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Abstract

Introduced and invasive species make excellent natural experiments for investigating rapid evolution. Here, we describe the

effects of genetic drift and rapid genetic adaptation in pink salmon (Oncorhynchus gorbuscha) that were accidentally introduced

to the Great Lakes via a single introduction event 31-generations ago. Using whole-genome resequencing for 134 fish spanning

five sample groups across the native and introduced range, we estimate that the progenitor population’s effective population size

was 146,886 at the time of introduction, whereas the founding population’s effective population size was just 72—a 2040-fold

decrease. As expected with a severe bottleneck, we show reductions in genome-wide measures of genetic diversity, specifically

a 37.7% reduction in the number of SNPs and an 8.2% reduction in observed heterozygosity. Despite this decline in genetic

diversity, we provide evidence for putative selection at 47 loci across multiple chromosomes in the introduced populations,

including missense variants in genes associated with circadian rhythm, immunological response, and maturation, which match

expected or known phenotypic changes in the Great Lakes. For one of these genes, we use a species-specific agent-based model to

rule out genetic drift and conclude that a strong response to selection occurred in a period gene (per2) that plays a predominant

role in determining an organism’s daily clock, matching large day length differences experienced by introduced salmon during

important phenological periods. Together, these results inform how populations might evolve rapidly to new environments,

even with a small pool of standing genetic variation.

Introduction

Rapid evolution—or evolution on the scale of tens of generations—is now a well-established cause of genetic
change in populations (Colautti & Lau, 2015; Ellner et al., 2011; Hendry & Kinnison, 1999). Numerous
studies have described the results of rapid evolution across diverse organisms (Campbell-Staton et al., 2017,
2021; Lee, 2002; Yin et al., 2021), as well as how rapid genetic change has been driven by different evolutionary
processes (Barrett et al., 2019; Hof et al., 2016; Kardos et al., 2018; Lamichhaney et al., 2018). While
rapid genetic adaptation is often the focus of these studies, both theoretical and empirical methods have
demonstrated the strong effect of genetic drift on allele frequencies, even over a handful of generations, and
is particularly apparent in bottlenecked populations with significant founder effects (Allendorf, 1986; Kardos
et al., 2018). With this study, we show the genome-wide outcomes of a documented population bottleneck
originating from a single introduction event. We also show a subsequent response to selection imposed by
the introduction into a radically different environment.

Introduced and invasive species make for excellent model systems to study rapid evolution given the
nature of most introductions—e.g., small founding populations, novel environments, or multiple progenitor
sources (Kolbe et al., 2004; North et al., 2021; Stern & Lee, 2020). Because of these features, species intro-
ductions provide useful templates to answer questions about the evolutionary mechanisms that determine if
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organisms are successful in responding to new environmental conditions. Species introductions can similarly
serve as model systems for studying the potential for rapid evolution in threatened and endangered species,
or less tractable populations, such as those that are long-lived (Lee, 2002; North et al., 2021).

Populations introduced into novel environments may experience rapid evolution because of
different agents of genetic change. On one hand, the often-novel nature of recipient ecosystems—e.g., new
pathogens, prey, and predators or differences in the availability of fundamental resources—is expected to
result in rapid genetic adaptation (North et al., 2021). However, introduced populations are most often
founded from far fewer individuals than the progenitor population and these introductions constitute a
simultaneous demographic and genetic bottleneck even with multiple founder events (Allendorf et al., 2022).
While a reduction in founding individuals relative to the source population will always result in demographic
bottleneck, the effects of a genetic bottleneck are determined by the effective population size of the progenitor
population (Waples, 2022). That is, other factors being the same, introduced populations that are founded
from large, genetically diverse progenitor populations are expected to have a less extreme genetic bottleneck
relative to populations founded from progenitors that are less genetically diverse and have smaller effective
population sizes. Moreover, the genetic consequences (e.g., the magnitude of the reduction of genetic diversity
and the likelihood of subsequent inbreeding) of the bottleneck will influence the likelihood of persistence as
a function of rapid genetic adaptation.

In introduced populations, both genetic drift and natural selection can result in reduced genetic diversity
relative to their progenitors. While it remains challenging, separating the not always mutually exclusive
effects of genetic drift and genetic adaptation has become more feasible with whole-genome sequencing. The
ability to contrast local with genome-wide patterns of allelic change provides a useful template with which
to disentangle genetic adaption and genetic drift since the effects of drift are expected to occur more evenly
across the genome while the effects of selection are expected to manifest within local genomic regions.

Salmon, trout, and their allies (Family Salmonidae) are among the most commonly introduced species
globally because of their desirability as a commercial commodity and recreational species (Lowe et al.,
2000). One of the iconic introductions of salmonids globally is the purposeful introduction of Pacific salmon
and trout (Oncorhynchus spp.) to the Laurentian Great Lakes (hereafter Great Lakes) where they now
make up the most popular targets of a $7 billion per year fishery (Melstrom & Lupi, 2013; Mills et al.,
1994; Parsons, 1973). While the majority of salmon species introduced to the Great Lakes were planted
with intent of new economic and recreational enterprises—with numerous stocking efforts made to drive
those introductions—pink salmon (O. gorbuscha) were introduced in a single event in 1956 as the result
of a single accidental introduction (Kwain & Lawrie, 1981; Schumacher & Eddy, 1960). The progeny of
an odd-year spawning stock (1955, discussed below), collected from the Lakelse River in British Columbia,
Canada, were intended for introduction into the Canadian Arctic (Baffin Bay, CA). However, thousands of
juveniles were accidentally released in Lake Superior as hatched fry (N [?] 21,000, a subset of more than
750,000 progeny from the Artic introduction program made from ˜500 dame and sire pairs) in the Current
River in Thunder Bay, Ontario (Gharrett & Thomason, 1987). Pink salmon spread rapidly throughout the
Great Lakes with individuals being observed in every Great Lake, and populations growing to the 10s of
thousands and potentially 100s of thousands, within 12 generations of the introduction (Kwain & Lawrie,
1981). This spread was despite what is presumed to be a strong population bottleneck at introduction—a
founding population estimated on the order of hundreds of individuals—due to the very low survival of fry
to adults (˜2%) and the likelihood of a significant portion of the population straying to new habitats (˜10%)
(Gharrett & Thomason, 1987; Kwain & Lawrie, 1981; Quinn, 2018).

