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Abstract

Global changes such as elevated carbon dioxide [eCO2] and warming have been described as the most serious environmental

threats to our planet. Elevated CO2 may have important consequences on forested ecosystems. Although, the impact is worse

in dryland ecosystems as atmospheric changes increase aridity and change soil fertility, but it remains unknown. The study

aiming at understanding the effects of eCO2 and its consequences on Hashab (Acacia senegal) as a dryland C3 tree species

with substantial ecological and economic roles. We quantitatively reviewed and discussed over 50 papers on the literature

about CO2 elevation (eCO2) effects on C3 plant and ecosystems to understand how eCO2 will affect dryland C3 species of

sub-Saharan Africa. We found in the literature that, for C3 species generally eCO2 increases photosynthesis rate and reduces

stomatal conductance but with increased plant leaves’ area leading to release water. Water loss due to stomatal conductance is

unavoidable in dryland ecosystems. More seeds can be produced in eCO2 but with mostly correlated seed low quality which may

limit seedling recruitment. Seedlings, as the most responsive stage to eCO2, may respond by enhancing growth and biomass

production or experience photosynthesis down regulation and/or photorespiration. The results suggested that A. senegal, as a

C3 and leguminous species will respond to eCO2 by two scenarios; 1) positively through enhancing growth and biomass or; 2) a

negative photosynthetic acclimation that could be due to physiological dysfunction that resulted in metabolic compulsions. The

responses need to be further investigated under different ecological conditions to feedback the global changes and ecosystem

monitoring including changes of species composition is recommended.
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Abstract:  24 

Global changes such as elevated carbon dioxide [eCO2] and warming have 25 

been described as the most serious environmental threats to our planet. 26 

Elevated CO2 may have important consequences on forested ecosystems. 27 

Although, the impact is worse in dryland ecosystems as atmospheric changes 28 

increase aridity and change soil fertility, but it remains unknown. The study 29 

aiming at understanding the effects of eCO2 and its consequences on Hashab 30 

(Acacia senegal) as a dryland C3 tree species with substantial ecological and 31 

economic roles. We quantitatively reviewed and discussed over 50 papers on 32 

the literature about CO2 elevation (eCO2) effects on C3 plant and ecosystems 33 

to understand how eCO2 will affect dryland C3 species of sub-Saharan 34 

Africa. We found in the literature that, for C3 species generally eCO2 35 

increases photosynthesis rate and reduces stomatal conductance but with 36 

increased plant leaves' area leading to release water. Water loss due to 37 

stomatal conductance is unavoidable in dryland ecosystems. More seeds can 38 

be produced in eCO2 but with mostly correlated seed low quality which may 39 

limit seedling recruitment. Seedlings, as the most responsive stage to eCO2, 40 

may respond by enhancing growth and biomass production or experience 41 

photosynthesis down regulation and/or photorespiration. The results 42 

suggested that A. senegal, as a C3 and leguminous species will respond to 43 
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eCO2 by two scenarios; 1) positively through enhancing growth and biomass 44 

or; 2) a negative photosynthetic acclimation that could be due to 45 

physiological dysfunction that resulted in metabolic compulsions. The 46 

responses need to be further investigated under different ecological 47 

conditions to feedback the global changes and ecosystem monitoring 48 

including changes of species composition is recommended. 49 
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1. Introduction:  69 

