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Abstract

1. High latitude ecosystems are experiencing the most rapid warming on earth, expected to trigger a diverse array of ecological
responses. Climate warming affects the ecophysiology of fish, and fish close to the cold end of their thermal distribution
are expected to increase somatic growth from increased temperatures and a prolonged growth season, which in turn affects
maturation schedules, reproduction and survival, boosting population growth. Accordingly, fish species living in ecosystems
close to their northern range edge should increase in numerical importance and possibly displace cold-water adapted species.
2. We aim to document if and how population level effects of warming mediated by individual level responses to increased
temperatures, shift community structure and composition in high latitude ecosystems. 3. We studied 11 cool-water adapted
freshwater fish populations in communities dominated by cold-water adapted species to investigate changes in the relative
importance of cool-water fish during the last 30 years of rapid warming in high latitude lakes. In addition, we studied the
individual level responses to warming to clarify the potential mechanisms underlying the population effects. 4. Our long-term
series’ (1991-2020) reveal a marked increase in numerical importance of the cool-water fish species, perch, in ten out of eleven
populations, and in most fish communities the cool-water species is now dominant. Moreover, we show that climate warming
affects population level processes via direct and indirect temperature effects on the individuals. Specifically, the increase in
abundance arises from increased survival of 0+ individuals, faster juvenile growth and ensuing earlier maturation, all boosted
by climate warming. 5. The speed and magnitude of the response to warming in these high latitude fish communities strongly
suggest that cold-water fish will be displaced by fish adapted to warmer water. Consequently, management should focus on
climate adaptation limiting future introductions and invasions of cool-water fish and mitigating harvesting pressure on cold-water
fish.

Introduction

High latitude regions are experiencing the most rapid warming on Earth, a trend projected to continue
towards year 2100 (Parmesan 2006, IPCC 2013). Rapid warming strongly affects freshwater ecosystems
(O’Reilly et al. 2015), leading to changes in species abundance, phenology and distribution (Hickling et
al. 2006, Comte et al. 2013, Campana et al. 2020). Temperature driven changes in physiological rates of
ectotherms are expected to trigger a diverse array of ecological responses (Biro et al. 2007, Huss et al. 2019,
Rezende et al. 2019), with implications for ecosystem structure and function (Benateau et al. 2019). Fish are
strongly influenced by ambient temperature, with species displaying distinctive thermal niches (Hayden et al.
2014). Climate warming tends to favor fish populations currently experiencing the cold end of their species
thermal range, typically in proximity of the northern limits of a species distribution (Ficke et al. 2007,
Campana et al. 2020). As temperature increases, these populations are likely to outperform competing



species of colder temperature guilds (Hein et al. 2014, Hayden et al. 2017). Evidence in support of, or
against, these expectations is presently lacking due to a paucity of long-term ecological studies of freshwater
fish communities in the rapidly warming Arctic (Amundsen et al. 2019, Zubova et al. 2020).

The impact of increasing temperatures on fish populations is mediated by direct ecophysiological effects and
indirect life history responses that ultimately affect survival and reproduction. In ectotherms, temperature
limits biological rates, affecting for instance food intake and metabolism and their balance determining the
net energy gain of an organism (Jobling 2002). Growth rate will therefore depend on ambient temperature,
with maximum growth being reached at an intermediate, optimum temperature within the thermal niche
of a species (Gvozdik 2018). The growth rate of individuals living at temperatures below their optimum
might increase with climate warming, given sufficient food availability (Huss et al. 2019, Smalés et al. 2020).
Higher juvenile growth rates lead to larger size at age and earlier maturation. Larger size at age might increase
survival, especially during early life stages, because mortality in fish is largely size-dependent (Hurst 2007,
Perez & Munch 2010). Thus, faster growth increases the probability of reaching maturity, which is further
enhanced by earlier maturation, overall resulting in higher transition rates to the adult, reproductive stage.
Recruitment rates can be further enhanced by faster somatic growth as young adult females become larger,
thereby producing larger clutches, thus climate warming is likely to boost population fecundity (Heibo et al.
2005). In addition, some critical life stages, in particular the egg and larvae, often have a narrower temperature
range for survival and successful development than other life stages (Dahlke et al. 2020). Populations living
close to the northern end of their distribution, might in colder years suffer from temperatures that are too
low for successful development, especially in critical periods such as survival over the first winter, and should
therefore benefit from climate warming (Hurst 2007, Dahlke et al. 2020).

