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Abstract

Recently, Kubernetes is widely used to manage and schedule the resources of microservices in cloud-native distributed appli-

cations, as the most famous container orchestration framework. However, Kubernetes preferentially schedules microservices to

nodes with rich and balanced CPU and memory resources on a single node. The native scheduler of Kubernetes, called Kube-

scheduler, may cause resource fragmentation and decrease resource utilization. In this paper, we propose a deep reinforcement

learning enhanced Kubernetes scheduler named DRS. To improve resource utilization and reduce load imbalance, we first present

the Kubernetes scheduling problem as a Markov decision process and elaborately designed the state, action, and reward. Then,

we design and implement DRS mointor to perceive six metrics about resource utilization to construct a comprehensive global

resource view. Finally, DRS can automatically learn the scheduling policy through interaction with the Kubernetes cluster,

without relying on expert knowledge about workload and cluster status. We implement a prototype of DRS in a Kubernetes

cluster with five nodes and evaluate its performance. Experimental results highlight that DRS overcomes the shortcomings of

Kube-scheduler and achieve the expected scheduling target with three workloads. Compared with Kube-scheduler, DRS brings

an improvement of 27.29% in resource utilization and reduce the load imbalance by 2 .90× on average, with only 3.27% CPU

overhead and 0.648% communication latency.
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Summary

Recently, Kubernetes is widely used to manage and schedule the resources of mi-
croservices in cloud-native distributed applications, as the most famous container
orchestration framework. However, Kubernetes preferentially schedules microser-
vices to nodes with rich and balanced CPU and memory resources on a single
node. The native scheduler of Kubernetes, called Kube-scheduler, may cause re-
source fragmentation and decrease resource utilization. In this paper, we propose a
deep reinforcement learning enhanced Kubernetes scheduler named DRS. To im-
prove resource utilization and reduce load imbalance, we first present the Kubernetes
scheduling problem as a Markov decision process and elaborately designed the state,
action, and reward. Then, we design and implement DRS mointor to perceive six
metrics about resource utilization to construct a comprehensive global resource view.
Finally, DRS can automatically learn the scheduling policy through interaction with
the Kubernetes cluster, without relying on expert knowledge about workload and
cluster status. We implement a prototype of DRS in a Kubernetes cluster with five
nodes and evaluate its performance. Experimental results highlight that DRS over-
comes the shortcomings of Kube-scheduler and achieve the expected scheduling
target with three workloads. Compared with Kube-scheduler, DRS brings an im-
provement of 27.29% in resource utilization and reduce the load imbalance by 2.90×
on average, with only 3.27% CPU overhead and 0.648% communication latency.
KEYWORDS:
Microservice scheduling, Deep reinforcement learning, Kubernetes scheduler, Resource awareness

1 INTRODUCTION

With the development of cloud computing and container ecology, cloud-native has become a new computing paradigm1,2. De-
velopers build customized applications following the microservice architecture, encapsulate them as containers, and submit
them to the cloud servers for running. The microservice architecture uses multiple light-weight and loosely-coupled microser-
vice components to replace the traditional integrated application. These microservices communicate with each other through
the network3,4. In this paradigm, developers can focus on developing and delivering microservices without paying attention to
the underlying infrastructure. Since microservice architecture has greatly increased the number of microservices, efficient man-
agement of these microservices becomes an essential research problem5,6,7. Typically, these microservices are managed and
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scheduled by the container orchestration frameworks, such as Kubernetes1, Docker Swarm2, and Mesos8. Among them, Kuber-
netes launched by Google is the most famous one and is widely used as the infrastructure of mainstream cloud service providers
(e.g. Alibaba, Amazon, and Microsoft). It has become the de facto standard of cloud-native9.

Resource scheduling is a key issue in managing a large Kubernetes cluster10,11. A good scheduling algorithm can help enter-
prises schedule resources reasonably for each microservice and improve the resource utilization of the cluster, so as to reduce
costs for enterprises. However, Kube-scheduler adopts a simple scheduling algorithm. Kube-scheduler first filters out nodes
with insufficient resources according to the resource requirement of the microservice. Then it scores each node using a set of
predefined policies and selects the node with the highest score to execute the microservice. The core policy of Kube-scheduler
is to balance the usage of CPU and memory on the node. Node with more CPU and memory resources and similar CPU and
memory utilization will be preferred. Kube-scheduler has the following defects. Firstly, Kube-scheduler only focuses on the
CPU and memory utilization and ignores other important resources, such as network and disk. When running network-intensive
and io-intensive applications, Kube-scheduler may lead to uneven load between nodes. Secondly, Kube-scheduler considers the
resource utilization of a single node rather than the entire cluster. In a large Kubernetes cluster, using the Kube-scheduler may
cause resource fragmentation, decrease resource utilization, and further increase the cost of the enterprise. Therefore, Kubernetes
urgently needs a load-balanced resource scheduling algorithm to alleviate the above weaknesses.

In both industry and academia, the resource scheduling problem is considered as an NP-hard problem12,13. In different scenar-
ios, since the workload of the cluster is different, the application characteristics are also different. And with different scheduling
targets, it is difficult to design a general scheduling algorithm. For the resource scheduling problem, the traditional solution is to
design heuristic algorithms. The heuristic algorithms prioritize generality and are easy to understand and implement. Examples
include Round-Robin14, First Fit15, and Max-Min, which perform well under specific workloads. However, heuristic algorithms
usually use fixed parameters and scheduling policies. They can not be adapted to the changing environment, and thus can not
achieve the desired performance. Some research proposes meta-heuristic algorithms to improve the heuristic algorithms. They
combine heuristic algorithms with random algorithms and local search algorithms, such as the ant colony algorithm16, simu-
lated annealing17, and genetic algorithm18. However, designing these meta-heuristics is complex and cumbersome. Generally,
people first design a simple heuristic algorithm according to the scheduling scenario. Then they try to adjust the parameters of
the heuristic algorithm according to the application characteristics and the scheduling target. This process relies on repeated
manual testing and tuning, which also requires the developer to have expert knowledge about the cluster status and workload.

Recently, since reinforcement learning has shown good performances in making sequential decisions, it has been applied to
solve the resource scheduling problem of the computing cluster19,20,21. In this paper, we introduce the advantage of reinforcement
learning to the Kubernetes scheduling and propose DRS, a Deep Reinforcement learning based Kubernetes Scheduler. We first
model the Kubernetes scheduling problem to a Markov decision process. We respectively define the resource usage and the
schedulable nodes as the state space and the action space to translate the system status into some learnable features. Considering
the deficiency of Kube-scheduler, we use the utilization of network and disk as a part of the state in DRS. We use the changes
in overall resource utilization and the load imbalance between nodes as the feedback of the scheduling action. After taking each
scheduling action, DRS perceives the change of the system state and get feedback to learn the effect of the action. With multi-
dimensional resource awareness, DRS can analyze the potential impact of the scheduling action on the usage of each resource.
With the meticulously designed model, DRS can learn scheduling policy through interaction with the Kubernetes cluster and
achieve the high-level scheduling target of improving the average resource utilization and balancing the utilization of different
nodes. Our concrete contributions can be summarized as follows:

• We model the scheduling problem of Kubernetes as a Markov decision process. DRS uses the resource usage of each node
and the resource requirements of pod as the state and uses the schedulable node as the action space. After taking action,
DRS calculates the average resource utilization (AvgUtil) and the standard deviation of resource utilization between nodes
(Imbalance) as the reward of action. With this model, DRS scheduler can automatically learn the expected scheduling
policy from the running information of the system, without relying on expert knowledge.