Global climatic changes have been described as the most serious 70 

environmental threat to our planet due to massive anthropogenic activities 71 

(IPCC, 2014). Human activities are significant causing factor for increasing 72 

atmospheric pollution and concentrations of greenhouse gases (GHGs) that 73 

are considered a crucial indicator for climate change (Reynolds-Henn et al. 74 

2010; IPCC, 2014).  75 

Since the industrial era, CO2, nitrous oxide and methane emissions have 76 

been raising up along with concomitant increasing in global mean 77 

temperature. Nowadays, CO2 is at the highest levels worldwide (IEA, 2022). 78 

The level has increased by about 40% since the industrial era to reach 390.5 79 

ppm in 2011 and expected to rise up to 985 ppm during the upcoming 100 80 

years (IPCC, 2013 and 2014). Despite the pandemic and its associated large 81 

scale & wide lockdown, it increased from 412 ppm in 2020 to reach 419 82 

ppm in 2021 and additional increases (4.9%) are predicted in 2022, almost 83 

returning back to pre-pandemic level (during pandemic the decrease was 84 

5.4%). These persistent increases are due to substantial rise in consumption 85 

of fossil fuel (Le Page, 2019). 86 

The increase in CO2 concentration of earth's atmosphere associated with 87 

predictions of global warming (IPCC, 2013) and water scarcity (ESCWA, 88 



5 

 

2011) have stimulated excellent reviews and growing body of knowledge 89 

about the consequences of high concentration of CO2 on biodiversity in 90 

general and woody vegetation diversity in particular (Yeboah et al., 2016). 91 

However, impacts are worse in dryland ecosystems, particularly sub-Saharan 92 

Africa (IPCC 2014; Niang et al. 2014).  93 

For instance, recent studies have reported that impacts of climate change 94 

will have profound effect on vegetation composition and structure (e.g. Díaz 95 

et al., 2019) and ecosystem functions (e.g. USGCRP, 2018). Moreover, CO2 96 

concentrations on the atmosphere are likely to stimulate plant-microbes 97 

competition and increase soil fertility (Karhu et al., 2014). Globally, the 98 

above mentioned effect will increase C&N fixation rate in both above 99 

ground and below ground vegetations and by time will result in inefficient N 100 

in ecosystems (Luo et al., 2004). The enhanced vegetation accrual of N can 101 

explain the reduction in soil organic N (Gill et al., 2006). According to 102 

Karhu et al. (2014), the consequences of elevated CO2 will depend on the 103 

soil moisture and soil nutrient content, therefore the impact will be worse in 104 

dry areas of sub-Saharan and savannah regions due to severe drought and 105 

land degradation (Delgado-Baquerizo et al., 2014). Hu et al. (2016) reported 106 

that generally under elevated CO2 interaction of woody vegetation and soil 107 

microbes are predicted to play a fundamental role in availing more nutrients, 108 
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although under limited nutrient conditions tree-microbes struggling for 109 

nutrients will bear out the overall biomass dimensions.  110 

Accounting for about 40% of the earth's area, dry lands are considered to be 111 

most vulnerable spots for impacts of CO2 concentrations accompanied with 112 

global temperature increases (Stanley et al., 2000 and Cherlet et al., 2018). 113 

According to White et al. (2002) about 50% of the world's countries are 114 

completely or partially characterized by features of dry ecosystems. For 115 

instance, in Africa as reported by Ffolliott et al. (2002), IUFRO (2004), 116 

Yang et al. (2005) and Zeng and Yoon, (2009) dry ecosystems are spreading 117 

out in 36 countries which is about 43% of the continental area. Even though, 118 

the dry region is a habitat of near two fifth of the world's resident citizens 119 

and it is inclined to enlarge because of population outgrowth and dry land 120 

natural extension (Yang et al., 2005; Zeng and Yoon, 2009). 121 

Hashab (Acacia senegal) is an important example of dryland forest tree, it is 122 

