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Abstract

The purpose of this paper is to utilize adaptive dynamic programming to solve an optimal consensus problem for double-

integrator multi-agent systems with completely unknown dynamics. In double-integrator multi-agent systems, flocking algo-

rithms that neglect agents’ inertial effect can cause unstable group behavior. Despite the fact that an inertias-independent

protocol exists, the design of its control law is decided by dynamics and inertia. However, inertia in reality is difficult to mea-

sure accurately, therefore, the control gain in the consensus protocol was solved by developing adaptive dynamic programming

to enable the double-integrator systems to ensure the consensus of the agents in the presence of entirely unknown dynamics.

Firstly, we demonstrate in a typical example how flocking algorithms that ignore the inertial effect of agents can lead to unstable

group behavior. And even though the protocol is independent of inertia, the control gain depends quite strongly on the inertia

and dynamic of the agent. Then, to address these shortcomings, an online policy iteration-based adaptive dynamic program-

ming is designed to tackle the challenge of double-integrator multi-agent systems without dynamics. Finally, simulation results

are shown to prove how effective the proposed approach is.
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Abstract

The purpose of this paper is to utilize adaptive dynamic programming to solve an
optimal consensus problem for double-integrator multi-agent systems with com-
pletely unknown dynamics. In double-integrator multi-agent systems, flocking algo-
rithms that neglect agents’ inertial effect can cause unstable group behavior. Despite
the fact that an inertias-independent protocol exists, the design of its control law
is decided by dynamics and inertia. However, inertia in reality is difficult to mea-
sure accurately, therefore, the control gain in the consensus protocol was solved by
developing adaptive dynamic programming to enable the double-integrator systems
to ensure the consensus of the agents in the presence of entirely unknown dynamics.
Firstly, we demonstrate in a typical example how flocking algorithms that ignore the
inertial effect of agents can lead to unstable group behavior. And even though the
protocol is independent of inertia, the control gain depends quite strongly on the iner-
tia and dynamic of the agent. Then, to address these shortcomings, an online policy
iteration-based adaptive dynamic programming is designed to tackle the challenge of
double-integrator multi-agent systems without dynamics. Finally, simulation results
are shown to prove how effective the proposed approach is.

KEYWORDS:
multi-agent systems, adaptive dynamic programming, optimal consensus control, data-driven, reinforce-
ment learning

1 INTRODUCTION

In recent years, multi-agent systems have seen increased usage in physics, social sciences, biology, and engineering1,2,3. It can be
utilized to address issues that are difficult for a single individual to solve. Therefore, distributed control of multi-agent systems
has gained much interest. In the multi-agent distributed control problem, the consensus problem is of great practical significance
and theoretical value as the basis of cooperative control among agents. These publications are regarded as seminal works on
consensus problem in control theory.4,5 Since the communication graph affects information transfer globally, it affects flocking
behavior inmulti-agent systems. Solving the consensus problem is a challenge due to the complex communication graph between
the agents. To achieve consensus convergence, several assumptions are placed on the communication graph using graph theory,
and some protocols are suggested in some studies.6,7,8,9 However, the protocols discussed above are not distributed, and the
threshold value set by the Laplacian matrix must be exceeded by these designed protocols. In some studies,10,11 there have been
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designs for completely distributed adaptive protocols to address this limitation. These protocols are constructed using high-gain
adaptive feedback, which involves only information about itself and the neighboring regions and tends to rise monotonically
over time to a limited value.
Mostmulti-agent consensus studies presume that each agent’s dynamics can be captured by a single integrator.12,13,14 However,

in reality, the double-integrator frequently simulates more critical systems. For example, single-axis spacecraft rotation,15 rotary
crane motion,16 and the dynamics of a spacecraft.17 Therefore, research interest has been aroused by the consensus problem of
double integrator multi-agent systems. However, since most actuators can only change acceleration through agents’ inertias, it
is not possible to regulate the velocity directly in many significant applications.18,19 But, inertial action may generate unstable
group behavior in a certainly directed information topology. Think of a disturbed protocol whose gain is determined by the
Laplacian matrix and the agent inertias, in this case, double integrator multi-agent systems can achieve consensus convergence
over strongly connected balanced graph.20 Unfortunately, the protocol has the disadvantage of relying on global rather than local
information, and thus it is not fully distributed.
However, current research requires a thorough understanding of the dynamics of the agents, which is difficult in many practical

