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Abstract. This paper aims to investigate the time fractional Keller-Segel system
with a small parameter. After the fractional order traveling wave transformation,
the heteroclinic orbit to the degenerate time fractional Keller-Segel system is demon-
strated through the method of constructing a suitable invariant region. Moreover, the
persistence of traveling waves in the system with a small parameter can be further
illustrated. The results are mainly reliance on the application of geometric singular
perturbation theory and Fredholm theorem, which are fundamental theoretical frame-
works for dealing with problems of complexity and high dimensionality. Eventually,
the asymptotic behavior is depicted by the asymptotic theory to illustrate the rate
of decay for traveling waves.
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1. Introduction.

Chemotaxis [1, 11, 21] is one of the most broadly used mechanisms to describe the
aggregation of biological species, which has been widely considered to explain the bio-
logical phenomena. Indeed, chemotaxis is known as an organism’s directed movement
in response to the chemical stimulus, which can be secreted by organism itself or from
an external source. Dating back to the pioneering works of theoretical and mathemat-
ical modeling, Keller and Segel [27, 28, 29] introduced a basic model in chemotaxis of
partial differential equations to explain the collection of specific categories, which is
called Keller-Segel system and given as{

Ut = (DUx − Uχ(U, V )Vx)x,

Vt = εVxx + g(U, V ),
(1.1)

where the function U(x, t) indicates cell (or organism) bacteria density in the position
x at time t, function V (x, t) shows the chemical signal substance concentration. The
function χ(U, V ) can both be related to U and V , which describes the chemotactic

∗ the corresponding author.
e-mail: jdcao@seu.edu.cn(J. Cao); ivanka.stamova@utsa.edu(I. Stamova); chenshuting1010@

163.com(S. Chen).
1



2 SHUTING CHEN, JINDE CAO∗, IVANKA STAMOVA

sensitivity linked to chemotaxis. It is noteworthy that g(U, V ) is the function describing
the production of chemical signals. The constant ε > 0 describes the diffusion speed
for the chemical and the constant D denotes the diffusivity of cell. The Keller-Segel
system for chemotaxis characterizes the cell collective motion, especially bacteria and
amoebae. Actually they are released by a chemical which is attractive to them.

Inspired by the work based on Keller and Segel, the diverse dynamics for the original
Keller-Segel system have become critical issues in the last decades [4, 10, 11, 21, 33,
37, 38, 39, 40, 43]. It is seen that various versions to the Keller-Segel system are
available, depending on different phenomena and scales. In the case, spatial pattern
formation and self-aggregation phenomenon are important properties for system (1.1).
Based on review papers [1, 22, 23], it is shown that the dynamical results involving the
boundedness [10], global existence [42] and blow-up [37] for solutions in the Keller-Segel
systems have been detailed established.

There is no doubt that Keller-Segel systems with integer order derivatives attracted a
lot of attention in previous studies, which was a fascinating research topic. Nonetheless,
integer order derivative models have not been adequately applied to describe chemo-
taxis in complex and nonhomogeneous media. Conversely, it can be better modeled by
fractional derivatives whose order is a scalar value between zero and one. Fractional
partial differential system has been widely applied in biological modeling, fluid dynam-
ics, electromagnetics, signal processing, optics, and many other fields [16, 17, 19, 32, 34].
It motivated researchers to use fractional derivatives due to the natural and complicated
phenomena. Fractional derivatives [25, 32, 34, 35, 41] can better identify the consisten-
cy between the solution and the real data, which can be referred as the ideal modelling
tool for mathematical biological models. Recently, along with the progression in the
area of fractional mathematics, many researchers are interested in fractional partial
differential equations [3, 6, 8, 9, 17, 31, 35, 41, 42] according to their potential appli-
cations. This would imply a major breakthrough in the development of keller-Segel
system, which is applicable to the study of more complex situations. For instance,
Cheng et al. [8] took the time fractional Keller-Segel system with diffusion term into
consideration {

Dα
t U = aUxx − (UVx)x ,

Dα
t V = bVxx + cU,

(1.2)

and {
Dαt U = aUxx − (UVx)x ,

Dαt V = bVxx + cU − dV,
(1.3)

where 0 < α < 1, the operator Dα
t and Dαt respectively represent Riemann-Liouville

and Caputo fractional derivative of order α. The positive constants a and b concern
the effect of cell and chemical diffusion, while the constants c and d are arbitrary. In
order to deal with dynamics of nonlinear fractional partial differential system, multi-
tudinous efficient methods have emerged, for instance invariant subspace method [8],
Q-homotopy analysis method [8], homotopy perturbation transform technique [31],
Laplace Adomian decomposition method [31], semigroup method [42], Duhamel’s prin-
ciple [9], the fixed point argument [9] and so on. Few works have been presented to
address traveling waves for various Keller-Segel systems, although which have been
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discussed by a large number of researchers. To name a few, Du et al. [14] focused on
a kind of generalized Keller-Segel system, taking the form of{

Ut = (εUx − Uφ(V )Vx)x ,

εVt = Vxx + f(U)− g(V ),
(1.4)

where the parameter 0 < ε � 1 is sufficiently small. They discussed traveling pulse
solutions relying on Poincaŕe-Bendixson theorem and geometric singular perturbation
theory. Similarly, Chang et al. [7] paid attention to another form of Keller-Segel system
(1.4), and established the existence and linear instability of traveling pulses for the case
that the chemical signal production f(U) equals U and the nonlinear interaction term
is χUφ (Vx) instead of Uφ(V )Vx.

