(2.14)

According to the definition of derivative
dMϕ(t)

dt = lim
h→0

Mϕ(t+h)−Mϕ(t)
h , we get

dM1
ϕ(t)

dt
= −2(2 Im

∫
Rn
∇ϕ · ∇ū(t) · ut(t)dx+ Im

∫
Rn

∆ϕ · ū(t)ut(t)dx)

:= −2(2A1 +A2).

(2.15)

By partial integral and fact Re(ū∇u) = 1
2∇
(
|u|2
)
,

A2 =−Re

∫
Rn

∆ϕ|∇u|2dx+

∫
Rn

1

2
|u|2∆2ϕdx−Re

∫
Rn

∆ϕ · |u|2dx

+ Re

∫
Rn

∆ϕ

(
1

9
|u|4 + 2|w|2|u|2

)
dx+

1

3
Re

∫
Rn

∆ϕū3w.

(2.16)

For A1, we have integration by parts:

A1 = Re

∫
Rn
∇ϕ∇ū∆udx+

1

2
Re

∫
Rn

∆ϕ|u|2dx

+ Re

∫
Rn
∇ϕ∇ū

(
1

9
|u|2 + |2w|2

)
udx+ Re

∫
Rn
∇ϕ∇ū · 1

3
ū2wdx.

(2.17)
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On the other hand,

Re

∫
Rn

(∇ϕ,∇ū)∆udx = B1 +B2, (2.18)

where

B1 := −Re
∑

1≤k≤n

∫
Rn
∂kϕ (∇ū · ∂k∇u) dx, (2.19)

B2 := −Re
∑

1≤k≤n

∫
Rn
∂ku (∇ū · ∂k∇ϕ) dx. (2.20)

Let

(H(ϕ)ξ | ξ) :=
∑

1≤k,j≤n

∂2kjϕ(x)ξj ξ̄k,

then (2.20) can be written as

B2 = −
∫
Rn

(H(ϕ)∇u | ∇u)dx. (2.21)

Remark the fact Re(∇ū · ∂k∇u) = 1
2∂k|∇u|

2, hence

B1 =
1

2

∫
Rn

∆ϕ|∇u|2dx. (2.22)

Combining (2.15) to (2.22),

dM1
ϕ(t)

dt
=− 2

−2 Re

∫
Rn

∑
k≤j≤n

∂2kjϕ(x)
∂u

∂xk

∂ū

∂xj
dx+

1

2

∫
Rn

∆2ϕ|u|2dx+ 2 Re

∫
Rn
∇ϕ∇ū

(
1

9
|u|2 + 2|w|2

)
udx

+2 Re

∫
Rn
∇ϕ∇ū · 1

3
ū2wdx+ Re

∫
Rn

∆ϕ

(
1

9
|u|4 + 2|u|2|ω|2

)
dx− 1

3
Re

∫
Rn

∆ϕū2wdx

]
.

(2.23)

For the term about w, a routine computation gives rise to

dM2
ϕ(t)

dt
= 2

[
2 Re

∫
Rn

(Hϕ∇w | ∇w)dx− 1

2
Re

∫
Rn
|w|2∆2ϕdx− 2 Re

∫
Rn
∇ϕ∇w̄

(
9|u|2 + 2|w|2

)
wdx

−2 Re

∫
Rn
∇ϕ∇ω̄ · 1

9
u3dx −Re

∫
Rn

∆ϕ
(
9|w|4 + 2|u|2|w|2

)
dx−Re

∫
Rn

∆ϕ · 1

9
u3w̄dx

]
.

(2.24)

Thanks to the (2.23) and (2.24), (2.12) is proved.

Remark 2.3. From the above, we have the following conclusions:

(1) If ϕ is radially symmetric, 2 ≤ n ≤ 3, using the define |x| = r we have

d

dt
Mϕ(t) =−

∫
Rn

∆2ϕ(x)
(
|u|2 + |w|2

)
dx+ 4

∫
Rn

ϕ′(r)

r

(
|∇u|2 + |∇w|2

)
dx

+ 4

∫
Rn

(
ϕ′′(r)

r2
− ϕ′(r)

r3

)(
|x · ∇u|2 + |x · ∇w|2

)
dx

− 4

∫
Rn

∆ϕ(x)T (u,w)dx.

(2.25)
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(2)If both ϕ : R2 → R and (u,w) ∈ H1(R2)×H1(R2) are radial, we get

d

dt
Mϕ(t) =−

∫
R2

∆2ϕ(x)
(
|u|2 + |w|2

)
dx+ 4

∫
R2

ϕ′′(r)
(
|∇u|2 + |∇w|2

)
dx

− 4

∫
R2

∆ϕ(x)T (u,w)dx.

(2.26)

(3) Denote x = (y, z) with y = (x1, x2) ∈ R2 and z ∈ R. Let ψ be a sufficiently smooth and decaying

function and ϕ(x) = ψ(y) + z2. If (u,w) ∈ Σ3 × Σ3 for all t ∈ (−T−,−T+), where

Σ3 :=
{
f ∈ H1

(
R3
)

: f(y, z) = f(|y|, z), zf ∈ L2
(
R3
)}
,

then we have

d

dt
Mϕ(t) =−

∫
R3

∆2
yψ(y)

(
|u|2 + |v|2

)
(t, x)dx+ 4

∫
R3

ψ′′(ρ)
(
|∇yu|2 + |∇yv|2

)
(t, x)dx

+ 8
(
‖∂zu(t)‖2L2(R3) + ‖∂zv(t)‖2L2(R3)

)
− 8N(u(t), v(t))

− 4

∫
R3

∆yψ(y)T (u, v)(t, x)dx.

(2.27)

Proof. (1)If ϕ is radially symmetric and |x| = r, then using the fact that

∂j =
xj
r
∂r, ∂2jk =

(
δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2r ,

where δjk =

{
1, if j = k,

0, if j 6= k,
we have

∂2ϕ

∂xjk
=
∂2ϕ

∂r2
· xkxj
r2

+
∂ϕ

∂r

(
δjk
r
− xjxk

r3

)
.

