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Abstract

Software architecture determines success or failure in the domain of software development and design. As a system evolves,
software architecture erodes. This phenomenon is called architectural erosion. Several studies that focused on various approaches
to the problem of architectural erosion have been conducted. As a direct consequence of this, the metrics strategy has emerged as
the most widely used solution for architectural erosion. However, providing a comprehensive perception of the elements required
to evaluate the phenomenon of architectural erosion with an acceptable level of quality is a challenge. The primary goals of
this research, which drew from the prior literature about identifying architectural erosion, were to (1) determine whether
various adopted measures approaches determine architectural erosion in order to develop a formal model, and (2) evaluate
the construct reliability and construct validity of the model. This research presents a model based on the chosen measures
approaches for identifying architectural degradation. This model can be used as the cornerstone for a formal definition of
general approaches and adopted metrics. Data was collected from 130 software engineering professionals with experience in
architecture erosion and software metrics via a questionnaire-based survey. Structural equation Modelling (SEM) was used
to analyse construct reliability, construct validity, and research hypotheses. The results demonstrate a substantial association
between all metrics approach classes and architectural erosion, except for architectural complexity and architectural technical
debt. Both researchers and practitioners can significantly benefit from this model’s empirical assessment and evaluation, which
includes a valuable information in this context.
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Abstract

Software architecture determines success or failure in the domain of software development and design. As
a system evolves, software architecture erodes. This phenomenon is called architectural erosion. Several
studies that focused on various approaches to the problem of architectural erosion have been conducted. As a
direct consequence of this, the metrics strategy has emerged as the most widely used solution for architectural
erosion. However, providing a comprehensive perception of the elements required to evaluate the phenomenon
of architectural erosion with an acceptable level of quality is a challenge. The primary goals of this research,
which drew from the prior literature about identifying architectural erosion, were to (1) determine whether
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various adopted measures approaches determine architectural erosion in order to develop a formal model,
and (2) evaluate the construct reliability and construct validity of the model. This research presents a model
based on the chosen measures approaches for identifying architectural degradation. This model can be used
as the cornerstone for a formal definition of general approaches and adopted metrics. Data was collected
from 130 software engineering professionals with experience in architecture erosion and software metrics via
a questionnaire-based survey. Structural equation Modelling (SEM) was used to analyse construct reliability,
construct validity, and research hypotheses. The results demonstrate a substantial association between all
metrics approach classes and architectural erosion, except for architectural complexity and architectural
technical debt. Both researchers and practitioners can significantly benefit from this model’s empirical
assessment and evaluation, which includes a valuable information in this context.

Key words: software architecture; architectural erosion; software metrics; measures; quality
attributes; empirical analysis

1. Introduction

In the software engineering community, the past decade has seen a rise in focus on software architecture (SA).
SA plays a significant role in a stage of software development in overall, particularly in research and industry
1 as well as software development2. SA is regarded as the fundamental structure block of every system,
since it is the significant and crucial factor in defining, succeeding, and developing systems design 3along
with quality standards 4, making it one of the most essential problems in software design and development
today. Software engineering should place a significant emphasis on SA, since the decisions that are made at
the beginning of the development process have a direct bearing on the quality and the level of success of the
products that are produced. Even though SA achievements are tremendous, some challenges remain. Hence,
SA is eroded over time5, 6 due to variety of factors: time pressure, adding , accumulating architectural debt,
fixing bugs, design decisions, code complexity, inconsistent requirements, an unintended cyclic dependency
among components, and new features, as well as technical requirements for changes (i.e., programming
languages, hardware, new platforms, and operating system), All of these architectural issues may manifest
unnoticed and undiscovered for a long time until they grow and become difficult to maintain. Evidently,
this is not a new issue; rather, it has a lengthy history in the field of software engineering. Interestingly, the
deterioration of the architecture causes the system to change at a higher frequency, with greater difficulty,
and greater complexity than it did previously. 7. This phenomenon is commonly referred to as Architectural
Erosion (AE)8-13, Software Architecture Degradation (SAD)14-17, Architectural Decay (AD)18-20. According
to a survey of the studies conducted by the researchers working in this field, the term Architecture Erosion
(AE) or Architectural Erosion (AE) is the one that is used in most of their studies. As a result, we have
decided to utilize this term in our own study as well.

In this regard, a variety of potential solutions to the problem of AE have been suggested in 17. As a
consequence, the metrics strategy is the one that is utilized the most frequently and has the highest level
of success among the various accessible alternatives17, 21. Software metrics are collected at numerous points
in the software development lifecycle to improve and track the progress of various software engineering
products and processes22. The fundamental logic is that ”you cannot control what you cannot measure” 23.
In addition, many systems lack an explicit and precise description of prescriptive architecture in practice. A
study 24 found that just 5% of open-source projects record software architecture. This means architectural
specifications must be generated from scratch. This can be difficult for systems with hundreds of thousands
of lines of code. Furthermore, the original developers of a system, who knew its architecture, are often
no longer available. So, sometimes creating an architectural specification is impossible. In the event, the
architectural documentation is missing, the code is frequently the primary source of information concerning
potential architectural violations 15, 25. As a result, the metrics play a major role in identifying whether
there are problems with the code or the architecture.

Despite what was mentioned in empirical studies regarding the adoption of the metrics approach, and
that it is currently being widely used in providing proposed solutions to determine architectural erosion,
evaluating the architectures of software implemented, and recognizing indicators of architectural deviations;
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however, there is a significant lack of knowledge regarding the provision of a comprehensive perception
of the elements required to evaluate the phenomenon of architectural erosion. Additionally, there is a
need a model for selecting the appropriateness of the adopted measures approaches and the reliance on an
appropriate classification that clarify ambiguous definitions regrading metrics, their adopted approaches,
and its categories, as well as investigate complicated, inaccurate, or incomplete approaches of the adopted
metrics. The certain shortcomings and obstacles regarding architectural erosion have already provided the
substantial motivation for researchers to formulate an initial metrics approaches model for architectural
erosion based on academic-related literature13.

In this paper, a model for identifying architectural erosion based on the adopted metrics approaches is
presented. This model can serve as the basis for a formal definition of generic approaches and adopted
metrics. A model is based on systems monolithic architecture, which includes (1) generic approaches that
are used for software metrics in the context of identifying architectural erosion (AE), (2) classification of
adopted metrics and placement under the appropriate approach in order to recognise the AE, and (3) essential
quality attributes regarding the identification of the AE. This model will investigate the empirical evidence
concerning the relationship between the classification of metrics approaches and architectural erosion. This
investigation will be based on an assessment of the reliability and validity of the model that was developed
in collaboration with experts and related professionals. Additionally, empirical analysis will be utilised in
order to determine how various classifications of different metrics approaches can identify the AE.