In the aforementioned discussion, it can be found that the classical geometric singular
perturbation theory plays a fundamental role in establishing the existence of traveling
waves in the system with a small parameter. It should be pointed out that geometric
singular perturbation theory [18, 20, 24] is a powerful tool to handle singular perturba-
tion problems. In the case, the singular perturbed system can be reduced to a regular
perturbed system on the invariant manifold, and the existence of invariant manifolds
can also be ensured. Notably, geometric singular perturbation theory has a success-
fully application in some aspects, such as Camassa-Holm equations [12, 13], Belousov-
Zhabotinskii systems [15], FitzHugh-Nagumo equation [36] and so on. Nonetheless, it
has been applied less frequently to address the Keller-Segel system.

Motivated by the above analysis, we consider the time fractional Keller-Segel system
with a small parameter in the present study, which is given as{

Dα
t U = dUxx − (UVx)x + µU(1− U),

Dα
t V = εVxx − δ1U + δ2V,

(1.5)

where t ≥ 0 and x ∈ R denote temporal and spatial variables, respectively. The
functions U(x, t) ≥ 0 and V (x, t) ≥ 0 represent the cell density and the chemical
signal concentration. The operator Dα

t is a time fractional derivative with 0 < α ≤ 1.
The parameter µ is positive and related to the rate of logistic cell growth, and the
constants δ1, δ2 > 0 describe the chemical growth and the death rate. The diffusion
coefficient 0 < ε � 1 concerns the speed of the chemical diffusion and the constant
d > 0 illustrates the cell diffusivity. The main contributions of this brief are as follows.

(1) An appropriate transformation is selected to transform the fractional partial
differential equations into ordinary differential equations. The time fractional
derivatives can model the chemotaxis in the complicated and nonhomogeneous
media and mathematical biological models, which results in a challenge to an-
alyze the complicated impact on the dynamics of Keller-Segel systems.

(2) The suitable invariant region is designed for time fractional Keller-Segel system
with the small parameter ε = 0, which corresponds to traveling waves.

(3) Geometric singular perturbation theory plays an essential role in handling the
persistence of time fractional Keller-Segel system with sufficiently small param-
eter ε > 0. Noteworthy, the asymptotic theory is a functional tool to explore
the asymptotic behavior to traveling waves.
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The rest is outlined as follows. Section 2 presents some basic definitions and notations
concerning fractional and fractional-like derivatives. Section 3 gives the main existence
results for system (1.5) with the small parameter ε = 0, which is based on the method
of constructing an appropriate invariant region. Section 4 reveals the persistence of
traveling waves of the system with the small parameter ε > 0 by means of the search
for heteroclinic orbits under the perturbation. Using the asymptotic theory, Section 5
explores the asymptotic behavior to traveling waves.

2. Preliminaries.

Many researchers [25, 32, 34] tried to put forward the definition for different versions
of fractional derivatives, which include Riemann-Liouville, Caputo, Riesz, Grunwald-
Letnikov, Weyl and Marchaud fractional derivatives. Two of them were among the
most popular.

Definition 2.1. ([32, 34]) For n − 1 ≤ α < n, the Riemann-Liouville derivative of
function u(x) of order α is defined by

Dα
xu(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

u(ξ)

(x− ξ)α−n+1
dξ, (2.1)

and the Caputo derivative of function u(x) of order α is expresseded by

Dα
xu(x) =

1

Γ(n− α)

∫ x

a

u(n)(ξ)

(x− ξ)α−n+1
dξ, (2.2)

where Γ(α) is the Euler Gamma function and takes the form of

Γ(α) =

∫ +∞

0

e−xxα−1dx, α > 0. (2.3)

However, both definitions may have some limitations in the proof. Other fractional
and fractional-like definitions have been proposed successively.

Definition 2.2. ([25]) The Jumarie’s modified Riemann-Liouville derivative of func-
tion u(x) of order α is stated by the following expression

Dα
xf(x) =


1

Γ(1− α)

d

dx

∫ x

0

(x− ξ)−α(u(ξ)− u(0))dξ, 0 < α < 1,(
u(n)(x)

)(α−n)
, n ≤ α < n+ 1, n ≥ 1,

(2.4)
where Γ(α) is the Euler Gamma function given in (2.3).

Atangana [2] proposed beta fractional-like derivative as blew.

Definition 2.3. ([2]) The beta fractional-like derivative of function u(x) of order β is
given by

Dβ
x(u(x)) = lim

$→0

u

(
x+$

(
x+ 1

Γ(β)

)1−β
)
− u(x)

$
, 0 < β ≤ 1, (2.5)

where Γ(β) is the Euler Gamma function.
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Similarly Khalil et al. [26] proposed a type of conformable fractional-like derivative.

Definition 2.4. ([26]) The conformable fractional-like derivative of function u(x) of
order α is defined by

Dα
x (u(x)) = lim

$→0

u (x+$x1−α)− u(x)

$
, (2.6)

for all x > 0, α ∈ (0, 1). If u(x) is α-differentiable and lim
x→0+

u(α)(x) exists, then

f (α)(0) = lim
t→0+

u(α)(x).

3. The time fractional Keller-Segel system with ε = 0.

This section draws attention to the time fractional Keller-Segel system (1.5) with
the small parameter ε = 0, which is given as{

Dα
t U = dUxx − (UVx)x + µU(1− U),

Dα
t V = −δ1U + δ2V.

