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(ALI) and their complex relationships, which together constitute the cell network and inflammatory factor network of ALI
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Abstract : Acute lung injury is a systemic inflammatory response syndrome in the lungs, with a high
incidence and fatality rate of 30%–40%. Despite the abundance of research on the pathogenesis of lung
injury and the great progress that has been achieved, the various number of cells, cytokines and inflammatory
response pathways involved in the pathogenesis of acute lung injury (ALI) and their complex relationships,
which together constitute the cell network and inflammatory factor network of ALI inflammatory response,
demand more attention. This study reviews the formation of this network in the pathogenesis of acute lung
injury.

1



P
os

te
d

on
20

F
eb

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

68
98

13
.3

24
78

73
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Keywords : acute lung injury; inflammatory factor network; cell network

Acute lung injury (ALI) is a primary disease caused by serious non-cardiogenic pathogenic factors such as
severe infection, shock, trauma, disseminated intravascular coagulation, aspiration and so on. The clinical
manifestations are mainly acute progressive aggravated dyspnoea and refractory hypoxemia. Numerous
studies have investigated the relationship between a single cell type, single cytokine, or cell and molecule
related to certain disease aspects; however, the study based on a single research object cannot grasp disease
occurrence and development, affecting the therapeutic effects on the disease. Therefore, this review of
studies on cellular inflammatory cytokine networks and cellular networks provides a more comprehensive
understanding of the pathogenesis of ALI and new research ideas.

1 Cytokine network

1.1 Tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)

TNF-α and IL-1β are considered promoters of the development of ALI/acute respiratory distress
syndrome[1][2]. TNF-α and IL-1β in the plasma are often used to distinguish the severity of systemic in-
flammation, increase the permeability of epithelial cells and then lead to lung tissue injury and neutrophil
aggregation, resulting in pulmonary oedema. It also induces IL-8 production in alveolar macrophages, type
II epithelial cells and lung fibroblasts[3][4][5]. TNF-α can also promote the expressions of IL-6 and IL-1β in
fibroblasts and the differentiation of fibroblasts[6]. The transcription of TNF-α and IL-1β is mediated by the
nuclear factor (NF)- κB, and the TNF-α promoter contains sites of NF-κB, which can stimulate and activate
NF-κB, thus forming a positive regulatory loop to amplify and maintain inflammation[7].

TNF-α is secreted by activated monocytes and macrophages and can promote cytokine production and
neutrophil aggregation into the lungs, stimulate fibroblast proliferation, lead to pleural septum thickening
and increase collagen production.[8][9][10] It can also directly damage vascular endothelial cells and increase
their permeability. Moreover, it is a major cytokine that mediates early inflammatory response and fibrosis.
It is closely related to the occurrence of lung injury[11][12][13].

TNF-α can interact with endothelial cells to induce lung endothelial cell activation, increase the expression of
vascular endothelial cell surface adhesion molecules and stimulate leukocyte activation and migration, both
of which contribute to the aggregation of neutrophils to the injured site, thus further activating monocytes,
macrophages and T lymphocytes and promoting the release of numerous pro-inflammatory factors by inflam-
matory cells[14]. TNF-α also regulates the expression of various pro-inflammatory factors (such as IL-1, IL-6,
platelet-activating factor, IL-8 and leukotriene) and amplifies the inflammatory cascade reaction. TNF-α
can also bind to receptors on the surface of alveolar epithelial cells, causing changes in cell metabolism,
mediating epithelial cell apoptosis, shedding, regeneration and ultimately, pulmonary fibrosis[15][16].

IL-1β is secreted by mononuclear macrophages and is one of the major inflammatory cytokines in pul-
monary oedema fluid. IL-1β stimulates the production of chemokines (e.g. IL-8), epithelial-derived neu-
trophil chemokines ENA-78, monocyte chemokine peptide (MCP)-1, macrophage inflammatory peptide-1
and the extracellular matrix produced by fibroblasts. IL-6 and IL-1β are precursors of inflammation and
fibrosis[10][17][18][19][20][21].