This paper presents a significant contribution to the field by introducing three new folds: First, A broad
categorization for the purpose of determining architectural erosion, containing particular and consistent
metrics that can be used to investigate and assess a wide range of approaches relevant to this context.
Second, a deeper understanding along with interesting and novel insights into the potential identification of
various types of metrics and their approaches to tackle architectural erosion from several perspectives. This
can help researchers and developers devise or integrate solutions and approaches that play a prominent role
in reducing architectural erosion based on criteria of convergent measures and achieving performance in a
more effective and efficient manner. This can also be of assistance to researchers in the process of creating
new solutions and approaches. Third, this model has been subjected to both an empirical evaluation and an
evaluation from the perspective of software engineering professionals, yielding a wealth of information (such
as erosion classifications, approach metrics, and quality attributes) that can serve as guidelines or references
for researchers and practitioners for tackling the problem of architectural erosion.

The remaining parts of this paper are structured as described below. Section 2 outlines the related work.
Section 3 proposes the research model and hypotheses. Section 4 describes research methodology. Section
5 presents data analysis and results. Section 6 explains discussion of obtained results. section 7 illustrates
implications for research and practice. Section 8 clarify threats to Validity of the study. Section 9 concludes
the paper and provides directions for future work.

2. Related Work

Despite studies relevant to our work, no model development based on these criteria and approaches has been
adopted and validated. However, we will review the literature on those approaches that have been proposed
to determine architectural erosion, based on measures that are key indicators in this context.

2.1 Architectural change approach

Changes at different levels of abstraction and from multiple architectural views can induce architectural
degradation and instability. Investigating if software system maturity reduces architectural instability and
discovered unstable software components based on project design instability and project call instability
measures 26. Unintentional architectural changes, decay, and the presence of vulnerabilities, as well as the
identification and tracking of architectural decay across the evolution history of a software system, all require
a reliable determination and understanding of architectural change based on architecture-to-architecture and
cluster coverage measures27-30.
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Software architecture degrades when changes violate design-time architectural intents. Erosion makes main-
tenance harder and slows software evolution. In study 31 that used change dispersion, relationship-based sim-
ilarity, architectural stability, and Move-Join (MoJo) measures to identify architecture degradation. System
architecture changes can have unforeseen repercussions. So, study32 investigated a metric for class fault-
proneness based on structural distance. Concerning co-changes between modules,19 Authors represented
cross-module co-changes and inner-module co-changes metrics to identify modifications that occur simulta-
neously within or across modules. 33 proposed a metric-based, multidimensional approach for analysing the
structural stability of system (package abstractness (A) and instability (I)) measures.

2.2 Historical data revision approach

Historical data revision analyses project files for bug and change prone throughout maintenance, revealing
serious architectural flaws. Detecting architecture anti-patterns 34 and measuring and predicting architecture
quality, and identifying architecture issues35, 36 by analysing revision history based on bug change frequency,
bug churn, change frequency, ticket frequency, and pair change frequency measures.

To forecast architectural decay from evolutionary history,19 proposed multiple architectural perspectives,
including architectural quality prediction models using an effective set of prediction metrics (i.e., number
of changes and number of co-changed files). In study 15 highlighted several measures to indicate software
architecture degradation, such as number of commits. The severity metric of a code smells based on the
change history of a software system was proposed to rank symptoms of architectural problems37.

2.3 Architectural cohesion approach

Architectural cohesion refers to the degree to which a module’s elements are functionally connected. Inconsis-
tencies between intended architecture as detected as symptoms of architectural degradation are investigated
by many source code metrics such as lack of method cohesion metric 15 and lack of cohesion metric for
packages31, 38. Dependency optimization-based metrics are used to identify source code anomalies and ar-
chitectural erosion through package cohesiveness quality metric to examine internal package dependencies
39 and tight class cohesion40. Correlations and interactions between architecture changes and decay 27 are
significant concept to measure actual cluster interactions to possible cluster interactions using the ratio of
cohesive interactions metric.

2.4 Architectural modularization approach

The term ”architecture modularization” is used to describe the degree to which a system or piece of software
is divided into independent modules that have little effect on one another when modified. In studies39, 41,
proposed package quality measures (inter-package modularization dependencies, inter-package modulariza-
tion connections, inter-package modularization cyclic dependencies, and inter-package modularization cyclic
connections) over a wide range of software quality, including vulnerability detection, fault-proneness, and vi-
olation of coding standard. For the purpose of figuring out if the quality of software architecture is sufficient
and if it is degrading over time. Decoupling Level (DL) is a metric introduced by studies42, 43 to assess how
well a software system is separated into independent modules. On the other hand, a modularization quality
metric has been presented to measure the entire system in order to simplify the system’s understanding and
restrict certain types of changes to particular modules 27.

2.5 Architectural technical debt approach

In the context of the software development lifecycle, the term ”architectural technical debt” refers to designs
that are suboptimal, incomplete, immature, or otherwise lacking in appropriate artifacts. Since software ar-
chitecture deterioration causes inconsistency between a system’s implementation and major design decisions,
15presented several metrics to detect architectural discrepancy (e.g., Sqale index and Sqale debt ratio).

Minimizing architecture debt is anticipated to make software less costly and more adaptable to change via de-
coupling level and propagation cost measures 42, evaluation of architectural violations based on architectural
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debt index 44, and analysis system coupling for numerous components in each system to find defect-related
activity 45, 46, which are directly related to software architecture to be maintained and evolved.

2.6 Software architecture size approach

The term ”software architecture size” relates to the estimation of the size of a system or component to
determine software productivity, anticipate fault locations in testing, and plan for maintenance. It refers to
the overall, data, or functional measure of the system.

To characterize the evolution or degradation of architecture in terms of size, highlight architecture and
code-level problems that might affect system change costs, and reduce architectural model understandability
which may lead to erosion, several size-related aspects have been proposed 15, 31, 47-49, including the number
of lines of code, the number of statements, the number of calls, and the number of comments, number of
connectors, number of components and class elegance.

2.7 Architectural complexity approach

Architectural complexity relates to a system’s structure, stored knowledge on how it operates, and makeup,
which may be difficult to understand or solve. To ensure that systems maintain their stability and can
continue to deliver the necessary functionalities as they evolve, it is crucial to understand the pattern of
software architecture change as the systems evolves over time 33, 50. Thus, structural complexity and the
complexity of a defect have been proposed based on analysis of structural over-complexity 51, cognitive
complexity 37, the excessive complexity33, weighted method per class, cyclomatic complexity15, 52, and the
defect persistence53 measures to identify a defect and architectural problems.

2.8 Architectural bad smells approach

Architectural bad smells are architectural decisions that negatively affect system quality and may refer the
architectural degradation. Measures for architectural elements 54, architectural concern-based metrics 54, 55,
and architecture sensitive metrics 56 have all been proposed as heuristics to help in the prioritisation of
key code anomalies. In addition, in study 57 that performed strategies based on metrics for identifying
architecturally significant smells.

Moreover, architectural anomalies can be detected through analysis a correlation and co-occurrences between
architectural and design smells58 or among each other 59 based several metrics. A tool introduced by studies
60, 61for the detection of architectural smell is based on a metrics engine that computes all Martin metrics
62.