situations. Previous research has gone into great detail about the design of adaptive controllers for uncertain linear systems.
The traditional approach to designing adaptive optimum control laws is to first calculate the algebraic Riccati equation based
on the system parameters.21,22 This issue requires precise dynamics, which is difficult since most systems in practice are too
complicated, and the resulting dynamics may be inaccurate. So it is necessary to find a proven method to solve this problem.
Reinforcement learning (RL) has been frequently employed in recent years to address optimal solution problems.23,24,25,26 It

was first observed in the learned behavior of humans and other mammals, RL adopts a learning-by-acquiring approach, updating
its model after acquiring a sample, using the current model to guide the next action, and updating the model after the next
action is rewarded, iterating and repeating until the model converges. A very important point in this process is "If the current
model is available, what is the best way to choose the next step to improve the current model". This brings us to two very
important concepts in RL: exploration, which is the selection of previously unexecuted actions to explore more possibilities,
and exploitation, which is the selection of executed actions to refine the model of a known action.
With the development of machine learning, information science, and data science, some academics are beginning to undertake

study using data-driven concepts.27,28 Data collected from the system, whether online or offline, can be utilized immediately
to perform status analysis and optimization, system modeling, and controller design. Quickly emerging are several data-driven
model-free control techniques. Without depending on standard mathematical models, these methods may efficiently deal with
unmodeled system dynamics and disturbances. The method known as adaptive dynamic programming (ADP) has been created
recently and is a desirable data-driven method. ADP is an example of a reinforcement learning technique that combines the
benefits of adaptive and optimal control.29,30 Among several RL approaches, ADP is regarded as one of the fundamental ways
for achieving optimum control laws for a variety of optimal control issues since it has strong self-learning and self-adaptive
capabilities and has evolved into an essential optimal control method that is similar to the brain. ADP was known by numerous
names, including "adaptive critic designs",31 "approximate dynamic programming",32,33 and "neural dynamic programming".33
It contains both value iteration and policy iteration.34 It was verified that the value iterative ADP method is convergence.34 It
is impossible, however, to guarantee the system’s stability under the value iterative control law.35 A policy iteration is provided
for optimal control of the continuous-time system.36 Using policy iteration, continuous-time complex-valued systems have been
successfully solved.37 And discrete-time policy iteration with convergence and stability proof was developed.38 The optimal
distributed control problems on multi-agent systems have recently been addressed using ADP techniques.39,40,41,42 To address
directed graph multi-agent systems’ optimal control problems, an unique ADP approach was created.39 By utilizing policy itera-
tion algorithms, adaptive learning solutions for multi-agent differential graphical games were obtained.40 The optimal consensus
problem for continuous-time nonlinear multi-agent systems was solved using fuzzy adaptive dynamic programming with a pol-
icy iteration online framework.41 A unique method for continuous-time heterogeneous multi-agent differential graphical games
was proposed.42 Through the use of value iteration techniques, some papers studied multi-agent discrete-time graphical games.
In this paper, we propose an online ADP technique for solving the optimal consensus issue for a type of continuous-time

double integrator multi-agent systems with uncertain system dynamics, using system data rather than exact dynamics and iner-
tia. Because the double-integrator multi-agent systems is unstable under certain topologies when inertia is not considered, we
propose an inertia-independent protocol. But the design of their control laws is reliant on the dynamics of agents, including the
precise inertia.43 In practice, however, accurate inertia is frequently unavailable, resulting in dynamic uncertainty.44 It is difficult
to develop distributed controllers for double-integrator multi-agent systems. Finally, the control gain of the consensus protocol
can be solved by the proposed adaptive dynamic programming based on online policy iterations.
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As a result of the above observations, the contributions of this study, as compared to earlier studies, can be summed up in
two aspects: 1) As compared to adaptive nonlinear gain, the offered consensus protocols are developed with linear constant
gain, making them easier to implement. This protocol is applicable to multi-agent systems with any number of agents and any
communication topology since they only need local information from their own and neighbors. 2) An online policy iteration-
based adaptive dynamic programming is designed to tackle the challenge of double-integrator multi-agent systems without
dynamics.
Organize the remainder of the paper as follows: In Section 2, there is some algebraic graph theory knowledge presented and

