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Abstract

Team formation in an environment where some relevant parameters are not known in advance is a challenging problem.

Communicating automata and distributed algorithms have been used to describe protocols for team formation. A high-level

specification provides a mathematical description of a protocol or a program. TLA + is a formal specification language designed

to provide high-level specifications of concurrent and distributed systems. The associated model checker known as TLC is capable

of model checking the TLA + specifications. Recently formal specification of a team formation protocol is given using TLA +

when there is a single initiator (an agent or a robot), that initiates the team formation. Using TLA +, we examine the formal

specification for the multiple initiator situation and demonstrate that a composition technique can yield a single monolithic

specification for the multiple initiator situation from the single initiator situation specification. We have used models of varying

sizes, and the TLC model checker has confirmed that the protocol’s specifications meet certain desired characteristics in each

case.

1



E X T END ED CON F E R ENC E PA P E R
Jou rna l Se c t i on

Formal specification and verification of a teamformation protocol using TLA+
Rajdeep Niyogi1* | Amar Nath2*
1CSE, Indian Institute of Technology
Roorkee, Roorkee, India-247667
2CSE, Sant Longowal Institute of
Engineering & Technology (SLIET),
Longowal, Punjab-India-148106
Correspondence
Rajdeep Niyogi, Indian Institute of
Technology Roorkee, Roorkee,
India-247667
Email: rajdeep.niyogi@cs.iitr.ac.in
Present address†CSE, Sant Longowal Institute of
Engineering & Technology (SLIET),
Longowal, Punjab-India-148106
Funding information
na

Team formation in an environment where some relevant pa-
rameters are not known in advance is a challenging prob-
lem. Communicating automata and distributed algorithms
have been used to describe protocols for team formation.
A high-level specification provides a mathematical descrip-
tion of a protocol or a program. TLA+ is a formal specifi-
cation language designed to provide high-level specifica-
tions of concurrent and distributed systems. The associ-
atedmodel checker known as TLC is capable ofmodel check-
ing the TLA+ specifications. Recently formal specification
of a team formation protocol is given using TLA+when there
is a single initiator (an agent or a robot), that initiates the
team formation. Using TLA+, we examine the formal speci-
fication for the multiple initiator situation and demonstrate
that a composition technique can yield a single monolithic
specification for themultiple initiator situation from the sin-
gle initiator situation specification. We have used models
of varying sizes, and the TLC model checker has confirmed
that the protocol’s specifications meet certain desired char-
acteristics in each case.
K E YWORD S
Team formation, multi-agent system, formal specification, TLA+,
verification

*Equally contributing authors.

1



2 Rajdeep Niyogi et al.

1 | INTRODUCTION
Task execution in a partially observable environment, where the agents (robots) are spatially distributed and no agent
has a global view of the environment is a challenging problem. It has wide applications in search and rescue [1, 2, 3],
space exploration [4], demining [5], where a team of autonomous robots is deployed since direct human intervention
is impossible or impractical. Task execution is done by a team of agents (robots).

Collective robotic systems (CRS) [6], a team of autonomous robots that cooperate to execute a task, deployed in
real-world scenarios should work as expected. Improper operation of the CRS can have a negative impact on safety
andmay result in financial loss. For the CRS, which is designed to operate in a dynamic environment, it is imperative to
detect potential misbehavior before deploying the system on a real robotic system. Formal verification [7] is a process
of checking whether a design satisfies the requirements. Formal verification using model checking of the distributed
approaches for task execution [3, 8] has been suggested in [9, 10]. However, while model checking is widely used to
verify designs of tightly controlled software and hardware systems, it is not used for requirements analysis. Moreover,
formal specification of team formation protocol in formal languages (e.g., [11, 12, 13, 14]) has only been recently
studied in [15].

Team formation is initiated by an agent, that has found a task, by exchanging messages (explicit communication).
Distributed approaches for such team formation under different assumptions have been suggested in [8, 3, 16, 17]. In
centralized approaches [18, 19], a team is guaranteed to be formed since all the relevant parameters are known a priori.
Distributed approaches are used when some parameters are not known in advance and they should be acquired at
run-time. Thus in distributed approaches, whether a team would be formed is determined by the current situation of
the robots and communication delays at run-time. In some instances, the robot initiating the team formation process
would be successful in forming a team and unsuccessful in others. In this paper, we are interested in the successful
executions of the underlying team formation protocol [8, 3, 16, 17] (those that result in team formation). We wish
to understand and specify what is allowed to happen for such an execution, and whether the specification satisfies
some desirable properties.

A high-level specification [20, 21] permits thinking of software above code level and of hardware above circuit
level. The behavioral aspects of a program or protocol, also known as its functional or logical properties, are described
in the specification. In essence, such a specification ought to specify what a program can do rather than how it
is accomplished or implemented. We demonstrate in this paper how to specify the logical properties of algorithm
executions that lead to team formation.

Formal specification languages, like Alloy [13], TLA+ [14], VDM [11], Z [12], have been used to specify software
requirements. A recent survey [22] gives an excellent comparison of the different formal specification methods. The
authors [22] are of the opinion that selecting a particular formal specification language depends on several require-
ments. For instance, the primary requirements for specifying and model-checking the Amazon Web Services model
include the ability to model complex concurrent and distributed systems, effective tool support, a short learning curve,
the impact of the method on overall development time, and minimal training [22].

A notation for specifying a system as a collection of actions is provided by Lamport’s formal specification language,
TLA+ [14]. It wasmade to describe high-level specifications of distributed and concurrent systems. The fact that logical
formulas that are a combination of first-order predicate calculus and temporal logic using only the "always" operator
are used to specify both the system and its desirable properties is what gives TLA+ its elegance. TLA+ is a language
for writing mathematics. TLA+ comes with a tool for computer-assisted verification, the TLC model checker, that
can verify any TLA+ specification. The combination of TLA+ and the TLC model checker provides a powerful tool for
system specification and verification. TLA+ is widely used in academia and industry, e.g., to verify data consistency in
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cloud applications. There is a TLA+ textbook and a repository of learning material.
For our work, we need a formal specification language that can model distributed systems, supports tools well,

and is easy to use. TLA+ perfectly meets our requirements. Therefore, we chose TLA+ and the TLC model checker
for specifying and verifying the requirements and desirable properties of every successful execution of the team
formation algorithms [8, 3, 16, 17].

In our earlier work [15], formal specification of the team formation protocol is discussed for one initiator using
TLA+, which is given in Section 5. The specific contributions in this paper are given below:

• We first show how a single monolithic specification for the multiple initiator situation can be obtained from the
specification of the single initiator situation (Section 6.1).

• We give a generic model of the team formation protocol for k > 1 initiators, and illustrate for k = 2 (Section 6.2).
• We validate the specification for the multiple initiator situation with varying-sized models using the TLC model

checker (Section 7).

The remaining part of the paper is organized as follows. Relatedwork is discussed in Section 2. The team formation
protocol is given in Section 3. A brief discussion of TLA+ is given in Section 4. Conclusions are given in Section 8.

2 | STATE OF THE ART AND RELATED WORK
State transition systems are mostly used to specify the behavior of agents (or robots), and temporal logic formulas
are used to specify desirable properties, according to a recent survey on formal specification and verification of au-
tonomous robotic systems [23]. We talk about some work on robot teams.