The introduction of pink salmon to the Great Lakes is an excellent system to study the combined effects of
genetic drift and natural selection on rapid evolution because of their small founding population size, the
lack of additional propagule pressure (no subsequent gene flow), the radically different environment they
were introduced to in the Great Lakes, and the rise of novel age-at-maturity life histories. Pink salmon are
obligate anadromous fish in their native range—meaning they must spend most of their pre-spawning life,
about one-and-half of their two years, in a marine environment. This life history strategy is largely unique
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in the genus Oncorhynchus, where pink salmon and their sister species, chum salmon (O. keta), migrate
almost immediately to marine environments while the other anadromous species all maintain non-migratory,
freshwater ecotypes or can have long periods of freshwater residency. Pink salmon are also unique within
the genus in that they have a fixed two-year life cycle in their native range (i.e., time from hatching to
death is 2 years for all individuals and other age-at-maturity phenotypes are exceedingly rare (Anas, 1959;
Quinn, 2018; Turner & Bilton, 1968)). As a result of this feature, lineages of odd- and even- year fish have
diverged, such that a river may have distinct populations spawning in the same habitat in both even and odd
numbered years. Because of this lineage divergence, genetic analyses indicate pink salmon are more related
to one another based on allochrony, rather than geography—e.g., all odd-year fish are more related to one
another than they are to an even year fish in the exact same habitat—whereas geography is the dominant
feature structuring populations in most other salmonids (Christensen et al., 2021; Fraser et al., 2011; Seeb et
al., 2014; Tarpey et al., 2017). However, this fixed life history in pink salmon has eroded in the Great Lakes,
with fish maturing at 1-, 2, and 3-years old, leading to the establishment of odd- and even-year spawning
groups in the Great Lakes (despite only an odd-year progenitor) that appear to maintain gene flow across
years (Bagdovitz et al., 1986; Gharrett & Thomason, 1987; Kwain & Chappel, 1978; Wagner & Stauffer,
1980). Given the presumed bottleneck at introduction, the novel recipient environment, and the rise of
novel age-at-maturity life histories, pink salmon in the Great Lakes are expected to have rapidly evolved via
multiple evolutionary forces.

Our study aimed to characterize and disentangle genetic drift and genetic adaptation of pink salmon
introduced to the Great Lakes. We sequenced the genomes of pink salmon from the Great Lakes and their
progenitor population to answer the following questions: i) what were the magnitude of the population and
genetic bottlenecks at introduction and their corresponding reduction of genetic diversity?, and ii) what loci
are associated with putative rapid genetic adaptation to the Great Lakes? We employed medium coverage
(˜14x) whole genome-resequencing and found evidence for a severe genetic bottleneck at introduction along
with associated reductions in genetic diversity, as well as multiple genomic regions that may have responded
to selection in the novel ecosystem.

Methods

Sample sites and sample collection

Pink salmon were collected from the Lakelse River, British Columbia, Canada (Figure 1a) in the fall of 2006
and 2007 as part of an earlier population genetics study (Beacham et al., 2012). The odd-year spawning
population from the Lakelse River was the sole progenitor population for pink salmon introduced to the Great
Lakes (Gharrett & Thomason, 1987; Schumacher & Eddy, 1960). Lake Superior tributaries were sampled in
September and October of 2018 and 2019 for even- and odd-year spawning fish, respectively. Fish collected
in Lake Superior were from the Steel River on the north shore of Lake Superior (Figure 1b,c), one of the
largest pink salmon spawning groups in the Great Lakes. The Steel River is 170 km east of the original site
of introduction, the Current River (Kwain, 1982; Kwain & Lawrie, 1981). For Great Lakes fish, biometric
data (length, weight, phenotypic sex) and a portion of the dorsal fin were collected for subsequent aging.
Caudal fin tissue was collected for DNA extraction. In their native range, pink salmon from the Lakelse
River form two distinct odd- and even-year populations without gene flow, however in the Great Lakes, fish
spawning in odd- and even-years are maintaining gene flow across year classes (Figure S1). As such, we refer
to all the groups in our study as sample groups, despite the strong population divergence between the even-
and odd-year samples from the same location in the native range. Hereafter, the native range sample groups
will be referred to by their year of spawning: British Columbia odd (progenitor) and British Columbia even,
which we shorten to BC odd and BC even. We refer to the introduced two-year old sample groups as Great
Lakes odd and Great Lakes even, which we shorten to GL odd and GL even. We also sampled 3-yr old pink
salmon (a life history strategy unique to the Great Lakes), which we shorten to GL odd 3 (Table 1). It is
important to note that a 3-yr old pink salmon that spawns in an odd-year would have parents that spawned
in an even-year. These 3-yr old fish are the primary way that gene flow occurs between odd and even years
in the Great Lakes and 3-yr old fish are present in both odd and even years though we did not sample any
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in an even year.

Pink salmon aging

Dorsal fins from all sampled individuals were dried, separated, set in epoxy, and read according to the
protocols outlined in Koch & Quist (Koch & Quist, 2007) and Little et al. (Little et al., 2012). To age
fish, cross sections of dorsal fin rays set in epoxy and were read at 4.5x power on an Olympus SZ61 digital
microscope. Samples were aged by counting annuli in fin rays. Photos were taken of each cross section using
the digital microscope and associated IFINITY CAPTURE (v. 6.3.2) software. These photos were also sent
to an outside reviewer to confirm accuracy of age determination. Samples from the native range did not
include aging structures but were all safely assumed to be 2-years old due to their fixed age-at-maturity,
which is the convention for all pink salmon populations in the native range (Gharrett & Thomason, 1987;
Quinn, 2018).