Combined with the above formulas, we have

Re

∫
Rn

∑
1≤k,j≤n

∂2kjϕ(x) (∂ku∂j ū+ ∂kw∂jw̄) dx

= Re

∫
Rn

∑
1≤k,j≤n

[
ϕ′′(r) · xkxj

r2
+ ϕ′(r)

(
δjk
r
− xjxk

r3

)]
(∂ku∂j ū+ ∂kw∂jw̄)dx

= Re

∫
Rn

∑
1≤k,j≤n

[
ϕ′(r)

r
δjkū+

(
ϕ′′(r)

r2
− ϕ′(r)

r3

)
xjxk

]
(∂ku∂j ū+ ∂kw∂jw̄)dx

=

∫
Rn

ϕ′(r)

r
(|∇u|2 + |∇w|2) +

(
ϕ′′(r)

r2
− ϕ′(r)

r3

)
(|x · ∇u|2 + |x · ∇w|2)dx.

(2)Because ϕ is radial, we can directly use (2.25), and because (u,w) is radial, there is |x|2 = r2. (2.26) can

be obtained by a simple calculation.

(3)From the choice of the function ϕ(x) = ψ(y) + z2, we have the (2.27).

3 Existence of normalized solutions

In this section, we prove the main Theorems 1.1-1.2. More precisely, we will establish the following results:
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3.1 L2-subcritical growth case

If n = 1, by (1.11), we have

Eσ |Sc ≥ CN(u,w)2 −N(u,w),

and obtain Eσ |Sc is bounded below, we call it is L2-subcritical.

Lemma 3.1.1. Assume n = 1, the functional Eσ |Sc is coercive and bounded from the below, and

−∞ < mc := inf
(u,w)∈Sc

Eσ < 0. (3.1.1)

Proof. Because of (1.11), if n = 1

Eσ |Sc ≥ CN(u,w)2 −N(u,w),

we can get the Eσ |Sc is coercive, and then mc > −∞, it has a lower bound, that is, a minimum.

On the other hand, to prove the lemma, we introduce a map as in [8]. Define the map: s ∗ (u,w) :=

e
s
2 (u(t, esx), w(t, (esx)), if (u,w) ∈ Sc yields

M(s ∗ (u,w)) =

∫
R
es(|u(t, esx)|2 + 3σ |w(t, esx)|2)dx =

∫
R
|u(t, x)|2 + 3σ |w(t, x)|2 dx = c,

namely s ∗ (u,w) ∈ Sc,

Eσ |Sc (u,w) =
1

2

∫
R
es
(
e2s |∇u (t, esx)|2 + e2s |∇w (t, esx)|2

)
dx

−
∫
R

(
1

36
e2s|u|4 +

9

4
e2s|w|u + e2s|u|2|w|2 +

1

9
e2s|u|3|w|

)
dx

=
1

2

∫
R

(
e2s|∇u|2 + e2s|∇w|2

)
dx

−
∫
R
es
(

1

36
|u|4 +

9

4
|w|u + |u|2|w|2 +

1

9
|u|3|w|

)
dx,

when s→ −∞, Eσ |Sc (u,w)→ 0−. It results that mc < 0 for any c > 0.

Lemma 3.1.2. Assume n = 1 and c1 > 0, c2 > 0 satisfy c1 + c2 = c, we have

mc < mc1 +mc2 , (3.1.2)

where

mc := inf
(u,w)∈Sc

Eσ.

Proof. First, we prove that the inequality mτ2c < τ2mc, for all c > 0, τ > 1 holds. Take the minimizing

sequence (uj , wj) ∈ Sc, such that

Eσ(uj , wj)→ inf
(u,w)∈Sc

Eσ = mc, Eσ(τuj , τwj)→ mτ2c.

We get
mτ2c ≤ Eσ |Sc (τuj , τwj)

=
1

2

∫
R
τ2
(
|∇ (uj)|2 + |∇ (τwj)|2

)
dx

−
∫
R
τ4
(

1

36
|uj |4 +

9

4
|wj |4 + |uj |2 |wj |2 +

1

9
|uj |3 |wj |

)
dx ≤ τ2mc.
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Next, we will prove that the equal does not hold. In fact, we find that mτ2c = τ2mc is equivalent to

N(uj , wj)→ 0 as j →∞. If the statement holds, we have

0 > mc = lim
j→∞

Eσ |Sc (uj , wj) ≥ lim inf
j→∞

1

2
K (uj , wj) ≥ 0,

this leads to a contradiction. Then we should show mc < mc1 + mc2 . In fact, without losing generality, it

may be assumed that c1 ≥ c2. If c1 > c2, we get

mc = m c
c1
c1 <

c

c1
mc1 = mc1 +

(c− c1)

c1
mc1 = mc1 +

c2
c1
m c1

c2
c2 < mc1 +mc2 ,

and if c1 = c2,

mc = m2c1 < 2mc1 = mc1 +mc2 .

Proof of Theorem 1.1: Since the functional Eσ has a lower bound on Sc and is coercive, the minimizing

sequence {(uj , wj)} ∈ Sc is taken. It can be seen from lemma 3.1.1 that it is bounded. By applying the

Concentration-compactness principle, we can get that there is one of three cases where the subsequence (still

called (uj , wj)) satisfies vanishing, dichotomy or compactness.

To begin with, we claim that the vanishing case cannot occur. In fact, according to [12], if (ujwj)→ 0,

lim infj→∞Eσ (ujwj) ≥ 0 can be obtained, in contradiction with Lemma 3.1.1. Secondly, we claim that the

dichotomy case cannot occur. Suppose there are two bounded sequences {(un1
, wn1

)} , {(un2
, wn2

)} satisfying

dichotomy, then

mc = lim
n→∞

Eσ|Sc (uj , wj) ≥ lim sup
n→∞

((un1 , wn1) + Eσ|Sc (un2 , wn2)) ≥ mc1 +mc2

which is inconsistent with Lemma 3.1.2.

Hence we have the compactness case hold, and the statements in Theorem 1.1 are proved.