STOKLAIM[24], a stochastic version of KLAIM [25], is a formal specification language used to specify the behav-
iors of robots that transport an object together [6]. The goal, obstacles, and robots are all described in detail at the
lowest level in the specification. In KLAIM, behaviors are expressed as processes. Some processes that are taken
into account in [6] include: a procedure that informs each robot of the obstacles nearby and periodically updates the
robots’ positions in accordance with their instructions. The stochastic logic MoSL[24] is used to specify the relevant
properties, and for the formulas of the logic quantitative analysis for STOKLAIM specifications is done with the model
checking tool SAM [24, 26]. In [6] team formation is not taken into account.

The SPINmodel checker [29] has been used to verify each robot’s individual safety property in the domestic assis-
tant robot model [27, 28]. SPIN makes it possible to verify qualitative properties that do not require an explicit time or
probability. Swarm robotics applications [31, 32, 33] have utilized the model checker known as PRISM (probabilistic
symbolic model checker) [30]. Quantitative property verification is made possible by PRISM.

The aggregation algorithm is modeled with discrete-timeMarkov chains (DTMCs) [31], and probabilistic computa-
tion tree logic (PCTL*) is used to specify the characteristics of swarm behavior. The foraging scenario is modeled using
DTMCs [32, 33], and PCTL is used to specify safety properties. In [8] a model based on communicating automata is
used to capture robot behavior.

In [3, 8, 16, 17] distributed approaches for collaborative task execution are suggested based on different assump-
tions, depending on whether or not the team size is known in advance. Formal verification using model checking has
been suggested in [9, 10] when the team size is known in advance. PRISM model checker is used in [9] and PCTL
is used to describe quantitative properties. SPIN model checker is used in [10], and Promela, the input language for
SPIN, is used to model the algorithm. LTL (linear temporal logic) is used to describe the properties.
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In [15] it was shown that the behavior of the system comprising of the agents or robots and its desirable properties
can be described as a single temporal logic formula using the language TLA+. This is unlike SPIN model checking
where the system is modeled using one language and the properties to be verified are described in another language.
Moreover, the TLA+ based specification allows for handling the different situations depending on the knowledge of
the team size in an elegant manner (see the discussions on the condition C1 in Section 5.2). Changing this condition
as per the requirement, we can address different situations, for example, team size is known, team size is unknown,
and also the auction protocol.

3 | TEAM FORMATION PROTOCOL
The process of forming a team is first described. Take a look at a closed environment represented as a grid of size
m × m. The grid has some objects in some of its cells. A few robots are moving through the grid. The robots are
responsible for working together to get rid of these objects from the grid. If a robot is able to remove an object by
itself it does so. Otherwise, it seeks help from the other robots that are within its vicinity. The only way the robots
can communicate is through messages. It is assumed in [3, 8, 16, 17] that the communication infrastructure is lossless
and message delay is finite.

The works [3, 8, 16, 17] consider collaborative task execution in a dynamic environment where all the agents
associated with the execution should be present at the location of the task. In [3, 8, 16, 17] distributed approaches
for collaborative task execution are suggested based on different assumptions. In [3, 8] team size is known in advance,
and each agent in a team should have a set of skills that is a superset of the set of skills required for a task. Suppose
that a robot A has found an object O at cell (x,y) that requires two other robots that have the capability of pushing a
heavy object (any object whose weight is, say, above 50 kg). If A is able to form a team, then the number of other
suitable robots available nearby A should be at least two.

Unlike [3, 8], a generic situation is considered in [16, 17], where the combined set of skills of the agents of a team
should be a superset of the skills required for a task. Thus the team size is not known in advance; rather determined
at run-time in [16, 17]. Suppose that a robot A has found an object O at cell (x,y). When a team is transporting the
object, the following skills are required: pushing, grabbing, and obstacle avoidance. The robot A has the capability of
pushing but not the other skills. Thus A needs to form a team whose combined skill set has at least these three skills.
In any case, robot A needs to communicate with other robots.

The team formation protocol for message exchange among the robots is now discussed. In this protocol, com-
munication is assumed to be lossless and the message delay is arbitrary but finite. The robot that initiates the team
formation process is referred to as the "initiator" (say A) and the other robots that participate in the process are referred
to as "non-initiators." Assume that B,C,D are the three other robots that are available near A. Each robot possesses
at least one of the three capabilities necessary to complete a task. A request message with the task’s specifics (name,
location, capabilities) is broadcast by A.

Since there is no loss of messages, the robots B,C,D will all receive the request message because they are close
to A. Now B,C,D send willing messages to A containing information about their current location, cost, and capabilities.
When A gets these willing messages, it chooses the best team it can. Let’s say that A rejects D and chooses B and C.
Now, A notifies the non-initiators of its decision by sending confirm to B,C and notRequired to D. A robot cannot send
a message more than once under this protocol.

It is assumed that the robots will be in various states at various points during the execution of the protocol. For
instance, when it broadcasts, the initiator is in the ready state. Before receiving the request message, all non-initiators
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are in the idle state. Their states change to promise as soon as they receive the request message. The states of B, C

which were notified, change to busy, while D which was notified, changes to idle. In parallel, A makes its state busy.
The process of forming a team does not guarantee that one will always emerge. Here is an example of such

a scenario. After broadcasting the request message, the initiator waits a certain amount of time, ∆, and records all
willing messages received within that time frame. It ignores any willing messages that arrive after ∆. Team formation
would fail if the initiator did not receive a sufficient number of willing messages within ∆. We are interested in those
executions (runs) of the underlying team formation protocol [3, 8, 16, 17] for which team formation is successful.
Multiple initiators can initiate their team formation process simultaneously, where the tasks for the initiators are
different. If a non-initiator receives multiple request messages from multiple initiators, it responds to exactly one
initiator’s request and ignores the rest.

In [15] a formal specification of the team formation protocol is discussed for one initiator. The specification is
contained in a module TeamFormation, given at the end of Section 7. In this paper, we consider the specification for
multiple initiators. If there are multiple initiators, we first create an instance of the module TeamFormation for each
initiator with suitable substitutions, and then compose these instances to obtain a single monolithic specification.

4 | TLA+ : A BRIEF INTRODUCTION
The concepts that would be helpful for comprehending the model presented in Section 5.1 are briefly discussed. For
a detailed description, we refer to [21, 14]. The keywords of TLA+ are written in uppercase sans serif font. A state is
defined as an assignment of values to all the variables. Any infinite sequence of states is a behavior. A set of possible
behaviors, which are the ones that signify the system’s proper operation, is what is meant by "system specification."

The possible initial values of all the variables can be specified using the predicate I ni t . The relationship between
their possible values in the next state and their current values are specified by the next-state relation Next . A step is
a pair of successive states ⟨cur r ent st at e, next st at e ⟩. As a result, Next specifies how the variables’ values change at
each step. If v indicates a value in the current state, then v ′ indicates a value in the following state. The formula Next

has both primed and unprimed variables. Additionally, the variables whose values have not changed are identified by
the keyword UNCHANGED. As a result, writing UNCHANGED v is equivalent to writing v ′ = v . A formula like this is
known as an action that is either true or false of a step.