• We propose a load-balancing scheduling method based on multi-resource awareness. DRS monitors six easy-to-obtain
metrics to measure the usage of CPU, memory, network, and disk, including CPU utilization, memory utilization, package
receiving rate, package transmission rate, disk reading rate, and disk writing rate. This method enhances the resource
awareness of DRS with only 3.27% CPU overhead.

1http://kubernetes.io/
2https://docs.docker.com/engine/swarm/

http://kubernetes.io/
https://docs.docker.com/engine/swarm/
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Figure 1 The architecture and scheduling process of Kubernetes.

• We design DRS into the scheduler, monitor, and decision maker, and implement them in a Kubernetes cluster with five
nodes. A comprehensive assessment shows that compared with Kube-scheduler, DRS can improve the overall resource
utilization by 27.29% and reduce the load imbalance by 2.90× on average, with only 0.648% communication latency.

The rest of this paper is organized into the following sections. Section 2 introduces the preliminary information about Ku-
bernetes scheduling and deep reinforcement learning. Section 3 introduces the scheduling problem of DRS and models it as a
reinforcement learning process. Section 4 presents the basic design of DRS and introduces the implementation of each com-
ponent. Performance evaluation and result discussions are given in Section 5. Section 6 reviews the research work related to
Kubernetes scheduling optimization and reinforcement learning scheduling. The conclusion is drawn in Section 7.

2 PRELIMINARY

In this section, we introduce the technical background related to our work. We first introduce the knowledge of Kubernetes and
the workflow of Kube-scheduler. Then, we introduce the concept of reinforcement learning and its basic principle. Finally, we
describe the detail of deep reinforcement learning and the DQN algorithm used in DRS.

2.1 Kubernetes
Kubernetes is an open-source container orchestration framework launched by Google. With support for container scheduling,
lifecycle management, elastic expansion, and network management, Kubernetes can help users to manage containerized appli-
cations easily and efficiently. As shown in Figure 1, the nodes in a Kubernetes cluster can be divided into two types: master and
worker. The master node runs key components responsible for cluster management (Controller Manager), container schedul-
ing (Scheduler), and state storage (etcd), forming the control plane of the cluster. The worker node is the computing node of
the cluster, which can communicate with the control plane by running the Kubelet and Kube-proxy components. The worker
is responsible for actually executing the user-deployed containerized applications(Pods). These pods will run in the container
runtime (e.g. docker, contained, CRI-O) of the worker nodes.

Pod is an important concept in Kubernetes, which is a container group composed of one or more containers. These containers
can share virtual environment resources such as Namespace and Cgroup in the pod. With the concept of pod, users can specify
the image and resource required by the application to generate a pod and submit it to the master node. The scheduling process is
also shown in Figure 1. Kubernetes divide the scheduling process into the scheduling cycle and the binding cycle and each cycle
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is further divided into serval stages. The scheduler on the master node organizes pods waiting for scheduling as a queue. The
scheduling cycle is a serial process in which the scheduler fetches the pod from the scheduling queue one by one. The functions
of each stage in the scheduling cycle are as follows:

Stage 1: Pre-Filter. As part of node filtering, the scheduler preprocesses the information of the pod and the nodes at this stage.
Stage 2: Filter. At this stage, the scheduler filters out all nodes that can not meet the resource requirements of the pod.
Stage 3: Post-Filter. At this stage, the reserved nodes are considered schedulable nodes. This stage is usually used for

notification.
Stage 4: Scoring. At this stage, the scheduler scores each node using the pre-defined rules.
Stage 5: Normalize Scoring. At this stage, the scheduler normalizes the node score to [0, 100] as the final score.
Stage 6: Reserve. At this stage, the scheduler reserves resources on the chosen node to prevent resource overruns from

asynchronous binding.
At the end of the scheduling cycle, the scheduler informs the API server of the scheduling result. Then the pod will start the

binding cycle, which is an asynchronous process. The functions of each stage in the binding cycle are as follows:
Stage 1: Permit. At this stage, the pod binding will be delayed or prevented until at appropriate time.
Stage 2: Pre-Bind. This stage is a pre-processing stage, it is used for preparing the resources on the chosen node.
Stage 3: Bind. At this stage, the pod will be bound to the chosen node.
Stage 4: Post-Bind. Since the scheduler has reserved resources on the node at the reserve stage, these resources will be

released at this stage if the binding fails.
Users can customize the functionality of the above stages using the Kubernetes Scheduling Framework (KSF) to achieve

customized scheduling. DRS is achieved by designing our own filtering and scoring function.

2.2 Deep reinforcement learning
Reinforcement learning process. Reinforcement learning is a branch of machine learning. Unlike supervised learning and
unsupervised learning, reinforcement learning does not require a deterministic label for training data. Rather, it learns the optimal
action policy at a given environment state by interacting with the environment as an agent. The reinforcement learning process
can be described as a Markov decision process (MDP), which can be represented by a five-tuple < 𝑆,𝐴,𝑅, 𝑃 , 𝜌0 > :

(1) 𝑆 represents the state space, which contains all the possible states of the environment.
(2) 𝐴 represents the action space, which describes the possible actions of the agent.
(3) 𝑅 represents the reward function. At time 𝑡, the reward is given based on the agent’s action and the change in the

environment state:
𝑟𝑡 = 𝑅(𝑠, 𝑎, 𝑠′) (1)

(4) 𝑃 is the transition function of the environment state. When the environment state is 𝑠 and the agent takes action 𝑎,
we use 𝑃 (𝑠′

|𝑠, 𝑎) to represent the probability that the environment state changes from 𝑠 to 𝑠′ .
(5) 𝜌0 represents the initial state of the environment.

The agent observes the state of the environment and decides which action to take according to its existing policy. The policy
is similar to a function that maps the state to an action. This action is applied to the environment and the state of the environment
will be changed. This change is generally random. After the change of environment state, the agent can observe the new state and
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Figure 2 Deep reinforcement Learning with DQN algorithm.

get a feedback signal, called reward. Reward is used to measure the quality of the action taken by the agent. The agent adjusts
the policy according to the reward and tries to find an optimal policy that can help it obtain the maximum cumulative reward:

𝑚𝑎𝑥
𝑇
∑

𝑡=1
𝛾 𝑡𝑟𝑡 (2)

In this equation, 𝑟 represents the reward and 𝛾 represents the discount factor. When 0 < 𝛾 < 1, it means that the short-term
reward is more important than the future reward.

Q-Learning and Deep Q Networks. Q-Learning is a value-based reinforcement learning algorithm that uses the state-action
function 𝑄𝜋(𝑠, 𝑎) to represent the value function more precisely23. 𝑄𝜋(𝑠, 𝑎) represents the expected reward that the agent can
obtain from taking action 𝑎 with state 𝑠 and following policy 𝜋:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝐸𝜋[
∞
∑

𝑘=0
𝜆𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3)

Algorithm 1 DQN algorithm22.
Initialize experience pool 𝐷 to capacity 𝑁
Initialize action-value function 𝑄 with random weights

1: for episode = 1, M do
2: Initialise sequence 𝑠1 = {𝑥1} and preprocessed sequenced 𝜙1 = 𝜙(𝑠1) ⊳ Step ① in Fig.2
3: for 𝑡 = 1, 𝑇 do
4: With probability 𝜖 select a random action 𝑎𝑡, otherwise select 𝑎𝑡 = max𝑎 𝑄𝜃(𝜙𝑡, 𝑎)
5: Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡 and image 𝑥𝑡+1 ⊳ Step ② in Fig.2
6: Set 𝑠𝑡+1 = 𝑠𝑡, 𝑎𝑡, 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)
7: Store transition (𝜙𝑡, 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) in 𝐷 ⊳ Step ③ in Fig.2
8: Sample random minibatch of transitions (𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from 𝐷 ⊳ Step ④ in Fig.2
9: Set 𝑦𝑗 =