a dry land's woody plant legume with substantial ecological and economic 123 

roles for Africa's community livelihoods. Interconnecting Forests, Science 124 

and People (IUFRO, 2004) has reported that the established intercropping A. 125 

senegal resilient system that has been in Sub-Saharan Africa for handed 126 

years, is to be exposed to many anthropogenic and ecological hazards.  127 

https://r.search.yahoo.com/_ylt=AwrFZ33gi11j.1ogEmxXNyoA;_ylu=Y29sbwNiZjEEcG9zAzEEdnRpZAMEc2VjA3Ny/RV=2/RE=1667103841/RO=10/RU=https%3a%2f%2fwww.iufro.org%2f/RK=2/RS=lunXbuYnkLy249nutVTFQzFFR6Y-
https://r.search.yahoo.com/_ylt=AwrFZ33gi11j.1ogEmxXNyoA;_ylu=Y29sbwNiZjEEcG9zAzEEdnRpZAMEc2VjA3Ny/RV=2/RE=1667103841/RO=10/RU=https%3a%2f%2fwww.iufro.org%2f/RK=2/RS=lunXbuYnkLy249nutVTFQzFFR6Y-
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Nevertheless, the tree is one of the most priority forest types in Sudan. It 128 

produces gum Arabic. Contributing to over 90% of global production, gum 129 

Arabic is of great socio-economic impacts. Agroforestry opportunity, 130 

animals' feed, shelter for shade, high quality charcoal, lumber and medicines 131 

are the other purposes of the tree (Fagg and Allison, 2004; Fadl and El 132 

Sheikh, 2010; Sprent et al., 2010; FAO, 2017).  133 

Acacia senegal is a C3 species (Sibret, 2018) hence, it may have 134 

physiological adaptations to CO2 concentration on growth parameters, 135 

biomass accumulation and fitness. However our understanding to the 136 

mechanisms and magnitude of these effects is limited. Moreover, a better 137 

understanding of impacts of high CO2 concentrations on the essential A. 138 

senegal is crucial (Sleen et al., 2015). On the other hand, many recent 139 

reports (e.g. Siddig, 2019; UNEP, 2020) have warned from ecological data-140 

deficiency and information gap in Africa including impacts of CO2 elevation 141 

on dryland woody vegetation. Accordingly, this study aims at exploring the 142 

impact of CO2 raise on A. senegal and its consequences on dryland 143 

ecosystems' patterns by reviewing and discussing the responses of woody 144 

vegetation to CO2 concentration. Finally, we also point out some needed 145 

research directions in this topic and recommended measurements.  146 

 147 
 148 
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2. Methodology:   149 

This study focused on literature analysis and considering search of papers 150 

published in notable journals with focus on consequences that will face the 151 

dryland environments. In particular, a simple internet search have been 152 

begun by which keywords like drylands vegetation, acacia trees, global 153 

change, C3 species, CO2 increases based on searching procedure explained 154 

above plus looking at the titles, about fifty articles have been identified as 155 

relevant for further assessment. Therefore, in each article we looked at the 156 

title, abstract, keywords as well as skimming throughout the papers' results 157 

and discussions for collecting detailed evidences about the consequences 158 

that the drylands may face up to under elevated CO2 and generally C3 species 159 

responses and adaptation.  160 

Specific information searched for were growth (e.g. photosynthesis, stomatal 161 

conductance, respiration, drought, soil, microbial activities, nutrition, seed 162 

production and seedling performance) and development (e.g. biomass 163 

production, dry weight) parameters.  164 

 165 

3. Responses of woody vegetation to elevated CO2: 166 

Impact of increased CO2 concentrations on plants is a long-standing research 167 

topic for plant ecologists. In particular, the responses of photosynthesis, 168 

stomatal conductance and respiration & transpiration, to elevated CO2 as 169 



9 

 

well as their subsequent effects on plants' growth & health indicators, seed 170 

production and seedling performance are  among the many research areas of 171 

recent works (Steinger et al., 2000; Katul, 2010). The literature of woody 172 

vegetation responses to elevated CO2 have been well addressed (e.g. 173 

Yeboah, 2016). Considerable attention is growing on mechanisms and 174 

amount of carbon sequestration (Yeboah, 2016) and due to their extensive 175 

coverage, nearly one third of earth's surface and two thirds of gross biomass 176 