A TLA+ specification is given as a single formula. This formula must assert two things about a behavior: (i) the
formula I ni t is satisfied in the initial state, and (ii) each of its steps satisfies Next . We express (i) as the formula I ni t ,
which we interpret as a statement about behaviors to mean that the initial state satisfies I ni t . To express (ii), we use
the temporal-logic operator Box (always), which is the only temporal operator in TLA+. The temporal formula □ P

asserts that formula P is always true. So□ Next is the assertion that Next is true for every step in the behavior. Thus,
I ni t ∧□ Next is true of a behavior if and only if the initial state satisfies I ni t and every step satisfies Next .

A stuttering step is a step that doesn’t change one or more variables. [Next ]v means Next ∨ (v ′ = v ) . A "safety
specification" in TLA+ takes the form I ni t ∧□[Next ]v ar s , where v ar s is a tuple of specification variables.

A state function is an expression having only variables and constants; it cannot have prime or □. A Boolean-
valued state function is called a state predicate. An invariant I nv of a specification Spec is a state predicate when
Spec =⇒ □I nv is a theorem. A temporal formula satisfied by any behavior is called a theorem. This formula
expresses that any behavior that satisfies Spec also satisfies □I nv . TLA+ is an untyped language, where every value
is a set. An expression like v ∈ N at assigns a type to the variable v ; in this case, N at is the set of natural numbers.
Formally, a variable v has typeT in Spec iff v ∈ T is an invariant of Spec.
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5 | SPECIFICATION OF THE TEAM FORMATION PROTOCOL: SINGLE INI-TIATOR
The specification of the team formation protocol for multiple initiators, given in the next Section, is constructed
from the specification for the single initiator situation. Thus we present a step-by-step model of the team formation
protocol for a single initiator in this section. The reasoning that led to the specification is discussed here. The content
of this section is borrowed from [15]. The complete specification involving one initiator is contained in the module
TeamFormation, given at the end of Section 7.

5.1 | Abstraction
We distinguish the robots based on their roles in the team formation process. There is an initiator and a set of non-
initiators. An initiator is a robot that initiates the team formation process. A non-initiator is a robot whose willing
message, in response to the initiator’s request message, is received by the initiator within a predefined time period.

The initiator’s request message is received, in general, by some of the agents present in the environment. The
agents who did not receive the request message cannot participate in the team formation. The agents who received
the request message but none of their skills match with that of the task cannot also participate in the team formation.
The agents who received the request message and at least one of their skills match with that of the task send willing

messages to the initiator. However, not all the willing messages may be received by the initiator within a predefined
time period. Only those agents whose willing messages are received by the initiator within a predefined time period
are considered for the team formation and such agents are referred to as non-initiators. The set of non-initiators do
not change throughout the execution of the team formation protocol. Let NonInitiator denote the set of non-initiators.
This is a constant parameter, one whose value remains the same at all the states. The statement

CONSTANT NonInitiator
declares NonInitiator to be a constant.

Now we have an initiator and a set of non-initiators that are fixed throughout the execution of the protocol.
What changes during the protocol execution is the behavior of these agents. So in order to capture the behaviors, we
model the agents using records. The record of the initiator has the fields state (to denote the current state), member
(to denote the other teammembers i.e., the selected non-initiators), and nonmember (to denote the non-members, i.e.,
the rejected non-initiators). The record of a non-initiator has the fields state (to denote the current state), sent, and
recd (to denote the last message sent and received respectively). So we have a variable i ni t i at or , a record, for the
initiator. We have a variable Dat a , an array, where Dat a [p ] is a record for a non-initiator p . The statement

VARIABLES initiator, Data declares initiator and Data as variables.
The sets of records of the initiator and a non-initiator are defined as
initiatorRec A

=

[st at e : {“ready", “busy"},
member : SUBSET NonInitiator,
nonmember : SUBSET NonInitiator]

nonInitRec A
=

[st at e : {“idle", “promise", “busy"},
sent : {“willing", “nil"},
r ecd : {“request", “confirm", “notRequired", “nil"} ]
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Types of variables
The types of initiator and Data are given by the expressions:

i ni t i at or ∈ i ni t i at or Rec and
Dat a ∈ [NonI ni t i at or → nonI ni t Rec ]

Recall that a variable v has type T iff v ∈ T is an invariant of Spec. The variables i ni t i at or and Dat a have types
i ni t i at or Rec and [NonI ni t i at or → nonI ni t Rec ] respectively, since both the expressions are type invariants of
Spec. A detailed discussion of the meaning of these expressions is given in the subsection 5.3 where we describe the
type invariantT ypeOK .

Initial State
A state is the assignment of values to every variable. The variable i ni t i at or is a record with fields st at e,member , and
nonmember . In the initial state, the fields of i ni t i at or take on the values:

i ni t i at or .st at e = “ready", i ni t i at or .member = i ni t i at or .nonmember = {}.
The value of i ni t i at or in the initial state is written as:

i ni t i at or = [st at e ↦→ “ready",member ↦→ {}, nonmember ↦→ {} ]

Similarly, the value of Dat a in the initial state is written as:
Dat a = [p ∈ NonI ni t i at or ↦→

[st at e ↦→ “idle", sent ↦→ “nil", r ecd ↦→ “nil"] ]
So the record corresponding to a non-initiator p is written as:

Dat a [p ] = [st at e ↦→ “idle", sent ↦→ “nil", r ecd ↦→ “nil"]

In the following, some expressions would be used multiple times. For the sake of clarity, we define the following.
I ni t i al I ni t i at or

A
=

[st at e ↦→ “ready",member ↦→ {}, nonmember ↦→ {} ]

I ni t i al N oni ni t
A
= [st at e ↦→ “idle", sent ↦→ “nil", r ecd ↦→ “nil"]

Af t er ReceiveN oni ni t
A
= [st at e ↦→ “promise", sent ↦→ “willing",

r ecd ↦→ “request"]

I ni t , the predicate describing the initial state, is defined as the conjunction of the values of the two variables initiator
and Data.

I ni t
A
= ∧ i ni t i at or = I ni t i al I ni t i at or

∧ Dat a = [p ∈ NonI ni t i at or ↦→ I ni t i al N oni ni t ]

In general, a TLA+ definition like
D

A
= ∧ c1
.
.
.

∧ ck

is equivalent to D
A
= c1 ∧ . . . ∧ ck (the logical AND operation).
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5.2 | Actions
A specification describes what is allowed to happen in a state. This means what are the actions that are allowed at a
state. Now at the initial state, the only thing that can happen is the initiator broadcast a request message. So we have
an action Br oadcast Request .