problem formulation is derived. Section 3 shows the importance of the agents’ inertial effect and an inertia-independent protocol.
Section 4 presents an online ADP algorithm to find the best solution to the optimal consensus problem of the double-integrator
multi-agent systems without requiring prior knowledge of the system dynamics. Section 5 provides an example to show the
effectiveness of our proposed approach. Finally, in Section 6, we provide a brief conclusion.
Notation. This paper refers to the set of real numbers as R. ⊗ denotes the Kronecker product. Let

mini=1,2,…n
{

Re
(

�i(A)
)}

be denoted by �(A) and maxi=1,2,…n
{

Re
(

�i(A)
)}

be denoted by �(A). ��(u) is denoted by
��(u) =

[

sign
(

u1
)

min
{

�, |
|

u1||
}

, sign(u) min
{

�, |
|

u2||
}

,… , sign
(

um
)

min
{

�, |
|

um||
}]T, brevity, we use �(u) to denote �1(u).

2 PRELIMINARY KNOWLEDGE

This section will introduce the necessary algebraic graph theory and problem formulation.

2.1 Graph theory
In this study, graph theory is employed as a highly useful mathematical tool to examine multi-agent systems. A weighted
graph may explain the architecture of a communication network, regardless of whether the information flow is unidirectional or
bidirectional.
Let G( , �,) be a weighted graph, with  = {1, 2,… , N + 1} representing the set of nodes, the edge set is denoted by

� ⊆  × , and  =
[

rij
]

∈ R(N+1)×(N+1) is the matrix of weighted adjacency. Node j can obtain information from node
i, as noted by (i, j) ∈ �. If (j, i) ∈ �, rij > 0 otherwise, rij = 0, then rii = 0. It is denoted as  = diag

(

1,… ,N+1
)

∈
R(N+1)×(N+1),i =

∑

j∈i
rij , where Fi represents the neighborhood set of node i.L =

[

lij
]

= − corresponds to the Laplacian

matrix. Our study examines the consensus problem when a leader with no in-neighbors. As a result, It is also possible to write

L as: L =
[

L1 L2
01×N 0

]

, where L1 ∈ RN×N , L2 ∈ RN×N

Assumption 1. A directed spanning tree is rooted at the leader of the graph G( , �,).

Assumption 2. There is no known value for the inertias mi, i = 1, 2,… , N + 1 , but they are positive constants.
Lemma 1. 45 Assume that Assumption 1 holds. Then L is a nonsingular matrix with positive real parts in its eigenvalues.

2.2 Problem formulation
Multi-agent systems with double-integrators are discussed. The dynamics of the i − tℎ followers:

ẋi(t) = Axi(t) +
1
mi
B�

(

ui(t)
)

, i = 1, 2,… , N (1)

where xi(t) is the system state vector, ui(t) is the system state vector, and mi is the inertia of the i − tℎ follower, system
dynamics matrix A and input matrix B are constant matrices.
A reference system, also called leader, is defined as:

ẋN+1(t) = AxN+1(t) (2)
Assume agent i exclusively gathers local information about itself and its neighbors, specifically, the signal:

zi =
N+1
∑

j=1
rij

(

xi − xj
)

(3)
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The consensus problem addressed in this study relates to the fact that the followers’ states converge toward the leader’s state:

lim
t→∞

‖

‖

xi(t) − xN+1(t)‖‖2 = 0, i = 1, 2,… , N (4)

3 LINEAR PROTOCOL OF DIRECTED GRAPH

In this section, it is shown the significance of the interplay between agent inertia and information topology. In undirected
communication graphs, heterogeneous inertia does not affect double-integrator multi-agent systems, but given a certain com-
munication digraph, there exist unstable group behaviors. Following that, a distributed protocol for agents with inertial roles
and development on a balanced information graph is shown.

3.1 The effect of inertia
The agent-i’s closed-loop dynamics with its inertia, mi > 0 , are shown below:

miẍi =
∑

j∈i

−brij
(

ẋi − ẋj
)

− krij
(

xi − xj
)

(5)

in this equation, k and b are stiffness gains and the damping, respectively. As follows is the closed-loop group kinematics by
stacking up the individual dynamics (5):

Mẍ + bLẋ + kLx = 0 (6)
On the following cyclic graph, Figure 1, the dynamics-based flocking model (6) is applied to the four agents, where

(

mi, wij , b, k
)

= (1, 1, 1, 2.2),M = diag
[

m1, m2,… , mn
]

. As seen in Figure 2, the group behavior is unstable.