2.9 Architectural dependency coupling approach

Dependency coupling in architecture is the relationship between abstraction-level entities within a module
that is dependent on another module, whether that dependency is direct or indirect. Analysis of the de-
pendency between conceptual architecture on the one hand and architecture changes, erosion, the presence
of vulnerabilities, problem violations, and defect-related activity on the other was one of most significant
motivations and areas of interest for researchers in many studies.15, 27, 31, 35, 39, 45, 61, 63-66, which adopted
coupling metrics between models, objects, packages, and classes to determine the state of the system ar-
chitecture in terms of evolution or degradation. For example, coupling metrics such as coupling between
objects, afferent coupling, efferent coupling, data abstraction coupling, number of coupled classes, sum of
coupling, module dependency strength (MDS), and dependency frequency.

In study 54, proposed metrics for architectural elements such as external fan-out, external fan-in, and ar-
chitectural element locality using architecture-sensitive strategies to detect code anomalies. In other words,
investigating architectural decay based on architectural defects, architectural smells, and modularization
quality using measuring the dependencies between modules 19, as well as expanding DSL-based architecture
abstraction approach has been recommended to analyse the understandability of the generated architectural
models to identify architecture erosion based on incoming and outgoing interdependence metrics 48.
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Based on the approaches that have been reviewed, it can be concluded that there is a wide range of approaches
that have been proposed for determining architectural erosion. Each approach focuses on different key
indicators and metrics that are considered important for detecting and quantifying architectural erosion.

Overall, these approaches offer different perspectives on architectural erosion and provide a range of metrics
that can be used to quantify and detect erosion in software systems.

3. Research Model and Hypotheses

The initial development of a software metrics model for analysing architectural erosion was conducted using
systematic mapping13. Meanwhile, there is a major disparity and deficiency in realizing and assessing
the metrics criteria that fundamentally drive and identify architectural erosion; Therefore, the research
hypotheses were developed on the basis of (1) the literature review that was presented in this study and
(2) the results of a previously conducted systematic mapping study, which demonstrated the significance
of taking metrics into consideration when determining the presence of architectural erosion. In this study,
measurement is conceptualized as an essential task in the process of software measurement and quality
attributes. Based on an evaluation of two criteria for the primary studies (i.e., the study objective and
the approach adopted to address architectural erosion), the methods of architectural erosion analysis have
been categorized into nine broad categories that can be taken into account when assessing architectural
erosion: Architectural change (ACH), Historical data revision (HDR), Architectural dependency coupling
(ADC), Architectural bad smells (ABS), Architectural cohesion (ACO), software architecture size (SAZ),
Architectural technical debt(ATD), Architectural complexity (ACP), and Architecture modularization(AM).
A complete description of the measurement items used in this research can be found in the Supplementary
Materials.

These classifications reflect the authors’ diverse strategies for tackling the issue of architectural erosion
through analysis of the mechanisms of adopted metric approaches that have been proven to handle this
issue. Most of the approaches and methods proposed by researchers to address the phenomenon of erosion fall
into the categories of architectural dependency coupling analysis, architectural bad smells, and architectural
change because of the large number of metrics included in these groups and the large number of studies
based on the analysis of relationships and dependencies among architecture artifacts of a given system.

A research model, shown in Figure 1, was constructed based on the aforementioned literature analysis and
the facts, as well as the results of our own pr-conducted studies 13, 17. Considering this, two-tailed hypotheses
that have been developed as follows:

Hypothesis 1 (H1) . Architectural change significantly identifies Architectural Erosion.

Hypothesis 2 (H2) . Historical data revision significantly identifies Architectural Erosion.

Hypothesis 3 (H3) . Architectural dependency coupling significantly identifies Architectural Erosion.

Hypothesis 4 (H4) . Architectural bad smells significantly identify Architectural Erosion.

Hypothesis 5 (H5) . Architectural cohesion significantly identifies Architectural Erosion.

Hypothesis 3 (H6) . software architecture size significantly identifies Architectural Erosion.

Hypothesis 4 (H7) . Architectural technical debt significantly identifies Architectural Erosion.

Hypothesis 5 (H8) . Architectural complexity significantly identifies Architectural Erosion.

Hypothesis 5 (H9) . Architecture modularization significantly identifies Architectural Erosion.

4 . Research Methodology

It is possible to solve a research problem using models, procedures, and methods. Research methodology
outlines the process by which hypotheses are produced and how they are tested 67. It is important to know
the purpose of a study’s design in order to effectively conduct research. Therefore, this methodology includes
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literature analysis, instrument validity and reliability, sampling and data collection, data preparation, mea-
surement, and structural model assessment. This section provides a detailed explanation of the procedures
and analysis that were used to fulfil the study goals.

4.1 Literature Analysis

The initial step in the study process was to identify the problem that needed to be addressed by looking at the
challenges and gaps left by prior studies. A literature review was used to gather the necessary information.
In our previous research, we conducted a review of the literature on software architecture degradation and
the metrics used to measure architectural erosion.

To create a proposed model for architectural erosion contexts, a systematic mapping study (SMS) was
performed 13. The study encompassed 92 metrics and 10 quality attributes. Each of the measures studied
was allocated to an approach of architectural erosion (historical data revision, architectural bad smell,
architectural dependency coupling, architectural cohesion, architectural change, architectural technical debt,
architectural complexity, architecture modularization, and software architecture size). The prior approaches
were deduced based on the most widespread analysis of proposals for architectural degradation.

Figure 1. Proposed Model

4.2 Instrument validity and reliability

The quality of quantitative measurement could be judged by the validity and reliability of the data being
collected. An instrument’s reliability is demonstrated by its ability to consistently deliver the same results
when tested in a variety of scenarios. In terms of validity, one definition states that it is when ”what the
instrument claims to measure is what it is measuring.”68. As a result, the study instrument’s validity and
reliability were evaluated. Instrument validity and reliability testing are described in detail in the following
sections. In the supplementary materials, you will find a summary of the survey measuring items that were
utilized in this study.

4.2.1 Content validity

Analysis of a scale of content validity is critical for researchers who want to improve the instrument’s construct
validity, which is why content validation should be a primary concern69. Content validity focuses on the
extent to which an item’s sample of relevant factors adequately represents the construct of interest70. In
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general, the content validity of a model or instrument is determined by the analysis of its concept by a
panel of experts 71, 72. In the research, a questionnaire was developed and distributed to researchers and
practitioners with prior experience in the context of architectural erosion. These researchers were selected
through systematic studies of their published works and their relevance to the study, based on their interest
in the study.

According to study 73, the model should be evaluated by at least three experts; however, the presence of
more than ten experts is unnecessary 74. Many academics believe that the model should be validated by at
least five experts in order to be considered reliable 75. In this study, 30 emails were sent to experts, but only
8 responded and filled out a questionnaire.