production, there are a growing interest in the consequences of CO2 177 

concentration on woody vegetation (Wisniewski and Neil, 2012; Bhargava 178 

et al., 2016) and in the following paragraphs we are discussing some of these 179 

responses.  180 

3.1. Photosynthesis 181 

Generally woody vegetations respond to CO2 concentration by accelerating 182 

photosynthetic metabolic reactions and increasing allometry and biomass 183 

productivity with enhancement in litter quality and quantity and  184 

rhizodeposition as well (e.g. Knapp et al., 1996; Ainsworth and Long, 2005; 185 

Albert et al., 2011; de Graaff et al., 2011). Accordingly, more detritus and 186 

root exudates with easy digested carbon are expected to be added into soil 187 

(Jones et al., 2009; Larsen et al., 2011).  188 
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According to Reddy et al. (2010), elevated CO2 enhances photosynthesis 189 

system and biomass production for many plant species, assuming that 190 

growth limiting factors are available. It has long been known that, when C3 191 

tree species exposure to CO2 for short term, this can intensify photosynthetic 192 

process and ameliorate growth provided other resources are not seriously 193 

limited (Haverd, 2019; Ainsworth and Rogers, 2007), whereas, for long time 194 

the intensification usually counterbalanced by reduction in metabolic 195 

synthesis (Long et al., 2004).  196 

For the increase in relative growth rate and net assimilation rate that 197 

accompanied  with a decrease in specific leaf area that typically happens 198 

under CO2 concentration, the averages across the slow and fast-growing 199 

Acacia species were increases of relative growth rate and net assimilation 200 

rate with a decrease in foliage area per unit foliage dry mass (Poorter et al., 201 

1996). The greater enhancement of net assimilation rate by elevated CO2 in 202 

Acacia species, was offset by an equally large reduction of foliage area per 203 

unit foliage mass. This can be attributed to Acacia species from semi-arid 204 

environments which are inherently slower growing than those characteristic 205 

of mesic environments (Atkin et al., 1998). Slow growth in the semi-arid 206 

species is not associated with lower net assimilation rate or less plant mass 207 

allocated to foliage. Rather, their slow growth is associated with a smaller 208 
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foliage area per unit foliage mass compared to their faster-growing 209 

counterparts. Phyllode production reduces the relative growth rate because 210 

phyllodes have a smaller area per unit foliage mass than leaves (Atkin et al., 211 

1998). Not surprisingly, phyllode production is dominant in inherently slow-212 

growing acacia species from semi-arid environments, with exclusive or 213 

dominant leaf production mainly occurring in faster-growing species from 214 

mesic environments (Atkin et al., 1998). 215 

 216 

3.2. Stomatal conductance: 217 

Many studies (e.g. Gedney et al., 2006 and Betts et al., 2007) indicated that 218 

high CO2 makes stomata to open less minimizing water loss resulting in 219 

greater surface running water. By this means and for instance in drylands, 220 

decreasing lost water may be prolonged growth period (Volk et al., 2000). 221 

However, this effect can be counteracted by leaves' area that enlarged by 222 

CO2 making no matter for water use efficiency (Ziska et al., 1991). 223 

Nevertheless, stomata lesser opening releases the amount of CO2 that would 224 

have absorbed by plant, into atmosphere (Shiren, 2013).  225 

A possible beneficial effect of this increase in water use efficiency is a 226 

reduction in the rate of water consumption per unit leaf area, but the 227 

simultaneous increase in total leaf area as a result of CO2 increase may 228 

partly offset this increase in WUE. Increase in WUE as a result of increasing 229 
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CO2 concentration has been observed in a number of tropical pioneer and 230 