The effects of climate warming on high latitude lakes go beyond increasing water temperatures, and predicted
changes in the aquatic environments such as increased productivity, decreased dissolved oxygen levels and
altered seasonality, are likely to favor cool-water species more than cold-water fish (Ficke et al. 2007, Rolls
et al. 2017). Increase in temperature and productivity will expectedly first favor percids, and later cyprinids,
over salmonids (Hayden et al. 2017). These cool-water species have been shown to redistribute northwards
and to higher altitudes over the last few decades of rapid warming (Comte et al. 2013, Hayden et al. 2014,
Rolls et al. 2017). Therefore, it exists an urge to document changes, but also to understand the mechanisms
behind climate driven changes in high latitude fish communities in order to develop climate adaptation
strategies that mitigate the possible eradication or displacement of cold-water species in the Arctic. One
cool-water species moving northwards is the European perch (Perca fluviatilis ), hereafter perch, (Hayden
et al. 2014), it has its northern range edge in subarctic regions of Eurasia around 70°N, but with a wide
temperature range for growth, between 5-33°C, and an optimum between 16-27 °C (Hokanson 1977, Karas
1990) (more detailed information in Supplementary information).

Here, we address the effects of climate warming on perch populations at the northern end of the species
distribution, using long-term surveys of high latitude freshwater fish communities (68-70°N). As a cool-
water adapted species, we expect perch to benefit from increasing temperatures and a prolonged productive
season, leading to increased abundance and importance relative to cold-water adapted fish co-inhabiting
the sampled lakes. Several mechanisms underlie our expectation of an increase in the relative importance of
perch following the recent rapid warming. Specifically, we focus on the life history and ecological implications
of temperature-induced increase in somatic growth rate, anticipating that higher growth rates i) reduce the
duration of critical life stages, ii) increase size at age, and iii) anticipate maturation age; overall improving
survival and increasing recruitment rates and total population fecundity (see Supplementary information,
Fig. S2 for schematic representation of mechanisms).

Material and Methods
Study area

The study area is concentrated in northern Fennoscandia, with lakes situated in Norway, Finland and Russia.
All lakes are located north of the Arctic Circle, towards the northern end of the distribution of cool-water fish



species (> 68QN) (See Supplementary information, Fig. S3, for map of the study lakes and area). To assess
the relative importance of Eurasian perch, we compiled data from 11 lakes sampled on multiple occasions
over the last 30 years. The eleven study lakes were sampled between 2 and 26 times, with time series ranging
from 8 to 32 years (Appendix Table S1).

Fish sampling and individual data

The total number of sampled fish across the 11 lakes was nearly 60 000, of which 12 000 were perch, and
the littoral catches from this data were used to describe the development in proportion of perch in the 11
lakes (Appendix Table S1, the fish community of the individual lakes are described in the Supplementary
information). Fish were collected using multimesh gill-nets or gill net series in all three sampled habitats (i.e.
littoral, pelagic, profundal) of the lakes, but only fish from the littoral zone were included in the analyses
because the sampling in the other habitats was more scattered in both time and space (See supplementary
information for details on the fish sampling procedure). We used individual data from the two lakes most
frequently and intensively sampled (Lake Vaggatem and Lake Skrukkebukta), to assess changes in life history
parameters over time in the perch populations. These two lakes were selected because of their long time
series (71991-2020) with mostly annual sampling, including daily data on water temperature, and detailed
individual data collected from year 2003 to 2020. A total of 2960 individual perch from Lake Vaggatem (n=38-
608 per year) and Lake Skrukkebukta (n=30-130) were sampled. The individual fish sampling procedure
and summary information on individual- and population level data are described in the supplementary
information Appendix 1 (see Tables S2 & S3).