Diverse perspectives existed regarding the appropriate number of measurement scales, such as even-numbered
(2, 4, 6, 8, or 10) or odd-numbered (3, 5, 7, or 9) scales 76. Odd-numbered scale, numbers middle repre-
sents neutral, unbiased, not sure, don’t know, or not applicable. In contrast, the even-numbered scale
represents positive or negative responses. Odd-numbered scale can adjust the model more accurately than
even-numbered scale 77, 78. This study employed a five-point Likert scale to measure response appropriate-
ness and intelligibility. Therefore, this study’s questionnaire used a 5-point scale ranging from 1-strongly
disagree to 5-strongly agree to reflect experts’ opinions.

This study used a content validity ratio (CVR) model that was based on79 to measure the individual scale
items and Judgment calculation means 78. The model is feasible due to the study’s number of panellists,
which is fewer than ten80. The formula could be written as follows:

CVR = (Ne – N/2)/(N/2)

Where

Ne = the proportion of experts who rated the item as a 4 or 5 on a 5-point scale.

N = the total number of experts.

For the eight panellists in content validation, CVR value was set at 0.75. Table 1 demonstrates component
CVR values.

Table 1: minimum CVR value based on study 79

Numbers of panellists Min CVR value

5 0.99
6 0.99
7 0.99
8 0.75
9 0.78
10 0.62
11 0.59
12 0.56
13 0.54
14 0.51
15 0.49
20 0.42
25 0.37
30 0.33
35 0.31
40 0.29

For the purpose of computing the mean for each item, the values reported in the questionnaire were converted

8
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as follows 78:

Strongly Agree (5) or Agree (4) - was replaced by 2

Neither disagree or agree (3) - was replaced by 1

Strongly Disagree (1) or Disagree (2) - was replaced by 0

Table 2: summary of criteria for finalizing the items

Criteria Status

If CVR [?] 0.75 only for panellist =8 Accept
0 [?] CVR [?] 0.75 AND Mean [?] 1.5 Accept
If CVR [?] 0 AND Mean [?] 1.5 Reject

If the expert mean value of an item’s assessment is more than 1.5, it is accepted for final items. As a result,
the mean is more likely to be "Strongly Agree" or "Agree" than the expert judgement value of "0" or "No
Idea". As an alternative, if the mean judgement of experts falls below 1.5, the item would be rejected since
experts found the item to be unsuitable for measuring the construct in question. However, the CVR must
be equal to or higher than 1.5 for the items to be accepted. Table 2 shows the finalizing criteria for the
measures.

4.2.2 Reliability study

A pilot study was done before main data collection to validate and test research instruments. It’s the initial
step in designing a survey questionnaire. It helps validate the research instrument and reduce errors 81. Most
scholars recommend a sample size of 20–40 82, 83. Thirty respondents from software engineering research
groups, familiar with architecture erosion metrics, were purposively sampled.

The pilot study’s data was analysed using SPSS. Cronbach’s alpha internal consistency test was used to
assess the survey’s measurement items for reliability. From 0 to 1, which indicates a high level of reliability.
Values more than 0.9 are excellent; values between 0.8 and 0.9 are good; values between 0.7 and 0.8 are
acceptable; values below 0.6 are considered poor 84. Three criteria were used to assess the model’s reliability:

1. Each construct’s Cronbach’s alpha value must be at least 0.70.
2. Corrected item-total correlation should be > 0.2.
3. If an item is eliminated, Cronbach’s alpha must be lower than Cronbach’s alpha for the construct.

4.3 Sampling and Data Collection

Data collection is one of the key elements of model evaluation. Data collection entails gathering helpful ideas
and information about research issues from target respondents 85. Numerous methods to data collecting
are described in literature, including face-to-face, telephonic, email, and use of online media86. Email and
various forms of online media were used in the collection of data for this study. When methods are combined,
both time and cost could be saved. In this research, a questionnaire was used to collect data which is realistic
and convenient tools for data collection 87.

Given the impossibility of obtaining an accurate representation of the entire population, a representative
sample was selected. This study used a technique known as ”purposive sampling.” The study’s main em-
phasis is on the researcher’s strategic use of chance to find potentially helpful respondents 74. Therefore,
in this research, software engineering professionals who are related to the area (e.g., software metrics, soft-
ware architecture, architectural decay/degradation/erosion, software quality, architectural smell/code smell,
architectural technical debt, and software maintenance and evolution) were selected as respondents. Also,
in perspective industrial, Product Manager, System Architect, IT Consultant, Software Engineering Man-
ager/Lead, and Automation Technical Leader, who have wide knowledge on software architecture erosion.
Table 3 outlines respondent demographics.
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An online questionnaire was designed to gather survey data, using Smart Survey tool for ease of response. It
was determined that Google scholar would be the most effective tool for finding relevant researchers for the
survey. Additionally, authors of studies relevant to our research were invited to participate in this survey.
LinkedIn was chosen as the best way to recruit software engineers especially who are working in industrial
companies worldwide to participate in the survey. Moreover, Online questionnaire was shared in social media
in LinkedIn and Facebook groups which are concerned with software engineering and development.

The size of the sample matters a great deal when conducting statistical analysis. Thus, the choice of sample
size should be made considering the specific statistical method that will be employed to analyse the data
collection. In this study, statistical methods such as structural equation modelling (SEM) and SPSS were
used for analysis. There is no consensus regarding the exact sample size for SEM, and researchers have
various opinions on the matter. In order for a SEM estimation to be reliable and valid, an adequate sample
size is required. According to88, a sufficient sample size for SEM requires at least five respondents for each
construct and a total of no fewer than 100 persons for the entire set of data. Almost any SEM may be
unworkable with less than 100 cases unless a very simple model is tested89. The model is considered simple
because it lacks the complex variables that are associated with multi-ranking, and the sample of the target
population is restricted to specific experts around world, online questionnaires were distributed to get as
many as possible responses. and ultimately, 130 completed questionnaires were returned.

Table 3. Profiles of the respondents’ demographics that were collected (n = 130)

demographic Variable Category Frequency (n) Percentage (%)

Field academic 89 68.5
Industry 18 13.8
academic /industry 23 17.7

Current position Researcher 89 68.5
Software development engineer 11 8.5
Researcher / Software development engineer (both) 22 16.9
Others 8 6.1

Year of experience Over 15 70 53.8
11- 15 22 16.9
6-10 24 18.5
3-5 8 6.2
1-2 6 4.6

4.4 Data Preparation

The responses were pre-processed after the data had been collected. Therefore, the steps involved in each
stage of data pre-processing are outlined in the following points, as well as a complete description of data
investigation and descriptive statistics for constructs and their items in this research can be found in the
Supplementary Materials.

4.4.1 Missing Data

Incomplete data gathering is a problem 90. In addition, missing data affects statistical tests that examine the
correlations between variables 72. Data was collected online in this study. All questionnaire responses are
required and responders can’t skip any. Statistical Package for Social Sciences (SPSS) was used to examine
the raw data. Thus, no data was lost.

4.4.2 Outliers

Another challenge that can arise when using statistical methods is that of outliers. An observation that
stands out as being dramatically dissimilar to other value observations is known as an outlier72, 89. There

10



P
os

te
d

on
22

M
ar

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

67
94

70
26

.6
30

12
88

7/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

was no univariate outlier in this study due to the Likert Scale 5-scale range being employed for responses.
Outliers were done by SPSS, and no outliers were found.