climax tree species including Acacia mangium (Oberbauer et al., 1985, 231 

Reekie and Bazzaz, 1989; Ziska et al., 1991). 232 

Investigations of stomatal response to ecological changes has a dual 233 

approaching models, the first one is depending on the effects of 234 

environmental changes on stomatal through semi-empirical experiments and 235 

photosynthetic performance (Jarvis, 1976; Leuning, 1995). 236 

The other one, alternatively, depends on the plant- water requirements and 237 

points out to organizing performance of stomata, consistent with these 238 

approaches, when stoma opens to get carbon it concurrently releases water, 239 

this evaporated water is respected as at expensive of plant water balance 240 

(Makela et al., 1996). This water loss due to stomatal conductance is even 241 

more costly and unavoidable in dry land ecosystems.  242 

 243 

3.3. Respiration: 244 

Short-term elevation of CO2 increases assimilation rate and decreases 245 

transpiration rate in C3 plants (Shiren et al., 2013). Seemingly, elevated CO2  246 

has a retrogressive fitness to ecosystem transpiration, when CO2 increases 247 

transpiration rate entirely decreases (Ziska and Bunce, 1994; Gonzalez-248 

Meler, 2004). The mechanisms that reduced transpiration can be attributed 249 
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to increased rate of light independent reactions of carboxylation that 250 

stabilize CO2 (Gonzalez-Meler, 2004).   251 

Transpiration per unit leaf area of Acacia farnesiana (L.) Willd. plants 252 

grown at ambient CO2 (concentration of 385 ppm) was about twice that of 253 

plants grown at elevated CO2 (980 ppm). However, when plants grown for 254 

more than a year at elevated CO2 were exposed to ambient CO2 for 9 days, 255 

they transpired at half the rate of those had been grown at ambient CO2. 256 

Similarly, plants grown at ambient CO2, when exposed to elevated CO2, 257 

transpired at twice the rate of those grown at elevated CO2 (Dugas et al., 258 

2001).  259 

Concentration of CO2 can improve plant growth and biomass production by 260 

27% without changing in respiration rate, while in ambient the improvement 261 

may reach 20% but associated with increases in whole plant community 262 

respiration rate (Miquel et al., 2004; Hamilton et al., 2002). 263 

More often than not, high CO2 decreases leaves' transpiration rate and 264 

increases plant leaves' area leading to release water. The water released is 265 

balancing of that would be saved in low transpiration rate (Heath and 266 

Kerstiens, 1997). 267 

3.4. Drought:   268 
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World-wide and for upcoming hundred years, temperature is foreseeing to 269 

increase by 2 to 4.5
o
C on average, as a consequence of elevated CO2, leading 270 

to change rainfall fluctuation pattern and increasing aridity (IPCC, 2013). 271 

The ecological changes alters biotic and abiotic factors that can change 272 

ecosystems composition and function (Beier, 2004; Santoyo, 2017). These 273 

anticipated climatic changes will have important consequences on ecosystem 274 

water availability (i.e. drought) specially in drylands of Africa (Ľubica et al., 275 

2010).   276 

Many studies (e.g. Gessler et al., 2017; Escós et al., 2000; Blodner et al., 277 

2005) reported that drought may decrease photo-assimilates by restricting 278 

stomatal opening, metabolic reactions and photosynthesis rate causing a 279 

substantial lack in biomass production and thus success in seedling 280 

establishment and plant competitiveness. Combined of increased aridity 281 

periods and temperature will amplify the consequences of drought by paced 282 

evaporation, minimized plant detritus and exudates, controlled soil microbes 283 

and fertility (Sowerby et al., 2008; van Meeteren et al., 2008; Selsted et al. 284 

2012). 285 

On the other hand, when soil moisture is not affected, increased temperature, 286 

at globe scale, will reversibly enhance soil microbes, nutrient minerals 287 

availability and soil fertility and so, enhance vegetation growth and 288 



15 

 

productivity (Jonasson et al., 2006; van Meeteren et al., 2007; Selsted et al., 289 