Temperature

For the two main study systems, Lake Skrukkebukta and Lake Vaggatem, daily water temperature mea-
surements were available from an automated datalogger at the Skogfoss hydropower plant situated 25 km
upstream from Lake Skrukkebukta and 23 km downstream from Lake Vaggatem. We calculated annual
mean water temperature, mean summer temperature (Jun-Jul-Aug) and mean autumn temperature (Sep-
Oct-Nov) from the logger data. Mean annual water temperature has increased significantly by 0.3°C per
decade (p<0.01, F=9.361, o5, adj-R?= 0.243, Appendix Table S4), mean autumn temperature (September-
November) has also increased significantly by 0.4 °C per decade (p<0.01, F=11.261 96, adj-R*= 0.275, Ap-
pendix Table S5), and mean summer water temperature increased (June-August) by 0.4 °C per decade (Fig.
1) (p=0.037, F=4.87; 25, adj-R?= 0.13, Appendix Table S6).

Statistical analysis

The proportion of perch in the fish community was calculated as the number of perch caught relative to
the total number of fish caught in the littoral zone of the different lakes. To estimate how the proportion of
perch in the catches changed over time we used a Linear Mixed Effect model (LME) with location (lakes)
as random effect, using the nlme-package in R. The response variable was log(x+1) transformed. Relative
density of fish in terms of Catch-Per-Unit-Effort (CPUE) was readily available for the two main study
systems, Lake Skrukkebukta and Lake Vaggatem. The CPUE was calculated as the number of fish caught
per 100 m? per night (or 12 hours). To investigate the change in relative density over time, we estimated
separate linear models for the two lakes, with log(CPUE+1) as the response and year as the predictor.
To estimate the relationship between relative density and water temperature, we again used CPUE on a
natural logarithmic scale with annual mean water temperature as predictor in a linear regression model. We
transformed the predictor to a weighted-moving-average over the last two years with more weighting given
to the latest year, to better reflect any long-term effects of temperature on relative density of perch. To
investigate recruitment in the perch population, we used the relative proportion of one-year-old individuals
within the perch population as a measure of the number of individuals surviving the first winter, which
is suggested to be dependent on water temperature (Dahlke et al. 2020), but also food availability (or
density of competitors) and density of predators their first growth season. Relative proportion of one-year-
old individuals is calculated as the proportion of one-year-old perch relative to the total CPUE of the perch
populations. We used linear regression with summer water temperature the preceding year on a natural



logarithmic scale to predict the relative proportion of one-year-old individuals in the perch populations. In
the statistical analyses, we combined both lakes as the number of sampling points were too low to treat them
separately.

Back-calculated length at age and length increment

The back-calculated length increment was estimated for a sub-sample of perch from Lake Vaggatem and
Lake Skrukkebukta. On the opercular bones of individual perch, we measured the width of annual growth
increments as the distance between the opaque zones. We used these measurements in addition to the total
opercular length and the body length of the individual perch to estimate length-at-age with the nonlinear
body-proportional hypothesis method. This method is commonly used for perch (Thoresson 1996) and as-
sumes that the deviation in body size from the expected body size given by the operculum size does not
change through life (Thoresson 1996),