1. Br oadcast Request
At the initial state, the action is enabled. The state that results from the action is one in which both the fields

of the non-initiators change (state, recd) and none of the fields of the initiator change. The enabling conditions are
provided by the definition’s first two conjuncts. The last two conjuncts provide the conditions for the resulting state.
The action is formally defined as

Br oadcast Request
A
=

∧ i ni t i at or = I ni t i al I ni t i at or

∧ Dat a = [p ∈ NonI ni t i at or ↦→ I ni t i al N oni ni t ]
∧ Dat a ′ = [p ∈ NonI ni t i at or ↦→
[Dat a [p ] EXCEPT !.st at e = “promise", !.r ecd = “request"] ]
∧ UNCHANGED i ni t i at or

[Dat a [p ] EXCEPT !.st at e = “promise", !.r ecd = “request"] ] is the new record obtained by changing only the fields
state and recd of the record in the previous state; the value of the other fields remain same.
The value of the predicate I ni t is true at s0. Thus if the action Br oadcast Request is performed at the initial state s0,
then the resulting state is s1.

s0
Br oadcast Request

−→ s1

The values of the variables at s1 are:
i ni t i at or = I ni t i al I ni t i at or

Dat a = [p ∈ NonI ni t i at or ↦→
[st at e ↦→ “promise", sent ↦→ “nil", r ecd ↦→ “request"] ]

For a team to be formed, the initiator must receive some willing messages. So we have an action ReceiveW i l l i ng .
2. ReceiveW i l l i ng

When the fields of a non-initiator are state = “promise" and recd = “request" and the initiator is in the initial state,
the action is enabled. The non-initiators sent the messages because the initiator receives the willing messages. There-
fore, the action has the effect of changing the non-initiator’s sent field to “willing” , while the initiator’s value remains
unchanged. The enabling conditions are provided by the definition’s first two conjuncts. The conditions for the state
that will result are provided by the two final conjuncts. The action is formally defined as

ReceiveW i l l i ng
A
=

∧ i ni t i at or = I ni t i al I ni t i at or

∧ Dat a = [p ∈ NonI ni t i at or ↦→
[st at e ↦→ “promise", sent ↦→ “nil", r ecd ↦→ “request"] ]
∧ Dat a ′ = [p ∈ NonI ni t i at or ↦→
[Dat a [p ] EXCEPT !.sent = “willing"] ]
∧ UNCHANGED i ni t i at or
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The action ReceiveW i l l i ng is enabled at the state s1. Thus if ReceiveW i l l i ng is performed at s1, then the resulting
state is s2.

s1
ReceiveW i l l i ng

−→ s2

The values of the variables at s2 are:
i ni t i at or = I ni t i al I ni t i at or

Dat a = [p ∈ NonI ni t i at or ↦→
[st at e ↦→ “promise", sent ↦→ “willing", r ecd ↦→ “request"] ]

3. SelectTeam
The state where the value of i ni t i at or corresponds to the value in the initial state and the value of Dat a to the

record after receiving the “willing" messages is the state in which the action is enabled. The enabling condition is pro-
vided by the definition’s first two conjuncts. The members of the team are chosen by the initiator (the fields member

and nonmember are updated in the third conjunction of the definition). We want to specify that a team is selected,
not how. This is expressed by taking a nonempty subset of NonI ni t i at or (the third conjunct of the definition). The
equation \q ∈ S : F asserts that the set S contains a q that satisfies the formula F ; The value of Dat a remains
unchanged (the fourth conjunct of the definition), and q is a local variable whose scope is defined by the formula F .
The action is formally defined as

Sel ectT eam
A
=

∧ i ni t i at or = I ni t i al I ni t i at or

∧ Dat a = [p ∈ NonI ni t i at or ↦→ Af t er ReceiveN oni ni t ]
∧ \v ∈ SUBSETNonI ni t i at or : ∧ C1

∧ C2

∧ UNCHANGED Dat a

C1 = Car d i nal i t y (v ) > 0

C2 = i ni t i at or ′ = [i ni t i at or EXCEPT !.member = v , !.nonmember = NonI ni t i at or \v ]
In order to obtain a nonempty subset of NonI ni t i at or , a local variable v is used. The value of the field member

is set to the value of v , and the value of the field nonmember is set to the value of the remaining elements of
NonI ni t i at or (\ is the set difference operator) in the above definition.

The condition C1 can be designed in accordance with the need. For instance, when C1 = Car d i nal i t y (v ) >
0 ∧ v , NonI ni t i at or , not all non-initiators are chosen. We obtain the situation in which the team size is known
in advance if Car d i nal i t y (v ) = k , where k is declared as a constant parameter to denote the number of additional
members required by the initiator. For an auction protocol set k = 1.

In the previous actions, the initiator sent and receivedmessages fromnon-initiators, demonstrating the interaction
between various system components. Dissimilar to these activities, Sel ectT eam is an inner activity that isn’t because
of any message. The action Sel ectT eam is enabled at the state s2. Thus if Sel ectT eam is performed at s2, then the
resulting state is s3.

s2
Sel ectT eam−→ s3

The values of the variables at s3 are:
i ni t i at or = [st at e ↦→ “ready", member ↦→ v , nonmember ↦→ NonI ni t i at or \v ]
Dat a [p ] = Af t er ReceiveN oni ni t
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4. Notify
When i ni t i at or .st at e = “ready" (first conjunct of the definition), i ni t i at or .member , {} (second conjunct of

the definition), and the value of Dat a corresponds to the record after obtaining the “willing" messages (third conjunct
of the definition), the action is enabled. All elements of i ni t i at or .member should have the values of the fields st at e
equal to “busy", r ecd equal to “confirm", and all elements of i ni t i at or .nonmember should have the values of the
fields st at e equal to “idle", r ecd equal to “notRequired", sent equal to “nil" (fourth conjunct of the definition). The
IF/THEN/ELSE construct is used to express this. The state of the initiator also becomes “busy" (last conjunct of the
definition). The action Notify is formally defined as

Not i f y
A
=

∧ i ni t i at or .st at e = “ready"
∧ i ni t i at or .member , {}
∧ Dat a = [p ∈ NonI ni t i at or ↦→ Af t er ReceiveN oni ni t ]
∧ Dat a ′ = [p ∈ NonI ni t i at or ↦→
IF p ∈ i ni t i at or .member THEN

[Dat a [p ] EXCEPT !.st at e = “busy", !.r ecd = “confirm"]
ELSE [st at e ↦→ “idle", sent ↦→ “nil", r ecd ↦→ “notRequired"] ]
∧ i ni t i at or ′ = [i ni t i at or EXCEPT !.st at e = “busy"]

The action Not i f y is enabled at the state s3. Thus if Not i f y is performed at s3, then the resulting state is s4.
s3

Not i f y
−→ s4

The values of the variables at s4 are:
i ni t i at or = [st at e ↦→ “busy", member ↦→ v , nonmember ↦→ NonI ni t i at or \v ]
Dat a [p ] = [st at e ↦→ “busy", sent ↦→ “willing", r ecd ↦→ “confirm"] where p ∈ i ni t i at or .member

Dat a [p ] = [st at e ↦→ “idle", sent ↦→ “nil", r ecd ↦→ “notRequired"] where
p ∈ i ni t i at or .nonmember

At a state, only one action is enabled, and all enabled actions are distinct, according to the definitions above. A finite
sequence of states is produced as a result of the finite number of actions. Proper execution in TLA+ is defined as an
infinite sequence of states. Therefore, a stuttering step known as StutStep repeats the sequence’s final state infinitely
many times while maintaining the variables’ unchanged values.

Stut St ep
A
= ∧ i ni t i at or .member , {}
∧ UNCHANGED ⟨Dat a, i ni t i at or ⟩

So the sequence of states and actions of the protocol would be:
s0

Br oadcast Request
−→ s1

ReceiveW i l l i ng
−→ s2

Sel ectT eam−→ s3
Not i f y
−→ s4

Stut St ep
−→ s4, . . .