(3.1)

It promotes us to seek for the heteroclinic orbit, corresponding to the existence of
traveling waves, by virtue of constructing a suitable invariant region.

3.1. Phase plane analysis.
The first thing to do is to choose the appropriate transformation to change fraction-

al partial differential equations into ordinary differential equations. If the fractional
derivative is defined in Definition 2.4, we now take it as an example and conduct the
following proof. Taking the following fractional traveling wave transformation

U(x, t) = U
(
kx− c

α
tα
)

= U(ξ), V (x, t) = V
(
kx− c

α
tα
)

= V (ξ), (3.2)

where k > 0 and c > 0. The parameter c represents the traveling wave speed. By
formula (3.2), we obtain

Dα
t U(x, t) = t1−α

dU(x, t)

dt
= t1−α

dU(ξ)

dt

= t1−αUξ
dξ

dt
= t1−αUξ

(
− c
α

)
αtα−1

= −cUξ.

Substituting the transformation (3.2) into system (3.1), then resulting in the following
system {

−cU ′ = dk2U ′′ − k2 (UV ′)
′
+ µU(1− U),

−cV ′ = −δ1U + δ2V,
(3.3)

where ′ = d
dξ
. Introducing

W = dk2U ′ + cU − k2

c
U (δ1U − δ2V ) ,
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then the system (3.3) can be rewritten as the following three-dimensional ordinary
differential equations

U ′=
1

dk2

(
W − cU +

k2

c
U (δ1U − δ2V )

)
,

V ′=
1

c
(δ1U − δ2V ) ,

W ′=µU(U − 1).

(3.4)

It is obvious that E1 (0, 0, 0) and E2

(
1,
δ1

δ2

, c

)
are two equilibrium points. In the

system (3.4), the traveling wave solutions of interest are heteroclinic orbits connecting

equilibrium point E2

(
1,
δ1

δ2

, c

)
to the origin E1 (0, 0, 0). Then we have the following

lemma concerning the equilibrium points. Figure 1 describes the phase portrait of
system (3.4) with c = 4, k = 2, d = 1, δ1 = 0.5, δ2 = 3, µ = 1. Moreover, Figure 2 is
presented to illustrate the projection portraits of the system (3.4).

Figure 1. Phase portrait of system (3.4) with c = 4, k = 2, d = 1, δ1 =
0.5, δ2 = 3, µ = 1 .

Figure 2. Projection portraits of system (3.4) withc = 4, k = 2, d = 1, δ1 =
0.5, δ2 = 3, µ = 1 .
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Lemma 3.1. For each c > 0, equilibrium point E1 (0, 0, 0) is locally asymptotically
stable. Specifically, if 0 < c < 2k

√
dµ, the linearization of system (3.4) at the equilib-

rium point E1 exists at least one pair complex-conjugate eigenvalues whose real part is
negative. While if c ≥ 2k

√
dµ, there exist all real and negative eigenvalues, i.e., the

local stable manifold W s
loc(E1) of system (3.4) is three-dimensional.

Proof. It is evident that the linearization matrix for the system (3.4), which is re-
stricted on E1 (0, 0, 0), taking the form of

M1 =


− c

dk2
0

1

dk2

δ1

c
−δ2

c
0

−µ 0 0

 . (3.5)

The characteristic equation is given as(
λ̃+

δ2

c

)(
λ̃2 +

c

dk2
λ̃+

µ

dk2

)
= 0. (3.6)

Thus if 0 < c < 2k
√
dµ, there exists at least one pair complex-conjugate eigenvalues

whose real part is negative. Obviously if c ≥ 2k
√
dµ, the eigenvalues of the equation

(3.6) are all real and negative. That is to say, the local stable manifold W s
loc(E1) of

system (3.4) is three-dimensional when c ≥ 2k
√
dµ. �

Lemma 3.2. For each c > 0 and δ1 < dµ, equilibrium point E2

(
1,
δ1

δ2

, c

)
is hyperbolic.

Furthermore, the local unstable manifold W u
loc(E2) for system (3.4) is one-dimensional.

Proof. The linearized matrix of the system (3.4) at the equilibrium point E2

(
1,
δ1

δ2

, c

)
,

is given as

M2 =


1

dk2

(
−c+

δ1

c
k2

)
− δ2

cd

1

dk2

δ1

c
−δ2

c
0

µ 0 0

 . (3.7)

The corresponding characteristic polynomial is

P(λ) = −λ3 − δ2dk
2 + c2 − δ1k

2

cdk2
λ2 − δ2 − µ

dk2
λ+

µδ2

cdk2
. (3.8)

Let λ1, λ2, λ3 be roots of P(λ) = 0. Note that

λ1λ2λ3 =
µδ2

cdk2
> 0,

then the roots λ1, λ2, λ3 may satisfy the following cases:
• Case 1: Reλ1 > 0, Reλ2 > 0, λ3 > 0,
• Case 2: Reλ1 = Reλ2 = 0, Imλ1 = − Imλ2 6= 0, λ3 > 0,
• Case 3: Reλ1 < 0, Reλ2 < 0, λ3 > 0.
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In order to rule out Case 1 and Case 2 above, we make the assumption that Case 1
and Case 2 are true.