L, =La(92)™,

where L, is the back-calculated length-at-age a, O, the measured operculum radius at age a, O 4 the observed
operculum size at time of capture, and L4 the observed fish length at time of capture. ; is the linear
regression slope coefficient estimated from the log-log relationship between the body length and operculum
length at capture. A total of 1646 perch were used in the back-calculation procedure. We back-calculated
length increment (mm-year™) for juvenile fish in the age group of 1-4 years with individual perch ranging
from age 2 to 10 years, giving us length increment data from year 1995 to year 2018. We did not asses
growth during the sampling year, because those estimates would be dependent on sampling time within
the year, which was not exactly the same every year. A comparison between back-calculated length at final
winter before capture and length at capture revealed a good fit of the back-calculation model (p<0.001,
F= 2501 on 1 and 1644 df, adj-R2=0.94) (Appendix Fig. S6 & Table S9). Back-calculated length increment
(mm-year) for 1, 2, 3 and 4 year old perch were related to summer water temperature and relative density
in a Linear Mixed Effect model (LME) with sampling year and age at capture as random effects, with the
nlme-package in R. In addition, we estimated cohort-mean (year class) length increment from age 1 to 4,
which was related to mean summer water temperature (°C) and mean relative density (CPUE) for the same
time period (three-year moving-average) with linear regression.

Age at maturity

We estimated age at maturity (Asg, age at 50% probability of the individuals have reached maturation
age) for each cohort (year-class) with sufficient data in the time series for perch in both Lake Vaggatem
(nconorts= 12) and Lake Skrukkebukta (neonorts= 4) (Appendix Fig. S13) using logistic regression. We related
the estimated cohort-specific Asgto the estimated total cohort-specific length increment (age 1 to age 4 year
old) using linear regression. We estimated cohort-specificAsg to address how environmental variables (water
temperature and relative density) indirectly affected age at maturity mediated through individual juvenile
growth. In addition, we estimated maturation age separately for males and females to explore if it differed
between the sexes and if the proportion of males and females changed over time (Appendix 8, Fig. S11 &

S12).

Age at maturation is assumed to be plastic and depending on a probabilistic maturation reaction norm
(PMRN) describing the length- and age-specific probabilities of maturation (Heino et al. 2002). To illustrate
how age at maturity changes with differing individual growth rates and to highlight the population response
to altered individual growth rates, we calculated the PMRN from the long-term data on perch in the Pasvik
watercourse (See details on PMRN estimation routine in the Supplementary Information, Appendix 8).

To investigate causal relationship between environmental variables and age at maturation (Asp) we used
structural equation modelling (SEM) with the “piecewiseSEM” package in R. We constructed the SEM to
assess direct and indirect effects of summer water temperature and relative density on age at maturation (Asg)
mediated through mean length increment (mm-year!) from age 1 to age 4 year old perch. Summer water
temperature and relative density of perch were modelled as exogenous random variables, influencing other



variables, but not themselves being influenced by other variables. The biotic variable length increment (from
age 1 to age 4, mm-year™') was included as endogenous variable influenced by others and itself also influencing
other variables. Finally, age at maturity (Asg) was set as a response endogenous variable, influenced by all
other variables, but not influencing other variables. All variables were standardized prior to the analysis.
Figures and maps were created by using the ggplot-package in R or BioRender.com, and tables were made
using the Sjplot-package in R.

Results
The proportion of perch is increasing in high latitude lakes

The proportion of perch in the littoral zone of the sampled lakes substantially increased over the study
period (Fig. 2a). All lakes with more than two sampling points showed an overall increase in proportion of
perch with time. The overall mean trend reveals that the proportion of perch increased exponentially over
time (p<0.01, mar-R2=0.356, Table S10), from under 10% in the early 1990s to above 70% in most lakes
during the last decade, however with large variation between lakes (Fig. 2a). The relative density (CPUE)
data in Lake Skrukkebukta and Lake Vaggatem shows a similar trend as the overall proportion data (Fig.
2b), with a substantial increase in relative density of perch in the littoral zone of both lakes (Skrukkebukta:
t=8.014 on 22 d.f., p<0.01, adj-R?= 0.73. Vaggatem: t—4.042 on 24 d.f., p<0.01, adj-R?= 0.38, Appendix
Table S11 & S12). This was related to an increase in water temperature where relative density of perch
increased with annual mean water temperature (Weighted-Moving-Average over the last two years) in both
Lake Skrukkebukta and Lake Vaggatem (Fig. 2c). In Lake Skrukkebukta the relative density has increased
with 1.83 In-CPUE-°C-!of temperature increase (t=3.788 on 20 d.f., p<0.01, adj-R%2=0.389, Appendix Table
S13), while in Lake Vaggatem, the increase was weaker, but significant with an increase of 0.89 In-CPUE-°C™!
of temperature increase (t=3.788 on 20 d.f., p=0.048, adj-R?=0.141, Appendix Table S14).