3.2 L2-supercritical growth case

In order to get Theorem 1.2, from (1.11), we have

Eσ |Sc ≥ CN(u,w)
2
3 −N(u,w).

Obviously, the energy functional has no lower bound, to overcome the difficulty, we will study the minimiza-

tion problem in the Pohozaev manifold. By Lemma 2.2, the Pohozaev functional is defined by

G(u,w) := K(u,w)− 3N(u,w), (3.2.1)

and the corresponding set

P =
{

(P,Q) ∈ H1
(
R3
)
×H1

(
R3
)
| G(P,Q) = 0

}
.

be the Pohozaev manifold. We also define

V (c) := Sc ∩ P, (3.2.2)

and

K(c) :=
{

(P,Q) ∈ Sc, s.t. E′σ(P,Q)|Sc = 0
}
. (3.2.3)

Lemma 3.2.1. Let n = 3, (P,Q) ∈ H1
(
R3
)
×H1

(
R3
)

be such that G(P,Q) = 0, then

inf
(P,Q)∈K(c)

Eσ = inf
(P,Q)∈Vc

Eσ.
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Proof. According to the (3.2.1) and n = 3, we get

G(P,Q) =

∫
R3

(|∇P |2 + |∇Q|2)dx− 3

∫
R3

(
1

36
|P |4 +

9

4
|Q|4 + |P |2 |Q|2 +

1

9
P 3Q)dx.

Furthermore,

〈G′(P,Q), (P,Q)〉 = 2

∫
R3

(|∇P |2 + |∇Q|2)dx−
∫
R3

(
1

3
|P |4 + 27 |Q|4 + 12 |P |2 |Q|2 +

4

3
P 3Q)dx

= 2K(P,Q)− 12N(P,Q),

and, if (P,Q) ∈ V (c),

〈G′(P,Q), (P,Q)〉 = −2K(P,Q) 6= 0, (3.2.4)

shows that P is locally smooth. Besides, Eσ
∣∣
V (c) = 1

2K(P,Q) − N(P,Q) = 1
6K(P,Q) ≥ 0, which means

that (0, 0) is a strict minimizer. Indeed, any critical point of Eσ constrained to V (c) is a critical point of Eµ.

Assume (P0, Q0) ∈ V (c) is a critical point of Eµ constrained to V (c). There exists a Lagrange multiplier λ

such that E′σ (P0, Q0) = λG′ (P0, Q0). By taking L2-inner product on both sides with (P0, Q0), we get

〈E′σ (P0, Q0) , (P0, Q0)〉L2 = λ 〈G′ (P0, Q0) , (P0, Q0)〉L2 ,

in view of (3.2.4), λ = 0 and E′σ (P0, Q0) = 0, which confirms the claim.

Through Lemma 3.2.1, in order to prove Theorem 1.2, we will prove the existence of the minimum value

of the problem (3.2.3).

Proof of Theorem 1.2: For each (P,Q) ∈ Vc, (P,Q) 6= (0, 0), we obtain G(P,Q) ≤ 0. There exists

k ∈ [0, 1] such that (kP, kQ) ∈ V (c). Namely, if G(P,Q) = 0, let k = 1. If G(P,Q) < 0,

G(kP, kQ) = k2
{∫

R3

(|∇P |2 + |∇Q|2)dx− k2
∫
R3

(
1

12
|P |4 +

27

4
|Q|4 + 3|P |2 |Q|2 +

1

3
P 3Q) dx

}
:= k2FP,Q(k),

and FP,Q(0) = K(P,Q) > 0, FP,Q(1) = G(P,Q) < 0. The intermediate value Theorem leads us to the

conclusion: there exists some k ∈ [0, 1], such that FP,Q(k) = 0, in other words G(kP, kQ) = 0. Next, we will

prove the strong convergence of the minimizing sequence , then we can get the existence of the minimum.

Take a minimizing sequence (Pj , Qj) ∈ V (c) for

m := inf {Eσ(P,Q) : (P,Q) ∈ V (c)} ,

such that

lim inf
j→∞

Eσ
∣∣
V (c) (Pj , Qj) = m.

Since (Pj , Qj) ∈ V (c) ,

Eσ
∣∣
V (c) (Pj , Qj) =

1

6
K(Pj , Qj).

It’s not hard to get m ≥ 0 and (Pj , Qj) is bounded. In particular, (Pj , Qj) ⇀ (P,Q) in H1(R3)×H1(R3).

In proving compactness, the embedding H1
(
R3
)
↪→ L2

(
R3
)

is not compact, we need to use Strauss

Lemma. Replace (Pj , Qj) with (P ∗j , Q
∗
j ), where P ∗j and Q∗j are symmetric decreasing rearrangements of Pj

and Qj , respectively. On the other hand, the Pólya-Szegö inequality and the convex inequality of gradient

‖∇f∗‖L2(R3) ≤ ‖∇|f |‖L2(R3) ≤ ‖∇f‖L2(R3)(see [12]) show that

Eσ
∣∣
V (c)

(
P ∗j , Q

∗
j

)
≤ Eσ

∣∣
V (c) (Pj , Qj) .
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Furthermore, combining the Hardy-Littlewood inequality∫
R3

|PQ|dx ≤
∫
R3

P ∗Q∗dx,

with (see [9] for details)∫
R3

P 2Q2dx ≤
∫
R3

(P ∗)
2

(Q∗)
2
dx and

∫
R3

∣∣P 3Q
∣∣ dx ≤ ∫

R3

(P ∗)
3
Q∗dx,

we obtain

G
(
P ∗j , Q

∗
j

)
=

∫
R3

(
∣∣∇P ∗j ∣∣2 +

∣∣∇Q∗j ∣∣2)dx−
∫
R3

(
1

12

∣∣P ∗j ∣∣4 +
27

4

∣∣Q∗j ∣∣4 + 3
∣∣P ∗j ∣∣2 ∣∣Q∗j ∣∣2 +

1

3
(P ∗j )3Q∗j

)
dx

≤
∫
R3

(|∇|Pj ||2 + |∇|Qj ||2)dx−
∫
R3

(
1

12
|Pj |4 +

27

4
|Qj |4 + +3 |Pj |2 |Qj |2 +

1

3
(Pj)

3Qj

)
dx

≤
∫
R3

(|∇Pj |2 + |∇Qj |2)dx−
∫
R3

(
1

12
|Pj |4 +

27

4
|Qj |4 + 3 |Pj |2 |Qj |2 +

1

3
(Pj)

3Qj

)
dx

= G(Pj , Qj) = 0.