1.2 IL-6

IL-6 is a water solubility mediator and is produced by dendritic cells (DCs), mononuclear macrophages,
B cells, activated T cell subsets, fibroblasts, endothelial cells and keratinocytes[5][22]. It is involved in the
acute-phase reaction during infection and can integrate the signals of early inflammatory response. It is also
an important inflammatory factor in the early stage of inflammation and can promote the release of more
inflammatory factors. Sustained levels of IL-6 can inhibit inflammation and coordinate anti-inflammatory
activities required for inflammation reduction[11][23][24]. In lipopolysaccharide (LPS)-induced ALI, the for-
mation of pulmonary oedema in rats is highly correlated with IL-6, which is one of the main inflammatory
cytokines in pulmonary oedema fluid. IL-6 content can reflect the severity of local reactions in the lungs and
is used to judge healing[25][26].
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IL-6 regulates cell growth and differentiation[26]. It can promote the phenotype transformation of
macrophages, induce macrophages to differentiate into M2 type, stimulate macrophages to secrete MCP-
1, promote atherosclerosis, increase the expression of cell adhesion molecules, stimulate the proliferation and
migration of vascular smooth muscle cells, regulate infection, or promote the accumulation of neutrophils
at the wound site. IL-6 also delays polymorphonuclear cell (PMN) apoptosis, inhibits DC formation and
NF-κB activation in these cells and the expression of chemotactic factor CCR7 and promotes keratinocyte
proliferation or gliosis in dermal fibroblasts[23][24].

IL-6 signal transduction can be classified into classical activation and transactivation. Classical IL-6 re-
ceptor signalling controls both intracentric stabilisation processes and immune outcomes. IL-6 trans-signal
transduction plays an important role in leukocyte recruitment and apoptosis, maintenance of T cell effector
function and inflammatory activation of interstitial tissue and regulates the expression of adhesion molecules
intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule 1[23]. The IL-6 trans-signal
transduction mechanism ensures an effective defence mechanism, prevents excessive tissue damage and drives
the transition from neutrophil recruitment to monocyte recruitment[23].

1.3 IL-8

IL-8 is mainly produced by alveolar macrophages, type II epithelial cells and lung fibroblasts[5][27]. IL-8 is
the main chemokine of neutrophils and plays a chemotactic role mainly by binding to CXCL1, a homologous
receptor on neutrophils[18]. In endotoxaemia models and acid inhalation models, IL-8 monoclonal antibody
binds to IL-8 and prevents binding to CXC chemokine receptors on PMN, significantly reducing lung injury
and PMN migration[18].

1.4 High mobility group 1 protein (HGMB-1)

HGMB-1 is a highly conserved eukaryotic protein isolated from chromosome protein and is a transcription
factor[28]. It can be passively released from damaged and necrotic cells and actively secreted by immune cells
stimulated by cytokines and endotoxins (DCs and macrophages)[29]. In ALI, NF-κB activation increased
HMBG-1 secretion. Extracellular HGMB-1 can be used as a cytokine to mediate nonspecific inflamma-
tory response or as an endogenous danger signal to initiate and enhance specific immune response, induce
neutrophilic inflammatory pulmonary oedema, stimulate macrophages to secrete TNF-α, further promote
macrophages to express HGMB-1 and maintain the inflammatory response[29][30]. Moreover, HGMB-1 is an
inhibitor of the Bcl-2 family member Bak, resulting in neutrophil apoptosis inhibition and aggravation of
neutrophil accumulation. Anti-HGMB-1 antibodies can reduce the migration of neutrophils to the site of
lung injury[29][31].

1.5 Interferon-γ (IFN-γ)

IFN-γ is derived from the glycoprotein of activated T lymphocytes. It activates defence cells and promotes
the release of IL-1β, IL-6 and TNF-α, thereby further amplifying the inflammatory response. It also medi-
ates endothelial cell damage, increases vascular permeability, promotes neutrophils to enter the alveoli and
mediates lung damage.

1.6 Haeme oxygenase-1 (HO-1)

HO-1 is a stress protein stimulated by inflammatory cytokines, heat shock, heavy metals and oxidants,
which can degrade haem into Fe2+, biliverdin BV and CO[29][32]. The downstream product CO can regulate
inflammation, reduce inflammatory cell production and interact through the MAPK pathway to increase
the production of anti-inflammatory cytokines. Therefore, HO-1 has anti-inflammatory, antioxidant, anti-
apoptotic and anti-proliferative effects. Moreover, an interaction was found between inducible nitric oxide
synthase (iNOS) and HO-1. NO is a strong inducer of HO-1, and the expression of HO-1 can inhibit
iNOS expression and activity[33][34]. Therefore, HO-1 and CO have protective effects on ALI, inducing
HO-1 expression and inhibiting LPS-induced lung injury, iNOS expression and NO production[33]. The
overexpression of HO-1 also significantly decreased the total number of cells, neutrophils, W/D ratio and EBA

3
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exudation in the bronchoalveolar lavage fluid and significantly inhibited the increase in TNF-α concentration
and HMGB1 expression[29].