Survival of juveniles increases with summer water temperature

We used the relative proportion of 1-year olds in the perch population in Lake Vaggatem and Lake Skrukke-
bukta as a proxy for number of individuals surviving the first critical winter. The relative proportion of one
year old perch increased with mean summer water temperature (Jun-Aug) the preceding year (Fig. 3). The
relative proportion of one year old perch was significantly related to temperature (p<0.001, adj-R2=0.35),
increasing by 3.2 % per degree centigrade increment in preceding year summer water temperature (°C)
(t=3.550 on 21 d.f., p<0.001, Appendix Table S15).

Faster juvenile growth with higher summer water temperature

The overall trend for the juvenile perch was that annual length increment increased with summer water
temperature and decreased with relative density of perch in both Lake Vaggatem and Lake Skrukkebukta
(Fig. 4, Appendix Fig. S7-10). The combined length increment (mm-year'!) from age 1 to age 4 year old
perch increased substantially with increasing 3-year-mean summer water temperature and decreased similarly
with an increase in 3-year-mean relative density (Fig. 5a & 5b). The combined length increment (age 1 to
4 year) for Lake Vaggatem and Lake Skrukkebukta perch was significantly related to temperature and
density in a linear regression model (p=0.004, adj-R2=0.28), increasing by 8.5 mm per degree centigrade of
temperature increment (t=2.481 on 31 d.f., p=0.019) and decreased by 6.8 mm per 10 CPUE increment (t=-
3.806 on 31 d.f., p=0.001) (Appendix Table S16). In addition, there was a difference in intercept between the
lakes, where the length increment was larger in Lake Vaggatem compared to Lake Skrukkebukta (Appendix
Table S16). However, for the individual age groups, the effect of water temperature and relative density on
length increment varied. For the youngest age group (1 year old) there was no significant change in length
increment (mm-year ') with either increasing summer water temperature or relative density of perch (Fig. 4,
Appendix: Fig. S7, Table S17 & S18). For all the other juvenile age groups (2 to 4 year old), length increment
(mm-year™!) increased significantly with increasing summer water temperature in both lakes, whereas only
in Lake Vaggatem length increment decreased significantly with relative density of perch (Fig. 4, Appendix:
Fig. S6-S10, Table S19-S24) (See Supplementary information for more detailed description of results).



Earlier maturation age with faster growth

Age at maturation (Asg) differed between males and females in the perch populations in Lake Vaggatem and
Lake Skrukkebukta; males matured on average at an age of 4.1 years whereas females matured on average at
an age of 7.5 years (Appendix Fig. S11). The difference in age at maturity between the sexes did not change
over time (t=-0.767 on 12 d.f., p=0.45) (Appendix Fig. S12). The observed increase in combined length
increment (mm-1-4years!) substantially affected the cohort specific age at maturation (Asp) negatively
(Fig. 5¢), with -0.8 years reduction per cm increase in length increment (t=-3.783 on 14 d.f., p=0.002, adj-
R2=0.47) (Appendix Table S25 & Fig. S13). The effect of summer water temperature and relative density
on age at maturity was mediated through growth (length increment) for perch in Lake Vaggatem and Lake
Skrukkebukta, as illustrated by the structural equation model (SEM) results (Fig 6a). We found a positive
effect of cohort-specific (age 1 to age 4 year old) mean summer water temperature and a negative effect of
relative density of perch in the same time period on length increment of perch from age 1 to age 4 year,
which further affected age at maturity (Asg) negatively (Fig. 6a). Figure 6b illustrates these relationships
theoretically, where individuals with higher growth rate, due to temperature increase or reduced density, will
reach maturation age earlier than populations experiencing lower growth rates according to the estimated
PMRN from the perch populations in Lake Vaggatem and Lake Skrukkebukta.