Remark 1. The dynamics (6) resembles a standard mass-spring-damper system if G is undirected. The system is stable because
it has asymmetric and positive-semidefinite L.46,47

A clear illustration of the significance of the interaction between the inertias of the agents and the information structure can
be seen through this example, and a framework that caters to agents with the inertia that is not negligible and evolves with broad
information digraphs is needed.

3.2 The inertias-independent protocol
In this section, a protocol are developed for double-integrator multi-agent systems. Generally, control gains are larger as the
inertia is larger, as indicated in earlier articles, which should be avoided in control systems with high frequency noise. More
research is required for inertia-independent distributed observer methods. This linear protocol for solving the consensus problem
of multi-agent systems specified by (1) and (2) with any beginning state by using the signal (3).
Based partly on Zhang et al.,43 we propose the following linear protocol, which relies on a distributed observer:

"̇i(t) =
1

N+1
∑

j=1
rij

(N+1
∑

j=1
rij "̇j(t) − �

N+1
∑

j=1
rij

(

"i(t) − "j(t)
)

)

, i = 1, 2,… , N (7)

where "N+1(t) = xN+1(t) and � > 0 is a design constant. We explore the following linear procedure utilizing the estimated
values:

ui(t) = K
(

xi(t) − "i(t)
)

, i = 1, 2,… , N (8)
where K =

[

−k1,−k2
]

, k1 > 0, k2 > 0.

Theorem 1. Imagine that there are n followers with dynamics (1), and m leaders with dynamics (2) in a multi-agent system.
All followers will still converge on the leader under protocol (8).
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Proof. (7) can be rewritten using a simple change:

N+1
∑

j=1
rij "̇i(t) −

N+1
∑

j=1
rij "̇j(t) = −�

N+1
∑

j=1
rij

(

"i(t) − "j(t)
)

(9)

whose compact form is:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N+1
∑

j=1
r1j −r12 ⋯ −r1N

−r21
N+1
∑

j=1
r2j ⋯ −r2N

⋮ ⋱ ⋱ ⋮

−rN1 ⋯ −rN(N−1)
N+1
∑

j=1
rNj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

"̇1(t)
"̇2(t)
⋮

"̇N (t)

⎤

⎥

⎥

⎥

⎥

⎦

= −�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N+1
∑

j=1
r1j

(

"1(t) − "j(t)
)

N+1
∑

j=1
r2j

(

"2(t) − "j(t)
)

⋮
N+1
∑

j=1
rNj

(

"N (t) − "j(t)
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N+1
∑

j=1
r1j −r12 ⋯ −r1N

−r21
N+1
∑

j=1
r2j ⋯ −r2N

⋮ ⋱ ⋱ ⋮

−rN1 ⋯ −rN(N−1)
N+1
∑

j=1
rNj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= L1

denote vi(t) =
N+1
∑

j=1
rij

(

"i(t) − "j(t)
)

, then (10) can be modified as follows:

v̇i(t) = −�vi(t) (11)
denote:

v =
[

vT1 , v
T
2 ,… , vTN

]T (12)
as a result of (11):

v̇(t) = −�v(t) (13)

v(t) =
(

L1 ⊗ In
)

�(t) (14)
where:

�(t) =

⎡

⎢

⎢

⎢

⎢

⎣

"1(t) − "N+1(t)
"2(t) − "N+1(t)

⋯
"n(t) − "N+1(t)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

"1(t) − xN+1(t)
"2(t) − xN+1(t)

⋯
"n(t) − xN+1(t)

⎤

⎥

⎥

⎥

⎥

⎦

= "(t) − IN ⊗ xN+1(t) (15)

with " =
[

"T1 , "
T
2 ,… , "TN

]T. Based on Lemma 1, we have from (14) that:

�(t) =
(

L−11 ⊗ In
)

v(t) (16)
Its time derivative is �̇(t) = −��(t) as defined by e(t), u(t), "(t), �(t) and v(t) . The closed-loop system composed of (1),(2),(7),

and (8) may be expressed as:

⎧

⎪

⎨

⎪

⎩

�̇(t) = −��(t)
ė(t) =

(

IN ⊗A
)

e(t) +
(

M−1 ⊗B
)

�(u)
u(t) =

(

IN ⊗K
)