4.4.2 Normality

To determine the shape of the sample distribution, data normality testing was employed. According to 91

study , the appropriate range for skewness is between -2 and +2, whereas the appropriate range for kurtosis
is between -7 and +792. In addition, some researchers, a score of +1 to -1 for skewness and +3 to -3 for
kurtosis is considered to be normal value93. In this study, the normality of the data was evaluated using
SPSS to identify the range of skewness and kurtosis, ensuring that the prescribed limit was not exceeded.

4.5 Measurement Model Assessment

The term ”measurement models” refers to the models, either implicit or explicit, that relate the latent variable
to its indicators. The evaluation of the PLS-SEMmodel begins with a look at the measurement models. Using
PLS-SEM estimations, researchers can determine the reliability and validity of the construct measurements.
Specifically, multivariate measurement is the use of multiple variables (i.e., multi-items) to assess a construct
94. The PLS algorithm was employed in Smart PLS to assess the measurement model. Factor Loadings,
internal consistency, convergent, and discriminant validity were used to evaluate the measurement model94.

4.5.1 Internal Consistency Reliability

Internal consistency reliability is often the first criterion to be assessed. To measure internal consistency,
Cronbach’s alpha is used, which traditional criterion and estimates the reliability based on intercorrelations
between observed indicator variables and their correlations. Due to Cronbach’s alpha’s restrictions, a new
measure of internal consistency reliability, known as composite reliability (CR), is more technically acceptable
94, 95. Internal consistency reliability is indicated by an a-value of 0.7 or above84, 96. Thus, any a-value that
is more than 0.70 is regarded as reliable and acceptable.

4.5.2 Convergent validity

The degree to which one measure correlates positively with other available measures of the same construct
is what is meant by the term ”convergent validity.” 72, 89, 94. Average variance extracted (AVE) is a common
measure of concept convergent validity. This criterion is the grand mean of the construct’s squared loadings
(i.e., the sum of the squared loadings divided by the number of indicators). The following formula is used
to determine the AVE 94:

AVE=
∑

x2

N

where [?] x2 s is the sum of all squared standardized factor loadings and n represents the items number. An
appropriate value is more than 0.5, which indicates that latent variables have convergent validity94, 97.

4.5.3 Discriminant validity

The degree to which a construct is empirically distinguishable from other constructs is known as discriminant
validity. A construct’s ability to distinguish itself from others in the model is an important step in the process
of proving discriminant validity72, 89, 94.

We assessed at the discriminant validity based on HTMT approach to determine a threshold that has
been used in most of the research. Technically, HTMT estimates the correlation between two constructs
if they were perfectly quantified (i.e., if they were perfectly reliable). Disattenuated correlation refers to
real correlation. A correlation near to 1 shows a lack of discriminant validity 94. According to previous
research and the findings of those studies,98 determined a 0.90 threshold for conceptually similar path model
structures. Above 0.90 HTMT shows lack of discriminant validity.

4.6 Structural Model Assessment

The primary purpose of the structural model is to investigate the relationship between the independent
and dependent variables. This model also makes it possible to ascertain the impact that the independent
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factors (exogenous variables) have on the variables that are being studied (endogenous variables) 72. A
structural model is a perspective of a system that focuses on the structure of the objects, including the
relationships between those objects, their characteristics, and the activities those attributes they perform99.
Through investigating their relationship within a structural model, we can infer the effect of the independent
factors on the dependent variable. Following are the key considerations that were taken into account in
the evaluation of the structural model: 1) Structural Model Path Coefficients (Hypotheses Testing), 2)
Coefficient of Determination (R2 Value), 3) Effect Size F 2, 4) Predictive Relevance Q2 5) Goodness of Fit
of the Model - GoF.

4.6.1 Structural Model Path Coefficients (Hypotheses Testing)

It is possible to identify the individual impact of an exogenous variable on an endogenous variable by carrying
out a slope test. In order to demonstrate that the exogenous variables have a significant influence on the
endogenous variables, the p-value should be less than 0.05, and the t-value should be more than the critical
value (C.R), which should be greater than 1.96 94, 100.

4.6.2 Coefficient of Determination ( R2 Value)

The coefficient of determination (R2 value) is the standard method for assessing the quality of a structural
model. In order to evaluate how well a model can predict future values for a specific endogenous construct,
researchers use a coefficient defined as the square of the correlation between those values and the model’s
predictions. According to study 101, values of R2 that are greater than 0.67 are considered to be high; values
that fall within the range of 0.33 to 0.67 are considered to be moderate; values that fall within the range of
0.19 to 0.33 are considered to be low; and anyR2 values that are less than 0.19 are deemed unsatisfactory.

4.6.3 Assessment of Effect Size ( F2)

During the evaluation of the structural model, effect size (F 2), measured by Cohen’s, is used to evaluate
the impact of a given construct on an endogenous variable (the independent variable). According to the
guidelines for evaluating F 2, the value above 0.35 represents large; whereas F 2 ranging from 0.15 to 0.35 are
considered medium effect size; whereas F 2ranging from 0.02 to 0.15 are considered small effect size. The
absence of an effect can be inferred from effect size values that are lower than 0.02 102.

4.6.4 Assessment of Predictive Relevance ( Q2)

In addition to assessing the magnitude of the R2 values as a measure of prediction accuracy, researchers
should also evaluate Stone- Geisser’s Q² value 103, 104. This measure is an indicator of the model’s predictive
strength or predictive relevance when it is applied to data that is not contained within the sample. We used
blindfolding procedures to achieve cross-validity redundancy 102 to assess the model’s predictive usefulness.
For a cretin’s endogenous constructs, the model can be predictively useful if Q2 is greater than zero, as
shown by 94.

4.6.5 Goodness of Fit of the Model - GoF

As an overall measure of how well a model fits the data, the goodness-of-fit model (GoF), has been developed
for use with PLS-SEM. GoF, as described by 105, is the geometric mean of AVE and the average of R2 of
the endogenous variable. The goal of GoF is to provide how suitability of the study model at two levels—the
measurement level and the structural level—with focus on the model’s performance as a whole 106, 107. The
calculation formula of GoF is as follow:

GoF=
√
(R

2 ∗AV G)

According to 108, a GoF of 0.36 or higher is deemed to be large, while a GoF of 0.25 to 0.36 is considered to
be medium, and a GoF of 0.1 to 0.25 is deemed to be small, and a GoF of less than 0.1 is deemed to be a
”No fit.”

5. Data Analysis and Results
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The results will be provided in this section in such a way that each section of the methodology contains
analyses of the results referred to, such that the results are sequenced in a sequential series since each
subsequent section depends on the preceding section, and so on.

5.1 Content validity

We conducted evaluation round for content validity between Dec 2021 and Mar 2022, based on the literature,
the approach defines the construct clearly and precisely, and provides a novel taxonomy of the construct for
this research. Therefore, round for content validity and questionnaires are provided in Appendices A–B.