Discussion

We find that the numerical importance of perch in fish communities at the northern edge of its distribution
increased substantially during the last three decades of rapid warming. The positive trend was registered in
ten out of the eleven lakes investigated. For our main two study lakes, Lake Vaggatem and Lake Skrukkebukta,
the trend was driven by an increment in perch density associated with the increase in water temperature.
These two perch populations showed higher recruitment with warming, with the relative proportion of 1
year old fish in catches increasing significantly with an increment in mean summer water temperature. The
demographic responses to warming were concomitant with individual level effects on somatic growth, which
increased with temperature across most young age classes, resulting in earlier maturation. The latter is
an indirect effect of warming mediated by increased temperature-dependent growth rate of juveniles, an
eco-physiological response, and phenotypic plasticity in maturation schedules, a life history adaptation. The
resulting earlier maturation and larger size at age of juveniles help explain the increased recruitment rates
promoting perch population density at higher temperatures. Somatic growth displayed negative density-
dependence, which may mask individual and demographic responses to warming in field studies.

During the recent period of warming, the increased numerical importance of perch was accompanied by posi-
tive temperature effects on juvenile growth in our two reference lakes. The yearly mean growth significantly
increased with temperature across all investigated juvenile age classes, with the exception of the 1 year old
age group. The cohort mean cumulative length increment from age 1 to 4 years increased by 8.5 mm (712%)
per degree centigrade increment in summer water temperature. Individual perch growth displayed substan-
tial negative density-dependence, decreasing by 6.8 mm per 10 CPUE units increase in relative density, in
line with earlier findings for this and other species (Bystrom & Garcia-Berthou 1999, Olin et al. 2017). The
observed positive effect of temperature on perch somatic growth was expected considering that in our lakes
mean summer water temperature varied between 10-14 °C, which, although within the species temperature
tolerance range (Karés & Thoresson 1992), is well below the optimum temperature for perch growth, estima-
ted to be within 16-27°C (Hokanson 1977). Positive effects of higher summer water temperatures on perch
growth rates have been described in regions where temperature variability is within the thermal tolerance
range of the species (Jeppesen et al. 2012, Huss et al. 2019), where the increased size at age was maintained
also in adult age classes owing to faster growth in young stages (Huss et al. 2019, Gardmark et al. 2020).
The projected future increase in ambient temperatures will increase metabolic demands (Huey & Kingsolver
2019), but at high latitudes, lake productivity mediated by catchment greening is expected to increase with
warming (O’Beirne et al. 2017), and should ensure sufficient food availability to support growth (Kao et al.
2015). The documented and projected positive effects of warming on growth of perch living at its northern
range edge affect its life history, demography, and ecological interactions.



The faster growth induced by warming resulted in earlier maturation of perch. The indirect effect of warming,
estimated and summarized via a structural equation model, is substantial, with maturation age (Asg) decre-
asing by 0.8 years per cm increase in juvenile length increment (from age 1 to 4 years). The adaptive plastic
response in maturation age is dependent on the eco-physiological process of somatic growth, which in turn
is affected by the ambient temperature and food availability (Ward et al. 2017). A reduction in maturation
age as a consequence of increased growth has been documented repeatedly in fish (Reznick 1993, Haugen
2000). Furthermore, an increase in juvenile growth rate has been associated with a subsequent increase in
reproductive output in fish (Ward et al. 2017), and an increase in reproductive output is seen as a direct
effect of an increase in water temperature also for perch (Heibo et al. 2005). The climate driven increase in
temperature-dependent growth thus results in larger size at age and earlier maturation, increasing the perch
populations reproductive output and recruitment, thus promoting population growth, as seen in other stocks
(Ward et al. 2017).