There are 5 distinct states s0, . . . , s4. The final state s4 repeats by virtue of StutStep.
Thus the next step relation Next is defined as follows.
Next

A
= Br oadcast Request ∨ ReceiveW i l l i ng ∨ Sel ectT eam ∨ Not i f y ∨ Stut St ep

Thus the specification is defined as:
Spec

A
= I ni t ∧□[Next ]v ar s where v ar s A

= ⟨i ni t i at or ,Dat a ⟩.
That the specification Spec is complete (meaning that it specifies what should occur for any possible action), has

been verified by TLC model checker.
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5.3 | Predicates
We define the state predicateT ypeOK , which describes the types of the variables, as:

T ypeOK
A
= ∧ i ni t i at or ∈ i ni t i at or Rec
∧ Dat a ∈ [NonI ni t i at or → nonI ni t Rec ]

The type invariantT ypeOK asserts that (i) the value of i ni t i at or is an element of the set of records i ni t i at or Rec,
and (ii) the value of Dat a is an element of the set of functions f with f [x ] ∈ nonI ni t Rec for x ∈ NonI ni t i at or (i.e.,
the value of Dat a [x ] is an element of the set of records nonI ni t Rec).

The invariance of the state predicate Consi st ency , which is the conjunction of two conditions, demonstrates
the protocol’s correctness. The first asserts that the protocol is not in an inconsistent final state in which the initiator
is either in a busy state and the team members are in another state, or the team members are busy and the initiator
is in another state. The second asserts that the cardinality of the set of team members and non-members is less than
or equal to that of the set of non-initiators as a whole.

Consi st ency
A
=

∧ (i ni t i at or .st at e = “busy") ≡ C3 ∧ C4

∧ Car d i nal i t y (i ni t i at or .member )+
Car d i nal i t y (i ni t i at or .nonmember ) ≤ Car d i nal i t y (NonI ni t i at or )

C3 = Car d i nal i t y (i ni t i at or .member ) > 0

C4 = [p ∈ i ni t i at or .member : Dat a [p ] .st at e = “busy"
We have a theorem asserting the invariance of T ypeOK and Consi st ency . The theorem is verified by TLC model
checker.
THEOREM Spec =⇒ □(T ypeOK ∧ Consi st ency )
where Spec

A
= I ni t ∧□[Next ]v ar s

6 | SPECIFICATION OF THE TEAM FORMATION PROTOCOL: MULTIPLE INI-TIATORS
In the previous section, we described the design of the team formation protocol for one initiator. In this section, we
describe the design of a specification of the protocol for multiple initiators. For illustration, we consider two initiators,
denoted by i , j , that are completely independent of one another.

6.1 | Composition of individual specifications
We give a monolithic specification TT F (two team formations) obtained by the composition of individual specifica-
tions. For the details of the composition of specifications, we refer to [14]. Such a specification should have the form:
TT F

A
=

∧ I ni t

∧ □[Next ]v ar s
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i Spec
A
= i I ni t ∧□[i N ext ]iv ar s be the specification of the protocol when there is only one initiator i as described in

Section 5.
j Spec

A
= j I ni t ∧□[j N ext ] j v ar s be the specification of the protocol when there is only one initiator j as described in

Section 5.
TT F

A
= i Spec ∧ j Spec be the specification of the protocol when there are two initiators i , j .

By substituting the definitions of i Spec, j Spec we get
TT F

A
=

∧ i I ni t ∧□[i N ext ]iv ar s
∧ j I ni t ∧□[j N ext ] j v ar s

By rearranging the terms we get
TT F

A
=

∧ i I ni t ∧ j I ni t
∧ □[i N ext ]iv ar s ∧□[j N ext ] j v ar s

Let I ni t A
= i I ni t ∧ j I ni t . By substitution we get

TT F
A
=

∧ I ni t

∧ □[i N ext ]iv ar s ∧□[j N ext ] j v ar s
Since □P ∧□Q ≡ □(P ∧ Q ) , so we get
TT F

A
=

∧ I ni t

∧ □( [i N ext ]iv ar s ∧ [j N ext ] j v ar s )
Since [Next ]v = Next ∨ (v ′ = v ) , so by substitution we get
TT F

A
=

∧ I ni t

∧ □(∧ i N ext ∨ iv ar s ′ = iv ar s

∧ j N ext ∨ j v ar s ′ = j v ar s )
Rewriting the terms (a ∨ b ) ∧ (c ∨ d ) as (a ∧ c ) ∨ (a ∧ d ) ∨ (b ∧ c ) ∨ (b ∧ d ) we get

TT F
A
=

∧ I ni t

∧ □(∨ i N ext ∧ j N ext

∨ i N ext ∧ j v ar s ′ = j v ar s

∨ j N ext ∧ iv ar s ′ = iv ar s

∨ iv ar s ′ = iv ar s ∧ j v ar s ′ = j v ar s )
Since Next ∨ (v ′ = v ) = [Next ]v , so by substitution we get

TT F
A
=

∧ I ni t

∧ □[∨ i N ext ∧ j N ext

∨ i N ext ∧ j v ar s ′ = j v ar s

∨ j N ext ∧ iv ar s ′ = iv ar s ]v ar s

ThusTT F
A
= I ni t ∧□[Next ]v ar s is a monolithic specification like i Spec, j Spec where the next step relation Next is

Next
A
=
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∨ i N ext ∧ j N ext

∨ i N ext ∧ j v ar s ′ = j v ar s

∨ j N ext ∧ iv ar s ′ = iv ar s

In Next , the first disjunct i N ext ∧ j N ext allows simultaneous actions of the two initiators. If we do not want
simultaneous actions, then we simply remove this disjunct that results in only interleaved actions (the second and
third disjuncts).

Thus, if we want the two initiators to perform simultaneous actions, then a new action is defined that is a con-
junction of individual actions. For example,
Br oadcast Request

A
= i Br oadcast Request ∧ j Br oadcast Request

Interleaved action, on the other hand, is represented by the disjunction of individual actions. In the specification
TT F we consider both interleaved as well as simultaneous actions.

6.2 | Modeling Two Team Formation
In order to illustrate the design of the specification we consider two initiators. However, as we shall see at the end of
this subsection, this model is indeed generic, i.e., we can easily write a specification involving several initiators.

The team formation protocol developed in [8, 17, 16] can be invoked simultaneously by multiple initiators. How-
ever, an agent cannot participate in more than one team formation process simultaneously. So we have two disjoint
sets of non-initiators i N onI ni t i at or , j N onI ni t i at or corresponding to i , j respectively. The parameters are declared
in TLA+ as:

CONSTANTS i N onI ni t i at or , j N onI ni t i at or

VARIABLES iInitiator, iData, jInitiator, jData

The following statement says that it is assumed that the sets i N onI ni t i at or and j N onI ni t i at or are disjoint.