{

𝑟𝑗 for terminal 𝜙𝑗+1

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎′𝑄𝜃(𝜙𝑗+1, 𝑎
′) for non-terminal 𝜙𝑗+1

⊳ Step ⑤ in Fig.2
10: Perform a gradient descent step on (𝑦𝑗 −𝑄𝜃(𝜙𝑗 , 𝑎𝑗))2 ⊳ Step ⑥ in Fig.2
11: end for
12: Copy parameters of eval Network to target Network per 𝐾 iterations ⊳ Step ⑦ in Fig.2
13: end for
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Accordingly, the optimal state-action function can be defined as:
𝑄∗(𝑠, 𝑎) = max

𝜋
𝑄𝜋(𝑠, 𝑎)∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴 (4)

The optimal policy can be achieved by greedily selecting actions that maximize the value of the state-action function:
𝜋∗ = argmax

𝑎
𝑄∗(𝑠, 𝑎) (5)

On this basis, Google DeepMind combines Q-Learning with the deep neural network and proposes Deep Q Networks (DQN)
algorithm22. The detail of the DQN algorithm is shown in Algorithm 1. When the state space and action space are large, using
the Q-Learning algorithm will cause dimension disaster, a solution to find an approximate function of Q function:

𝑄𝜃(𝑠, 𝑎) ≈ 𝑄𝜋(𝑠, 𝑎) (6)
DQN algorithm uses the deep neural network to fit the function 𝑄𝜃(𝑠, 𝑎). Figure 2 shows the entire process of deep reinforcement
learning using the DQN algorithm.

3 MODEL DESIGN

To realize the load-balancing scheduling of Kubernetes with reinforcement learning, we model the scheduling process as a
Markov decision process. Following the Markov property, we believe that the state of the cluster at a certain time is only related
to the state at the previous time and the resource requirements of the pods. We delicately design the 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, and 𝑟𝑒𝑤𝑎𝑟𝑑
as follows:

State. We consider a cluster with 𝑛 nodes, 𝑆𝑡𝑎𝑡𝑒𝑡 represents all the possible states of the environment at a certain time 𝑡.
𝑆𝑡𝑎𝑡𝑒 needs to reflect the current resource utilization of the cluster, as well as the resource requests of the pod which is waiting
for scheduling. Therefore, 𝑆𝑡𝑎𝑡𝑒𝑡 is defined as a collection of the resource utilization of each node (𝑁𝑜𝑑𝑒𝑖𝑡) and the resource
requests of the pod (𝑃𝑜𝑑𝑡). 𝑆𝑡𝑎𝑡𝑒𝑡 is a one-dimensional vector, in which each value is normalized to [0, 100].

𝑆𝑡𝑎𝑡𝑒𝑡 = [𝑁𝑜𝑑𝑒1𝑡 , 𝑁𝑜𝑑𝑒2𝑡 , ..., 𝑁𝑜𝑑𝑒𝑛𝑡 , 𝑃 𝑜𝑑𝑡] (7)
For the resource utilization of the node 𝑁𝑜𝑑𝑒𝑖𝑡, we consider not only the utilization of CPU and memory but also the utilization
of network and disk. We use six metrics to reflect the utilization of these four resources for easy measurement. The metrics
include CPU utilization (𝐶𝑃𝑈 𝑖

𝑡 ), memory utilization (𝑀𝑒𝑚𝑖
𝑡), the package receiving and transmission rate of the network card

(𝑅𝑒𝑐𝑣𝑖𝑡, 𝑇 𝑟𝑎𝑛𝑖𝑡), and the reading and writing rate of the disk (𝑅𝑒𝑎𝑑𝑖
𝑡 ,𝑊 𝑟𝑖𝑡𝑒𝑖𝑡). Due to the instability of the real-time utilization,

we use the average utilization in a few seconds to express these metrics.
𝑁𝑜𝑑𝑒𝑖𝑡 = [𝐶𝑃𝑈 𝑖

𝑡 ,𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑡, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑖𝑡, 𝐷𝑖𝑠𝑘𝑖𝑡] = [𝐶𝑃𝑈 𝑖
𝑡 ,𝑀𝑒𝑚𝑖

𝑡, 𝑅𝑒𝑐𝑣
𝑖
𝑡, 𝑇 𝑟𝑎𝑛

𝑖
𝑡, 𝑅𝑒𝑎𝑑

𝑖
𝑡 ,𝑊 𝑟𝑖𝑡𝑒𝑖𝑡] 𝑖 = 1, 2, ..., 𝑛 (8)

For the resource request of pod 𝑃𝑜𝑑𝑡, we also consider the above six metrics. We calculate the utilization according to the
resource requirements in the configuration file of the pod and its running history.

𝑃𝑜𝑑𝑡 = [𝐶𝑃𝑈𝑡,𝑀𝑒𝑚𝑜𝑟𝑦𝑡, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑡, 𝐷𝑖𝑠𝑘𝑡] = [𝐶𝑃𝑈𝑡,𝑀𝑒𝑚𝑜𝑟𝑦𝑡, 𝑅𝑒𝑐𝑣𝑡, 𝑇 𝑟𝑎𝑛𝑡, 𝑅𝑒𝑎𝑑𝑡,𝑊 𝑟𝑖𝑡𝑒𝑡] (9)
Action. The scheduler plays the role of the agent in reinforcement learning. It will take action each time when receiving a

new pod scheduling request. The agent’s action is to select a node for the pod to execute, so the action space is all the possible
nodes in the cluster.

𝐴𝑐𝑡𝑖𝑜𝑛𝑡 ∈ {𝑛𝑜𝑑𝑒𝑖|𝑖 = 1, 2, ..., 𝑛} (10)
As shown in Section.2.1, the decision-making process occurs in the scheduling cycle. After the node is selected, the sched-
uler will enter the binding cycle. If the pod cannot be bound to the selected node, it will be added to the back-off queue for
rescheduling. The time interval for rescheduling will gradually increase with the number of failures.

Reward. The reward function directly reflects the target of the scheduling algorithm. Therefore, the reward function of
DRS should give higher rewards for decisions that can improve the average resource utilization of the cluster and reduce the
degree of load imbalance. We use 𝑈𝑡𝑖𝑙𝑖𝑡 to represent the resource utilization of node 𝑖 at time 𝑡.

𝑈𝑡𝑖𝑙𝑖𝑡 =

𝐾
∑

𝑘=1
(𝑈𝑡𝑖𝑙𝑘)𝑖𝑡

𝐾
,𝑈𝑡𝑖𝑙𝑘 ∈ {𝐶𝑃𝑈,𝑀𝑒𝑚,𝑅𝑒𝑐𝑣, 𝑇 𝑟𝑎𝑛, 𝑅𝑒𝑎𝑑,𝑊 𝑟𝑖𝑡𝑒} (11)
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Figure 3 The architecture overview of DRS.

𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑡 represents the overall resource utilization of the cluster, that is, the average of the resource utilization on each node
(𝑈𝑡𝑖𝑙𝑖𝑡).

𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑡 =

𝑛
∑

𝑖=1
𝑈𝑡𝑖𝑙𝑖𝑡

𝑛
=

𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
(𝑈𝑡𝑖𝑙𝑘)𝑖𝑡

𝑛𝐾
(12)

We calculate the standard deviation of the utilization of each resource on each node and then sum the weighted values to indicate
the degree of load imbalance at time 𝑡. It can be defined as follows:

𝐼𝑚𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡 =
𝐾
∑

𝑘=1
𝑤𝑒𝑖𝑔ℎ𝑡𝑘 ∗ 𝑠𝑡𝑑((𝑈𝑡𝑖𝑙𝑘)1𝑡 , (𝑈𝑡𝑖𝑙𝑘)2𝑡 , ..., (𝑈𝑡𝑖𝑙𝑘)𝑛𝑡 (13)

Finally, we can define the reward function as follows, in which 𝛼, 𝛽 is the factor.
𝑅𝑒𝑤𝑎𝑟𝑑𝑡 = 𝑅(𝑆𝑡𝑎𝑡𝑒𝑡, 𝐴𝑐𝑡𝑖𝑜𝑛𝑡) = 𝛼𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑡 − 𝛽𝐼𝑚𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡 (14)

𝛼 and 𝛽 are the empirical values set according to the cluster state, used to scale the 𝐴𝑣𝑔𝑈𝑡𝑖𝑙 and 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to a similar size.

4 IMPLEMENTATION

In this section, we first give an overview of DRS and introduce the complete scheduling process using DRS. Then, we describe
the implementation details of DRS decision maker and its training process. Finally, we introduce the method to obtain the
utilization of each resource and the monitoring algorithm of DRS monitor.

4.1 DRS Overview
The architecture overview of DRS is shown in Figure 3. We deploy DRS scheduler in the Kubernetes cluster as the second
scheduler using the Kubernetes Scheduling Framework. DRS scheduler follows the Kubernetes scheduling process mentioned in
Section 2.1. In addition to DRS scheduler, DRS also includes two modules: DRS decision maker and DRS monitor. DRS decision
maker is a module independent of Kubernetes, which continuously receives requests from the scheduler. DRS monitor is a
module that runs on each worker node of the cluster. It continuously monitors and records the usage of the CPU, memory,
network, and disk on the node, and will return the current state of the cluster when receiving a state acquisition request.

We give an example to show the complete process of pod scheduling using DRS. Firstly, the user specifies the image file and
resource requirements to deploy the application as a pod. Then, the user submits the request to deploy the pod to the master
node. At the filter stage of the scheduling cycle, the DRS scheduler on the master node filters out the nodes with insufficient
resources according to the resource requirement of the pod. Next, DRS scheduler sends the request to DRS decision maker at
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the scoring stage of the scheduling cycle. The request contains the resource requirements of the current pod. After receiving
the request, the DRS decision maker sends a message to the DRS monitor on the worker nodes to obtain the node resource
utilization. When receiving the return of all nodes, the decision maker will aggregate and normalize the node state and the
pod resource requirements into the environment state vector 𝑆𝑡𝑎𝑡𝑒𝑡. The color of the state in Figure 3 represents the degree
of resource dependence. The darker the color, the higher the resource utilization. Then, the target network of DRS decision
maker gives the action 𝐴𝑐𝑡𝑖𝑜𝑛𝑡 and sends it to the scheduler. DRS scheduler scores the selected node with the highest score and
continues the scheduling cycle. After the pod is bound to the selected node, the microservice can start running.

4.2 DRS decision maker
DRS decision maker is the core component of DRS. The decision maker communicates to the DRS scheduler and the DRS mon-
itor on each worker node through sockets connections. The decision maker runs the DQN algorithm. The training process is
shown in Algorithm 2. The decision maker maintains an experience pool 𝐷 with a capacity of 𝑁 to store historical information
about the environment. In our experiments, 𝑁 is set to 300. In the beginning, the decision maker initializes the Q function with
random values, which is used for action selection. The decision maker establishes socket connections with other components
for subsequent communication. When the training process starts, the decision maker continuously listens for messages from
DRS scheduler. Once receiving the scheduling request, the decision maker processes the pod information. Then the decision
maker sends requests to DRS monitor to obtain the current node state 𝑁𝑜𝑑𝑒𝑖𝑡 and generate the cluster state vector 𝑆𝑡𝑎𝑡𝑒𝑡. The
values in the vector are normalized according to the preset utilization range. DRS decision maker uses all possible actions to
calculate Q, and select the maximum Q value using 𝜖-greedy strategy. Or with 1-𝜖 probability, it selects an action randomly.
After returning the action 𝐴𝑐𝑡𝑖𝑜𝑛𝑡 to the scheduler, the decision maker will wait for 𝑇𝑖, and then obtain the state of each node
again. We set 𝑇𝑖 to 5 seconds, which is to ensure that the pod has been bound to the corresponding node and started running.
(𝑆𝑡𝑎𝑡𝑒𝑡, 𝐴𝑐𝑡𝑖𝑜𝑛𝑡, 𝑅𝑒𝑤𝑎𝑟𝑑𝑡, 𝑆𝑡𝑎𝑡𝑒𝑡+1) of this scheduling process will be stored in the experience pool. When the experience pool
is full, the decision maker will sample random transitions from the experience pool and start training the neural network. The
evaluation network evaluates the losses and performs a gradient descent step. The target network will copy the parameters of
the evaluation network for weight update every 𝐾 iteration. In our implementation, 𝐾 is set to 50. This process will repeat until
the end of training.

Algorithm 2 The training algorithm of DRS decision maker.
Initialize experience pool 𝐷 to capacity 𝑁
Initialize action-value function 𝑄 with random weights
Initialize socket connections with DRS monitor and DRS scheduler

1: for episode = 1, M do ⊳ Initialize the environment state
2: if get scheduling request at time 𝑡 then
3: Get state of each worker node {𝑁𝑜𝑑𝑒1𝑡 , 𝑁𝑜𝑑𝑒2𝑡 , ..., 𝑁𝑜𝑑𝑒𝑛𝑡 } ⊳ Communication via the socket connections
4: Combine the node states with the pod resource requirements as the state vector 𝑆𝑡𝑎𝑡𝑒𝑡
5: With probability 𝜖 select a random action 𝐴𝑐𝑡𝑖𝑜𝑛𝑡, otherwise select 𝐴𝑐𝑡𝑖𝑜𝑛𝑡 = max𝑎 𝑄𝜃(𝜙𝑡, 𝑎)
6: Return the result 𝐴𝑐𝑡𝑖𝑜𝑛𝑡 to DRS scheduler ⊳ Communication via the socket connection
7: Get state of each worker node {𝑁𝑜𝑑𝑒1𝑡+1, 𝑁𝑜𝑑𝑒2𝑡+1, ..., 𝑁𝑜𝑑𝑒𝑛𝑡+1} after time 𝑇𝑖
8: Calculate the reward 𝑅𝑒𝑤𝑎𝑟𝑑𝑡
9: Store transition (𝑆𝑡𝑎𝑡𝑒𝑡, 𝐴𝑐𝑡𝑖𝑜𝑛𝑡, 𝑅𝑒𝑤𝑎𝑟𝑑𝑡, 𝑆𝑡𝑎𝑡𝑒𝑡+1) in 𝐷

10: if 𝐷.counter > capacity 𝑁 then
11: Sample random minibatch of transitions from 𝐷

12: Set 𝑦𝑗 =
{

𝑟𝑗 for terminal 𝜙𝑗+1

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎′𝑄𝜃(𝜙𝑗+1, 𝑎
′) for non-terminal 𝜙𝑗+1

13: Perform a gradient descent step on (𝑦𝑗 −𝑄𝜃(𝜙𝑗 , 𝑎𝑗))2

14: end if
15: end if
16: Copy parameters of eval Network to target Network per 𝐾 iterations
17: end for
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4.3 DRS monitor
According to our model, DRS monitor is responsible for monitoring six metrics about resource utilization. We use the 𝑡𝑜𝑝
command to get the real-time CPU utilization. For memory usage, we get the overall memory size and the memory used from
the /proc/meminfo and calculate memory utilization. For the network utilization, we get the data size sent and received by the
network card from the /proc/net/dev and record the time. Then we calculate the average rate between two queries as the result. For
disk performance, we use the iotop tool to get the reading and writing rate. DRS monitor runs multiple threads to continuously
monitor and record the resource utilization of the node. In order to obtain the average resource utilization in a certain period of
time, we use four queues to record the usage of CPU, memory, network, and disk respectively. When a query request is received,
the corresponding records are taken from the queue header to calculate the average value.