Survival of individuals during different life stages is a process which could be directly affected by ambient
temperature either through temperature-specific developmental rates, temperature-dependent mortality rates
or time spent in different life stages mediated by individual somatic growth (Sponaugle et al. 2006, Mirth
et al. 2021). We show that the proportion of 1 year olds in the populations increased with summer water
temperature during their 0+ summer. Increasing summer water temperatures has been shown to increase
recruitment in cool-water fish (Kokkonen et al. 2019). The effect of increased summer temperature is usually
related to larger body size and condition in autumn that subsequently lower the winter mortality (Hurst 2007,
Estlander et al. 2017). Developmental rates increase with water temperature in ectotherms. For instance,
mortality and the duration of the perch egg-stage are decreasing with temperature, with normal development
of eggs occurring in the temperature range of 7-18 °C (Kiittel et al. 2002). Therefore, an increase in summer
water temperature might increase the number of surviving hatchlings as more eggs might develop normally
and the shorter duration of the egg-stage might decrease the predation risk at this life stage. Embryos and
hatchlings are defined as critical life stages with a narrow thermal range (Dahlke et al. 2020), and at the
northern edge of perch distribution an increase in spring and summer water temperature might have been
pivotal for an increase in recruitment and subsequent increase in density and relative importance of the perch
populations.

Considering the rapid warming experienced in the study area during the last three decades, an increased
numerical importance of a cool-water species could be expected (Ficke et al. 2007, Rolls et al. 2017), but
a total shift in fish community dominance was surprising. The population process outlined above helps
explain the sudden response to climate warming, and suggests that similar responses should be expected
in other populations of cool-water species at their northern range edge, unless kept in check by negative
ecological interactions. However, many of the lakes near the northern range edge of perch are salmonid
dominated systems, with little resistance capacity against percid fish at higher temperatures (Hayden et al.
2014). Shifts in dominance from cold-water fish to more cool- or warm-water fish have been documented in
other freshwater systems (Jeppesen et al. 2012, Hansen et al. 2017). Climate change impact on high latitude
freshwater ecosystems is predicted to further increase as warming favours resident and invasive cool-water
species, potentially displacing native cold-water salmonids from these ecosystems (Hayden et al. 2017, Hansen
et al. 2017, Campana et al. 2020). Perch is a generalist fish that has high capacity as a resource competitor in
littoral habitats, and subsequently also as a predator, for native cold-water species such as whitefish (Hayden
et al. 2014). Such ecological interactions with resident cold water species, mediating higher order effects of
climate change, may change in character and outcome under warming (Urban et al. 2011). Climate induced
changes in size-structured interactions may have cascading effects within the food web, and the outcome
is dependent on thermal niche, population size structure and the existing ecological interactions within the
ecosystem (Gardmark et al. 2020). Cold-water sympatric species will be more vulnerable as cool-water fish
increase in competitive and predatory capacity with warming, possibly causing major alterations within fish
communities in high latitude lakes. In a wider perspective, cool-water perch dominance may eventually shift
towards warm-water cyprinid (roach, bleak) fish dominance along increasing temperature and productivity
in lakes where cyprinids are present or able to immigrate (Hayden et al. 2017).