Let kj ∈ (0, 1], such that G(kjP
∗
j , kjQ

∗
j ) = 0, namely, (kjP

∗
j , kjQ

∗
j ) ∈ V (c). We have

Eσ
∣∣
V (c)

(
kjP

∗
j , kjQ

∗
j

)
= k2jEσ

∣∣
V (c)

(
P ∗j , Q

∗
j

)
≤ Eσ

∣∣
V (c) (Pj , Qj) .

Since we obtain the minimizing sequence
(
kjP

∗
j , kjQ

∗
j

)
of the radial decreasing functions, denoted by

(P̄j , Q̄j). Because the sequence is bounded, there must be weakly convergent subsequences (P∗, Q∗) , namely

(P̄j , Q̄j) ⇀ (P∗, Q∗) in H1(R3)×H1(R3). We are done if we show that the convergence is strong.

In order to prove strong convergence, applying the Strauss’s compactness lemma( [20]), if u ∈ L2
(
R3
)
,

is radially decreasing, it can establish that

|u(x)| ≤ C|x|− 3
2 ‖u‖L2(R3),

which can get the compactness of the injection H1
rd

(
R3
)
↪→ L4

(
R3
)
, where

H1
rd

(
R3
)

=
{
u ∈ H1

d

(
R3
)

: uis radially decreasing
}

(see [4] for more details). Consequently, up to a subsequence, (P̄j , Q̄j) → (P∗, Q∗) strongly in L4
(
R3
)
. It

also shows (P∗, Q∗) is radially symmetric and nonnegative.

Next, since∫
R3

(
1

12

∣∣P̄j∣∣4+
27

4

∣∣Q̄j∣∣4+3
∣∣P̄j∣∣2 ∣∣Q̄j∣∣2+

1

3
(P̄j)

3Q̄j)dx→
∫
R3

(
1

12
|P∗|4+

27

4
|Q∗|4+3|P∗|2 |Q∗|2+

1

3
(P∗)

3Q∗)dx,

and G
(
P̄j , Q̄j

)
= 0, j →∞. We deduce that

G (P∗, Q∗) ≤ lim inf
j→∞

G
(
P̄j , Q̄j

)
= 0.

Similarly, there exists k̄ ∈ (0, 1], such that G(k̄P∗, k̄Q∗) = 0, namely, (k̄P∗, k̄Q∗) ∈ V (c). Thus we get

m 6 Eσ
∣∣
V (c)

(
k̄P∗, k̄Q∗

)
= k̄2Eµ

∣∣
V (c) (P∗, Q∗) ≤ lim inf

j→∞
Eσ
∣∣
V (c)

(
P̄j , Q̄j

)
= m.

It is easy to conclude that
(
k̄P∗, k̄Q∗

)
is a minimum and k̄ = 1, so we can get that (P∗, Q∗) ∈ V (c) and

Eσ
∣∣
V (c) (P∗, Q∗) = m, Theorem 1.2 is proved.
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4 Nonexistence of normalized solutions

In this section, we will show the nonexistence of normalized solutions in L2-critical growth case. Suppose

n = 2, by confirming in (1.11), we have

Eσ |Sc ≥ CN(u,w)−N(u,w),

and obtain Eσ |Sc is unboundness, we call it L2-critical. In this case, we cannot conclude that for all c > 0,

the functional restricted to Sc has a lower bound.

While we can find a threshold value c∗ separating the existence and nonexistence of critical points, if

0 < c ≤ c∗ then Eσ has no critical point constrained on Sc. It s apparent that the threshold is closely related

to the best constant of (1.10). To obtain it, we define

J(u,w) :=
K(u,w)M(u,w)

N(u,w)
. (4.1)

In order to obtain the specific form of the best constant, we introduce the following lemma.

Lemma 4.1 Assume n = 2, let (P,Q) be a ground state solution of (1.7) with µ = 3σ, ω > 0. Then we have

S(P,Q) = N(P,Q), (4.2)

K(P,Q) = 2S(P,Q), (4.3)

K(P,Q) = (ω + 1)M(P,Q), (4.4)

In particular, we get

J(P,Q) = (
4

ω + 1
)S(P,Q). (4.5)

Proof. By summing (2.4) and (2.5) we deduce that

K(P,Q) + (ω + 1)M(P,Q) = 4N(P,Q).

Thus, by the definition of S, we obtain

S(P,Q) =
1

2
K(P,Q) +

(ω + 1)

2
M(P,Q)−N(P,Q) = N(P,Q).

Also, from (2.2) and (2.3) ,one obtains (4.3) and (4.4). In particular, (4.5) is a consequence of (4.3)-(4.5).

The proof of the lemma is thus completed.

It was shown that any ground state solution (P,Q) with µ = 3σ optimizes the (G-N) inequality (1.10),

that is ,

CGN =
(ω + 1)1−n/2

nn/2(4− n)1−n/2M(P,Q)
. (4.6)

when n = 2, CGN = 1
2M(P,Q) , we refer to [14] for details on these results.

Lemma 4.2 Let n = 2, there exists c∗ := 1
2CGN

= M(P,Q), such that

(1) for each c ∈ (0, c∗], mc := inf(u,w)∈Sc Eσ = 0,

(2) for any c > c∗, mc → −∞,

Proof. (1) Set (uθ, wθ) := θ(u,w), θ > 0, then∫
R2

|uθ|2 + 3σ |wθ|2 dx = θ2c,

15



namely, for any (u,w) ∈ S1, (uθ, wθ) ∈ Sθ2 , we have

mc ≤ Eσ(uθ, wθ)

=
1

2

∫
R2

θ2
(
|∇u|2 + |∇w|2

)
dx+

1

2

∫
R2

θ2
(
|u|2 + |w|2

)
dx

−
∫
R2

θ4
(

1

36
|u|4 +

9

4
|w|4 + |u|2|w|2 +

1

9

(
ū3w

))
dx

=
1

2
θ2K(u,w) +

1

2
θ2M(u,w)− θ4N(u,w)).