At first, for 0 < δ2 ≤ µ, if Case 1 and Case 2 are true, λ1λ2 + λ1λ3 + λ2λ3 must be
positive. However, we deduce that

λ1λ2 + λ1λ3 + λ2λ3 =
δ2 − µ
dk2

≤ 0,

which produces a contradiction. Thus Case 1 and Case 2 are excluded when 0 < δ2 ≤ µ.
Then, for 0 < µ < δ2, if Case 1 is true, we have

P(−λ) = λ3 − δ2dk
2 + c2 − δ1k

2

cdk2
λ2 +

δ2 − µ
dk2

λ+
µδ2

cdk2
, (3.9)

which have negative real parts. Subsequently, according to the Hurwitz algorithm, we
obtain

δ2dk
2 + c2 − δ1k

2 < 0, (3.10)
and

−(δ2dk
2 + c2 − δ1k

2) >
δ2 − µ
dk2

µδ2.

Then based on δ1 < dµ, we have

δ1k
2 − dµk2 ≤ c2 < δ1k

2 − dδ2k
2 =⇒ µ > δ2.

This is a contradiction to the condition of 0 < µ < δ2. Thereby Case 1 is excluded.
Again, assuming that Case 2 holds, it follows from polynomial (3.8) that

λ1 + λ2 + λ3 = λ3 = −δ2dk
2 + c2 − δ1

cdk2
> 0,

which implies (3.10). Similarly, we derive a contradiction to the condition of 0 < µ < δ2.
From the analysis above, we accordingly get the conclusion that for each c > 0, P(λ)
has the unique positive root. �

3.2. Construction of the invariant region.
The following discussion is focused on the case of c ≥ 2k

√
dµ. Defining the region

Ω = {(U, V,W ) : 0 ≤ U ≤ δ2

δ1

V ≤ 1, 0 ≤ W ≤ cU},

which is surrounded by curves Si (i = 1, · · · , 4), respectively

S1 = {(U, V,W ) : W = 0, 0 ≤ U ≤ δ2

δ1

V ≤ 1},

S2 = {(U, V,W ) : W = cU, 0 ≤ U ≤ δ2

δ1

V ≤ 1},

S3 = {(U, V,W ) : U =
δ2

δ1

V, 0 ≤ U ≤ 1, 0 ≤ W ≤ cU},

S4 = {(U, V,W ) : V =
δ1

δ2

, 0 ≤ U ≤ 1, 0 ≤ W ≤ cU},

which is shown in Figure 3. Notice that in order to establish a heteroclinic orbit remains
in Ω, and naturally obtain solutions of system (3.4). This leads to the following lemma.
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Figure 3. The region Ω surrounded by curves Si (i = 1, · · · , 4).

Lemma 3.3. For each c ≥ 2k
√
dµ and δ1 < dµ, the tangent vector of local unstable

manifold W u
loc(E2) points to the interior of the region Ω. Additionally, the unstable

manifold can only go away the region Ω by crossing w = 0.

Proof. The face S1 has an outer normal vector −→n1 = (0, 0,−1). For any point on the
face S1, one has

f · −→n1 = µU(1− U) ≥ 0.

The aim is to explore the dynamics on four faces Si (i = 1, · · · , 4) making up the
boundary of the region Ω, and the results imply that the flow entering the region Ω
can only leave via crossing the face S1.

In fact, the face S2 has an outer normal vector −→n2 = (−c, 0, 1). For any point on the
face S2, it leads to

f · −→n2 = µU(U − 1)− c

dk2

(
W − cU +

k2

c
U (δ1U − δ2V )

)
= µU(U − 1)− c

dk2

(
k2

c
U (δ1U − δ2V )

)
= µU(U − 1) +

1

d
U(δ2V − δ1U)

≤ µU(U − 1) +
1

d
U(δ1 − δ1U)

= U(U − 1)

(
δ1

d
− µ

)
≤ 0.

The inequalities hold when δ1 < dµ. Thus the unstable manifold of E2

(
1,
δ1

δ2

, c

)
can

not leave the region Ω through the face S2.
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Similarly, the face S3 has an outer normal vector −→n3 = (1,−δ2

δ1

, 0) and the face S4

has an outer normal vector −→n4 = (0, 1, 0). For any point on the face S3 or S4, it results
in, respectively

f · −→n3 =
1

dk2

(
W − cU +

k2

c
U (δ1U − δ2V )

)
− δ2

cδ1

(δ1U − δ2V )

=
1

dk2
(W − cU) ≤ 0,

and

f · −→n4 =
1

c
(δ1U − δ2V ) =

δ1

c
(U − 1) ≤ 0.

Thus the unstable manifold of E2

(
1,
δ1

δ2

, c

)
can not leave the region Ω through the

faces S3 and S4. This concludes the proof. �

According to Lemma 3.3, in order to guarantee that the unstable manifold of equilib-
rium point E2 never leaves the region Ω, it promotes us to seek a lower boundary which
cannot be crossed by solutions of system (3.4). Setting w = %(U, V ), which satisfies

• Condition (a): on the surface w = %(U, V ), d
dt

(W − %(U, V )) ≥ 0 along
trajectories of system (3.4)

• Condition (b): for all 0 ≤ U ≤ δ2

δ1

V ≤ 1, 0 ≤ %(U, V ) ≤ cU

• Condition (c): %(0, 0) = 0.
Based on the conditions above, the following lemma reveals the design of %(U, V ).

Lemma 3.4. For each c ≥ 2k
√
dµ, the surface w = %(U, V ) can be constructed to

guarantee that the solutions of system (3.4) cannot leave through the bottom of the
region Ω.