The monitoring process of DRS monitor is shown in Algorithm 3. We set a minimum value 𝐴𝑇 . Each time when returning the
node state, we calculate the average value of the first 𝐴𝑇 elements in each queue. When the monitor start running, it initializes a
thread for each resource. These threads obtain resource utilization every 1 second and maintain the resource queue. The monitor
blocks until the number of elements in each queue are greater than 𝐴𝑇 . Then the monitor establishes a socket connection to
the decision maker, binding the decision maker’s IP and port. Finally, DRS monitor continuously listens for requests from the
decision maker. Once receiving the request to query the node state, the monitor will calculate the average resource utilization
and send the result as a response.

Algorithm 3 The monitoring process of DRS.
Set the avgtime 𝐴𝑇 ⊳ The minimum number of queue elements

1: Initialize queues 𝑄𝐶𝑃𝑈 , 𝑄𝑀𝑒𝑚, 𝑄𝑁𝑒𝑡, 𝑄𝐷𝑖𝑠𝑘 ⊳ Recard the CPU, memory, network, and disk utilization
2: Initialize the threads 𝑇𝐶𝑃𝑈 , 𝑇𝑀𝑒𝑚, 𝑇𝑁𝑒𝑡, 𝑇𝐷𝑖𝑠𝑘
3: Start the threads 𝑇𝐶𝑃𝑈 , 𝑇𝑀𝑒𝑚, 𝑇𝑁𝑒𝑡, 𝑇𝐷𝑖𝑠𝑘 ⊳ Monitor the resource utilization and maintain the queue
4: Wait until the size of each queue is greater than 𝐴𝑇 ⊳ Wait until there are enough elements in each queue
5: Initialize the socket connection 𝑠𝑜𝑐𝑘𝑒𝑡
6: 𝑠𝑜𝑐𝑘𝑒𝑡.𝑏𝑖𝑛𝑑(𝑖𝑝, 𝑝𝑜𝑟𝑡) ⊳ Bind the socket connection with DRS decision maker
7: 𝑠𝑜𝑐𝑘𝑒𝑡.𝑙𝑖𝑠𝑡𝑒𝑛()
8: while True do
9: if Receive a request for the node state then

10: Get the first AT elements from each queue 𝐶𝑃𝑈,𝑀𝑒𝑚,𝑅𝑒𝑐𝑣, 𝑇 𝑟𝑎𝑛, 𝑅𝑒𝑎𝑑,𝑊 𝑟𝑖𝑡𝑒
11: 𝑆𝑡𝑎𝑡𝑒 = [𝑎𝑣𝑔(𝐶𝑃𝑈 ), 𝑎𝑣𝑔(𝑀𝑒𝑚), 𝑎𝑣𝑔(𝑅𝑒𝑐𝑣), 𝑎𝑣𝑔(𝑇 𝑟𝑎𝑛), 𝑎𝑣𝑔(𝑅𝑒𝑎𝑑), 𝑎𝑣𝑔(𝑊 𝑟𝑖𝑡𝑒)]
12: 𝑠𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑(𝑆𝑡𝑎𝑡𝑒)
13: end if
14: end while

5 EVALUATION

In this section, we evaluate the performance of DRS. Firstly, we introduce the experimental environment and deploye microser-
vices. Then we analyze the resource requirements of these microservices and set the experimental parameters accordingly. To
evaluate the performance of DRS, we compare it with Kuber-scheduler and some traditional scheduling methods, including
Random and Round Robin. The evaluation metrics include the reward, the resource utilization of the cluster, the makespan of
microservices, and the scheduling latency. Through these tests, we intend to answer the following questions:

(1) Whether DRS performs better than other schedulers with different workloads?
(2) How much additional overhead does the DRS monitor bring?
(3) How much performance improvement does DRS bring by considering network and disk pressure?
(4) How does DRS perform in terms of scheduling latency?
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Figure 4 The implementation of DRS testbed.

5.1 Experimental Setup
Hardware and software. We use five virtual machines to build the testbed and deploy Kubernetes (version v1.23.4) on Ubuntu
22.04 OS. The implementation detail of the testbed is shown in Figure 4. We label these nodes as Node0, Node1, Node2, Node3,
and Node4. These nodes connect with each other via a local area network. Node0 is the master node responsible for running the
scheduler and deploying applications. The other nodes play the role of the worker node, which performs specific applications. We
modify the source code of Kubernetes, recompile it to generate DRS scheduler, and use the binary file to build the docker image.
We deploy DRS scheduler as the second scheduler of the cluster running with Kube-scheduler3. We can choose DRS scheduler
by setting the spec.schedulerName field in the pod’s configuration file. DRS scheduler and DRS decision maker run on the
master node. DRS monitor runs on all of the worker nodes. Both the DRS scheduler and the DRS monitor connect with the
DRS decision maker through the TCP socket connections. Table 1 shows the configuration of each node in detail.

Table 1 Hardware configuration used in the experiment
Node Node Type CPU Memory Network Disk
Node0 Master 4 * AMD R7-4800H@2.90GHz 8GB 8.2MB/s R:678MB/s, W:661MB/s
Node1 Worker 2 * AMD R7-4800H@2.90GHz 4GB 8.4MB/s R:663MB/s, W:610MB/s
Node2 Worker 2 * Intel Core i5-9400@2.90GHz 2GB 8.6MB/s R:280MB/s, W:269MB/s
Node3 Worker 2 * Intel Core i5-9400@2.90GHz 4GB 8.1MB/s R:305MB/s, W:299MB/s
Node4 Worker 4 * Intel Core i5-9400@2.90GHz 4GB 8.5MB/s R:318MB/s, W:303MB/s

Application. In the experiments, we set up three microservices with different resource requirements. The details of these
microservices are shown in Table 2. Video Scale microservice uses the FFmpeg tool to scale a video to a certain resolution.
This process will consume lots of CPU resources. Transmission microservice continuously sends some data to remote servers
and receives responses. It will increase the pressure on network communication. Data write microservice reads a certain size
of data from the disk and writes a copy using the Linux dd command, which brings greater pressure on disk writing. In the
following sections, we refer to these microservices as Video, Network, and Disk. We encapsulate these microservices and the
corresponding running scripts as Docker images for deployment.

5.2 Workload construction
To evaluate the performance of DRS, we construct three workloads using the three microservices mentioned above. As shown
in Section 3, the resource requirement of the pod is a part of the environment state. Therefore, we perform several tests of the
resource utilization of each microservice. We choose Node1 to run these microservices. We set the limit.CPU of the pod to

3https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/

https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/
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Table 2 Microservices used in the experiment
Application Type Desrciption Docker Image

Video Scale CPU-intensive Scale the video to a certain size with ffmpeg jolyonjian/apps:cpu-1.0
Transmission Network-intensive Transfer data of a certain size to the server jolyonjian/apps:net-1.0
Data Write IO-intensive Read a file on the disk and write a copy jolyonjian/apps:io-1.0

500m, which means Kubernetes will allocate 0.5 CPU for each application. This setting ensures that the node can run multiple
microservices simultaneously. Figure 5-Figure 7 show the utilization of CPU, memory, network, and disk for each of the three
microservices. We also evaluate the resource utilization for running the Kubernetes components and running DRS monitor for
comparison (labeled as None and Monitor).