DNA extraction, library preparation, and sequencing

Tissue samples collected from British Columbia were extracted using Promega Wizard extraction kits and
protocols. Sample aliquots were dried down and stored frozen as pellets in population-specific 96-well plates.
These aliquots were sent to Purdue University in 2019, where they were brought into solution with 10 mg of
ultrapure water. Tissue samples collected from Great Lakes fish were extracted using Qiagen DNeasy blood
and tissue kits using the standard protocol for tissue. Sample concentrations for all samples were determined
using a Qubit 4 and the high-sensitivity dsDNA quantification assay.

For genomic sequencing, thirty samples each from BC odd and BC even were randomly chosen without
respect to sex as it was unknown for those samples. For the verified 2-year old fish from the Great Lakes
odd and even sample groups (2018 and 2019), thirty fish from each year were randomly chosen with an even
sex ratio of 15 males to 15 females. Additionally, 15 fish from the GL odd 3yr sample group were included for
sequencing (Table 1). Libraries were prepared at the Purdue Genomics core using Illumina DNA Prep kit and
protocols with a 1/5 reaction dilution and a set of Illumina DNA Prep compatible amplification primers to
add standard Illumina 384-well-design unique dual indexes. One sample failed after library preparation such
that only 29 BC odd samples were sequenced. All 134 samples were transported to the Indiana University
School of Medicine Genomics Core where they were sequenced using 2x150 base pair paired-end chemistry
on an Illumina NovaSeq 6000 S4 for 300 cycles in two separate runs; all samples were included in each of the
two runs.

Bioinformatics, variant calling, and filtering

Bioinformatic analyses were conducted using the Purdue Rosen Center for Advanced Computing (McCartney
et al., 2014). After sequencing, there was an average of 285.43 million reads per sample (˜14.12× coverage
of the 2.7 Gb genome, Table S1). Raw reads were trimmed of adapters, and low-quality reads removed using
Trimmomatic v. 0.39 with the clipping command LEADING:20 TRAILING:20 MINLEN:30 (Bolger et al.,
2014). For SNP calling, we used the Genome Analysis Toolkit v. 4.2.2 (GATK) germline short variant disco-
very pipeline with best practices unless otherwise noted (Van der Auwera & O’Connor, 2020). First, cleaned
reads were aligned to the OgorEven v1.0 even year pink salmon assembly (GCF 021184085.1) using bwa mem
v. 07.17 with the -M flag to mark shorter splits as secondary to avoid aligning to multiple sites as paralogs
are common in salmonid genomes (Christensen et al., 2021; Li, 2013). While chromosomal-level assemblies
exist for both odd and even-year lineages, the even-year assembly for pink salmon is the reference assembly
for the species; it is a much more complete assembly, was built using higher quality sequencing resources
(i.e., Hi-C), and is the only assembly that contains annotation information (Christensen et al., 2021). The
BAM files were merged into single files using Picard v. 2.20.8 AddOrReplaceReadGroups and MergeSamFiles
programs (Piccard Tools, 2020) because reads were generated from two different sequencing runs (though all
samples were included in each run). We then marked duplicate reads using GATK’s MarkDuplicatesSpark
to generate appropriate BAM files for variant calling.

Variants were called using HaplotypeCaller (in GVCF mode), consolidated with GenomicsDBImport,
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and then jointly genotyped using GenotypeGVCFs in GATK. All steps were preformed jointly for all sample
groups listed above, and the resulting pre-filtering file contained 24,071,073 SNPs. To filter SNPs, we first
used a GATK recommended hard filter thresholds (see SI Methods) and all filtering was conducted using
VCFtools v. 0.1.16 (Danecek et al., 2011). After the hard filtered loci were removed, samples were filtered
in the following order: remove non-biallelic sites, remove individuals with >20% missingness (one individual
from the GL even group was removed), remove sites with >20% missingness, remove sites with a minor
allele frequency <0.05. Filtering for minor allele frequency was executed with both a joint vcf file with for all
individuals (across all sample groups) (5,289,687 total SNPs remaining), as well as for sample group-specific
vcf files. Hereafter, these vcfs are referred to as the joint vcf or sample group-specific vcfs, respectively (Table
S2 includes the full array of differently filtered vcf files used in this study and the corresponding analyses
for which they were used). For downstream analyses, our default approach was to use the joint vcf unless
otherwise noted (e.g certain estimators can be biased if low frequency sites are removed, so we used the
sample group-specific vcfs for those analyses). All filtered sample groups included even sample sizes (29 or
30 individuals after filtering and assessing for relatedness, Table 1)—one sample was removed because of
relatedness (Figure S1, SI Methods) and one sample, described above, for high amounts of missing data. The
Great Lakes odd 3-yr old group contained 15 individuals and this group was removed from analyses unless
explicitly noted due to the imbalance in sample sizes.

Population genetic analysis

Variant Call Format (vcf) files were loaded into R v. 4.2.1. (R Core Team, 2022) using the gaston v1.5.7
package (Perdry et al., 2020). Using sample group-specific vcfs that were not filtered for minor allele frequency
(to maintain rare alleles; Table S2), we calculated the number of SNPs both genome-wide and in 2.5 Mbp
windows. Genome-wide estimates of observed heterozygosity were calculated using custom scripts in 2.5 Mbp
windows. Tajima’s D was calculated in VCFtools using the same window sizes but using the joint vcf before
it was filtered on minor allele frequency (Table S2); Tajima’s D is a sequence-based estimator and can be
upwardly biased if invariant or low-frequency sites are not included. We used the R package SNPRelate
v.1.32.2 (Zheng et al., 2012) to calculate mean pairwise FST (Weir & Cockerham, 1984), which used a
linkage disequilibrium pruned (R2 £ 0.2) subset of 123,924 SNPs. As an additional measure of population
structure, we used the program fastSTRUCTURE v. 1.0-py27 (Raj et al., 2014) with our joint vcf to generate
population assignments using a subset of 10,000 randomly selected SNPs using K values ranging from 1-5.