2012).    290 

3.4. Soil:  291 

According to Keeling et al., (1995) and throughout the last ten years, there 292 

are two assumptions to describe the link between soil fertility and plant 293 

growth in the era of increasing CO2 as the issue is of great consideration. 294 

Earliest for short-period, the increasing of soil fertility and microbes activity 295 

under carbon concentrations is continuous or whether for long-period, the 296 

fertilization enhancement will not continue because of reduction in nutrients 297 

of soil mainly N (Diaz et al., 1993).  298 

The latest, plant soil interaction under CO2 concentration will change soil 299 

C&N cycle that lead to either increases or decreases CO2 emissions (Smith et 300 

al., 2000). The two assumptions are dealing with the changing in soil carbon 301 

& nitrogen and microbial activity because soil C&N cycle entirely correlates 302 

to microbial activity.   303 

Large-scale pool of soil organic matter decomposition or synthesis reactions 304 

will result in considerable changes in the rate of CO2 emission. Several 305 

investigations have concerned with this topic (e.g. Lichter et al., 2005 and 306 

2008; Hoosbeek et al., 2006; Langley et al., 2009; Hoosbeek et al., 2006) as 307 

at large-scale pools, soil carbon responses to CO2 concentration by two 308 
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variant approaches enhancement or detraction. Soil organic matter C&N can 309 

increase or decrease under CO2 concentrations, these two induced processes 310 

are crucial and connected with pool C&N dynamics. In one hand, what let 311 

researchers to suggest that CO2 concentration will increase SOM is due to 312 

raising plant exudates, detritus, soil microbial activity (Pritchard et al., 313 

2008). 314 

On the other hand and according to Finzi et al. (2007) and Gill et al. (2006) 315 

plan tissue gains more nutrient elements under CO2 concentration making 316 

litter is rich in N and detritus as well. However, such process is 317 

demonstrating the changes in nitrogen content as it is lesser in tested soil 318 

than control.  319 

3.6. Microbial activity: 320 

Under CO2 concentration 'priming effect' is one procedure that, probably, 321 

affects soil carbon accumulation to increase this enhances soil microbial 322 

activity and makes both original and newly added organic matter to soil 323 

available for microbes to enlarge their mass and to improve their activity 324 

(Kuzyakov et al., 2000; Fontaine et al., 2007; Patterson, 2009; Langley et al., 325 

2009). Nevertheless, the improvement of availing SOM seems to be not 326 

sustainable, as some studies (e.g. Langley et al., 2009) concluded that 327 
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calculations of carbon added and depleted from soil result in reduction in 328 

carbon.  329 

'Mine' procedure is another method under CO2 concentration in which soil 330 

microbes have to search for more N from old organic matter, but the 331 

"mined" N  usually removed by under stories growth making no 332 

enhancement in microbial biomass  because of  N inefficiency. Nonetheless, 333 

the new added organic matter can liberate CO2 to atmosphere by amplified 334 

oxidation (Kuzyakov et al., 2000). 335 

Estimation of such N increases is complicated due to need to understand 336 

why under CO2 concentrations, plant demand more N that in the same 337 

amount of the decline one in the N cycle process (Reich et al., 2006). 338 

Nonetheless, the estimation of net N flows under CO2 concentration in the 339 

environment at large is the key answer for the knowledge of N limitation in 340 

era of climatic changes  (Sharon et al., 2010). 341 

3.7. Nutrition  342 

The increased demand of mineral nutrients in ecosystems often under 343 

elevated CO2 may not be compensated because of limited mineral nitrogen 344 

supply. Nitrogen mineral supply is limited factor for potential growth of the 345 

individual plant and the community level under elevated CO2 (Eamus & 346 

Jarvis, 1989). However, N2-fixing species can compensate the shortages of 347 
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nitrogen and plant in nitrogen-limited conditions may depend on them for 348 