It is not hard to get mc ≤ 0, as θ → 0. Hence, mc ∈ (−∞, 0] for each c > 0.

On the other hand, for any c ∈ (0, c∗] and (u,w) ∈ Sc, we have

Eσ =
1

2
K(u,w) +

1

2
M(u,w)−N(u,w)

≥ 1

2
K(u,w) +

1

2
M(u,w)− CGNK(u,w)M(u,w)

=
1

2
(1− c

c∗
)K(u,w) +

1

2
M(u,w) ≥ 0,

so, mc ≥ 0. It is apparent that mc = 0 for each c ∈ (0, c∗] .

(2) Set (P θ, Qθ) := ( cθc∗P (t, θx), cθc∗Q(t, θx)), where (P,Q) is the ground state solution, then,∫
Rn
|P θ|2 + 3σ

∣∣Qθ∣∣2 dx =
c2θ2

(c∗)2
c,

and if (P,Q) ∈ S1, (P θ, Qθ) ∈ S θ2

(c∗)2
. Moreover, we get

mc ≤Eσ(P θ, Qθ)

=
c2θ2

2(c∗)2

∫
R2

(
|∇P |2 + |∇Q2

)
dx+

c2

2(c∗)2

∫
R2

(
|P |2 + |Q|2

)
dx

− c2θ4

2(c∗)4

∫
R2

(
1

36
|P |4 +

9

4
|Q|4 + |P |2|Q|2 +

1

9

(
P̄ 3Q

))
dx

=
c2

2c∗
− (

(ω + 1)c3θ2

2(c∗)2
)((

c

c∗
)2 − 1),

hence, for any c > c∗, when θ → +∞, mc → −∞. The last equality comes from (4.2)-(4.4).

Proof of Theorem 1.4: To confirm the conclusion, we first define

Nc :=

{
(u,w) ∈ Sc |

1

2
K(u,w) < N(u,w)

}
.

By the proof of Lemma 4.2, we have the following result{
Nc = ∅, 0 < c ≤ c∗,
Nc 6= ∅, c > c∗.

The proof is by contradiction, we just suppose that there exists some c ∈ (0, c∗], such that Eσ has a minimizer,

and some (P,Q) ∈ Sc such that (Eσ|Sc)′(P,Q) = 0. Hence we get

1

2
K(P,Q) +

1

2
M(P,Q) = N(P,Q),

which implies that (P,Q) ∈ Nc. This leads to a contradiction, then Theorem 1.4 is proved.
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5 Blow up results

In this section, our aim is to show some blow up results. Let us start with the following observation.

Lemma 5.1. [14] Assume 1 ≤ n ≤ 3 , (u0, w0) ∈ H1 (Rn) × H1 (Rn), the Cauthy problem (1.1) admits a

unique solution defined in the maximal interval of existence (−T∗, T ∗):

(u,w) ∈ C
(
(−T∗, T ∗) ;H1 (Rn)×H1 (Rn)

)
,

where T∗, T
∗ > 0. In addition, the maximal times of existence obey the blow-up alternative: if T∗ <∞ then

lim
t→T∗

‖(u(t), w(t))‖H1(Rn)×H1(Rn) =∞,

and similarly for T∗.

Definition 5.2. We say that the solution blows up forward in time it T ∗ < ∞ and backward in time if

T∗ <∞. In particular, the solution blows up if it blows up forward and backward in time.

The proof of the blow-up results in [14] is based on the virial identity

d

dt
Mϕ(t) = 24E (u0, w0)− 4

∫
Rn

(
|∇u|2 + |∇w|2

)
dx− 12

∫
Rn

(
|u|2 + 9|w|2

)
dx, (5.1)

where

Mϕ(t) := 4 Im

∫
R2

(ū(t)x · ∇u(t) + 3w̄(t)x · ∇w(t))dx.

Let ϕ = |x|2, µ = 3σ and σ = 3 in lemma 2.2, we get the above equations. For the power-type NLS

equation, the result based on the convexity argument. Firstly, Glassey [8] was proposed this strategy, for

finite variance solutions with negative initial energy. After, Ogawa and Tsutsumi [13] for the removal of the

finiteness hypothesis of the variance, but with the addition of the radial assumption. Then, see the paper

the [10] for an extension to the cubic NLS up to the mass-energy threshold.

While, if we do not have the mass resonance condition µ = 3σ , the (5.1) no holds and the convexity

argument is no-more applicable. In our paper, we mainly study the blow up results in the L2-critical and

L2-supercritical cases. The proof relies on the localized virial estimates and the Pohozaev functional. We

point-out that our results not only extends to the whole range that µ, σ > 0, but also extends to the cylin-

drical solutions as supercritical case.

To begin with, we study the L2-critical case, i.e. n = 2. The difference from the previous discussion is

that the blow-up alternative is no longer valid due to the critical case. To overcome this difficulty, we choose

a function, inspired by [13]. Let

ξ(s) :=


2s, if 0 ≤ s ≤ 1,

2
[
s− (s− 1)3

]
, if 1 < s ≤ 1 + 1/

√
3,

ξ′(s) < 0, smooth, if 1 + 1/
√

3 < s < 2,

0, if s ≥ 2,

(5.2)

and

χ(r) :=

∫ r

0

ξ(s)ds =

{
r2, 0 ≤r ≤ 1,

c, r ≥ 2,

where χ(r) : [0,+∞)→ [0,+∞) be a sufficiently smooth function as above. For R > 1 , we define the radial

function

ϕR(x) = ϕR(r) := R2χ(r/R). (5.3)
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In this case, we have the following virial estimates.