Effective population size estimates

We used two methods to understand the likely bottleneck and relative population sizes at introduction
and in our contemporary samples. These two methods were employed based on their respective strengths
and weaknesses: 1) the site frequency spectrum-based method (Stairway Plot 2) performs well at detecting
historical changes in population size (Liu & Fu, 2020), and 2) the linkage-disequilibrium based method
(GONE) (Santiago et al., 2020) performs well at estimating recent demographic shifts and contemporary
(<100 generations) estimates of effective population size (Reid & Pinsky, 2022; Santiago et al., 2020). We
used default input parameters in GONE which samples 50,000 random SNPs per chromosome and ran the
program 100 times. We next calculated the average of those runs and computed the 95% quantiles. To
compare with estimates of effective population sizes from farther back in time, we used Stairway Plot 2 (see
SI Methods, Results).

SNP variant analysis and annotation

For outlier SNPs under putative selection, we first calculated (Weir & Cockerham, 1984) FST using VCFtools
between the BC odd and GL odd samples. To identify outlier regions, we calculated sliding window outliers
using a 100 kbp window with a 50 kbp step, for which we calculated ZFST relative to the chromosome a
window was on and considered any window ³5 ZFST as a putative outlier region. We chose the 5 ZFST

threshold as an especially conservative first metric for regions putatively under selection and then used a
marginally less conservative SNP cutoff for individual locus annotation using snpEff (discussed below).
For SNPs within putative outlier regions, we similarly transformed per SNP FST with a Z-transformation
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normalized across the chromosome; any SNP with ³4 ZFST was retained for variant annotation. We visually
compared our outlier windows with Tajima’s D values calculated using VCFtools in 10 kbp steps. To validate
these results, we conducted the same analyses using the same BC odd and the closely related GL even
sample groups to ensure the same outlier windows were maintained. We also used eigenGWAS, an eigenvector
decomposition-based method using a genome-wide association study approach (GWAS), but where genotypes
are treated as the phenotypes in the GWAS (Chen et al., 2016). This method was similarly used to discover
highly differentiated windows that would be consistent with putative selection at a locus. Variants from
eigenGWAS were plotted against ZFST windows to further verify our best candidate outliers. We considered
any window with a mean log transformed p-value ³ 6.64 (Bonferroni corrected p-value = 0.01) as significant.

We next used the programs snpEff and snpSift (v. 5.1) to annotate and describe the effect of outlier
SNPs in our data set (Cingolani, Patel, et al., 2012; Cingolani, Platts, et al., 2012). We first filtered the
joint vcf for individual SNPs as discussed above (³4 ZFST ) so that we only used SNPs highly differentiated
between sample groups. The program snpEff uses the reference genome assembly and associated annotation
report to determine the functional effect (e.g., missense, synonymous) of a given SNP relative to the assembly.
Individual SNPs could have multiple effects, for example they may occur in the intronic region of one gene,
in addition to occurring upstream of a separate gene.

Simulation of genetic drift for candidate loci

We leveraged estimated pink salmon effective population sizes through time (GONE results) to determine
whether the empirically observed changes in allele frequencies were due to genetic drift alone at our best
candidate locus (per2, which had a total of 38 SNPs; see Results). To do this, we first created an agent-based
model that simulated the unique life-history characteristics of pink salmon (see SI Methods for full details).
The carrying capacity of the adults was set equal to the mean effective population size calculated from GONE
in each generation (averaged across the 100 GONE replicates) and was varied each year in the model. This
approach was conservative as the ratio of N e to N c often equal 10-20% (Frankham, 1995; Waples, 2002);
the smaller

used in our model means that, if anything, we are overestimating the effects of genetic drift.

We first wanted to estimate the allele frequencies in per2 at the time of the introduction event. Because
the effective population size in the native range has declined since the introduction event (see Results) and
because we only sampled 30 individuals from the native range odd year, the estimates of allele frequencies
from our sample may not reflect the range of allele frequencies present in BC odd at the time of introduction.
After parameterizing the model with native range effective population sizes estimated for each generation
and coupling that with sampling events at the end of the simulations (see SI Methods), we found that genetic
drift alone could only explain an average change in allele frequency of 0.0000405 in the native range. Sampling
error alone, however, was somewhat larger resulting in an average change in allele frequency of 0.000365.
Our process allowed us to construct 95% confidence intervals around our estimates of allele frequencies from
the native range that included both the effects of genetic drift and sampling error. Because the effects of
both genetic drift and sampling were relatively small, we parametrized the starting allele frequencies of the
Great Lakes simulations from our empirical estimates calculated from the progenitor population (BC odd).

We next wanted to determine whether the allele frequency at the time of the introduction could then drift
to a frequency equal to that found in each of the 38 SNPs found within per2. We again used the forward-
time agent-based model to simulate changes in per2 allele frequencies, this time using the N e values for
BC odd for the first 75 generations (modeling from generations 100 to 26, where generation 26 reflected the
population in 1956, the year of the introduction and then switching to the GL odd N e estimates for the next
52 generations (generations 52 to 1) using the BC odd empirical estimates as our starting allele frequencies
(See Figure S2 for modeled population sizes through time and Figure 3 for empirical estimates). We selected
these generations to capture the most likely effective population sizes from the progenitor populations at the
time of introduction and the smallest effective population sizes during the introduction event. At the end of
each simulation, we again sampled 30 individuals and calculated the final allele frequency. This process was
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replicated 1,000 times for each of the 38 SNPs. We then calculated how many simulated samples had allele
frequencies as or more extreme than that found in our empirical GL sample to calculate the probability of
the empirically observed allele frequencies occurring by genetic drift alone. We also plotted the changes in
allele frequencies through time for one example SNP and calculated 95% CI’s for all SNPs.