(e(t) − �(t))
(17)
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we have that � > 0 , which implies that  = � ∗ IN is a Hurwitz matrix. Denote � > 0 . In all cases, the matrix P0 is positive
definite in which:

T1 ≜ TP0 + P0 ≤ −�I2N (18)
if lim
x→∞

‖e(t)‖2 = 0 and limx→∞ ‖�(t)‖2 = 0 , we have solved the consensus problem.
Take into account the following Lyapunov-like function:

V (e, �) = eT(M ⊗P )e + 2
N
∑

i=1
∫

ui

0
�(s)ds + �TP0� (19)

The Lyapunov-like (19) is easily proved to be positive definite. Then:

V̇ (e, �) = ėT(M ⊗P )e + eT(M ⊗P )ė + 2
N
∑

i=1
�
(

ui
)

u̇i + �̇TP0� + �TP0�̇

= eT
(

M ⊗
(

ATP + PA
))

e + 2u̇T�(u) + 2�T(u)
(

IN ⊗BTP
)

e + �TT1�
= 2�T(u)

(

IN ⊗BTP
)

e + 2�T(u)
(

IN ⊗KA
)

e + 2�T(u)
(

M−1 ⊗KB
)

�(u)
+ 2�T(u)

(

IN ⊗K
)

� + �TT1�
= 2�T(u)

(

IN ⊗
(

BTP +KA
))

e + �T(u)
(

M−1 ⊗
(

BTKT +KB
))

�(u)
+ 2�T(u)

(

IN ⊗K
)

� + �TT1�

(20)

Because of ATP + PA = 0 , the third equation holds. There is a constant � > 0 to be designed. Using Young’s inequality,
we have calculated:

2�T(u)
(

IN ⊗K
)

� ≤ ��T(u)
(

M−1 ⊗ I2
)

�(u) + 1
�
�TT

(

M ⊗KTK
)

�

If (20) is substituted for the inequality above, it gives:

V̇ (e, �) ≤ 2�T(u)
(

IN ⊗
(

BTP +KA
))

e + �T(u)
(

M−1 ⊗
(

BTKT +KB
))

�(u)

+ ��T(u)
(

M−1 ⊗ I2
)

�(u) + 1
�
�TT

(

M ⊗KTK
)

� + �TT1�

≤ 2�T(u)
(

IN ⊗
(

BTP +KA
))

e + �T(u)
(

M−1 ⊗
(

BTKT +KB
))

�(u)

+ ��T(u)
(

M−1 ⊗ I2
)

�(u) + 1
�
�TT

(

M ⊗KTK
)

� − ��T�

= �T(u)
(

M−1 ⊗
(

BTKT +KB + �
))

�(u) − �T
(

�I2N −
1
�
T

(

M ⊗KTK
)


)

�

(21)

due to BTP + FA = 0, the third equation holds, we can choose � < 2k2 such that:

−T2 ≜ BTKT +KB + � < 0 (22)
choosing � such that � > 1

�
�
(

T
(

M ⊗KTK
)


)

is sufficiently large, we have that:

T3 ≜ �I2N −
1
�
T

(

M ⊗KTK
)

 > 0 (23)
the inequality in (21) may be extended using (22) and (23) as:

V̇ (e, �) ≤ −�T(u)
(

M−1 ⊗ T2
)

�(u) − �TT3�
≤ −�

(

M−1) �
(

T2
)

�T(u)�(u) − �
(

T3
)

�T�
(24)

The states of the closed-loop system (17) converge to the set 1 =
{

[e, �] ∶
(

IN ⊗K
)

(e + �) = 0, � = 0
}

according to
LaSalle’s invariant principle. in such a case, the closed-loop system (17) in the set 1 becomes:

{

�(t) = 0
ė(t) =

(

IN ⊗A
)

e(t)
(25)

the matrix pair (A,K) is observable, and so is the matrix pair
(

IN ⊗A, IN ⊗K
)

. As a result, the elements in the set 1 are
�(t) = 0, e(t) = 0. Proof has been completed.
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Remark 2. The advantage of this protocol over others is that the observer (7) is fully independent of inertia and hence free to
design. However, for the choice of K in protocol (8), the traditional optimal control approach requires the complete dynam-
ics model, including precise inertia. In reality, however, obtaining the correct inertia may be difficult. There is uncertainty in
unidentified inertia.