As shown in Figure 5, we calculate the average resource utilization during the microservice execution. When the node only
runs the Kubernetes components, the CPU utilization is 3.83%. When the node runs the Kubernetes component and DRS mon-
itor, the CPU utilization is 7.10%. Since the monitor needs to respond to the queries for resource utilization periodically, the
CPU utilization increase periodically. After deploying a microservice, the node will process the execution of the pod. There-
fore, the CPU utilization will first reach a peak and then stabilize. The execution of the CPU-intensive Video consumes all the
allocated CPU resources (500m). The CPU utilization of Video is 27.28%. Network consumes few CPU resources and the CPU
utilization is only 7.16%. It is worth noting that Disk also consumes all CPU resources due to the heavy operations of disk read
and write. The CPU utilization of Disk is 26.16%. The memory utilization of different applications is almost the same, ranging
from 39.83% to 40.42%.

Figure 6 shows the network utilization of the microservices, including the package receiving rate and transmission rate. When
the node runs the Kubernetes components and DRS monitor, the network overhead is few. The package receiving rate of None
and Monitor is 1.315 KB/s and 0.945 KB/s, respectively. The package transmission rate of None and Monitor is 0.16 KB/s and
0.15 KB/s respectively. When running Video and Disk, the node receives the pod deployment message sent by the master node.
Then, the two applications run normally without data transmission. The package receiving rate of Video and Disk is 3.99 KB/S
and 4.73 KB/S respectively and the package transmission rate is 0.76 KB/S and 0.97 KB/s respectively. Network continuously
sends messages to the server and receives responses. The package receiving rate is 32.15 KB/S, and the package transmission
rate is 28.68 KB/S.

Figure 7 shows the network utilization of the microservices, including disk reading rate and writing rate. When running None,
Monitor, Video, or Network, there is no disk read operations and their disk reading rates are almost zero. The writing rate of
None is 54.23 KB/s, and that of Monitor is 61.09 KB/s. At the beginning and end of the microservice execution, disk writing
operations increase the writing rate. The disk writing rate of Video and Network is 238.66 KB/s and 123.14 KB/s respectively.
For Disk, its disk reading rate and writing rate is 8907.19 KB/s and 9039.93 KB/s, respectively.
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Figure 5 The CPU and memory utilization of the applications.

https://hub.docker.com/repository/docker/jolyonjian/apps
https://hub.docker.com/repository/docker/jolyonjian/apps
https://hub.docker.com/repository/docker/jolyonjian/apps
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Figure 6 The recieve and transmission rate of the applications.
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Figure 7 The disk read and write rate of the applications.

Based on the above results, we can see that the cost of DRS monitor is very small, which is almost only 3.27% CPU overhead.
We set the maximum value for each resource and convert the resource utilization of a single microservice to about 25%. In
addition, we also test other limit.CPU settings. The results show that resource utilization is positively related to CPU limitation.
Therefore, we randomly specify 200-500m CPU resources for the pod when constructing the workload. We construct three
different workloads to evaluate the performance of DRS. The workloads are as follows:

(1) Even workload. The three types of applications are deployed at a ratio of 1:1:1, with a fixed time interval. In our
tests, we choose to deploy an application every 20s.

(2) Random workload. We deploy three types of applications according to the ratio of 1:1:1. The time interval 𝑇 between
applications follows a normal distribution: 𝑇 ∼ 𝑁(𝜇, 𝜎2), 𝜇 = 20, 𝜎 = 1.

(3) CPU workload. We deploy three types of applications according to the ratio of 4:1:1. Similarly, the time interval
between applications is set to 20s.
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5.3 Performance
We select three scheduling algorithms for comparison, including Kube-scheduler, Random, and Round Robin. We follow the
DRS scheduling process and use the corresponding scheduling strategy instead of the neural network in the DRS decision maker
to take action. Through this implementation method, we can evaluate the reward and resource utilization of these algorithms.

5.3.1 Reward
We first evaluate the reward of the scheduling algorithm under three workloads. For reinforcement learning scheduling, reward
is the direct reflection of the scheduling effect. We deploy 300 pods as 300 epochs of DRS training process and update the param-
eters of the target network every 50 epochs. As shown in Figure 8, with the three workloads, DRS can converge after 100 epochs
and reach a stable reward. It means that DRS can effectively adapt to different workloads and learn scheduling policy quickly.
At the same time, compared with other scheduling algorithms, DRS has the largest reward. This result proves that DRS can
improve the resource utilization of the cluster and reduce the degree of load imbalance between nodes. With random workload,
the time interval between applications follows a normal distribution, which may lead to small or large resource consumption at
a certain time. Therefore, resource utilization fluctuates greatly, and the reward of scheduling algorithms decreases. With CPU
workload, the CPU requirement of the pod is large, and the requirements of different resources are uneven. Therefore, the overall
resource utilization decreases significantly, and so as the reward.

With the even workload, the scheduling effect of Kube-scheduler is bad. And with the CPU workload, Kube-scheduler has
a good scheduling effect, which is close to DRS. This is because Kube-scheduler only considers a single node’s usage of CPU
and memory, which causes uneven resource usage. This scheduling policy performs well when the application needs more CPU
resources. However, when the microservice needs more network or disk resources, the scheduling quality will decline. The
scheduling effect of Random and Round Robin is similar under three workloads. When the microservice resource requirements
are balanced, the scheduling effect is good. However, the overall resource utilization fluctuates greatly due to the randomness of
the scheduling result. When the microservice resource requirements are imbalanced, the resource imbalance will be aggravated
and the scheduling effect is bad.

5.3.2 Resource Utilization
According to Figure 8, we can see that after the 250th epoch, the effects of the scheduling algorithms have been stable. So we
monitor the utilization of each resource from the 250th epoch. The results are shown in Figure 9∼Figure 12. Average utilization
and resource imbalance between nodes are the basis for calculating reward. They are calculated using the equation shown in
Section 3.

Figure 9 shows the resource utilization of DRS with different workloads. With the even workload, the CPU and memory
utilization is 56.80% and 64.05% respectively. The package receiving and transmission rates of the network are 47.51% and
44.42%, respectively. And the disk reading and writing rates are 31.00% and 41.82%, respectively. With the random workload,
the CPU and memory utilization is 50.02% and 59.05% respectively. The package receiving and transmission rates of the network
are 44.85% and 40.26%, respectively. And the disk reading and writing rates are 28.86% and 38.62%, respectively. With the CPU
workload, the CPU and memory utilization is 69.17% and 72.43% respectively. The package receiving and transmission rates of



14 Zhaolong Jian ET AL

0

20

40

60

80

100

A
ve

ra
ge

 u
til

iz
at

io
n(

%
) average imbalance

0

20

40

60

80

100
CPU/Memory utilization(%)

cpu memory

0

20

40

60

80

100
Network utilization(%)

receive transmission

0

20

40

60

80

100
Disk utilization(%)

read write

0

20

40

60

80

100

A
ve

ra
ge

 u
til

iz
at

io
n(

%
) average imbalance

0

20

40

60

80

100
cpu memory

0

20

40

60

80

100
receive transmission

0

20

40

60

80

100
read write

0 100 200 300 400 500 600
Time(s)