Out of the 41 experts identified, only 8 of them responded to the questionnaire and completed the content
validity survey. Table 4 contains the basic research-related information of the content validity experts.

Table 4 summarizes the experts’ basic knowledge in content validity.

No Designation field Current profession Experience

1 academic Researcher > 15
2 academic /industry Researcher / Software development engineer > 15
3 academic Researcher 11-15
4 academic Researcher > 15
5 academic /industry Researcher / Software development engineer 3-5
6 academic Researcher > 15
7 academic /industry Researcher / Software development engineer > 15
8 academic /industry Researcher / Software development engineer > 15

A large number of items from previous studies were included, totalling 102 items spread across 10 different
constructs. Therefore, these items will need to be reconsidered by experts through one of two concepts:
either rejecting this item altogether or combining it with another item that has a similar concept based on
the comment that was provided by experts.

In Table 5 which was used to present the findings of CVR and Mean for the content validity, indicates
significant points in accepting, rejecting, or merging items according to the consensus reached by the eight
experts. In the historical data revision construct, combining HDR1 with HDR4 made sense since the two
items complement each other and are generally accepted in terms of CRV and mean value. Regarding HDR
3 and HDR10 items, they were rejected due to the CVR value being less than 0 (-0.25, -1.00) and the
Mean being less than 1.5 (1.3, 0.63) respectively. The CVR value for the ABS8 and ABS10 items in the
architectural bad smell construct was found to be less than 0 (-0.50 and -0.25), and the Mean value was
found to be less than 1.5 (1.00 and 1.25) respectively, hence these items were not accepted.

Table 5. CVR and Mean results for the content validity

Construct Item CVR Mean Status Construct Item CVR Mean Status

Historical
Data
Revision
(HDR)

HDR1 1.00 2.00 Accept Architecture
Modular-
ization
(AM)

AM1 -0.25 1.38 Reject

HDR2 1.00 2.00 Accept AM2 0.75 1.88 Accept
HDR3 -0.25 1.13 Reject AM3 0.50 1.75 Accept
HDR4 0.50 1.63 Accept AM4 0.25 1.63 Accept
HDR5 0.75 1.88 Accept AM5 0.25 1.63 Accept
HDR6 1.00 2.00 Accept AM6 -0.50 1.00 Reject
HDR7 0.25 1.50 Accept AM7 -0.25 1.13 Reject
HDR8 0.75 1.88 Accept AM8 -0.25 1.25 Reject
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Construct Item CVR Mean Status Construct Item CVR Mean Status

HDR9 1.00 2.00 Accept AM9 0.00 1.38 Reject
HDR10 -1.00 0.63 Reject AM10 0.25 1.63 Accept

Architectural
bad smell
(ABS)

ABS1 0.75 1.88 Accept Architectural
change
(ACH)

ACH1 0.75 1.88 Accept

ABS2 0.75 1.88 Accept ACH2 0.25 1.50 Accept
ABS3 0.75 1.75 Accept ACH3 0.75 1.88 Accept
ABS4 1.00 2.00 Accept ACH4 0.50 1.75 Accept
ABS5 0.75 1.88 Accept ACH5 0.25 1.63 Accept
ABS6 0.75 1.75 Accept ACH6 0.50 1.75 Accept
ABS7 0.25 1.50 Accept ACH7 -0.25 1.25 Reject
ABS8 -0.50 1.00 Reject ACH8 0.00 1.38 Reject
ABS9 0.50 1.75 Accept ACH9 0.00 1.38 Reject
ABS10 -0.25 1.25 Reject ACH10 0.00 1.38 Reject
ABS11 0.25 1.63 Accept ACH11 -0.25 1.13 Reject

Architectural
Depen-
dency
Coupling
(ADC)

ADC1 0.50 1.75 Accept ACH12 0.75 1.88 Accept

ADC2 0.50 1.75 Accept ACH13 0.25 1.63 Accept
ADC3 1.00 2.00 Accept Architectural

Technical
Debt
(ATD)

ATD1 0.75 1.88 Accept

ADC4 1.00 2.00 Accept ATD2 0.75 1.88 Accept
ADC5 0.25 1.63 Accept ATD3 0.50 1.63 Accept
ADC6 1.00 2.00 Accept ATD4 0.75 1.88 Accept
ADC7 0.50 1.63 Accept ATD5 1.00 2.00 Accept
ADC8 0.25 1.63 Accept Architectural

Cohesion
(ACO)

ACO1 0.25 1.50 Accept

ADC9 -0.25 1.25 Reject ACO2 1.00 2.00 Accept
ADC10 -0.25 1.25 Reject ACO3 0.25 1.50 Accept
ADC11 0.75 1.88 Accept ACO4 -0.25 1.00 Reject
ADC12 -0.25 1.25 Reject ACO5 0.25 1.63 Accept
ADC13 -0.25 1.25 Reject Software

Architec-
ture Size
(SAZ)

SAZ1 1.00 2.00 Accept

ADC14 -0.25 1.25 Reject SAZ2 0.50 1.63 Accept
ADC15 0.25 1.63 Accept SAZ3 1.00 2.00 Accept
ADC16 0.25 1.63 Accept SAZ4 0.75 1.88 Accept
ADC17 0.50 1.75 Accept SAZ5 -0.50 0.75 Reject
ADC18 0.50 1.75 Accept SAZ6 -0.50 1.00 Reject
ADC19 0.25 1.38 Reject SAZ7 0.50 1.63 Accept
ADC20 -0.50 1.13 Reject SAZ8 -0.25 1.00 Reject
ADC21 0.50 1.75 Accept SAZ9 -0.50 0.75 Reject
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Construct Item CVR Mean Status Construct Item CVR Mean Status

ADC22 -0.50 1.00 Reject Architectural
Erosion
(AE)

AE1 0.75 1.88 Accept

Architectural
Complex-
ity
(ACP)

ACP1 0.75 1.88 Accept AE2 0.75 1.88 Accept

ACP2 0.25 1.63 Accept AE3 0.50 1.63 Accept
ACP3 0.50 1.63 Accept AE4 0.50 1.63 Accept
ACP4 0.25 1.50 Accept AE5 0.25 1.50 Accept
ACP5 0.25 1.63 Accept AE6 1.00 2.00 Accept
ACP6 1.00 2.00 Accept AE7 0.75 1.88 Accept
ACP7 0.50 1.63 Accept AE8 1.00 2.00 Accept

AE9 1.00 2.00 Accept
AE10 1.00 2.00 Accept

Concerning the architectural dependency coupling construct which has 22 constructs, the greatest number
of any construct, ADC1, ADC3, and ADC5 items were merged into a single item, as well ADC2, ADC4, and
ADC6 were merged into a single item because of how well their complementary concepts meshed and each of
which may be considered valid. On the other hand, the values of the items ADC9, ADC10, ADC12, ADC13,
ADC14, ADC19, ADC20, and ADC22 showed that the CVR value was found to be less than 0 (-0.25, -0.25,
-0.25, -0.25, -0.25, -0.25, -0.50, -0.50) and the Mean value was found to be less than 1.5 (1.25, 1.25, 1.25,
1.25, 1.25, 1.38, 1.13, 1.00) respectively. Therefore, they were removed.