ASSUME i N onI ni t i at or ∩ j N onI ni t i at or = {}

We use the definitions of the T eamF ormat i on module for specifying the actions of the initiators i , j . So we obtain
two instances of that module with suitable substitutions of the parameters. The first of these instances is given by
the statement

I ni t i at or I
A
= INSTANCET eamF ormat i on WITH

NonI ni t i at or ← i N onI ni t i at or , Dat a ← i D at a, i ni t i at or ← i I ni t i at or

where the instance I ni t i at or I is obtained by replacing the parameters of the
T eamF ormat i on module with the corresponding parameters of the current module; NonI ni t i at or replaced with
i N onI ni t i at or , i ni t i at or with i I ni t i at or , and Dat a with i D at a . The other instance is given by the statement

I ni t i at or J
A
= INSTANCET eamF ormat i on WITH

NonI ni t i at or ← j N onI ni t i at or , Dat a ← j D at a, i ni t i at or ← j I ni t i at or
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Let P denote a statement that has the form
P

A
= INSTANCE M WITH E1 ← e1, . . . , En ← en

Let σ be any symbol defined in the module M . The statement P !σ has the same meaning in the current module as σ
had in module M with the replacements E1 ← e1, . . . , En ← en .
The initial state predicate I ni t is defined as:

I ni t
A
=

∧ I ni t i at or I !I ni t
∧ I ni t i at or J !I ni t

It may be noted that the usage of I ni t in the conjuncts and the definition name does not create any conflict. The
above definition says that the meaning of the predicate I ni t in the current module is the conjunction of the meaning
of I ni t in the moduleT eamF ormat i on with replacements given in I ni t i at or I , I ni t i at or J .

6.2.1 | Actions
1. Br oadcast Request

We want to specify that both the initiators simultaneously broadcast. So we define Br oadcast Request as a
conjunction of the individual actions of the initiators, i.e., i Br oadcast Request and j Br oadcast Request . Now the
action i Br oadcast Request of initiator i can be defined using the definition of the action Br oadcast Request in the
T eamF ormat i on module as
i Br oadcast Request

A
=

∧ I ni t i at or I !Br oadcast Request
∧ UNCHANGED⟨i I ni t i at or , j I ni t i at or ⟩

j Br oadcast Request
A
=

∧ I ni t i at or J !Br oadcast Request
∧ UNCHANGED⟨i I ni t i at or , j I ni t i at or ⟩

Br oadcast Request
A
=

∧ i Br oadcast Request

∧ j Br oadcast Request

2. ReceiveW i l l i ng

This action may be performed either simultaneously or in an interleaved manner. We give the specification when
the individual actions are interleaved.
i ReceiveW i l l i ng

A
=

∧ I ni t i at or I !ReceiveW i l l i ng

∧ UNCHANGED⟨i I ni t i at or , j I ni t i at or , j D at a ⟩

j ReceiveW i l l i ng
A
=
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∧ I ni t i at or J !ReceiveW i l l i ng

∧ UNCHANGED⟨i I ni t i at or , j I ni t i at or , i D at a ⟩

ReceiveW i l l i ng
A
=

∨ i ReceiveW i l l i ng

∨ j ReceiveW i l l i ng

3. Sel ectT eam

This action may be performed either simultaneously or in an interleaved manner. We give the specification when
the individual actions are interleaved.
i Sel ectT eam

A
=

∧ I ni t i at or I !Sel ectT eam

∧ UNCHANGED⟨i D at a, j D at a, j I ni t i at or ⟩
j Sel ectT eam

A
=

∧ I ni t i at or J !Sel ectT eam

∧ UNCHANGED⟨i D at a, j D at a, i I ni t i at or ⟩

Sel ectT eam
A
= ∨ i Sel ectT eam

∨ j Sel ectT eam

4. Not i f y

This action may be performed either simultaneously or in an interleaved manner. We give the specification when
the individual actions are interleaved.
i N ot i f y

A
=

∧ I ni t i at or I !Not i f y

∧ UNCHANGED⟨j D at a, j I ni t i at or ⟩

j N ot i f y
A
=

∧ I ni t i at or J !Not i f y

∧ UNCHANGED⟨i D at a, i I ni t i at or ⟩

Not i f y
A
= ∨ i N ot i f y

∨ j N ot i f y

5. Stut St ep A
=

∧ i N onI ni t i at or , ∅

∧ i N onI ni t i at or , ∅

∧ UNCHANGED⟨i D at a, j D at a, i I ni t i at or , j I ni t i at or ⟩

Next
A
=

∨ Br oadcast Request

∨ ReceiveW i l l l i ng

∨ Sel ectT eam

∨ Not i f y
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∨ Stut St ep

6.2.2 | Invariants
T ypeOK

A
= ∧ I ni t i at or I !T ypeOK

∧ I ni t i at or J !T ypeOK

Consi st ency
A
= ∧ I ni t i at or I !Consi st ency

∧ I ni t i at or J !Consi st ency

We now have the complete specification: TT F
A
= I ni t ∧□[Next ]v ar s

We have a theorem asserting the invariance ofT ypeOK and Consi st ency . The theorem is verified by the TLC model
checker.
THEOREMTT F =⇒ □(T ypeOK ∧ Consi st ency )

Thus, the composed specification involving k initiators (k > 1) can be easily obtained by reusing the definitions involv-
ing only one initiator in the module TeamFormation, given at the end of Section 7. The specification for two initiators
is given in module TeamFormationTwoInitiator, given at the end of Section 7.

7 | VERIFICATION USING TLC MODEL CHECKER
7.1 | Implementation Results
Microsoft Visual Studio Code with TLC 2 Version 2.16 is used for writing the TLA+ specifications and verification of
the codes on a computer having the configuration: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz, 16.0 GB
(15.7 GB usable) RAM, 64-bit operating system, x64-based processor, Windows 10 Pro, version 21H1.

Model 1: We consider 2 initiators where |i N onI ni t i at or | = 4 and |j N onI ni t i at or | = 5. The output obtained
by TLC is given below. No error has been found. 6051 states generated, 2049 distinct, 0 states left on queue. The
depth of the complete state graph search is 8. TLC finished the model checking in 568ms. The details of states for
each action are given below. Success means no error has been found, Diameter is the depth of the complete state
graph search, found indicates the number of states generated, Distinct indicates the number of distinct states, and
the entry for Queue indicates 0 states left on queue. The Coverage shows the states generated for each action and
I ni t . If we remove StutStep, TLC reports an error “deadlock reached".
-------Output of TLC for Model 1--------

java.exe -cp c:\Users\Admin \. vscode\extensions\alygin.vscode-tlaplus-

1.5.4\tools\tla2tools.jar -XX:+UseParallelGC tlc2.TLC

TeamFormationTwoInitiator.tla -tool -modelcheck -coverage 1 -config

TeamFormationTwoInitiator.cfg

TLC2 Version 2.16 (rev: cdddf55)

Running breadth-first search Model-Checking with fp 49 and seed -

3505808484348599909 with 1 worker on 8 cores with 227MB heap and 64MB offheap

memory (Windows 10 10.0 x86 , Oracle Corporation 1.8.0_261 x86 , MSBDiskFPSet ,
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DiskStateQueue).

Starting SANY ...