ẋi(t) = Axi(t) +
1

(

mi + Δmi
)B�

(

ui(t)
)

, i = 1, 2,… , N (26)

Due to the inertia not being accurately calculated, Δmi presents the uncertainties of its inertia. Because of the presence of
inertia uncertainty, designing the protocol’s control law is problematic. Despite the fact that the protocol is inertia-independent,
inertia must be measured while developing the control law. This demonstrates the significance of a data-driven approach. The
online ADP for solving the control law is presented in the next section.

4 ADAPTIVE DYNAMIC PROGRAMMING

In this section, when the system dynamics are unknown, a policy iterative approach is provided to approximate the algebraic
Riccati problem’s solution. The policy iterative approach is paired with online ADP algorithm. The developed method can
approximate the control gain K∗ for each follower without relying on system matrix knowledge or the precise inertia, by uti-
lizing all the finite data available, imposing an initial control policy on the agent at a limited time interval, collecting online
measurements, and iterating by reusing the same online data.

4.1 Online off-policy algorithm
The continuous-time linear system (1), in which the system dynamics matrix A and the input matrix B are unknown constant
matrices of acceptable dimensions, and mi are unknown constants.
denote:

1
mi
B = Bmi (27)

(1) can be simplified as follow:

ẋi = Ax + Bmiu(t) (28)
furthermore, (28) is regarded as stable in that there exists a constant matrix K with adequate dimensions such that A−BmiK is
Hurwitz
We are looking for a linear quadratic regulator (LQR):

u = −Kx (29)
which reduces the performance index shown below to the minimum:

J
(

x0; u
)

= ∫

∞

0

(

xTQx + uTRu
)

dt (30)

where Q = QT ≥ 0, R = RT > 0 with
(

A,Q1∕2) observable, taking (29) and applying it to (28), we can easily write (30) as:

J
(

x0; u
)

= xT0 Px0 (31)
where:

P = ∫

∞

0
e(A−BmiK)

T t (xTQx +KTRK
)

e(A−BmiK)tdt (32)

The Lyapunov equation has just one positive definite solution P , when the derivative of XTPX is taken along the solution
of (28):

(

A − BmiK
)T P + P

(

A − BmiK
)

+Q +KTRK = 0 (33)
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In classical optimal control theory, the solution to an optimal control issue can be found by solving the following Riccati
equation when A and B are known exactly:

ATP + PA +Q − PBmiR
−1BTmiP = 0 (34)

as a consequence, it is possible to compute the ideal state feedback gain matrix K∗ in (29) by using

K∗ = R−1BTmiP
∗ (35)

As a result, solving (34) is often challenging, especially for high-dimensional matrices. The answer to (34) has neverthe-
less been numerically approximated by numerous efficient approaches. Kleinman’s algorithm is one such approach,48 and it is
discussed further below.

Theorem 2. K0 ∈ ℝm×n is selected in such a way that the matrixA−BmiK0 is Hurwitz. and continue by repeating the following
steps for k = 0, 1, ...
(1) For a real symmetric positive definite solution Pk , solve the Lyapunov equation:

ATkPk + PkAk +Q +K
T
k RKk = 0 (36)

where:Ak = A − BmiKk
(2) The feedback gain matrix should be updated by :

Kk+1 = R−1BTmiPk (37)
Then, the following properties hold:
(1) A − BmiKk is Hurwitz;
(2) P ∗ ≤ Pk+1 ≤ Pk;
(3) lim

k→∞
Kk = K∗, lim

k→∞
Pk = P ∗

Proof. : Consider the Lyapunov equation (36) with k = 0. Since A−BK0 is Hurwitz, by (32) we know P0 is finite and positive
definite. In addition, by (32) and (36) we have

P0 − P1 =

∞

∫
0

eA
T
1 �
(

K0 −K1
)T R

(

K0 −K1
)

eA1�d� ≥ 0

Similarly, by (32) and (34) we obtain

P1 − P ∗ =

∞

∫
0

eA
T
1 �
(

K1 −K∗)T R
(

K1 −K∗) eA1�d� ≥ 0

Therefore, we have P ∗ ≤ P1 ≤ P0. Since P ∗ is positive definite and P0 is finite, P1 must be finite and positive definite. This
implies that A − BK1 is Hurwitz. Repeating the above analysis for k = 1, 2,… proves Properties (1) and (2) in Theorem 2.
Finally, since

{

Pk
}

is a monotonically decreasing sequence and lower bounded by P ∗, limk→∞ Pk = P∞ exists. By (36) and
(37), P = P∞ satisfies (34), which has a unique solution. Therefore, P∞ = P ∗. The proof is thus complete.