Proof. Taking %(U, V ) = ηU , where η > 0 has not be specified. It is obvious that
Condition (c) is satisfied immediately. In order to verify Condition (a),

W ′ − %UU ′ − %V V ′ = µU(U − 1)− η 1

dk2

(
W − cU +

k2

c
U (δ1U − δ2V )

)
≥ 0. (3.11)

Rearranging (3.11), one has

η2 +

(
k2

c
(δ1U − δ2V )− c

)
η + dk2µ(1− U) ≤ 0. (3.12)

This is a quadratic expression. Consequently, to satisfy expression (3.12), the nonneg-
ative discriminant is required, i.e.,(

k2

c
(δ1U − δ2V )− c

)2

− 4dk2µ(1− U) ≥ 0. (3.13)
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For all 0 ≤ U ≤ δ2

δ1

V ≤ 1, it directly leads to δ1U−δ2V ≤ 0. Hence,
k2

c
(δ1U − δ2V )−c

can be minimized over all relevant 0 ≤ U ≤ δ2

δ1

V ≤ 1 to reach that

c2 ≥ 4dk2µ(1− U) =⇒ c2 ≥ 4dk2µ,

which results in c ≥ 2k
√
dµ. Hence, we can choose an η that satisfies the expression

(3.12) and 0 < η ≤ c. It is obvious that for all c ≥ 2k
√
dµ, the discriminant (3.13)

is nonnegative, then the quadratic expression of η has two real roots for all 0 ≤ U ≤
δ2

δ1

V ≤ 1. Taking η = η∗ to be the critical point of expression (3.12). The location of

η∗ is given by

0 ≤ η∗ =
c

2
− k2

2c
(δ1U − δ2V ) ≤ c

2
+
k2

2c
δ2v.

In fact, due to δ2V < δ1 < dµ <
c2

4k2
, then

η∗ ≤ c

2
+
k2

2c
· c

2

4k2
=

5c

8
< c,

making the surface %(U) < cU . This completes the proof. �

As a consequence, we can choose an η∗ =
3

8
c satisfying Condition (a),(b),(c), i.e.,

S ′1 = {(U, V,W ) : W =
3

8
cU, 0 ≤ U ≤ δ2

δ1

V ≤ 1}.

Then based on the above lemmas, we can define a new invariant region Ω∗ which is
surrounded by curves S ′1 and Si (i = 2, 3, 4), which is directly presented in Figure 4. It
directly leads to the major result as follows.

Figure 4. The region Ω∗ surrounded by curves S′1 and Si (i = 2, 3, 4).
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Theorem 3.1. For all c ≥ 2k
√
dµ, the degenerate time fractional Keller-Segel system

has a heteroclinic orbit from E2

(
1,
δ1

δ2

, c

)
to E1(0, 0, 0), which remains in the region Ω

for all ξ ∈ R, that is to say, the time fractional Keller-Segel system (1.5) with a small
parameter ε = 0 exists traveling wave solutions.

Remark 3.1. For Keller-Segel system with integer order derivative, we can choose the
transformation

U(x, t) = U (kx− ct) = U(ξ).

If the time fractional derivative is defined by Definition 2.2, the transformation

U(x, t) = U

(
kx

Γ(1 + α)
− ct

Γ(1 + α)

)
= U(ξ),

will be involved. If the time fractional derivative is defined by Definition 2.3, the trans-
formation

U(x, t) = U

(
kx− λ

β

(
t+

1

Γ(β)

)β)
= U(ξ),

will be preferred. Consequently, the partial differential equations can equivalently be
converted into ordinary differential equations. The existence of traveling waves in these
Keller-Segel systems can be similarly demonstrated.

4. Traveling wave solutions for time fractional Keller-Segel system
with a small parameter.

In this part, we concentrate on the time fractional Keller-Segel system (1.5) with the
small parameter ε > 0. Undoubtedly, geometric singular perturbation theory plays a
critical role in elucidating the existence of traveling wave solutions.

4.1. Perturbation Analysis.
Substituting the transformation (3.2) into system (1.5), then we obtain equations{

−cU ′ = dk2U ′′ − k2 (UV ′)
′
+ µU(1− U),

−cV ′ = εk2V ′′ − δ1U + δ2V,
(4.1)

where ′ = d
dξ
. Introducing W = dk2U ′ − k2UV ′ + cU, the system (4.1) is equivalent to

the following system 

U ′=
1

dk2

(
W + k2UY − cU

)
,

V ′=Y,

W ′=µU(U − 1),

εY ′=
1

k2
(δ1U − δ2V − cY ) ,

(4.2)

where ′ = d
dξ

and system (4.2) is regarded as the singularly perturbed system. Obvi-
ously, when ε → 0, system (4.2) will reduce to system (3.4). Actually, when ε > 0,
system (4.2) can be turned into a parallel problem through making the time scale
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transformation. Choosing ξ=εz, then slow system (4.2) can be converted into fast
system 

U̇=
ε

dk2

(
W + k2UY − cU

)
,

V̇=εY,

Ẇ=εµU(U − 1),

Ẏ=
1

k2
(δ1U − δ2V − cY ) ,

(4.3)

where ˙ = d
dz
. When ε > 0, the the fast system (4.3) and slow system (4.2) are

equivalent. However, different time scales generate different limiting systems. Setting
ε→ 0 in slow system (4.2), the reduced system is given as

U ′=
1

dk2

(
W + k2UY − cU

)
,

V ′=Y,

W ′=µU(U − 1),

0=
1

k2
(δ1U − δ2V − cY ) .