Lemma 5.3. Let n = 2 and µ, σ > 0. Let (u,w) be a radial solution to (1.1) defined on the maximal

forward time interval [0, T ∗). Let ϕR be as in above and Mϕ(t) as in (2.11). For some C > 0, we have

d

dt
MϕR(t) ≤ 16Eµ(u(t), w(t))−4

∫
R2

(
(2− ϕ′′R(r))− CR−1 (4−∆ϕR)

)
(|∇u(t, x)|2+|∇w(t, x)|2) dx+oR(1).

Proof. Since both (u0, w0) and ϕ are radially symmetric, by (2.26) we get

d

dt
MϕR(t) =−

∫
R2

∆2ϕR(x)
(
|u(t, x)|2 + |w(t, x)|2

)
dx+ 4

∫
R2

ϕ′′R(r)
(
|∇u(t, x)|2 + |∇w(t, x)|2

)
dx

− 4

∫
R2

∆ϕRT (u,w)dx

=8G(u(t), w(t))− 4

∫
R2

(2− ϕ′′R(r))
(
|∇u(t, x)|2 + |∇w(t, x)|2

)
dx

+ 4

∫
R2

(4−∆ϕR)T (u,w)dx.

(5.4)

It is not hard to have
∥∥∆2ϕR

∥∥
L∞

. R−2, combining with the conservation of mass, we get∣∣∣∣∫
R2

∆2ϕR(x)
(
|u(t, x)|2 + |w(t, x)|2

)
dx

∣∣∣∣ . R−2.

Indeed , define Mµ(u,w) :=
∫ (
|u|2 + µ|w|2

)
. For the definition of G(u,w) and Eµ we have

G(u,w) = K(u,w)− 2N(u,w)

= 2Eµ(u,w)−Mµ(u,w),

and (5.4) can be controlled by

d

dt
MϕR(t) ≤ 16Eµ(u(t), w(t))−4

∫
(2− ϕ′′R(r))

(
|∇u(t, x)|2 + |∇w(t, x)|2

)
dx+4

∫
(4−∆ϕR)T (u,w)dx+CR−2.

Furthermore, by Hölder’s inequality and the Cauchy inequality∫
R2

T (u,w)dx =

∫
R2

(
1

36
|u|4 +

9

4
|w|4 + |u|2|w|2 +

1

9
u3w)dx

≤ 1

36
‖u‖4L4(R2) +

9

4
‖u‖4L4(R2) + ‖u‖2L4(R2)‖w‖

2
L4(R2) + ‖u‖3L4(R2)‖w‖L4(R2)

.
∫
R2

(|u|4 + |w|4)dx,

thus we have ∫
R2

(4−∆ϕR)T (u,w)dx .
∫
R2

(4−∆ϕR)(|u|4 + |w|4)dx.

In fact, according to a simple calculation, if |x| ≤ R, we have (4 − ∆ϕR) = 0. Radial Sobolev embedding

and conservation of mass imply that∫
R2

(
4−∆ϕR(x)

)
|u|4dx ≤ sup

|x|≥R

∣∣∣(4−∆ϕR(x)

) 1
2 u(t, x)

∣∣∣2 ‖u(t)‖2L2(R2)

. R−1 sup
|x|≥R

∥∥∥∇[(4−∆ϕR(x))
1
2u(t)]

∥∥∥
L2(R2)

∥∥∥(4−∆ϕR(x))
1
2 u(t, x)

∥∥∥
L2(R2)

‖u(t)‖2L2(R2)

. R−1 sup
|x|≥R

∥∥∥∇[(4−∆ϕR(x))
1
2u(t)]

∥∥∥
L2(R2)

.
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It follows that∥∥∥∇[(4−∆ϕR(x))
1
2 u(t)]

∥∥∥2
L2(R2)

.
∥∥∥∇ (4−∆ϕR(x))

1
2

∥∥∥
L∞(R2)

∥∥u(t)∥∥2L2(R2)
+
∥∥∥(4−∆ϕR(x))

1
2 ∇u(t)

∥∥∥2
L2(R2)

.
∥∥∥(4−∆ϕ(R)(x))

1
2∇u(t)

∥∥∥
L2(R2)

+ 1.

The last unequal sign is due to
∥∥∥∇ (4−∆ϕR(x))

1
2

∥∥∥
L∞(R2)

. 1. Then we have

d

dt
MϕR(t) ≤ 16Eµ(u(t), w(t))−4

∫
R2

(
(2− ϕ′′R(r))− CR−1 (4−∆ϕR)

)
(|∇u(t, x)|2+|∇w(t, x)|2) dx+CR−1+CR−2.

The proof is complete.

Next, we will prove the Theorem 1.5.

Proof of Theorem 1.5: Let (u0, w0) ∈ H1
(
R2
)
× H1

(
R2
)

be radially symmetric, (u,w) is the solution

to system (1.1) defined on the maximal forward time interval [0, T ∗). If T ∗ < ∞, we have done. Next, we

will discuss T ∗ =∞ under the assumption Eµ (u0, w0) < 0 and M(P,Q) < M(u0, w0), and show that there

exists a constant C > 0 such that

K(u,w) ≥ Ct2,

for all t ≥ t0, namely that (1.16) holds true.

According to the conservation of the energy, Hölder’s inequality and the (G-N) inequality, we have

K(u,w) ≤ K(u,w) +
(
‖u‖2L2(R2) + µ‖w‖2L2(R2)

)
= 2Eµ (u0, w0) + 2

∫ (
1

36
|u|4 +

9

4
|w|4 + |u|2|w|2 +

1

9
|u|3|w|

)
≤ 2Eµ (u0, w0) + 2C

(
‖u‖4L4(R2) + ‖w‖4L4(R2)

)
≤ 2Eµ (u0, w0) + 2C

(
‖∇u‖2L2(R2) + ‖∇w‖2L4(R2)

)(
‖u‖2L2(R2) + 3σ‖w‖2L2(R2)

)
= 2Eµ (u0, w0) + 2CK(u,w)M (u0, w0) ,

for this reason

−2Eµ (u0, w0) ≤ (2CGNM (u0, w0)− 1)K(u,w).