Remark 3. The Lyapunov equation (36) is linear in Pk , when A and B are known, it is possible to solve Pk by (36) and update
Kk by (37) iteratively. So, it is numerically approximated to find a solution for equation (34).

Then, based on Theorem 2, we will provide an offline policy iteration algorithm to solve the optimal control issue.

Algorithm 1 The offline policy iteration algorithm
Step 1: Considering a stabilizing feedback gain matrix K0;
Step 2: Solve PK from Equation (36);
Step 3: Update the feedback gain KK+1 matrix by (37);
Step 4: Let K = K + 1, if |

|

Pk − Pk−1|| ≤ � for k ≥ 0 , go to Step 5; else go to Step 2. Where � is a small positive number;
Step 5: use u = −Kkx as the approximate optimal control policy.
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Based on (37) and (36), it is evident that the algorithm is offline and needs exact knowledge of the dynamic. But, the reality
is that it is often hard to build a model of system dynamics or to obtain precise information regarding the dynamics of systems.
To address this issue without the need for prior knowledge of system dynamics, an online ADP method is developed in the spirit
of Jiang et al.49

4.2 Adaptive dynamic programming based on policy iteration
In this section, we will describe an online ADP algorithm without the need for A and B based on the policy iteration algorithm
shown above.
Consider K0 to be a known stabilizing feedback gain matrix. System (28) is rewritten in the following form:

ẋi = Ax + Bmiu0 (38)
then, along with the solutions of (38) by (36) and (37), one can obtain:

xT (t + Δt)Pkx(t + Δt) − xT (t)Pkx(t)

= −∫

t+Δt

t
xTQkxd� + 2∫

t+Δt

t

(

u0 +Kkx
)T RKk+1xd�

(39)

where Qk = Q +KT
k RKk

Remark 4. In Equation (39), it is worth noting that the system matrices can be replaced with the states and inputs measured
online. As a result, Equation (39) can be used to obtain Pk and Kk+1 without knowing A and B exactly.

Thus, we introduce the Kronecker product in order to find
(

Pk, Kk+1
)

with the unknown system matrices under a given
stabilizing feedback gain matrix Kk :

xTQkx =
(

xT ⊗ xT
)

vec
(

Qk
)

(40)

(

u +Kkx
)T RKk+1x =

[(

xT ⊗ xT
) (

In ⊗KT
k R

)

+
(

xT ⊗ uT0
) (

In ⊗R
)]

Kk+1 (41)
denote �xx ∈ ℝ1×n2 , 'xx ∈ ℝ1×n2 and 'xu ∈ ℝ1×mn

�xx =
[

x ⊗ x|t1+�tt1
, x ⊗ x|t2+�tt2

, … , x ⊗ x|tl+�ttl

]T
(42)

'xx =
[

∫

t1+�t

t1
x ⊗ xd�, ∫

t2+�t

t2
x ⊗ xd�, … , ∫

tl+�t

tl
x ⊗ xd�

]T

(43)

'xu =
[

∫

t1+�t

t1
x ⊗ u0d�, ∫

t2+�t

t2
x ⊗ u0d�, … , ∫

tl+�t

tl
x ⊗ u0d�

]T

(44)

where 0 ≤ t1 ≤ t2 ≤ ⋯ ≤ tl then Φk ∈ ℝl×(n2+mn) and Ψk ∈ ℝl

Φk =
[

�xx,−2'xx
(

In ⊗KT
k R

)

− 2'xu
(

In ⊗R
)]

(45)

Ψk = −'xx vec
(

Qk
)

(46)
this is the form of Equation (39) when written as a linear equation:

Φk

[

vec
(

Pk
)

vec
(

Kk+1
)

]

= Ψk (47)

Lemma 2. 49It is possible to have a sufficiently large integer l > 0 such that:

rank
([

'xx, 'xu
])

=
n(n + 1)

2
+ mn

Lemma 3. 17Whenever k0 is an initial stabilizing feedback control gain, and Lemma 2 holds, the sequences and obtained by
solving (49) will respectively converge to optimal

{

Pk
}∞
k=0 and

{

kk
}∞
k=0 .obtained by solving (49) will respectively converge to

optimal P ∗ and K∗ .
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As a result, we are able to implement an online ADP method for solving the optimal control issue under uncertain system
dynamics.