(4.4)

Setting ε→ 0 in system (4.3), we obtain the layer system

U̇=0,

V̇=0,

Ẇ=0,

Ẏ=
1

k2
(δ1U − δ2V − cY ) .

(4.5)

Then solutions in system (4.4) are constrained to the following set

M0 =

{
(U, V,W, Y ) ∈ R4 : Y =

δ1

c
U − δ2

c
V

}
.

Based on geometric singular perturbation theory of Fenichel [18, 24], if M0 is normally
hyperbolic, a invariant manifold Mε of three-dimensional when 0 < ε � 1 can be
obtained, so that the existence of the slow manifold will also be established.

By a direct calculation, the linearization matrix of fast system (4.3) restrained to
M0 is 

0 0 0 0

0 0 0 0

0 0 0 0

δ1

k2
− δ2

k2
0 − c

k2

 .

The matrix has four eigenvalues: 0, 0, 0,− c

k2
. There are three zero eigenvalues, and

M0 is a three-dimensional manifold. Therefore, M0 is a normally hyperbolic manifold .
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Afterwards, the theorem proposed by Fenichel [18] due to Jones [24] can be applied.

Lemma 4.1. ([18, 24]) For the system with a small real parameter 0 < ε� 1,
dx

dt
= φ(x, y, ε),

dy

dt
= εψ(x, y, ε),

(4.6)

where x ∈ Rn, y ∈ Rl, n, l ≥ 1. The functions φ and ψ are both assumed to be C∞. If
ε > 0, define M0 to be a compact (possibly with boundary), normally hyperbolic critical
manifold and given as a graph {(x, y) : x = h0(y)}. If ε > 0 is sufficiently small, then

(I) there exists a manifold Mε, which is Cr and locally invariant under the flow for
system (4.6);

(II) for some Cr function hε(y), Mε is given as graph:

Mε = {(x, y) : x = hε(y)};
(III) there exist locally invariant stable manifold W s(Mε) and unstable manifold

W u(Mε) of the slow manifold Mε, which are lying O(ε) and Cr diffeomorphic to the
stable manifold W s(M0) and unstable manifold W u(M0) of the critical manifold M0,
respectively.

According to Lemma 4.1, for ε > 0, the three-dimensional manifoldMε is O (ε) close
and diffeomorphic to M0, which is given as

Mε =

{
(U, V,W, Y ) ∈ R4 : Y =

δ1

c
U − δ2

c
V + g (U, V,W, ε)

}
.

The function g is smooth and determined on a compact domain, moreover,

g (U, V,W, 0) = 0.

The function g can be expanded in the formation of the Taylor series relative to the
small parameter ε, i.e.,

g (U, V,W, ε) = εg1 (U, V,W ) + ε2g2 (U, V,W ) + · · · . (4.7)

Substituting

Y =
δ1

c
U − δ2

c
V + g (U, V,W, ε) ,

into slow system (4.2), one has

ε

{(
δ1

c
+
∂g

∂U

)
1

dk2

[
W − cU + k2U

(
δ1

c
U − δ2

c
V + g

)]
+

(
−δ2

c
+
∂g

∂V

)
(
δ1

c
U − δ2

c
V + g

)
+

∂g

∂W
µU(U − 1)

}
=− c

k2
g.

Comparing the coefficients of ε, we have

g1 = − δ1

c2d

[
W − cU + k2U

(
δ1

c
U − δ2

c
V

)]
+
δ2k

2

c2

(
δ1

c
U − δ2

c
V

)
= − δ1

c2d
(W − cU) +

k2

c3

(
δ2 −

δ1

d
U

)
(δ1U − δ2V ) .

(4.8)
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Hence the slow system limited to Mε, taking the form of
U ′=

1

dk2

(
W + k2U

(
δ1

c
U − δ2

c
V + g

)
− cU

)
,

V ′=
δ1

c
U − δ2

c
V + g,

W ′=µU(U − 1),

(4.9)

where g is presented in (4.7) and (4.8). It is evident that system (4.9) is simplified to
system (3.4) when ε→ 0.

4.2. Traveling wave solutions.
The following aims to verify the existence of a heteroclinic orbit connecting equilib-

rium points E1 and E2. Accordingly, the time fractional Keller-Segel system (1.5) with
sufficiently small parameter ε > 0 has traveling wave solutions.

Set

U = U0 + εφ1 + · · · , V = V0 + εφ2 + · · · ,W = W0 + εφ3 + · · · , (4.10)

where (u0, v0, w0) is the flow of system (3.4). Substituting transformation (4.10) into
system (4.9), and comparing the coefficients of ε, then one has the differential system
determining φ1, φ2 and φ3

φ′1=
1

dk2

[
φ3 + k2φ1

(
δ1

c
U0 −

δ2

c
V0

)
+ k2U0

(
δ1

c
φ1 −

δ2

c
φ2 + g10

)
− cφ1

]
,

φ′2=
δ1

c
φ1 −

δ2

c
φ2 + g10,

φ′3=µ(2U0 − 1)φ1,

(4.11)

where

g10 = − δ1

c2d
(W0 − cU0) +

k2

c3

(
δ2 −

δ1

d
U0

)
(δ1U0 − δ2V0) .