Regarding architecture modularization construct, AM1, AM6, AM7, AM8, AM9 items provided CVR values
( -0.25, -0.50, -0.25, -0.25, 0.00) were less than 0 respectively. However, last value of AM9 item which is
0.00 was acceptable; on the contrary, AM9 item did not meet Mean value which is greater or equal to 1.5 as
illustrated in Table 2, whereas Mean obtained value of AM9 item is 1.38. In addition, the Mean values of
the rest items were also less than 1.50 (1.38, 1.00, 1.13,1.25, and 1.38) respectively. As a result, these items
were removed from this construct.

Concerning architectural change construct, ACH7 and ACH11 items achieved CVR values were less than 0
which are -0.25, -0.25 respectively. Moreover, Mean values found to be less than 1.50 which are 1.25, 1.13
respectively. In same context, ACH8, ACH9, and ACH8 items achieved all CVR values are acceptable which
are 0; however, all Mean values of stated items found to be less than 1.50 which are 1.38, 1.38, and 1.38
respectively. Conclusively, all stated items were removed as demonstrated in Table 5.

With regards to architectural cohesion and software architecture size constructs, ACO4 item was removed
from architectural cohesion since it did not meet the CVR and Mean values found to be less than 0 and 1.5
respectively. While SAZ5, SAZ6, SAZ8, and SAZ9 items were removed from software architecture size for
the same reason mentioned above. In relation to the architectural erosion construct, all items were accepted;
however, AE7, AE8, AE9, and AE10 items were combined within the AE6 item because they are considered
sub-items or have the same concept. This decision was made based on the suggestions and comments of
experts in the questionnaire to achieve content validity.

Table 6. outlines adopted items of final version for content validity model

Construct Original items Deleted/merged items Final version

Historical data revision 10 3 7
Architectural bad smell 11 2 9
Architectural dependency coupling 22 12 10
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Construct Original items Deleted/merged items Final version

Architectural complexity 7 - 7
Architecture modularization 10 5 5
Architectural change 13 5 8
Architectural technical debt 5 - 5
Architectural cohesion 5 1 4
Software architecture size 9 4 5
Architectural erosion 10 4 6

In its final version, the software metrics model for architectural erosion quality consisted of 66 items, grouped
into 10 constructs: 7 items for Historical data revision, 9 items for Architectural bad smell, 10 items for
Architectural dependency coupling, 7 items for Architectural complexity, 5 items for Architecture modular-
ization, 8 items for Architectural change, 5 items for Architectural technical debt, 4 items for Architectural
cohesion, 5 items for Software architecture size, and 6 items for Architectural erosion as illustrated in Table
6.

5.2 Internal consistency reliability

Based on the findings from the content validity analysis, the model was subjected to additional testing to
determine its internal consistency reliability using a five-point Likert scale ranging from 1 (strongly disagree)
to 5 (strongly agree). In this study, a selection of profiles was provided, each of which included a designation,
the participant’s current profession, and familiar experience with architectural erosion and its measures. The
survey was completed by a representative sample of 30 professionals in the field of software engineering; these
professionals are directly related to architectural erosion and its measures.

Most of the respondents were from academic field (N=22, 73%) while remaining respondents were distributed
between industry and combination of the academic and industry fields simultaneously (N =4, N=4, 13%,
14%) respectively. The current profession of majority of respondents was researcher (N =22, 73%), followed
by software development engineer (N= 3, 10%), software development engineer and researcher at same time
(N =3, 10%), product manager (N =1, 4%), and industrial researcher (N =1, 3%). Most respondents had
an excellent experience of architectural erosion and its metrics, which is more than 15 years (N =14, 47%),
followed by between 11 -15 and between 6-10 years (N =7, 23%, N =7, 23%), while between 3-5 and 1-2
years (N =1, 4%, N= 2, 3%) respectively.

Table 7 presents a summary of the results of the reliability tests conducted on the validated model, includ-
ing the Cronbach’s alpha for each construct, the corrected item-total correlation, and the Cronbach’s alpha
coefficients if an item was removed. The results of the reliability analysis showed that the internal consis-
tency of the model was satisfactory. The values of Cronbach’s alpha computed for the following constructs:
Historical data revision (N=7), Architectural bad smell (N=9), Architectural dependency coupling (N=10),
Architectural complexity (N=7), Architecture modularization (N=5), Architectural change (N=8), Archi-
tectural technical debt (N=5), Architectural cohesion (N=4), and Software architecture size (N=5), as well
as architectural erosion (N=6), were 0.874, 0.922, 0.887, 0.854, 0.870, 0.859, 0.942, 0.834, 0.941, and 0.840
respectively. The corrected item-total correlation coefficients for Historical data revision items ranged from
0.532 (HDR1) to 0.805 (HDR7); Architectural bad smell items ranged from 0.443 (ABS1) to 0.892 (ABS8);
Architectural dependency coupling items ranged from 0.467(ADC 10) to 0.690 (ADC7); Architectural com-
plexity items ranged from 0.427 (APC7) to 0.779 (ACP 3); Architecture modularization items ranged from
0.665 (AM2) to 0.699 (AM4); Architectural change items ranged from 0.440 (ACH5) to 0.742 (ACH1); Ar-
chitectural technical debt items ranged from 0.780(ATD4) to 0.897 (ATD3); Architectural cohesion items
ranged from 0.586 (ACO4) to 0.753 (ACO3); Software architecture size items ranged from 0.788(SAZ3) to
0.940(SAZ4); Architectural erosion items ranged from 0.513 (AE6) to 0.688(AE1).

Table 7 shows the reliability test results for the validated model.
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Construct Item

Cronbach’s
Alpha if
item
deleted

Corrected
item-total
correlation Construct Item

Cronbach’s
Alpha if
item
deleted

Corrected
item-total
correlation

Historical
Data
Revision
(HDR)
(0.874)

HDR1 0.876 0.532 Architecture
Modulariza-
tion (AM)
(0.870)

AM1 0.850 0.667

HDR2 0.874 0.540 AM2 0.852 0.665
HDR3 0.857 0.651 AM3 0.843 0.690
HDR4 0.851 0.689 AM4 0.843 0.699
HDR5 0.849 0.725 AM5 0.824 0.782
HDR6 0.846 0.754 Architectural

change
(ACH)
(0.859)

ACH1 0.825 0.742

HDR7 0.842 0.805 ACH2 0.842 0.609
Architectural
bad smell
(ABS)
(0.922)

ABS1 0.928 0.443 ACH3 0.836 0.655

ABS2 0.921 0.626 ACH4 0.854 0.492
ABS3 0.908 0.799 ACH5 0.859 0.440
ABS4 0.911 0.749 ACH6 0.836 0.658
ABS5 0.912 0.740 ACH7 0.839 0.633
ABS6 0.914 0.697 ACH8 0.843 0.604
ABS7 0.912 0.740 Architectural