Let (2CGNM (u0, w0)− 1) ≥ 0, by the definition of CGN , we get M (u0, w0) > M(P,Q).

On the other hand, let ϕR be as in (4.3) andMϕ(t) as in (2.11). By Lemma 5.3, we have for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 16Eµ(u(t), w(t))−4

∫
R2

(
(2− ϕ′′R(r))− CR−1 (4−∆ϕR)

)
(|∇u(t, x)|2+|∇w(t, x)|2) dx+CR−1+CR−2.

The theorem will be proved if we can show that(
(2− ϕ′′R(r))− CR−1 (4−∆ϕR)

)
≥ 0. (5.5)

Let R > 1 large enough, we get
d

dt
MϕR(t) ≤ 8Eµ (u0, w0) < 0.

Integrating the above estimates for all t ∈ [0,∞) we have

MϕR(t) ≤MϕR(0) + 8Eµ (u0, v0) t,

namely

MϕR(t) ≤ 4Eµ (u0, v0) t < 0,
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where t0 :=
|MϕR

(0)|
−4Eµ(u0,w0)

. As mentioned above, we get

|MϕR(t)] = 2 Im

∫
R2

∇ϕR(∇u · ū+ σ∇w · w̄)dx.

≤ C ‖∇ϕR‖L∞
(
‖∇u‖L2(R2)‖u‖L2(R2) + σ‖∇w‖L2(R2)‖w‖L2(R2)

)
≤ C (ϕR, σ,M (u0, w0))

√
K(u,w),

for all t ≥ t0,

−4Eµ (u0, w0) t < −MϕR(t) = |MϕR(t)| ≤ C (ϕR, σ,M (u0 w0))
√
K(u,w).

This shows (1.16). Now, we will confirm the (5.5) holds for this choice of (5.2)-(5.3). Indeed, it is straight-

forward to show that

ϕ′R(r) = Rχ′(r/R) = Rξ(r/R), ϕ′′R(r) = χ′′(r/R) = ξ′(r/R),

using the fact for radial function

∆ϕR(x) = ϕ′′R(r) +
1

r
ϕ′R(r),

we can show that

ϕ′′R(r) = χ′′
( r
R

)
= ξ′

( r
R

)
=


2, 0 ≤ r

R ≤ 1,

2
(

1− 3
(
r
R − 1

)2)
, 1 < r

R ≤ 1 + 1√
3
,

< 0, 1 + 1√
3
< r

R < 2,

0, r
R ≥ 2,

and

ϕ′R(r) = Rξ
( r
R

)
=


2r, 0 < r

R ≤ 1,

2R
[
r
R − ( rR − 1

)3]
, 1 < r

R ≤ 1 + 1√
3
,

smooth , 1 + 1√
3
< r

R < 2,

0, r
R ≥ 2,

and

∆ϕR = ϕ′′R(r) +
1

r
ϕ′R(r) =


4, 0 ≤ r

R ≤ 1,

2− 6
(
r
R − 1

)2
+ 2Rr

[
r
R −

(
r
R − 1

)3]
, 1 < r

R ≤ 1 + 1√
3
,

ξ′ < 0, smooth, 1 + 1√
3
< r

R < 2,

0, r
R ≥ 2.

As what we have anticipated,

(1) For 0 ≤ r ≤ R, we get 2− ϕ′′R(r) = 0 and 4−∆ϕR = 0;

(2) For R < r ≤ 1 + ( 1√
3
)R, we have

2− ϕ′′R(r) = 6
( r
R
− 1
)2
,

and

4−∆ϕR = 2 + 6
( r
R
− 1
)2
− 2 + 2

R

r

( r
R
− 1
)3

= 2
( r
R
− 1
)2(

7− R

r

)
< 2

(
7− 3

3 +
√

3

)( r
R
− 1
)2

;

(3) For r > (1 + 1√
3
)R, we can deduce

2− ϕ′′R(r) ≥ 2,
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and there exists a constant C > 0, such that

4−∆ϕR ≥ C.

Thus by choosing R > 1 sufficiently large, we get that (5.5) is fulfilled. The proof is complete by collecting

the above estimates.

On the other hand, we will study the blow-up results about supercritical growth case with normalized

solution. We begin by stating the following Lemma. For a rigorous proof of this lemma the reader is referred

to [2] and [16]:

Lemma 5.4. Let I be an open interval with 0 ∈ I. Assume a ∈ R, b > 0 and q > 1. Define γ = (bq)−
1
q−1

and f(r) = a− r + brq, where r ≥ 0. Let Z(t) be a nonnegative continuous function such that f ◦ Z ≥ 0 on

I. Assume a <
(

1− 1
q

)
γ, we get

(i) If Z(0) < γ, then Z(t) < γ, for all t ∈ I,

(ii)If Z(0) > γ, then Z(t) > γ, for all t ∈ I .

In addition if a < (1− δ1)
(

1− 1
q

)
γ and Z(0) > γ, for some δ1 > 0, then there exists δ2 , depending only

on δ1 such that Z(t) > (1 + δ2) γ,∀t ∈ I.

Through the above Lemma, we can build up the following blow-up criterion with normalized solutions.

Lemma 5.5. Let n = 3 and (u0, w0) ∈ H1
(
R3
)
× H1

(
R3
)
. Suppose that (1.15) and (1.17) hold, where

(P,Q) is any normalized ground state solution of (1.7) with µ = 3σ, then there holds

K(u(t), w(t))M(u(t), w(t)) > K(P,Q)M(P,Q). (5.6)

Proof. Let a = 2Eµ (u0, w0), b = 2CGNM (u0, w0)
1/2

, and q = 3/2, where as n = 3, the best constant of

(G-N) inequality is

CGN =
(ω + 1)−

1
2

3
3
2M(P,Q)

.

If G(t) = K(u(t), w(t)), we obtain f ◦G ≥ 0 , where f(r) = a− r + br3/2. Also, by using (4.6) we see that

γ =
3(ω + 1)M(P,Q)2

M (u0, w0)
.