nitrogen balances in the ecosystems (Hartwig et al., 2000; Soussana & 349 

Hartwig, 1996). 350 

 Legumes can enhance their symbiotic nitrogen fixation under elevated 351 

atmospheric CO2. A higher biomass investment in tissues (e.g. nodules) is 352 

one mechanism and the other is increasing nitrogenase activity (a greater 353 

amount of N2 fixed per unit nodule mass and time), but these mechanisms 354 

can be additive, or cancel each other out. (Schortemeyer et al. 2002; Thomas 355 

et al., 2000). 356 

Rastetter et al. (1997) suggested that nutritional imbalances may limit effects 357 

of CO2 on plant due to changes in above-ground (C) and/or below-ground 358 

required nutrients. Accordingly, decline in below-ground N constrains 359 

effects of CO2 elevation on woody vegetations (Poorter and Pérez-Soba, 360 

2001). Furthermore, under CO2 concentration soil poor in N content 361 

produced  N-limited leaves that resulted in reduced photosynthetic reactions 362 

(Curtis et al., 2000).  363 

According to Saxe et al. (1998) nitrogen limitation is often observed in high 364 

CO2 though, enhancement in woody vegetation growth could be reserved 365 

merely with sustainable supply of nitrogen. Plant with ability of N2-fixing is 366 

proofed to enhance soil mineral N content in elevated CO2, hence other 367 
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existing non-fixing species can assimilate more carbon as well. This 368 

interaction effect is considered as a 'positive effects' (Schortemeyer et al., 369 

2002). 370 

 371 
 372 
 373 
 374 

3.8. Seed production:   375 

In era of high CO2, reproductive traits such as flowering and seed production 376 

are vital features of the plant communities’ future dynamics (Ibanez et al., 377 

2006). Elevated CO2 can alter tree population dynamics and ecosystem 378 

composition by affecting quality of seed bulks and then establishment of 379 

seedling (Caspersen and Saprunoff, 2005). 380 

For instance, elevated CO2 can increase seed production quantities 381 

(Jablonski et al., 2002) but are likely associated with decreasing features 382 

such as seed C/N, germination and biomass (He et al., 2005). Rather, 383 

leguminous tree can avoid reducing seed quality in high CO2 by its N2-fixing 384 

ability, provided that the compensated nutrients are balancing the gained 385 

carbon that being available at CO2 elevation (He et al., 2005; Miyagi et al., 386 

2007). 387 

In response to elevated CO2 seed nitrogen reduced by 14% on average for 388 

179 studied species while, there were significant variations between legumes 389 
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and non-legume species; legumes were not affected while in non-legume 390 

species nitrogen was reduced (Jablonski et al., 2002). When more N 391 

available at elevated CO2 concentrations seed biomass will increase without 392 

reduction in seed quality. But even in N-reduction system, legume species 393 

can invest more carbon that being available at elevated CO2 for increasing 394 

the N2- fixation process (Allen et al., 2000 and Hikosaka et al., 2011). 395 

Therefore under CO2 concentration, legumes can increase their seed mass 396 

without decreasing in seed N concentration while non-legumes can increase 397 

their seed mass but with reduction in seed N concentration which may result 398 

in seed quality and  seedling future development  (Fenner, 1991; Andalo et 399 

al. 1996). 400 

3.9. Seedling's performance:  401 

Many studies (e.g. Radford & Cousens, 2000; Edwards et al., 2001; Nguyen 402 

et al., 2017) reported that successful germination and well establishment of 403 

new plantations are determining ecosystem's future composition and 404 

services. Elevated CO2 can increase relative growth rate of many species as 405 

earlier stage of plant is more responsive to CO2 (during a couple of days or 406 

weeks) leading to advantage plant future growth (Norby et al., 1996).  407 

Ainsworth & Long (2005) and Ainsworth & Rogers (2007) in FACE 408 

experimental studies of seedlings reported that soil N content is determining 409 

https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/effects-of-elevated-co2-and-temperature-on-seed-quality/BD95A53A2597A7575462999E49B36B6A#ref23
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the photosynthesis rate, as the rate in N-limited soil is lower than that of rich 410 