Results

Population structure

Population-level analyses indicated three distinct populations: BC even, BC odd, and the Great Lakes.
Pairwise FST between BC even and BC odd was 0.091, and 0.088 between BC odd and GL odd suggesting
nearly as much divergence between the progenitor population and the GL population as between the native-
range odd and even lineages (Table 2). Among the Great Lakes sample groups FST ranged between 0.0006
(GL odd vs. GL odd 3) and 0.0046 (GL even vs. GL odd) (Table 2), indicating little to no population
structure among Great Lakes sample groups. These results were supported by fastSTRUCTURE, which
indicated a K of 3 (of K=1-5) was the best supported by maximized marginal likelihood where all samples
had >97% assignment probability for their sample group (BC even, BC odd, Great Lakes) (Figure S3).

Measures of genetic diversity

Bottlenecks are theoretically predicted to cause a larger drop in allelic diversity than heterozygosity (Allen-
dorf, 1986), which matches our empirical results where there was a 37.7% loss of segregating SNPs per 2.5
Mbp window (BC odd = 12,188 vs. GL odd=7,659), a 30.8% loss of SNPs genome-wide (BC odd = 7,337,647
and GL odd= 5,080,474), but just an 8.2% loss of heterozygosity (BC odd = 0.279 and GL odd=0.256) (
Figure 2a-c). BC odd had the highest heterozygosity at 0.279, but all sample groups were similar with GL
odd having 0.256, BC even with 0.250, GL odd 3-year old fish with 0.244, and GL even with 0.239 (Figure
2b). The distribution of the variance of these estimates did vary by group (Figure 2b), where native range
groups have a greater standard deviation around their heterozygosity estimates. Two samples in the BC even
sample group had much lower heterozygosity than the rest of the sample group (0.113) and when removed,
the estimated heterozygosity for the group increased to 0.26. Counts of SNPs were highest in native-range
sample groups, containing approximately 2.0-2.3 million more SNPs relative to the introduced Great Lakes
sample groups (Figure 2c). For the native range populations, the odd-year population had greater hetero-
zygosity than the even-year population (0.279 versus 0.256 or an 8.2% difference), but a similar number of
SNPs (a difference of 170,365). This result provides further support for the idea that native range even-year
lineages were likely founded from an odd-year lineage (Gordeeva & Salmenkova, 2011), the bottleneck of
which still leaves a mark of reduced relative genetic diversity.

Demographic history of native and introduced pink salmon

Because recent bottlenecks may reduce low-frequency polymorphisms, positive Tajima’s D can be indicative
of recent demographic declines in populations (Nei et al., 1975). Both Great Lakes groups had elevated
values (mean Tajima’s D, GL odd = 0.41 GL even = 0.36) (Figure 3a, Figure S4). GONE results indicated
that contemporary effective population sizes for the introduced sample groups have grown from a substantial
bottleneck at introduction (calculated at the time of introduction—generation 31, GL odd = 71.67 and 95%
quantiles 46.82-100.30, GL even = 68.23 and 95% quantiles 42.20-108.1) to larger contemporary estimates
(GL odd = 604.62 and 95% quantiles 424.74-888.86, GL even = 833.71 and 95% quantiles 503.44-1265.41)
(Figure 3b-d). Over the same period, the native range sample groups have experienced large declines. At
the time of introduction, the progenitor’s (BC odd) effective population size was estimated at 146,886.30
(95% quantiles 68,579.82-219,895.7) but reduced to 2,964.19 (95% quantiles 2,365.21-5,623.89) at the time of
collection. During that same period the progenitor’s even year complement (BC even) reduced from 50,212.30
(95% quantiles = 35,029.77 60,743.44) at introduction to 11,812.53 (95% quantiles = 8,804.14-14,990.69)
at the time of collection. GONE results also suggest even smaller effective population sizes immediately
preceding introduction for the Great Lakes sample groups, just 15.7 five and six generations before the
introduction for GL odd and 27.7 four generations before introduction in GL even, which strongly suggests
that the GONE’s generation time estimate is off by a small factor. Furthermore, the observation that GONE
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does not reproduce the large historic N e values estimated from the native range populations in the ancestral
Great Lakes sample groups suggests the extreme population change in the Great Lakes samples impedes
the program from estimating their effective population sizes prior to introduction. StairwayPlot2 failed to
reproduce the strong bottleneck indicated by GONE, Tajima’s D, and our genomic diversity data, suggesting
the program may fail to properly describe demography because of the strong bottleneck (SI Results, Figure
S5,6).

Candidate genes responding to selection

Using sliding windows, we found 47 windows with ³ 5 ZFST across 19 of 26 chromosomes when comparing
BC odd versus GL odd. Some of these windows overlapped and, when combined, resulted in 34 distinct
windows (Figure S7, see SI Data for full annotation information). For individual variant sites within those
windows, we found 1,320 SNPs ³ 4 ZFST . Using eigenGWAS, we found 4173 SNPs in those same windows.
We plotted windows from both methods to verify that the same windows were found using multiple methods
(Figure 4a,b). We used the significant SNPs (³ 4 ZFST ) contained in the 34 ³ 5 ZFST 100 kbp windows
for annotation using snpEff. Of the 1,320 SNPs queried, 5 resulted in synonymous changes, 9 resulted in
nonsynonymous changes, and 1306 were found in non-coding regions. Of all significant variant effects, 57.83%
(1,526) occurred in introns, 22.23% (613) in intergenic regions, and only 0.76% (20) in exons.