By (2.1)-(2.3), we have

Eσ |Sc(P,Q) =
1

2
K(P,Q)−N(P,Q) =

1

2
(ω + 1)M(P,Q).

By a simple calculation, we get

a <

(
1− 1

q

)
γ ⇔ E (u0, w0)M (u0, w0) < Eσ |Sc(P,Q)M(P,Q),

and

R(0) < γ ⇔ K (u0, w0)M (u0, w0) < K(P,Q)M(P,Q).

It follows that (5.6) holds.

In addition, we find δ1 > 0 sufficiently small, such that

Eµ (u0, w0)M (u0, w0) < (1− δ1)Eσ |Sc(P,Q)M(P,Q), (5.7)

and there exists δ2 only related to δ1, such that

K(u(t), w(t))M(u(t), w(t)) > (1 + δ2)K(P,Q)M(P,Q). (5.8)
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Lemma 5.6. Under the assumption of Theorem 1.6, define (u,w) is the solution to (1.1) with initial data

(u0, w0) on the maximal time interval (−T∗, T ∗), then for ε > 0 sufficiently small, there exists c = c(ε) > 0

such that

G(u(t), w(t)) + εK(u(t), w(t)) ≤ −c, (5.9)

for all t ∈ (−T∗, T ∗) .

Proof. If Eµ < 0, by conservation of energy, we can get if ε = 1
2 and c = −3Eµ > 0, the (5.9) holds. If

Eµ ≥ 0, under the assumption (1.15) and (1.17), combining (5.7) with (5.8), we obtain the conclusion.

Lemma 5.7. Let n = 3 and µ, σ > 0. Let (u,w) be a Σ3-solution to (1.1) defined on the maximal time

interval (−T∗, T ∗). And let ϕ(x) = ψ(y) + z2, we have for all t ∈ (−T∗, T ∗),

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−1K(u(t), v(t)) + CR−2. (5.10)

Proof. It is clearly from the (2.27) in Remark 2.3 that

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 − 4

∫
R3

(2− ψ′′R(ρ))
(
|∇yu|2 + |∇yv|2

)
(t, x)dx

+ 4 Re

∫
R3

(4−∆yψR(y))T (u, v)(t, x)dx.

By the conservation of mass and radial Sobolev embedding with respect to the y-variable, the proof is

complete. The reader will find the details in [ [1]].

Proof of Theorem 1.7: Let (u0, w0) ∈ H1
(
R3
)
×H1

(
R3
)

be cylindrical symmetric satisfy either Eµ < 0

or if Eµ ≥ 0, we assume that (1.15) and (1.17) hold. The Σ3-data and radial state are similar, it is sufficient

to show the cylindrical symmetric. And we only show the T ∗ < ∞, the T∗ < ∞ is analogous. Prove it by

negation, suppose that T ∗ = ∞, by Lemma 5.6, for ε > 0 sufficiently small, there exists c = c(ε) > 0 such

that

G(u(t), v(t)) + εK(u(t), v(t)) ≤ −c.

On the other hand, by the blow-up criterion with normalized solutions, we have (5.10) holds. Combining

(5.9) and (5.10), choosing R > 1 sufficiently large, we get

d

dt
MϕR(t) ≤ −4c− 4εK(u(t), v(t)),

for all t ∈ [0,∞). Integrating the above inequality, we see that

MϕR(t) ≤ −4ε

∫ t

t0

K(u(s), v(s))ds,

for all t ≥ t0 with some t0 > 0 sufficiently large. On the other hand, using the Hölder’s inequality and

conservation of mass, we find that when t→ t∗, MϕR(t)→ −∞, hence K(u,w)→ +∞. The solution cannot

exist for all time t ≥ 0. Detailed process references [1].

Through the above description, we have established blow-up criteria (1.15) and (1.17) to prove some

blow-up results. We finally remark that by using Pohozaev identity and the best constant CGN for (G-N)

inequality, we find that (1.17) can be replaced by Pohozaev functional G(u,w) < 0 under the assumption of

mass resonance, so that the same blow up results can be obtained. The Corollary is as follows:
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Corollary 5.7. Let n = 3, µ = 3σ, (P,Q) be a normalized ground state solution related (1.7). Denote

A :=

{
(u,w) ∈ H1

(
R3
)
×H1

(
R3
)

s.t.
Eµ(u,w)M(u,w) < Eσ |Sc (P,Q)M(P,Q)

K(u,w)M(u,w) > K(P,Q)M(P,Q)

}
,

and

Ã :=

{
(u,w) ∈ H1

(
R3
)
×H1

(
R3
)

s.t.
Eµ(u,w)M(u,w) < Eσ |Sc (P,Q)M(P,Q)

G(u,w) < 0

}
.

Then, we get A ≡ Ã.

Proof. First, we will show A ⊆ Ã. Let (u,w) ∈ A, if we can show that G(u,w) < 0, hence (u,w) ∈ Ã.

According to the definition of G, under the assumption of mass resonance µ = 3σ, it follows from the

Pohozeav identity that

Eσ |Sc (P,Q) =
1

2
(ω + 1)M(P,Q) =

1

2
N(P,Q) =

1

6
K(P,Q).

It follows that

G(u,w)M(u,w) = 2Eµ(u,w)M(u,w)− (ω + 1)Mµ(u,w)M(u,w)−N(u,w)M(u,w)

< 2Eσ |Sc (P,Q)M(P,Q)−N(P,Q)M(P,Q)

= 0.

On the other hand, let (u,w) ∈ Ã, G(u,w) < 0. By substituting (4.4) into (4.6) , we get when n = 3,

CGN = 1
K(P,Q)1/2M(P,Q)1/2

, besides we use (1.10) to have

K(u,w) < 3N(u,w) ≤ 3CGNK(u,w)3/2M(u,w)1/2 =
K(u,w)3/2M(u,w)1/2

K(P,Q)1/2M(P,Q)1/2
,

which implies that

K(P,Q)M(P,Q) ≤ K(u,w)M(u,w).

This completes the proof of Corollary 5.7.
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