N.  Since the limited growth factors rather than C seems to be limited or 411 

even decline under CO2 lead to down-regulate growth enhancement. Soil 412 

fertility will play a vital role in establishing seedlings for community new 413 

generations.  414 

The effect of elevated CO2 on C3 species’ seedlings is transiently stimulated 415 

the Relative Growth Rate (RGR, increase in mass per unit mass per day) and 416 

likely the effect depends on the inherent RGR of the species. Environmental 417 

conditions often determine this characteristics as unfavorable conditions 418 

have the species of low RGR (Chapin, 1980; Lambers and Poorter, 1992; 419 

Poorter, 1993; Lambers  et al., 1998). In woody plant species, characteristics 420 

of RGR are often robustly associated with a lower foliage area per unit 421 

foliage dry mass and lower N concentrations (Atkin and Lambers 1998; 422 

Atkin et al. 1998). 423 

4. Conclusions and future directions: 424 

Despite the increase in atmospheric CO2 concentrations at the global scale, 425 

elevation of CO2 in temperate forests, thought to stimulate plant growth and 426 

eventually NPP. In contrary, drylands of Africa such as Savanna woodlands 427 

are reported to be most vulnerable and highly sensitive to impacts of 428 

associated climate changes at the local scale. Examples of serious impacts of 429 
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climatic changes in Savanna ecosystems can be on soil moisture availability 430 

and soil microbial communities those of critical roles in nutrient cycling and 431 

plant growth in dryland ecosystems, respectively. Consequently, these 432 

changes in such important processes may directly influence fauna and flora 433 

diversity and distribution as well as their associated ecosystem services 434 

which eventually affect human livelihoods in these ecologically fragile 435 

regions.  436 

Nevertheless, impacts of climatic changes on woody vegetation are still 437 

limited and many questions are yet to be answered. For instance, 438 

understanding and predicting the effects of climate change on specific 439 

important Savanna trees species and consequently their ecosystem services 440 

is crucial and much needed research direction. Moreover, the responses and 441 

adaptations of the most important C3 tree species in dryland of Sudan like 442 

Acacias (e.g. A. senegal, A. nilotica, A. seyal ...etc) to CO2 elevation need to 443 

be evaluated for short and long-term periods to draw a holistic picture of 444 

their ecosystem dynamics. Nonetheless, other interacting factors with CO2 445 

such as water limitation, thermal stress, and nutrient deficiency should be 446 

investigated for better understanding responses of plants to climatic changes.  447 

 448 



23 

 

On the other hand, for a proper adaptation planning for drylands vegetation 449 

in the face of climatic changes there are few management interventions that 450 

have to be in place. These measures may include;  451 

1) Following suitable rain water harvesting practices.  452 

2) Developing vegetation assessment and vulnerability mapping following 453 

remote sensing technology, for example.     454 

3) Given the predicted impacts on seed production, soil-plant-nutrition, and 455 

seedlings' performance, some attention has to be devoted to vegetation 456 

rehabilitation programs.  457 

4) Adoption of a long-term ecosystem monitoring including changes of 458 

species composition and diversity as well as net photosynthesis and stomatal 459 

responses (i.e. Ecosystem productivity). Important values for a such 460 

proposed monitoring will not only  provides ability to detect changes in CO2 461 

concentrations at the ecosystem level or allow better understanding of 462 

relation between CO2 elevation and up-regulation or down-regulation of 463 

photosynthesis but also show plants stomatal response to elevated CO2 and 464 

under which conditions this occurs.    465 

Overall, an impact of CO2 elevation is expected to be worse in tropical 466 

dryland ecosystems and particularly in sub-Saharan Africa. Accordingly, 467 

much attention should be devoted to understanding how elevated CO2 will 468 
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affect dryland woody vegetations and subsequent ecological functions and 469 

services in sub-Saharan Africa. 470 

 471 
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