Parsing file C:\Users\Admin\Dropbox\My PC (DESKTOP-

VI0GDQD)\Desktop\myCodesTLA\TeamFormationTwoInitiator.tla

Parsing file C:\Users\Admin\AppData\Local\Temp\Naturals.tla

Parsing file C:\Users\Admin\AppData\Local\Temp\FiniteSets.tla

Parsing file C:\Users\Admin\Dropbox\My PC (DESKTOP-

VI0GDQD)\Desktop\myCodesTLA\TeamFormation.tla

Parsing file C:\Users\Admin\AppData\Local\Temp\Sequences.tla

Semantic processing of module Naturals

Semantic processing of module Sequences

Semantic processing of module FiniteSets

Semantic processing of module TeamFormation

Semantic processing of module TeamFormationTwoInitiator

SANY finished.

Starting ...

Computing initial states ...

Finished computing initial states:

1 distinct state generated Model checking completed.

No error has been found.

Estimates of the probability that TLC did not check all reachable states because

two distinct states had the same fingerprint: calculated (optimistic): val = 4.4E-13

6051 states generated , 2049 distinct states found , 0 states left on queue.

The depth of the complete state graph search is 8.

The average outdegree of the complete state graph is 1 (minimum is 0, the maximum

31 and the 95th percentile is 2). Finished in 568ms

------More Output of TLC for Model 1: details of states-----

Status

Checking TeamFormationTwoInitiator.tla / TeamFormationTwoInitiator.cfg

Success Fingerprint collision probability: 4.4E-13

Start: 12:18:15 end: 12:18:15

States

Time------Diameter----Found----Distinct---Queue

00:00:00 8 6051 2049 0

Coverage

Module--------------------Action-------------------Total----------Distinct

TeamFormationTwoInitiator Init---------------------1----------------1

TeamFormationTwoInitiator BroadcastRequest---------1----------------1

TeamFormationTwoInitiator iReceiveWilling----------64---------------1

TeamFormationTwoInitiator jReceiveWilling----------32---------------2

TeamFormationTwoInitiator iSelectTeam--------------960--------------30

TeamFormationTwoInitiator jSelectTeam--------------992--------------527

TeamFormationTwoInitiator iNotify------------------960--------------495

TeamFormationTwoInitiator jNotify------------------992--------------992

TeamFormationTwoInitiator StutStep-----------------2049-------------0

Model 2: We consider 2 initiators where |i N onI ni t i at or | = 7 and |j N onI ni t i at or | = 7. No error has been found.
196099 states generated, 65537 distinct, 0 states felt on queue. The depth of the complete state graph search is 8.
TLC finished the model checking in 3522ms. The details of states for each action are given below.
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----More Output of TLC for Model 2: details of states-----

Checking TeamFormationTwoInitiator.tla / TeamFormationTwoInitiator.cfg

Success Fingerprint collision probability: 4.6E-10

Start: 12:21:22 end: 12:21:25

States

Time-----Diameter----Found---Distinct----Queue

00:00:00 0 1 1 1

00:00:03 8 196099 65537 0

Coverage

Module--------------------Action-----------Total------Distinct

TeamFormationTwoInitiator Init--------------1----------1

TeamFormationTwoInitiator BroadcastRequest--1----------1

TeamFormationTwoInitiator iReceiveWilling---256--------1

TeamFormationTwoInitiator jReceiveWilling---256--------2

TeamFormationTwoInitiator iSelectTeam-------32512------254

TeamFormationTwoInitiator jSelectTeam-------32512------16383

TeamFormationTwoInitiator iNotify-----------32512------16383

TeamFormationTwoInitiator jNotify-----------32512------32512

TeamFormationTwoInitiator StutStep----------65537-------0

Model 3: We consider 3 initiators where |i N onI ni t i at or | = |j N onI ni t i at or | = |kN onI ni t i at or | = 4. No error
has been found. 25538 states generated, 8289 distinct states found, 0 states left on queue. The depth of the complete
state graph search is 9. TLC finished the model checking in 950ms. The details of states for each action are given
below.

----More Output of TLC for Model 3: details of states-----

Checking MultiTeamFormation.tla / MultiTeamFormation.cfg

Success Fingerprint collision probability: 7.8E-12

Start: 12:08:14 end: 12:08:15

States

Time-----Diameter----Found----Distinct---Queue

00:00:00 9 25538 8289 0

Coverage

Module-------------Action-----------------Total--------Distinct

MultiTeamFormation Init---------------------1--------------1

MultiTeamFormation BroadcastRequest---------1--------------1

MultiTeamFormation iReceiveWilling----------289------------1

MultiTeamFormation jReceiveWilling----------289------------2

MultiTeamFormation kReceiveWilling----------289------------4

MultiTeamFormation iSelectTeam--------------4335-----------60

MultiTeamFormation jSelectTeam--------------4335-----------510

MultiTeamFormation kSelectTeam--------------4335-----------4335

MultiTeamFormation Notify-------------------3375-----------3375

MultiTeamFormation StutStep-----------------8289------------0

Model 4: We consider 3 initiators where |i N onI ni t i at or | = |j N onI ni t i at or | = |kN onI ni t i at or | = 5. No error
has been found.200066 states generated, 65729 distinct states found, and 0 states left on queue. The depth of the
complete state graph search is 9. TLC finished the model checking in 4052ms. The details of states for each action
are given below.
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-----More Output of TLC for Model 4: details of states-----

Status

Checking MultiTeamFormation.tla / MultiTeamFormation.cfg

Success Fingerprint collision probability: 4.8E-10

Start: 12:14:08 end: 12:14:12

States

Time-----Diameter-----Found----Distinct----Queue

00:00:00 0 1 1 1

00:00:03 9 200066 65729 0

Coverage

Module-------------Action-----------------Total--------Distinct

MultiTeamFormation Init--------------------1-----------1

MultiTeamFormation BroadcastRequest--------1-----------1

MultiTeamFormation iReceiveWilling---------1089--------1

MultiTeamFormation jReceiveWilling---------1089--------2

MultiTeamFormation kReceiveWilling---------1089--------4

MultiTeamFormation iSelectTeam-------------33759-------124

MultiTeamFormation jSelectTeam-------------33759-------2046

MultiTeamFormation kSelectTeam-------------33759-------33759

MultiTeamFormation Notify------------------29791-------29791

MultiTeamFormation StutStep----------------65729-------0



20 Rajdeep Niyogi et al.

The TLA+ specification for one initiator:
1 ---- MODULE TeamFormation----

2 EXTENDS Naturals , FiniteSets

3 CONSTANT NonInitiator \* set of non-initiators

4 VARIABLES initiator , Data \* initiator , Data[p] are records

5 vars == <<initiator , Data>>

6 CN == Cardinality(NonInitiator)

7 Cm == Cardinality(initiator.member)

8 Cnm == Cardinality(initiator.nonmember)

9 InitialInitiator == [state |-> "ready", member |->{}, nonmember |-> {}]

10 InitialNoninit == [state |-> "idle", sent |-> "nil", recd |-> "nil"]

11 AfterReceiveNoninit == [state |-> "promise",

sent |-> "willing", recd |-> "request"]

12 nonmemberRec == [state |-> "idle", sent |-> "nil",

recd |-> "notRequired"]

13 nonInitRec ==

14 [state : {"idle", "busy", "promise"},

15 sent : {"willing", "nil"},

16 recd : {"request", "confirm", "notRequired", "nil"}]