Conclusion

Our study documents that warming triggers a rapid numerical increase of cool-water fish at their northern
range edge. The causal links between individual and population effects of warming considered in this study
help to account for the speed and magnitude of the population responses. The magnitude of these responses
is such that dominance is shifting from salmonids to percids, warning of an ongoing reorganization of high
latitude fish communities. Evidently, water-temperature increase from climate change has already favoured
cool-water fish at high latitudes, and future projected climate warming will accentuate this development,
potentially at the further expense of cold-water salmonids. Climate adaptation strategies must therefore
focus on limiting the ecological impact of warmer water fish in high latitude ecosystems. Consequently,
management should focus on climate adaptation limiting future introductions and invasions of cool-water
fish and mitigating harvesting pressure on cold-water fish.
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Figure 1. Water temperature in the Pasvik watercourse from year 1992 to 2020. Annual mean temperature
(blue circles). Mean autumn temperature (Sep-Nov) (green triangles). Mean summer temperature (Jun-Aug)
(orange squares). Temperature data is missing from January 1998-July 1999.
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Figure 2. Development of perch populations in the littoral zone of study lakes from year 1990 to year 2020.
a) Proprtion of perch in the study lakes, the black line shows the overall trend given by the Linear-mixed-
effect model (Appendix Table S11). b) Relative density (In-CPUE, no. of fish per 100m? per 12h) of perch
in the littoral zone of Lake Vaggatem (green) and Lake Skrukkebukta (blue) from year 1990 to year 2020.
¢) Relative density (In-CPUE) of perch dependent on annual mean water-temperature (Weighted-Moving-
Average, WMA, over the last two years) in Lake Skrukkebukta (blue) and Lake Vaggatem (green) in the
Pasvik watercourse.
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Figure 3. Relative proportion of one-year-old individuals in Lake Skrukkebukta (blue) and Lake Vaggatem
(green) perch populations on a natural logarithmic scale related to the preceding summer water temperature

(°C). Relative proportion of one-year-old perch is calculated as the proportion of one-year-old individuals
relative to the total CPUE (100m?/12h)! in the littoral zone of the two lakes.
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Figure 4. Back-calculated length increment (mm-year ) for age 1 year (top left), 2 years (top right), 3
years (bottom left) and 4 years (bottom right) perch from Lake Vaggatem (green) and Lake Skrukkebukta
(blue) in the Pasvik watercourse dependent on summer water temperature (°C). Points represent the mean,
whiskers represent the bootstrapped 95 % confidence interval of the mean, trend line with shading represent
linear regression with standard error.
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Figure 5. Relationship between the average length increment from age one to four years (mm-1-4 years'!)
for the different cohorts of perch and a) summer water temperature (three-year moving-average, SMA), b)
relative density (three-year moving-average, CPUE) with solid lines representing the multiple linear regression
model results (predictors centred and scaled). ¢) The relationship between age at maturation (A50, given by
logistic regression) and average length increment from age one to four years for the different perch cohorts
from 1998-2013, with the solid line representing the linear regression model and shaded area depicting the
standard error of the model. NB. Lakes were pooled in the linear regressions because no significant difference
in the slope between lakes were detected.
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Figure 6. a) Structural equation model showing the relationship between predictor variables affecting length
increment (combined from age 1 year to age 4 year olds) and the effect of increasing length increment on age
at maturation in the perch populations in Lake Vaggatem and Lake Skrukkebukta. Arrows represent causal
pathways, highlighted black lines represent significant relationships and grey lines represent non-significant
relationship within the model. Numbers in boxes denote the effect size of standardized coefficients and
R? is shown for each endogenous variable. b) Relationship between somatic growth and maturation in
perch in the Pasvik watercourse illustrated by the maturation reaction norm, length at age for perch in the
Pasvik watercourse (grey dots) with blue dotted line representing a slow growth rate, i.e. “cold and high
density situation” (10th percentile) and orange dotted line representing a fast growth rate, i.e. “warm and
low density situation” (90th percentile). The population estimated probabilistic maturation reaction norm
(PMRN) midpoint (solid line), the 25" and 75" percentile (dashed lines).
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