It leads system (4.11) to transform into

dΨ(ξ)

dξ
+ Γ(ξ)Ψ(ξ) = Q(ξ), (4.12)

where

Ψ(ξ) =


φ1(ξ)

φ2(ξ)

φ3(ξ)

 , Γ(ξ) =


1

dk2

(
c− 2δ1

c
U0k

2 +
δ2

c
V0k

2

)
δ2

dc
U0 −

1

dk2

−δ1

c

δ2

c
0

µ (1− 2U0) 0 0

 ,

and

Q(ξ) =

(
1

d
U0g10, g10, 0

)T
.

In the following, we will find that system (4.12) exists a solution meeting

φ1(±∞) = 0, φ2(±∞) = 0, φ3(±∞) = 0.
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Define

L =
d

dξ
+ Γ(ξ),

and Euclidean inner production as∫ +∞

−∞
(ϕ1(ξ), ϕ2(ξ))dξ.

Base on the Fredholm theory, for all functions ϕ1(ξ) ∈ R3, system (4.12) exists a
solution if and only if ∫ +∞

−∞
(ϕ1(ξ), Q(ξ))dξ = 0,

in the kernel of the adjoint for operator L, i.e., L∗, is given as

L∗ = − d

dξ
+ ΓT (ξ),

where

ΓT (ξ) =


1

dk2

(
c− 2δ1

c
U0k

2 +
δ2

c
V0k

2

)
−δ1

c
µ (1− 2U0)

δ2

dc
U0

δ2

c
0

− 1

dk2
0 0

 .

Next we compute KerL∗, all ϕ1(ξ) satisfying L∗ϕ1(ξ) = 0 can be calculated by

dϕ1(ξ)

dξ
= ΓT (ξ)ϕ1(ξ). (4.13)

As a result, the persistence question can be regarded as the solvability of equation
(4.13). However, it is difficult in finding the general solution of equation (4.13) due
to the matrix ΓT (ξ) is nonconstant. Nevertheless, it promotes us only to look for
solutions satisfying ϕ1(±∞) = 0. As a matter of fact, the zero solution is the unique
solution. There is no doubt that U0(ξ) is the solution for the unperturbed problem.
Let ξ → +∞, the matrix ΓT (ξ) finally becomes the following constant matrix

c

dk2
−δ1

c
µ

0
δ2

c
0

− 1

dk2
0 0

 ,

and all eigenvalues are real and negative for c ≥ 2k
√
dµ.

Similarly, through computing the eigenvalues of the matrix in (4.13) when ξ → −∞,
thus we find that, the zero solution is the only solution satisfying ϕ1(±∞) = 0. It
implies that the Fredholm orthogonality theorem naturally holds∫ +∞

−∞
(ϕ1(ξ), Q(ξ))dξ =

∫ +∞

−∞
(0, Q(ξ))dξ = 0,
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and solutions of system (4.12) exist, which satisfy

φ1(±∞) = 0, φ2(±∞) = 0, φ3(±∞) = 0.

Thus for ε > 0 sufficiently small, there exists a heteroclinic orbit connecting equilibrium
points E1 and E2. Additionally, the time fractional Keller-Segel system (1.5) with
a small parameter exists traveling waves. Hence the following main result can be
concluded.

Theorem 4.1. For each c ≥ 2k
√
dµ and ε > 0 sufficiently small, the time fractional

Keller-Segel system (1.5) with a small parameter exists traveling wave solutions.

5. Asymptotic behavior.

Using the asymptotic theory, the asymptotic behavior to traveling waves can be
detailed described as follows.

Let Φ(ξ) = (U(ξ), V (ξ),W (ξ))T be traveling wave solutions in the degenerate time
fractional Keller-Segel system (3.4), which satisfies the boundary conditions

U(+∞) = 0, V (+∞) = 0, W (+∞) = 0,

U(−∞) = 1, V (−∞) =
δ1

δ2

, W (−∞) = c.

Differentiate the system (3.4) with respect to ξ and denote

Φ′(ξ) = (U ′(ξ), V ′(ξ),W ′(ξ))
T

=
(
Ũ(ξ), Ṽ (ξ), W̃ (ξ)

)T
,

we obtain
Ũ ′=

1

dk2

(
W̃ − cŨ +

k2

c
Ũ (δ1U − δ2V ) +

k2

c
u
(
δ1Ũ − δ2Ṽ

))
,

Ṽ ′=
1

c

(
δ1Ũ − δ2Ṽ

)
,

W̃ ′=µŨ(U − 1) + µUŨ.

(5.1)

Then let ξ → +∞ in system (5.1), one has
Ũ ′+=

1

dk2

(
W̃ − cŨ

)
,

Ṽ ′+=
1

c

(
δ1Ũ − δ2Ṽ

)
,

W̃ ′
+=− µŨU,

which can be rewritten as
Z ′1 = M1Z1, (5.2)

where M1 is given in (3.5), and Z1 =
(
Ũ+(ξ), Ṽ+(ξ), W̃+(ξ)

)T
. For all c ≥ 2k

√
dµ, the

eigenvalues λ̃i of M1 is given as

λ̃1 = −δ2

c
< 0, λ̃2 =

√
c2 − 4dk2µ− c

2dk2
< 0, λ̃3 =

−
√
c2 − 4dk2µ− c

2dk2
< 0. (5.3)
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The general solution in system (5.2) satisfies(
Ũ+(ξ), Ṽ+(ξ), W̃+(ξ)

)T
=

3∑
i=1

αipie
λ̃iξ, i = 1, 2, 3,

where λ̃i are eigenvalues of the matrix M1, pi are corresponding eigenvectors, and αi
are arbitrary constants.