1.7 IL-10

IL-10 is an important anti-inflammatory factor in inflammatory injury response. It is secreted by mononu-
clear macrophages and can downregulate the secretions of T-cofactors, MHCII antigens and co-stimulatory
molecules on macrophages and inhibit neutrophil rolling, adhesion and transepithelial migration and the
release of inflammatory factors such as TNF-α, IFN-γ, IL-1 and IL-8. IL-10 can also block cytokine-induced
chemotactic and oxidative burst, reduce recruitment of neutrophils, interfere with neutrophil-mediated tissue
damage, inhibit Th1-mediated immune response and enhance the body’s anti-infection ability[35][36][37].

2 Cell network

2.1 Macrophages

Macrophages are a type of white blood cell that develops when monocytes migrate into the lung tis-
sue. Macrophages are widely distributed and can be divided into alveolar macrophages (AM), interstitial
macrophages (IM), bronchial macrophages, pulmonary intravascular macrophages and DCs after entering
the lung tissue. These cells constitute the first line of defence for removing foreign bodies[38][39][40].

In the absence of inflammation, macrophages are in an immune resting state and can secrete large amounts
of prostaglandins, which reduce the release of cytokines and inhibit cytokines from stimulating collagen
synthesis[16][38]. When external substances enter the body, AM, as an important target cell, is polarised in
an activated state, which has certain biological effects: it produces numerous free radicals and secretes inflam-
matory factors, thus activating other inflammatory reactions enzyme, and LTs can increase the expression of
adhesion molecules in vascular endothelial cells at inflammatory response sites, making PMNs easy to adhere
to[38][40][41]. IM promotes the removal of PMNs from the lung and secretes IL-1, IL-6, reactive oxygen species
(ROS) and iNOS after stimulation[26][38][42][43]. Moreover, it can present specific antigens to T cells, induce
T cell differentiation, mediate Th1 and Th17 cell immune response in Th cells and promote inflammation[47].
In a complex inflammatory environment, macrophages are simultaneously regulated by different molecular
events and signalling pathways involving JAK-STAT, TLR-NF-κB, MAPK, hypoxia-dependent signalling
pathways and differential TLR expression[40][44][45][46].

Macrophages can be classified into classically activated macrophages (M1) and selectively activated
macrophages (M2) according to metabolic pathways, types of cytokines secreted and surface markers[26].
M1 are induced by bacteria, and their products, such as LPS, or cytokine IFN-γ, promote inflammation
and cytotoxicity, high expression of iNOS, ROI and production of TNF-α, IL-1β, IL-6, CXCL-3, CXCL-5
and CXCL-8. Induced by IL-4, IL-10 and glucocorticoids, M2 promote damage repair and tissue regen-
eration while maintaining mild and continuous anti-inflammation, high expression of Arg1 (arginine) and
IL-10 production[45][51]. Therefore, macrophages have both pro-inflammatory and anti-inflammatory effects
and phagocytic and secretory functions[51]. They can phagocytise not only cell debris but also apoptotic
polymorphonuclear leukocytes while producing numerous free radical ROS, secreting inflammatory factors
and being the main source of cellular inflammatory factors TNF-α, IL-1β and IL-6 and finally initiating the
inflammatory cascade[39][51].

2.2 PMNs

PMNs are mainly neutrophils, including a small number of eosinophils and basophils. PMNS are one of
the main effector cells of ALI. They remove foreign bodies mainly by producing ROS and antibacterial
proteins. PMNs can be activated by TNF-α, IL and chemokines produced by macrophages, and migra-
tory recruitment occurs. Moreover, various proteases and oxygen free radicals are released, causing the
inflammatory storm[47]. When PMNs are inhibited by apoptosis, excessive and prolonged activation occurs,
resulting in basement membrane destruction and increased capillary barrier permeability. When neutrophil
transepithelial migration occurs, it will further destroy the alveoli and damage the lungs[19].
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2.3 Endothelial cells

The integrity of pulmonary microvascular endothelial cells is critical in the initiation of lung inflammation,
preventing protein-rich fluid from flowing into the interstitial lung tissue and alveoli from plasma and inflam-
matory cells, reducing the range of inflammatory effects and reducing pulmonary oedema. Among them,
cadherin (VE) and adhesive-junctional proteins play a key role in the maintenance of endothelial barrier
integrity[48][49].