We selected genes that had putatively responded to selection in the novel environment as those that: 1.) had
outlier windows identified by ZFST and eigenGWAS, 2) that were highly divergent in both comparisons of
BC odd and GL odd and BC odd and GL even, and 3.) that resulted in nonsynonymous variants. For these
regions, we plotted the outlier window in which they occurred with the genes and coding regions visualized
(Figure 4c,d). Within each window, we illustrated FST , observed heterozygosity, and Tajima’s D (10 kbp)
as complementary indices of a selective sweep (Figure S7). Of our 9 missense variants, three occurred in
the same gene, LOC124013183 (CD209 antigen-like protein A), on chromosome 24. While we considered
this strong evidence for selection, the flanking regions near the gene contained very few SNPs and hetero-
zygosity and Tajima’s D were not able to be calculated for most of the window. The remaining missense
variants were each located on 6 separate genes, which were gnrhr4 (gonadotropin releasing hormone recep-
tor 4) on chromosome 2, LOC124043346 (collagen alpha-2(V) chain-like) on chromosome 9, LOC124000748
(B-cell CLL/lymphoma 7 protein family member A-like) on chromosome 16, LOC124004644 (cytochrome
P450 11B, mitochondrial-like) on chromosome 19, and LOC124009961 (period circadian protein homolog
2-like) and lpar5a (lysophosphatidic acid receptor 5a) in the same window on chromosome 22. When further
validated against the BC odd and GL even comparison, only gonadotropin releasing hormone receptor 4,
period circadian protein homolog 2-like, lysophosphatidic acid receptor 5a, and CD209 antigen-like protein
A were shared and thus presented in our analyses (Figure 4c,d, Figure S8). Of genes with missense variants,
LOC124009961 (period circadian protein homolog 2-like, hereafter per2 ) had a particularly strong signal
of elevated FST (mean within gene = 0.72, mean within window = 0.23), as well as large local decreases
in heterozygosity and Tajima’s D (Figure 4d). There were 38 total SNPs located within the gene, with the
majority being close to fixation in the progenitor sample group (36/38 SNPs in BC odd) but switching to
near fixation for the alternate allele in the introduced sample group (34/38 SNPs in GL odd). However,
there were two genes, one upstream (LOC124009266, an uncharacterized long non-coding RNA) and one
downstream (LOC124009839, transcription cofactor HES-6-like) that overlapped the same window of eleva-
ted FST occupier by per2 (Figure 4d). Both loci had lower overall mean FST , (0.50 at 177 SNPs) and 0.55
(1 SNP), respectively, when all SNPs in each locus were considered.

Lastly, we used an agent-based model to determine whether the allele frequency differences
between BC odd and GL odd for the SNPs located within per2 could be explained by genetic drift alone.
As an illustrative example, we first used a per2 SNP with an allele frequency of 0.033 in the BC odd sample
group. The empirically observed allele frequency at this locus in GL odd was 0.933. After simulating the
demographic effects of the population bottleneck 1000 times (parameterized by empirically estimated Ne
estimates through time; see Methods) we found that 26.2% of simulations fixed at 0, while the upper 95%
quantile occurred at an allele frequency 0.298 (Figure 5a). None of the 1000 simulations resulted in allele
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frequency ³ 0.933, which was the observed allele frequency in the Great Lakes. Because we parameterized
our agent-based model with conservatively low estimates of effective population sizes, these results strongly
suggest that a response to selection imposed by the new environment drove the observed increase in allele
frequency. We next calculated 95% confidence intervals around our empirical estimates of allele frequencies
from both BC odd and GL odd that included both the effects of genetic drift and sampling error (Figure
S9, Figure 5b) for all 38 SNPS found in per2. This approach also allowed us to calculate the probability that
the change in allele frequency for each per2 SNP was driven by drift alone (Figure S9). A total of 32 out of
38 SNPs had a p-value less than 0.05 (Figure 5b, Figure S9).

To assess the driver of putative selection at per2, which is closely linked to determining on organism’s day
length, we plotted daylength change using phenological data for the Great Lakes from (Bagdovitz et al., 1986)
and daylight hours calculated using the R package geosphere v.1.5-18 (Hijmans et al., 2022). We found
that spawning corresponded to a period with very similar day lengths, whereas emergence and outmigration
occurred in one of the more extreme windows of deviation (0.75 – 1 hours less daylight) in the introduced
range (Figure 5c).

Discussion

The mechanisms that allow populations to rapidly adapt from small pools of standing genetic variation has
broad evolutionary and conservation implications. Here, we present results showing a severe bottleneck—
representing a more than 2040-fold reduction in effective population size and loss of 37.2% of SNPs—during
the introduction of a non-native fish into the Great Lakes. We also present evidence for numerous regions
across the genome that potentially aided in the rapid genetic adaptation of pink salmon to the Great Lakes.
For loci under putative selection, we find seven genes with one or more missense variants. One of those
genes, per2, which is a period family gene with a strong effect on daily circadian patterns, displayed a near
total switch from the reference alleles in British Columbia to the alternate alleles at 34/38 SNPs in the
Great Lakes. Moreover, this response to selection matches large day length changes between the native and
non-native habitat that overlap with important phenological periods in the pink salmon life history (Figure
5c). These results provide evidence for how pink salmon could have rapidly adapted to the Great Lakes,
despite the large effects of genetic drift.

Our results suggest a 2040-fold reduction in effective population size, which resulted in 8.2%
decrease in genome-wide heterozygosity (BC odd = 0.279,GL odd = 0.256) and a 37.2% loss of SNPs. This
pattern matches a similar species, rainbow trout (O. mykiss), which was also introduced to the Great Lakes
in the last century (Willoughby et al., 2018). That work described a 9.49% reduction in genome-wide genetic
diversity (using pooled heterozygosity) approximately 25 generations after introduction, a similar time scale
to this study. Another study, which used allozymes from pink salmon in the Great Lakes, found a loss of
polymorphisms in 11 loci relative to the progenitor 12 generations after introduction (Gharrett & Thomason,
1987). Indeed, populations that are successful in non-native environments are expected to have lower genetic
diversity than their founders (Allendorf et al., 2022; Barrett & Kohn, 1991), except in cases where multiple
introduction events contribute to a more diverse admixture, potentially leading to successful adaptation on
the back of this admixed genetic diversity (Gomez-Uchida et al., 2018; Kolbe et al., 2004, 2014).

The census population size for pink salmon in the Lakelse system (BC odd and even) was as high as 1.5
million individuals as recently as the 1980s, the ratio of N e/N c for our GONE estimates at introduction
would be ˜10% using 146,886 as the effective population size for the progenitor at the time of introduction.
Frankham (1995) suggested that a typical ratio between the two metrics in wild populations was around
10%, but that was later amended by Waples (2002) to be closer to 20%. Using either benchmark, the results
from GONE closely match these predicted estimates. This conclusion is also supported by work in Chinook
salmon (O. tshawytscha), which found ratios that were generally 5% or greater (Shrimpton & Heath, 2003)
where the smallest ratio estimates were in populations with the largest census population size.