0

20

40

60

80

100

A
ve

ra
ge

 u
til

iz
at

io
n(

%
) average imbalance

0 100 200 300 400 500 600
Time(s)

0

20

40

60

80

100
cpu memory

0 100 200 300 400 500 600
Time(s)

0

20

40

60

80

100
receive transmission

0 100 200 300 400 500 600
Time(s)

0

20

40

60

80

100
read write

0

0.1

0.2

0.3

0.4

0.5

Im
ba

la
nc

e
0

0.1

0.2

0.3

0.4

0.5

Im
ba

la
nc

e

0

0.1

0.2

0.3

0.4

0.5

Im
ba

la
nc

e

Figure 9 The resource utilization of DRS scheduler with even workload, random workload, and CPU workload.
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Figure 10 The resource utilization of Kube-scheduler with even workload, random workload, and CPU workload.

the network are 31.15% and 32.36%, respectively. And the disk reading and writing rates are 21.36% and 24.96%, respectively.
With the three workloads, the average resource utilization is 47.60%, 43.61%, and 41.90%, respectively. The imbalance is 0.02,
0.03, and 0.05, respectively. We can see that with the even workload, the resource utilization of DRS is high and balanced. When
the CPU load is heavy, the utilization of CPU and memory will increase and fluctuate. And the utilization of the network and
disk will decrease significantly. Nevertheless, DRS maintains a high average resource utilization and a low load imbalance with
different workloads, and achieves the expected scheduling target well.

Figure 10 shows the resource utilization of Kube-scheduler with different workloads. With the even workload, the CPU
and memory utilization is 59.61% and 57.13% respectively. The package receiving and transmission rates of the network are
27.14% and 21.94%, respectively. And the disk reading and writing rates are 15.45% and 20.34%, respectively. With the random
workload, the CPU and memory utilization is 58.30% and 57.33% respectively. The package receiving and transmission rates of
the network are 27.38% and 21.50%, respectively. And the disk reading and writing rates are 15.64% and 19.12%, respectively.
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Figure 11 The resource utilization of Random scheduler with even workload, random workload, and CPU workload.
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Figure 12 The resource utilization of Round Robin scheduler with even workload, random workload, and CPU workload.

With the CPU workload, the CPU and memory utilization is 65.44% and 65.58% respectively. The package receiving and
transmission rates of the network are 31.94% and 29.43%, respectively. And the disk reading and writing rates are 18.48% and
20.00%, respectively. With the three workloads, the average resource utilization is 33.60%, 33.21%, and 38.48%, respectively.
The imbalance is 0.08, 0.08, and 0.07, respectively. The Kube-scheduler only considers the usage of CPU and memory, and the
utilization of network and disk is low. When the CPU load is heavy, the CPU utilization is more balanced and the scheduling
effect is better. The load imbalance of Kube-scheduler is 4.39×, 3.06×, and 1.25× than that of DRS respectively with the
three workloads. At the same time, the average resource utilization of DRS is improved by 41.67%, 31.31%, and 8.90% over
Kube-scheduler. DRS performs well with all three workloads, but Kube-scheduler only performs well with the CPU workload.

Figure 11 shows the resource utilization of Random with different workloads. With the even workload, the CPU and memory
utilization is 59.45% and 59.85% respectively. The package receiving and transmission rates of the network are 34.78% and
32.32%, respectively. And the disk reading and writing rates are 19.19% and 25.91%, respectively. With the random workload,
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the CPU and memory utilization is 59.24% and 60.85% respectively. The package receiving and transmission rates of the network
are 33.37% and 31.51%, respectively. And the disk reading and writing rates are 19.60% and 24.78%, respectively. With the CPU
workload, the CPU and memory utilization is 56.83% and 57.31% respectively. The package receiving and transmission rates of
the network are 30.99% and 29.95%, respectively. And the disk reading and writing rates are 16.69% and 17.86%, respectively.
With the three workloads, the average resource utilization is 38.58%, 38.22%, and 33.94%, respectively. The imbalance is 0.06,
0.07, and 0.09, respectively. Due to the randomness of scheduling, resource utilization of Random fluctuates. Therefore, the load
imbalance of Random is relatively high, which is 3.21×, 2.77×, and 1.73× than that of DRS with the three workloads. Random
performs similarly with all three workloads but is less effective than DRS. The average resource utilization of DRS is improved
by 23.37%, 14.09%, and 23.47% over Random.

Figure 12 shows the resource utilization of Round Robin with different workloads. With the even workload, the CPU and
memory utilization is 58.74% and 58.19% respectively. The receiving and transmission rates of the network are 33.18% and
32.42%, respectively. And the disk read and write rates are 18.67% and 23.82%, respectively. With the random workload, the
CPU and memory utilization is 58.85% and 59.61% respectively. The receiving and transmission rates of the network are 32.78%
and 32.37%, respectively. And the disk read and write rates are 18.40% and 22.74%, respectively. With the CPU workload, the
CPU and memory utilization is 54.88% and 55.36% respectively. The receiving and transmission rates of the network are 29.36%
and 30.69%, respectively. And the disk read and write rates are 17.25% and 15.78%, respectively. With the three workloads, the
average resource utilization is 37.50%, 37.46%, and 33.88%, respectively. The imbalance is 0.06, 0.06, and 0.09, respectively.
The Round Robin scheduling performance is similar to that of Random. The load imbalance of Round Robin is relatively
high but stable, which is 3.40×, 2.50×, and 1.72× than that of DRS with the three workloads. Compared with Round Robin,
DRS improves the average resource utilization by 26.92%, 16.43%, and 23.66% respectively.

In general, DRS has the highest resource utilization, especially network and disk utilization. Kube-scheduler has the lowest
network and disk utilization, which aggravate the resource imbalance between nodes. The scheduling results of Random and
Round Robin are somewhat random, and the resource utilization is moderate. For resource imbalance, the resource imbalance
of DRS is significantly lower than other algorithms. Kube-scheduler has the highest resource imbalance with the balanced load.
Enhancing the awareness of network and disk usage helps DRS improve its understanding of the cluster state and further adapt
to different load conditions. In summary, DRS achieves the expected scheduling target well. Compared with Kube-scheduler,
DRS brings an improvement of 27.29% in resource utilization and reduces the load imbalance by 2.90×.

5.3.3 Latency

We evaluate the scheduling latency of DRS and Kube-scheduler with even workload, random workload, and CPU workload
respectively. We also deploy 300 pods and the results are shown in Table 3. Makespan represents the total time from deploying
the first pod to the end of the execution of all pods. For Kube-scheduler, the makespan contains two parts: the pod execution
latency and the scheduling latency. For DRS, the makespan contains three parts: the pod execution latency, the decision latency,
and the communication latency. According to the results of our tests, the scheduling latency of Kube-scheduler is about 4.3 ms.
The scheduling latency of the DRS is about 38.2ms, of which the communication latency is 35ms.