During inflammation, selectin on the surface of endothelial cells interacts with ligands on the surface of neu-
trophils to mediate immune cascade reactions such as capture, rolling and adhesion of neutrophils[48][49]. In
the resting state, the expression level of ICAM-1 in vascular endothelial cells is low, which plays an important
role in stabilising cell–cell interaction and promoting the migration of leukocyte endothelial cells. In the pres-
ence of inflammatory stimulators such as TNF-α and LPS, endothelial cells highly express surface p-selectin
and E-selectin[48]. The expression of p-selectin on the surface of endothelial cells activates endothelial cells
and interacts with leukocyte receptors, which mediates the rolling of leukocytes on activated endothelial
cells, and E-selectin further mediates adhesion, makes leukocytes approach the cytokines and chemokines
secreted and expressed on endothelial cells, activates leukocytes to express β2 integrin and bind to their
receptors[49][50]. It can enhance the adhesion between leukocytes, inflammatory cells and endothelial cells,
promote neutrophil recruitment and endothelial cell activation and destroy the integrity of endothelial cells,
making it easier for them to penetrate the endothelium[48][51]. Furthermore, endothelial cells can synthesise
and release vasoactive substances, prostaglandins, PGI2, NO and inflammatory mediators TNF- α, IL-1 β
and IL-8 that are involved in the occurrence and development of inflammation[39].

2.4 Epithelial cells

Alveolar epithelial cells are divided into type I epithelial cells and type II epithelial cells. Type I epithelial
cells express globulin-transmembrane immune advanced glycation end product receptor, and type II epithelial
cells secrete surfactant D, which has anti-inflammatory effects and participates in pathogen phagocytosis and
neutrophil recruitment. Type I and II alveolar epithelia are closely connected and selectively regulate the
epithelial barrier[19][52].

When alveolar epithelial cells are activated by AM products such as oxygen free radicals, IL-1, TNF-α
and other inflammatory mediators, diffuse damage occurs and integrity is destroyed, leading to loss of
surfactant activity and decreased secretion and barrier function[19]. More monocytes will be recruited to
the inflammatory site, macrophages by secreting TNF-α, IL-8, IL-6, IL-1β, cytokines and other induction of
recruitment of various cells, including neutrophils, lymphocytes and eosinophils[53]. When PMNs enter the
alveoli, they stimulate the epithelium to release vascular growth factors, pro-inflammatory cytokines, acute-
phase proteins (C-reactive protein and protease inhibitors) and chemokines to participate in the inflammatory
response[5].

2.5 Lymphocytes.

In indirect ALI, in addition to neutrophils and macrophages, lymphocytes CD4+, CD25+ and Foxp3+T are
specifically recruited into the lungs. In the immune response, Th cells that play a role are differentiation
antigen4+, T cells (CD4+, T cells), which are differentiated into Th1, Th2, Th17 and Treg cells[36]. Th1
mediates cellular immune response, secretes IL-2, IFN-γ, TNF-α, IFN-γ and IL-12 to initiate Th1 cell
differentiation, promote T lymphocyte differentiation, maturation and proliferation, enhance macrophage
phagocytosis and regulate alveolar inflammation, which are necessary to remove intracellular pathogens[22].
Th2 mediates humoral immune response and secretes IL-4, IL-5, IL-6, IL-10 and IL-13, which are the key
for host cells to defend against extracellular pathogens and help B cells produce antibodies. IL-4 can induce
Th2 cell differentiation[22]. Th17 secretes pro-inflammatory factors IL-17A, IL-17F and IL-22, which can
cooperatively induce tissue inflammation[22]. Treg cells secrete cytokines such as IL-10 and TGF- β, which
mediates immune response. In the early stage of inflammation, effector T lymphocytes (Th1 cells) are
activated; with disease progression, Th2 cell transformation occurs when the effector T cells enter the stage
of fibrosis[42].
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In summary, the pathogenesis of ALI involves the accumulation of various key effector cells, multiple phys-
iological and pathological changes and activation and release of various inflammatory cytokines, and all
levels influence each other, forming a complex cell network and cytokine network. This will provide a new
scheme for the clinical treatment of ALI for a more comprehensive and in-depth understanding of the role
of inflammation and changes in the inflammatory microenvironment in the pathogenesis of ALI.
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