Algorithm 2 Off-policy ADP algorithm
Step 1: Find K0 such that A − BK0 is Hurwitz. Letk = 0;
Step 2: Utilize u0 = −K0 + e as the control input, e is the exploration noise. Compute , �xx, 'xx and 'xu to satisfy the rank
condition in Lemma 2;
Step 3: Solve for Pk and Kk+1 from (49);
Step 4: Let K = K + 1and repeat Step (3), until |

|

Pk − Pk−1|| ≤ � , where the constant " > 0 is a predefined small threshold;
Step 5: use u = −Kkx as the approximate optimal control policy.

5 SIMULATIONS

In this section, we use a numerical example to demonstrate the efficiency of our method and develop a data-driven distributed
controller of followers using ADP.
Consider the following four-node digraph structure with node 1 connected to the leader node, such as Figure 3. The dynamic of

the i−tℎ follower is described by (1) withm1 = 2.5,m2 = 0.8,m3 = 0.8,m4 = 1.25,A =
[

0 1
0 0

]

andB =
[

0
1

]

, and the dynamic

of the leader is described by (2). The system matrix and inertia are for the analysis of the results. Agents’ initial conditions are
selected at random as x1(0) = [−30, 15]T, x2(0) = [−1, 15]T, x3(0) = [30,−8]T, x4(0) = [40,−15]T, x5(0) = [−10, 3]T.
Each follower’s input limit is randomly chosen as |

|

u1(t)|| ≤ 4, |
|

u2(t)|| ≤ 2,|
|

u3(t)|| ≤ 1, |
|

u4(t)|| ≤ 5. The protocol is designed
by (8) and the observer gain is determined at random as � = 0.2 . The selection of Q and R in the performance index function
impacts the speed of state convergence and the size of the input. To simplify the simulation, we design Q and R for each
follower as: Q1 = Q2 = Q4 = diag

([

100 100
])

, Q3 = diag
([

40 40
])

, Q1 = Q2 = Q3 = Q4 = diag([1]). It is chosen to

be e = 100
100
∑

i=1
sin

(

!it
)

, i = 1, 2,… , 100 as the exploration noise, with !i, with k = 1,… , 100, random numbers uniformly

distributed on [−50, 50]. During each interval of 0.1s, input and state information is collected. At t=1 s , the policy iteration
started, and convergence was achieved when the stopping criterion |

|

Pk − Pk−1|| ≤ 0.0005 is satisfied. From t=1 s up until the
end of the simulation, learned controllers are actually used as control inputs in the system. In Figure 4 - 7, we see that

{

Pk
}

and
{

Kk
}

have reached their optimal values.
As follows are the optimal values for P ∗ and K∗ :

P ∗1 = P1 =
[

122.4745 25
25 30.6186

]

, K∗
1 = K1 =

[

10 12.2474
]

P ∗2 = P2 =
[

107.7033 8
8 8.6163

]

, K∗
2 = K2 =

[

10 10.7703
]

P ∗3 = P3 =
[

44.7747 5.0596
5.0596 5.6636

]

, K∗
3 = K3 =

[

6.3246 7.0795
]

P ∗4 = P4 =
[

111.8034 12.5
12.5 13.9754

]

, K∗
4 = K4 =

[

10 11.1803
]

As can be seen in Figure 8 and Figure 9, the state trajectories of the system are shown.
Simulation experiments show that our proposed algorithm can converge to the optimal control law without agents’ dynamics.

In summary, the efficiency of our proposed online model-free ADP method is confirmed by simulation results.
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6 CONCLUSIONS

In this paper, the data-driven ADP approach is applied to solve the leader-following consensus problem of double-integrator
multi-agent systems with completely unknown dynamics. We solved the problem that inertia is difficult to measure, making
it hard to design controller gain. It is noteworthy that, in the achievement of getting consensus in double-integrator multi-
agent systems, the developed method only needs current and past data instead of accurate system models. Further,we design a
new controller for each follower that can achieve consensus. As a result of ADP’s ability to scale, our findings are potentially
applicable to other higher dimensional systems.
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