While we observed substantial decreases in genetic diversity, our data likely do not reflect the
full pool of genetic diversity from the founding population, and we hypothesize that more genetic diversity
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may have been lost than our results indicate. Historically, both the odd and even spawning populations in
the Lakelse River (BC odd and even) were quite large, reaching as high as 1.5 million adults returning in a
single year (Skeena Fisheries Commission, 2003). Additionally, while the founding population may have only
been around 21,000 juveniles, they were part of larger introduction effort in Arctic Canada that produced
nearly 750,000 juveniles from ˜500 dam and sire pairs (Gharrett & Thomason, 1987). Furthermore, observed
heterozygosity is not an ideal metric for the loss of genetic diversity resulting from a bottleneck, as rare alleles
are much more prone to be lost than heterozygosity (Allendorf, 1986, 2017). As such, we also show a loss
of 37.2% of SNPs. Our GONE results indicate large declines in effective population size of the founding
population, which might indicate the genetic diversity in our contemporary progenitor population does not
fully reflect the standing genetic variation present at the time of introduction. The effect of the genetic
diversity in founder populations remains understudied as a mechanism promoting persistence in non-native
species and could be an area of focus in future work forecasting invasion risk (North et al., 2021).

We identified 4 significantly differentiated genes that were shared across the multiple sample group compar-
isons and contained missense variants. One gene, LOC124013183 (CD209 antigen-like protein A), contained
three missense variants, two of which were only 11 base pairs apart. This gene is predicted to play a role
in immune response, specifically upstream or within regulation of T cell proliferation. Numerous studies
suggest CD209a interacts with immunological defenses against macrophages (Lu et al., 2012, p. 209) and
schistosomiasis (Kalantari et al., 2018; Ponichtera et al., 2014; Ponichtera & Stadecker, 2015) in mouse
models (Mus musculus), suggesting it may play a role in combating novel pathogens in the introduced envi-
ronment. Another gene with a single missense variant, gnrhr4 (gonadotropin releasing hormone receptor 4),
enables the release of the hormone gonadotropin and may contribute to gonadal maturation (Corchuelo et
al., 2017). Pink salmon in the Great Lakes have broken the obligate two-year life cycle displayed by fish in
their native range (Kwain & Chappel, 1978; Kwain & Lawrie, 1981). While our results are too preliminary
to suggest if this gene plays a role in maturity timing of pink salmon in the Great Lakes, it is worth further
investigation if this locus might contribute to these differences. Meaningful changes in the allele frequencies
of these loci match the rapid, large changes documented by Gharrett & Thomason (1987), who found rare
alleles in allozymes in the progenitor population transitioned to very common in populations in the Great
Lakes after 12 generations.

The locus with the strongest evidence for putative selection was per2 on chromosome 22. In addition to
containing a missense variant, nearly all SNPs within the gene transitioned from near fixation for the reference
allele in the native range, to near fixation for the alternate allele in the introduced range (Figure 5) and had
much higher mean FST than genes in the same window. Similarly, this corresponded with local negative
Tajima’s D values as well as reduced local heterozygosity, consistent with selection in both the native and
introduced range. Research into per2 in other organisms indicates the gene as a core member of period
genes regulating the circadian clock (Albrecht et al., 2007). In particular, the differential phosphorylation
of the per2 gene by casein kinase 1 (CK1) alters daily circadian period length in other organisms (Albrecht,
2007; Narasimamurthy et al., 2018), however allele frequencies within and around the homolog for CK1
were largely unchanged between BC odd and GL odd (Figure S10). A study in Alaskan sockeye salmon (O.
nerka) suggests local water temperature has a large effect on emergence date and may vary substantially
from year-to-year or occur over many months indicating these differences may be even more compounded
from one year to the next (Sparks et al., 2019). It is worth noting the Steel River fish in the Great Lakes
(our samples) spawn in essentially the northern-most habitat in the entire Great Lakes system available
to pink salmon, and their entire lake phase is expected to occur south of that location. By contrast, pink
salmon in the native British Columbian region of the Lakelse River would typically spend their ocean phase
in the Gulf of Alaska, which may be many hundreds of kilometers farther north than their spawning location
(Quinn, 2018). The spawning habitat of sample groups from this study are over 550 kilometers south of their
native range spawning location. Research into the effect of per2 in salmonids indicates the expression of per2
became arrhythmic under unnaturally shorter or longer day periods in Atlantic salmon (Salmo salar) (Davie
et al., 2009; McStay, 2012). Given the known effects of this gene in another salmonid, as well as in better
described model systems, we hypothesize that putative selection in this gene is related to necessary circadian
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changes to persist in the novel environment given the large day length changes experienced by salmon in the
Great Lakes. While the exact mechanism driving this selection is unknown, ripe areas for future research
might be changes around important phenological events, such as hatching or emergence, or daily behavioral
trends of juveniles or subadults treating the lakes as surrogate oceans.

Conclusion

In this study, we show the genome-wide effects of rapid evolution resulting from both genetic drift and
genetic adaptation in an introduced fish. Our results indicate rapid genetic adaptation is possible despite a
more than 2040-fold reduction in effective population size and associated loss of genetic diversity. We provide
evidence for at least 47 regions under putative selection, with 7 genes in those regions containing missense
variants. Of those genes, we show simulated and observed data indicative of a strong response to selection
in per2 (period circadian protein homolog 2-like) on chromosome 22, which research in other organisms
suggests plays a significant role in an individual’s daily clock and matches considerable changes in day
length between the progenitor and introduced populations. Finally, the combined result of genetic adaptation
despite a significant bottleneck has important implications not only for how and when introduced species
might colonize new habitat, especially invasive European pink salmon (Diaz Pauli et al., 2022; Sandlund et
al., 2018), but also for populations or species at conservation risk that might experience similar demographic
declines.
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Tables

Table 1. Year, habitat range, sample size after bioinformatic filtering, and location (latitude, longitude) of
sample groups used in this study.