As shown in Table 3, with the even load, the makespan of DRS is about 1.06× that of Kube-scheduler. DRS does not aim
to reduce the makespan. To improve resource utilization, DRS may schedule the pod to the node with poor performance, thus
increasing the makespan. The scheduling latency of DRS is 7.24× that of Kube-scheduler, but their decision latency is similar.
The difference in latency comes from the socket communication overhead between DRS components. Since the communication
latency is far less than the pod execution latency, the communication latency only accounts for 0.647% of the makespan. With
random workload, the makespan of DRS is 1.03× that of Kube-scheduler. The decision latency and communication latency
of DRS account for 0.010% and 0.656% of the makespan respectively. The scheduling latency of Kube-scheduler accounts for
0.010% of the makespan. With the CPU workload, the scheduling latency of Kubernetes accounts for 0.008% of makespan. The
decision latency and communication latency of DRS account for 0.009% and 0.642% of makespan respectively. Kubernetes may
wait for node resources when scheduling pods, making its makespan greater than DRS. It is worth noting that the decision latency
of DRS is affected by the calculation scale of the neural network. Under a fixed reinforcement learning model, the scheduling
latency of DRS is stable and not affected by the complexity of the cluster state. Although the scheduling latency of DRS is greater
than that of Kubernetes, it is negligible for makespan. When the pod execution latency increases, the proportion of scheduling
latency will further decrease. DRS improves the resource utilization of the cluster with a negligible latency overhead.
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Table 3 Latency breaking down of DRS and Kube-scheduler with different workloads.

Workload Scheduler Type Latency (×103) Percentage (%)

Even
DRS

Makespan (s) 14.950 100
Make decision (ms) 1.572 0.011
Communication (ms) 10.171 0.647

Kube-scheduler Makespan (s) 14.038 100
Scheduling (ms) 1.621 0.012

Random
DRS

Makespan (s) 15.703 100
Make decision (ms) 1.583 0.010
Communication (ms) 10.378 0.656

Kube-scheduler Makespan (s) 15.304 100
Scheduling (ms) 1.579 0.010

CPU
DRS

Makespan (s) 18.843 100
Make decision (ms) 1.593 0.009
Communication (ms) 10.220 0.642

Kube-scheduler Makespan (s) 19.037 100
Scheduling (ms) 1.566 0.008

6 RELATED WORK

Recently, academia and industry have done a lot of research on the resource scheduling problem of Kubernetes. In these works,
researchers design customized scheduling algorithms or schedulers to overcome the limitations of the Kubernetes scheduler.
Their optimization direction includes improving the overall resource utilization, balancing the load, reducing the completion
time of tasks, reducing the decision time, and so on. This research can be roughly divided into two types. One is to improve the
scheduling algorithm of Kubernetes using traditional methods, and the other type is to use machine learning methods (especially
reinforcement learning). In this section, we introduce the traditional Kubernetes scheduling optimization and reinforcement
learning scheduling and compare them with DRS.

Kubernetes scheduling optimization. Some research proposes customized scheduling algorithms for different scheduling
scenarios. Stratus24 is a cluster scheduler specially designed to orchestrate batch jobs on virtual clusters. It packages tasks
based on the required resources and estimated processing time to minimize the cluster cost of using the public cloud. Weiguo
Zhang et.al implements the model extraction of Kubernetes scheduling module25. They combine the ant colony algorithm and
particle swarm optimization algorithm to improve the K8s scheduling model. Some work enhances the Kubernetes scheduler
by sensing the static and dynamic information of the hardware. KCSS26 introduces multiple selection criteria for Kubernetes
scheduling, including CPU, memory, disk utilization, power consumption, pod number, etc. It provides the scheduler with an
enhanced global view of cluster resources. KCSS uses the TOPSIS algorithm to select the optimal node and finally achieves a
good effect. NetMARKS27 uses Istio Service Mesh to collect the dynamic network metrics of the Kubernetes cluster so that the
scheduler can understand the dependencies between pods. NetMARKS can schedule delay-sensitive tasks in edge clusters and
has achieved good results under different workloads. KubeCG28 improves the awareness of Kubernetes about GPU resources. It
optimizes container deployment by considering the timeline of Pod and the historical execution information, so as to decrease
the execution latency caused by waiting for GPU resources.

Reinforcement-learning-based scheduling. With the development of artificial intelligence, machine learning methods such
as reinforcement learning have shown good effects in solving sequence decision-making problems. Decima20 models an event-
driven simulation environment based on the Spark cluster. It uses an extensible graph neural network to extract features of tasks
and can handle tasks with a dependency of any size. DeepRM19 models the state information of the resource scheduling system
into an image, as an input for the convolutional neural network. The convolutional neural network extracts the image information
quickly. Through the reinforcement learning method, they iteratively update the parameters in the neural network to generate the
final scheduling policy. On this basis, DeepRM is also extended to multiple clusters and multiple machines29. RLSK30 is also a
multi-cluster job scheduler, which aims to improve the average resource utilization between clusters and balance the utilization
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of different resources in the cluster. It achieves resource balance inside and outside the cluster using DQN algorithm. Ning Liu
et.al uses a two-layer deep reinforcement learning model to jointly complete the management of cluster resources and energy
consumption31. One of the deep reinforcement learning models is responsible for analyzing the cluster state and reasonably
scheduling tasks. The other one models the energy consumption of the machines to analyze their state. This model will shut
down or start the machines for reasonable energy consumption management.

Through the analysis of the above work, we can see that hardware awareness of the worker nodes is a key factor in Kubernetes
scheduling9. Adding resource indicators of node resources can help the scheduler understand the cluster state, thereby improving
the scheduling performance. However, traditional scheduling algorithms still need to spend a lot of time adjusting the parame-
ters of the algorithm after designing indicators. This makes the design of the scheduling algorithm very complex and tedious.
Using reinforcement learning can solve this problem and make the scheduler learn the scheduling policy automatically. In this
paper, we aim to reduce the imbalance of resource usage caused by the Kubernetes scheduler through the advantages of rein-
forcement learning. Inspired by the previous work, we expand the resource indicators of nodes and increase the consideration of
networks and disks. When selecting indicators, we choose indicators that are easy to obtain, such as package transmission rate,
to avoid large monitoring costs. Compared with other work using reinforcement learning, we re-model the application scenario
of DRS and achieves a good scheduling effect through the reasonable design of state, action, and reward. For performance eval-
uation, as mentioned in literature9, the research on the Kubernetes scheduling algorithm lacks standardized evaluation methods.
Due to the differences between scheduling targets and workloads, these research are usually isolated and difficult to compare
fairly. The new algorithm is usually compared with the simple heuristic algorithms or the default algorithm of Kubernetes, as
we have done in this paper. However, the implementation method of DRS is universal, it can adapt to different clusters and
scheduling targets by redesigning the reinforcement learning model.

7 CONCLUSIONS

Kubernetes, which is a container orchestration framework, is actually the de facto standard of cloud-native. However, the native
scheduler of Kubernetes has a significant disadvantage of imbalanced resource utilization. In this paper, we propose DRS, which
is a Kubernetes scheduler based on deep reinforcement learning. DRS consists of three parts, including the scheduler, monitor,
and decision maker. DRS scheduler follows the Kubernetes Scheduling Framework and implements user-defined filtering and
scoring functions. DRS monitor monitors the usage of CPU, memory, network, and disk resources on each node. Compared
with Kube-scheduler, DRS is more comprehensive in the awareness of resource utilization. DRS decision maker is trained
using the DQN algorithm and can automatically learn scheduling policy from the state of the cluster. By designing the reward
function of DRS, DRS achieves the high-level scheduling target of improving cluster resource utilization and reducing load
imbalance. Experimental results show that DRS can adapt to different workloads, and achieve better scheduling effects than
other common scheduling algorithms. For average resource utilization, DRS achieves an improvement of 27.29% compared with
Kube-scheduler. For load imbalance, DRS is 2.90× less than Kube-scheduler. At the same time, DRS only brings 3.27% CPU
overhead and 0.648% communication latency. In the future, we will continue to optimize the scheduling algorithm from the
perspective of resource awareness and scalability. For example, we can improve the awareness of Kubernetes about new hardware
(such as GPU and FPGA) to further improve the performance. Or we can introduce distributed scheduling and multi-level
scheduling to prevent single-point failure.
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