17 initiatorRec ==

18 [state : {"ready", "busy"},

19 member : SUBSET NonInitiator ,

20 nonmember: SUBSET NonInitiator]

21 TypeOK == /\ initiator \in initiatorRec

22 /\ Data \in [NonInitiator |-> nonInitRec]

23 Init == /\ initiator = InitialInitiator

24 /\ Data = [p \in NonInitiator |-> InitialNoninit]

25 -------------------------------------

26 BroadcastRequest ==

27 /\ Data = [p \in ÂăNonInitiator |-> InitialNoninit]

28 /\ initiator = InitialInitiator

29 /\ Data’ = [p \in NonInitiator |-> [Data[p] EXCEPT !.state = "promise", !.recd = "

request "]]

30 /\ UNCHANGED initiator

31 ReceiveWilling ==

32 /\ initiator = InitialInitiator

33 /\ Data = [p \in NonInitiator |-> [state |-> "promise", sent |-> "nil", recd |->"

request "]]

34 /\ Data’ = [p \in NonInitiator |-> [Data[p] EXCEPT !.sent = "willing"]]

35 /\ UNCHANGED initiator

36 SelectTeam ==

37 /\ initiator = InitialInitiator

38 /\ Data = [p \in NonInitiator |-> AfterReceiveNoninit]

39 /\ \E v \in SUBSET NonInitiator : /\ Cardinality(v) > 0

40 /\ initiator’ = [initiator EXCEPT !. member = v, !. nonmember = NonInitiator \ v]

41 /\ UNCHANGED Data

42 Notify ==

43 /\ initiator.state = "ready"

44 /\ initiator.member # {}

45 /\ Data = [p \in NonInitiator |-> AfterReceiveNoninit]

46 /\ Data’ = [p \in NonInitiator |-> IF p \in
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initiator.member THEN

[Data[p] EXCEPT !.state = "busy", !.recd = "confirm"]

ELSE nonmemberRec]

47 /\ initiator’ = [initiator EXCEPT !.state = "busy"]

48 StutStep ==

49 /\ initiator.member # {}

50 /\ UNCHANGED <<Data , initiator >>

51 Next == \/ BroadcastRequest \* initiator broadcasts a request message

52 \/ ReceiveWilling \* initiator receives the willing messages from the non -

initiators

53 \/ SelectTeam \* initiator selects the other team members and nonmembers

54 \/ Notify \* initiator notifies the members and nonmembers

55 \/ StutStep \* stuttering step

56 Spec == Init /\ [][ Next]_vars \* The complete specification

57 Consistency == /\ (initiator.state = "busy") <=> /\ (Cm > 0)

58 /\ (\A p \in initiator.member : Data[p

].state = "busy")

59 /\ Cm + Cnm <= CN

60 ------------------------------------------

61 THEOREM Spec => []( TypeOK /\ Consistency) \* An invariant of Spec

62 ==============================

The TLA+ specification for two initiators:
1 ---- MODULE TeamFormationTwoInitiator----

2 EXTENDS Naturals , FiniteSets

3 CONSTANTS iNonInitiator , jNonInitiator \* set of non-initiators

4 VARIABLES iInitiator , iData , jData , jInitiator

\* iInitiator , iData[p] are records

5 InitiatorI == INSTANCE TeamFormation WITH NonInitiator <- iNonInitiator , Data <- iData ,

initiator <- iInitiator

6 InitiatorJ == INSTANCE TeamFormation WITH NonInitiator <- jNonInitiator , Data <- jData ,

initiator <- jInitiator

7 vars == <<iInitiator , iData , jData , jInitiator>>

8 ASSUME iNonInitiator \cap jNonInitiator = {}

9 iInitiatorRec == InitiatorI!initiatorRec

10 jInitiatorRec == InitiatorJ!initiatorRec

11 TypeOK == /\ InitiatorI!TypeOK

12 /\ InitiatorJ!TypeOK

13 Consistency == /\ InitiatorI!Consistency

14 /\ InitiatorJ!Consistency

15 Init == /\ InitiatorI!Init

16 /\ InitiatorJ!Init

17 -------------------------------------

18 iBroadcastRequest == /\ InitiatorI!BroadcastRequest

19 /\ UNCHANGED <<iInitiator , jInitiator>>

20 jBroadcastRequest == /\ InitiatorJ!BroadcastRequest

21 /\ UNCHANGED <<iInitiator , jInitiator>>

22 BroadcastRequest == /\ iBroadcastRequest

23 /\ jBroadcastRequest

24 iReceiveWilling == /\ InitiatorI!ReceiveWilling

25 /\ UNCHANGED <<iInitiator , jInitiator , jData>>
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26 jReceiveWilling == /\ InitiatorJ!ReceiveWilling

27 /\ UNCHANGED <<iInitiator , jInitiator , iData>>

28 ReceiveWilling == \/ iReceiveWilling

29 \/ jReceiveWilling

30 iSelectTeam == /\ InitiatorI!SelectTeam

31 /\ UNCHANGED <<iData , jData , jInitiator>>

32 jSelectTeam == /\ InitiatorJ!SelectTeam

33 /\ UNCHANGED <<iData , jData , iInitiator>>

34 SelectTeam == \/ iSelectTeam

35 \/ jSelectTeam

36 iNotify == /\ InitiatorI!Notify

37 /\ UNCHANGED <<jData , jInitiator>>

38 jNotify == /\ InitiatorJ!Notify

39 /\ UNCHANGED <<iData , iInitiator>>

40 Notify == \/ iNotify

41 \/ jNotify

42 StutStep == /\ iNonInitiator # {}

43 /\ jNonInitiator # {}

44 /\ UNCHANGED <<iData , jData , iInitiator , jInitiator>>

45 Next == \/ BroadcastRequest \* initiator broadcasts a request message

46 \/ ReceiveWilling \* initiator receives the willing messages from the non-

initiators

47 \/ SelectTeam \* initiator selects the other team members and nonmembers

48 \/ Notify \* initiator notifies the members and nonmembers

49 \/ StutStep \* stuttering step

50 TTF == Init /\ [][Next]_vars \* The complete specification

51 ------------------------------------------

52 THEOREM TTF => [](TypeOK /\ Consistency) \* An invariant of Spec

53 ==============================

8 | CONCLUSIONS
Protocols for the formation of teams have been described using distributed algorithms and communicating automata.
TLA+ has recently been used to provide formal specifications for a team formation protocol when there is only one ini-
tiator. In this paper, we considered the formal specification for the multiple initiator situation using TLA+. We showed
that for the multiple initiator situation, a single monolithic specification can be obtained from the specification of the
single initiator situation by a composition technique. We usedmodels of varying sizes and in each case, the TLCmodel
checker verified that the specifications meet some desirable properties of the protocol in each case. The outcomes
demonstrate that the protocol’s behavior is consistent with expectations. A mathematical description of a protocol or
program can be found in a high-level specification. As a result, through the use of formal specification language, we
have provided a comprehensive understanding of the team formation procedure for the typical circumstance involving
multiple initiators.

TLA+ provided satisfactory levels of abstraction and expressiveness for our work. When compared to the Promela
model [10], the logical properties of the protocol executions are better understood by using the TLA+ specification,
which is presented as a single formula.
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