Sample group Range Year Sample size Location
BC odd Native 2007 29 54.367763,

-128.59778
BC even Native 2006 29 54.367763,

-128.59778
GL odd Introduced 2019 30 48.777236,

-86.886525
GL odd 3 Introduced 2019 15 48.777236,

-86.886525
GL even Introduced 2018 29 48.777236,

-86.886525

Table 2. Pairwise mean estimates of Weir and Cockheram’s FST for sample groups used in this study using
a subset of 123,924 linkage-disequilibrium pruned SNPs.

BC even BC odd GL even GL odd
GL odd 3 0.1638 0.0850 0.0039 0.0006
GL odd 0.1620 0.0882 0.0046
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GL even 0.1610 0.0885
BC odd 0.0911

Figure Captions

Figure 1. Map of study sites. Inset a) shows British Columbia, Canada, where the progenitor and its even
year complement were collected from the Lakelse River (blue), a tributary of the Skeena River (pale blue).
Inset b) shows Lake Superior in Canada (dark grey) and the United States (light grey). Pink salmon were
introduced into the Current River, Ontario, Canada (pale blue) on the western edge of Lake Superior. Fish
for this project were sampled in the Steel River (blue) on the north shore of Lake Superior. Inset c) shows
a male pink salmon captured in the Steel River for this project (Photo M. Sparks).

Figure 2. Measures of genetic diversity for introduced pink salmon in the Great Lakes, as well as the
odd-year progenitor and its complementary even-year sample group. Panel a) shows the total number of
SNPs in BC odd (blue) and GL odd (orange) in 2.5 Mbp windows across chromosomes. Panel b) shows
observed heterozygosity for individuals from the five sample groups used in this study as raw data (points),
density distributions, and box and whisker plots (middle line indicates the mean, outer boxes the 25% and
75% quartiles, and the whiskers 1.5*inter quartile range). Panel c) shows the number of SNPs present in
each sample group’s vcf. For this figure, data colored blue indicates the progenitor samples (BC odd), green
it’s even year complement (BC even), and orange the introduced, Great Lakes groups (orange = 2-yr odd
year group, dark orange = 3-yr odd group, light orange = 2-yr even group). Notice that genetic diversity,
particularly when measured as the number of SNPs, is substantially reduced in the introduced Great Lakes
sample groups relative to British Columbia.

Figure 3. Measures of demography for pink salmon in the Great Lakes and their progenitor. Panel a)
shows Tajima’s D in 2.5 Mbp windows across chromosomes for pink salmon introduced to the Great Lakes
(2-yr odd year group) and the progenitor stock. Positive genome-wide Tajima’s D is indicative of a sudden
population contraction (colors match those in legend in panel, b). Panels b-d show effective population size
for those groups as calculated from GONE, a linkage disequilibrium method. Two panels (b,c) show the
same data but differentially subset on the y-axis to better visualize the results for the respective groups.
The dashed lines in b and c show the approximate timing of the introduction event. Panel d shows the mean
and 95% quantile for samples in the year the samples were collected (i.e., contemporary estimates). For this
figure, data colored blue indicates the progenitor samples (BC odd), green it’s even year complement (BC
even), and orange the introduced Great Lakes groups (orange = 2-yr odd year group, light orange = 2-yr
even group).

Figure 4. Indices of putative selection for pink salmon introduced into the Great Lakes; analyses are based
on a comparison of BC odd to GL odd. Panel a), and b) show 100 kbp outlier windows calculated using
ZFST and eigenGWAS with outliers indicated as red points. Shaded rectangles either represent windows
with missense variants (grey) represented in panel c) or the period circadian protein homolog 2-like gene
(per2; blue) represented in panel d). Panel c shows raw FST for the windows containing two genes with
missense variants shared between comparisons between BC odd and GL odd a). Genes are represented in the
top of each figure as rectangles with black (coding sequence) or transparent (non-coding sequence) segments.
The gene affected by the missense variant is represented by the grey rectangle, and the missense variant is
shown with a red line. Panel d) shows a similar representation of the window containing the per2 locus (and
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lpar5, which contains our other missense variant at the locus) along with Tajima’s D and heterozygosity
calculated in 10 kbp steps across the window, with lines representing the introduced (orange) and progenitor
(blue) sample groups used in the methods for panels a) and b).

Figure 5. Simulated and observed data indicating genetic drift, and a possible response to selection, in the
period circadian protein homolog 2-like (per2 -like) gene of chromosome 22. Panel a) shows the N e values on
a log scale used in our model paired with the results of 1000 simulations exploring the effect of genetic drift
for a single SNP (starting allele frequency = 0.033). Values above the dashed line indicate the threshold
the upper 95th percentile of final allele frequencies, with the frequency distribution of all values indicated
to the right. Notice that no simulations ever exceeded the observed value, suggesting that the change in
allele frequency was unlikely to occur by drift alone. The observed values for the progenitor (blue) and
introduced sample group (orange) are shown with colored points. Panel b) shows simulated and observed
allele frequencies for all SNPs within the per2 -like gene. For the simulated portion, lines connect the SNPs
observed empirically in the BC odd sample group with the maximum 95th percentile change observed in
allele frequencies after simulating drift associated with the bottleneck at introduction (see panel a as an
example). For the observed data, the lines simply connect the observed allele frequencies between BC and
GL odd. In both, SNPs are connected by a line and the missense variant is shown in red. Solid lines in
the observed values represent observed changes that were greater than the 95th percentiles of the simulated
values suggesting changes were the result of selection (see Figure S9 for 95% CIs for every SNP. Notice that
32 of 38 SNPs, including the missense SNP, show a greater change in allele frequencies than is conservatively
estimated by drift alone. Panel c) shows the daylight change experienced by the sample groups in the Great
Lakes relative to the progenitor sample group over the course of a hypothetical lifecycle for 2-year-old fish
in the Great Lakes. Important phenological events are indicated with colored polygons using approximate
timing from Bagdovitz et al. (1986).
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