Since ξ → +∞,
(
Ũ+(ξ), Ṽ+(ξ), W̃+(ξ)

)T
→ (0, 0, 0)T , the asymptotic behavior at

this case can be deduced Ũ+(ξ)

Ṽ+(ξ)

W̃+(ξ)

 =


∑3

i=1 σi(γ̄i + o(1))eλ̃iξ∑3
i=1 σi(γ̃i + o(1))eλ̃iξ∑3
i=1 σi(γ̂i + o(1))eλ̃iξ

 ,

where γ̄i, γ̃i, γ̂i are constants and σi cannot be zero simultaneously. If the first com-
ponent of eigenvector pi is zero, the matrix M1 implies that the other components are
zero, which implies the γ̄i, γ̃i, γ̂i 6= 0.

Again letting ξ → −∞ in system (5.1), i.e.,
Ũ ′−=

1

dk2

(
W̃ − cŨ +

k2

c

(
δ1Ũ − δ2Ṽ

))
,

Ṽ ′−=
1

c

(
δ1Ũ − δ2Ṽ

)
,

W̃ ′
−=µŨ,

which can be rewritten as
Z ′2 = M2Z2, (5.4)

where M2 is given in (3.7), and Z2 =
(
Ũ−(ξ), Ṽ−(ξ), W̃−(ξ)

)T
. The general solution in

system (5.4) satisfies(
Ũ−(ξ), Ṽ−(ξ), W̃−(ξ)

)T
=

3∑
i=1

α̃ip̃ie
λiξ, i = 1, 2, 3, (5.5)

where λi are eigenvalues of the matrix M2, p̃i are corresponding eigenvectors, and α̃i
are arbitrary constants. According to Lemma 3.2, we find that, the eigenvalues λi of
M2 satisfy Reλ1 < 0, Reλ2 < 0, λ3 > 0.

Since ξ → −∞,
(
Ũ−(ξ), Ṽ−(ξ), W̃−(ξ)

)T
→ (0, 0, 0)T . Based on (5.5), we have(

Ũ−(ξ), Ṽ−(ξ), W̃−(ξ)
)T

= α̃3p̃3e
λ3ξ,

thus the asymptotic behavior as ξ → −∞ can be deduced Ũ−(ξ)

Ṽ−(ξ)

W̃−(ξ)

 =

σ̄3(γ̄3 + o(1))eλ3ξ

σ̄3(γ̃3 + o(1))eλ3ξ

σ̄3(γ̂3 + o(1))eλ3ξ

 ,

where γ̄3, γ̃3, γ̂3 6= 0 are constants and σ̄3 cannot be zero simultaneously.
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Theorem 5.1. For all c ≥ 2k
√
dµ, there exist positive constants Ki(i = 1, 2, 3) and

Ni(1, 2, 3) such that the degenerate time fractional Keller-Segel system (1.5) exists a
traveling wave solution Φ(ξ), whose asymptotic properties are respectively presented as

Φ(ξ) =

 (−K1 + o(1)) eλ̃iξ

(−K2 + o(1)) eλ̃iξ

(−K3 + o(1)) eλ̃iξ

 , as ξ → +∞,

and

Φ(ξ) =

 1− (−N1 + o(1)) eλ3ξ

δ1

δ2

− (−N2 + o(1)) eλ3ξ

c− (−N3 + o(1)) eλ3ξ

 , as ξ → −∞,

where λ̃i may be λ̃1, λ̃2, λ̃3 given in (5.3).

Remark 5.1. The asymptotic properties to traveling waves for the Keller-Segel system
(1.5) with parameter ε > 0 sufficiently small can be explored in a similar discussion.
It motivates us to focus on more complex characteristic equations and the details are
omitted here.

Remark 5.2. Essentially, for Keller-Segel system with integer order derivative or other
formations of fractional order derivative, the existence and asymptotic properties of
traveling waves for Keller-Segel systems can be explored in a similar manner.

Remark 5.3. Compared with the research in [5, 7, 14, 30], the asymptotic behavior
to traveling waves are detailed established in the present study. In addition, although
we pursue the heteroclinic orbits for the degenerate time fractional Keller-Segel system
by constructing a suitable invariant region, which is slightly different. Noteworthy, the
invariant region is three-dimensional and explicitly depicted, which is more complex,
interesting and challenging.

Remark 5.4. Distinguished from [5, 7, 14, 30], the time fractional derivative is intro-
duced in this paper, which makes it a challenge to explore the complicated impact on
the dynamics of Keller-Segel systems. Fractional derivatives play an important role in
modeling chemotaxis in complex and nonhomogeneous media and mathematical biolog-
ical models, and are more challenging to study compared to integer order derivatives.

6. Conclusion.

To conclude, we systematically studied traveling waves for time fractional Keller-
Segel system (1.5) without and with the small parameter ε. Such a problem is of
great theoretical and practical importance, and has not been well studied yet in the
literature. The results of this paper are new.

There are two major technical issues: the construction of the invariant region and the
search for the heteroclinic orbit for the perturbed system. Obviously, geometric singular
perturbation theory plays an essential role in seeking for the invariant manifold and
establishing the existence of traveling waves. It is worth mentioning that the additional
time fractional derivatives shall be applicable to reveal inherently more realistic and
general phenomena than integer order derivatives.
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The stability and non-existence of traveling waves for time fractional Keller-Segel
systems are our future efforts. Furthermore, time-space fractional Keller-Segel systems
also need further investigation.
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