Technical
Debt (ATD)
(0.942)

ATD1 0.928 0.849

ABS8 0.902 0.892 ATD2 0.924 0.870
ABS9 0.905 0.834 ATD3 0.919 0.897

Architectural
Dependency
Coupling
(ADC)
(0.887)

ADC1 0.884 0.515 ATD4 0.940 0.780

ADC2 0.881 0.556 ATD5 0.932 0.826
ADC3 0.877 0.603 Architectural

Cohesion
(ACO)
(0.834)

ACO1 0.775 0.696

ADC4 0.880 0.559 ACO2 0.789 0.671
ADC5 0.879 0.585 ACO3 0.748 0.753
ADC6 0.874 0.656 ACO4 0.832 0.586
ADC7 0.872 0.690 Software

Architecture
Size (SAZ)
(0.941)

SAZ1 0.925 0.855

ADC8 0.872 0.679 SAZ2 0.935 0.800
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Construct Item

Cronbach’s
Alpha if
item
deleted

Corrected
item-total
correlation Construct Item

Cronbach’s
Alpha if
item
deleted

Corrected
item-total
correlation

ADC9 0.873 0.677 SAZ3 0.938 0.788
ADC10 0.885 0.467 SAZ4 0.910 0.940

Architectural
complexity
(ACP)
(0.854)

ACP1 0.808 0.781 SAZ5 0.930 0.830

ACP2 0.832 0.638 Architectural
Erosion
(AE)
(0.840)

AE1 0.800 0.688

ACP3 0.809 0.779 AE2 0.827 0.549
ACP4 0.828 0.677 AE3 0.800 0.686
ACP5 0.853 0.499 AE4 0.817 0.604
ACP6 0.843 0.552 AE5 0.803 0.672
ACP7 0.858 0.427 AE6 0.835 0.513

5.3 Measurement Model Assessment

The measurement model is the starting point for evaluating a research model because it determines whether
each construct being measured is being measured correctly.

Before examining the measurement model, we considered to rule out the common method bias (CMB).
VIF values greater than 5 indicate not only severe collinearity but also model contamination with common
method bias94. The maximum VIF value for any predictor construct was 3.402, as reported in Table 9,
ruling out the CMB in our data. As a result, collinearity among predictor constructs is not a critical issue
in the measurement model, and we can proceed with the analysis of the findings report.

The measure is said to be reliable when its factor loadings (FL) are above 0.50 94. 109 provided a range of
factor loadings quality i.e., excellent (0.71), very good (0.63), good (0.55), fair (0.45) to poor (<0.32). It
was feasible to either remove one of the factor loadings or put a limit on both110, 111. In order to improve
construct definition in relation to high factor loadings and uncorrelated items, the deletion procedure was
chosen as the recommended option. 111. Most of our scale factor’ loadings were above 0.53 (see Table 8 and
Figure 2), so base for the reliability of our measures was established.

All the constructs’ internal consistency reliability was calculated using composite reliability (CR) and Cron-
bach’s alpha (CA). As can be observed in Table 8, the threshold for reliability of the measure is > 0.7 scores
of CA for each of the construct94, thereby estimations met the criteria very well. However, owing to the
underestimation problem with CA there is a need of greater estimation of true reliability 94. Therefore, CR
was measured to evaluate the reliability. As shown in Table 8, the model met adequately the acceptable
values of CR i.e., > 0.7 for confirmatory purposes.

Table 8 presents the results of the reliability, validity, and quality of measurement assessment for the model.

Construct Item Factor Loading (FL) Cronbach’s Alpha (CA) Composite Reliability (CR) AVE VIF H2

HDR HDR1 0.71 0.855 0.888 0.533 1.680 0.371
HDR2 0.60
HDR3 0.69
HDR4 0.73
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Construct Item Factor Loading (FL) Cronbach’s Alpha (CA) Composite Reliability (CR) AVE VIF H2

HDR5 0.78
HDR6 0.76
HDR7 0.81

ABS ABS1 0.58 0.876 0.901 0.507 3.396 0.381
ABS2 0.69
ABS3 0.70
ABS4 0.76
ABS5 0.59
ABS6 0.73
ABS7 0.78
ABS8 0.74
ABS9 0.81

ADC ADC1 0.53 0.891 0.911 0.512 1.530 0.393
ADC2 0.76
ADC3 0.74
ADC4 0.72
ADC5 0.58
ADC6 0.71
ADC7 0.70
ADC8 0.80
ADC9 0.90
ADC10 0.66

ACP ACP1 0.81 0.859 0.887 0.531 1.621 0.378
ACP2 0.69
ACP3 0.76
ACP4 0.75
ACP5 0.72
ACP6 0.74
ACP7 0.61

AM AM1 0.74 0.804 0.864 0.560 3.307 0.337
AM2 0.75
AM3 0.76
AM4 0.74
AM5 0.76

ACH ACH1 0.71 0.862 0.892 0.509 3.402 0.362
ACH2 0.70
ACH3 0.74
ACH4 0.67
ACH5 0.66
ACH6 0.74
ACH7 0.76
ACH8 0.72

ATD ATD1 0.90 0.882 0.893 0.627 1.109 0.434
ATD2 0.81
ATD3 0.75
ATD4 0.73
ATD5 0.77

ACO ACO1 0.76 0.798 0.868 0.623 2.301 0.375
ACO2 0.83
ACO3 0.83
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Construct Item Factor Loading (FL) Cronbach’s Alpha (CA) Composite Reliability (CR) AVE VIF H2

ACO4 0.72
SAZ SAZ1 0.85 0.896 0.923 0.707 1.808 0.555

SAZ2 0.84
SAZ3 0.83
SAZ4 0.79
SAZ5 0.89

AE AE1 0.75 0.859 0.895 0.587 1.000 0.419
AE2 0.73
AE3 0.75
AE4 0.76
AE5 0.81
AE6 0.78

In terms of calculating construct convergent validity, average variance explained (AVE) values are used using
previous formula. The AVE results were found to range from 0.507 to 0.707 as summarized in Table 8. The
AVE results for each individual indicate that all AVE values are greater than the minimum threshold value
(>0.5). In addition, all constructs satisfy the AVE criteria, indicating convergent validity.

We reached to the conclusion that discriminant validity is based on < 0.85, which is a threshold that is used in
most studies. Table 9 demonstrates that most of the HTMT values are below 0.85, with a few exceptions that
are still below 0.90, such as the value for AE which is 0.889. This value is considered acceptable, although
it is on the higher side of the liberal threshold 94. With regards to computing quality of the measurement
model by employing the values of communality (H2), all those values were positive for all blocks (as shown
in Table 8), ensuring the predictive validity quality of the measurement model.

Table 9 shows the results of the discriminant validity analysis using HTMT ratios.

Item ABS ACH ACO ACP ADC AE AM ATD HDR SAZ

ABS
ACH 0.812
ACO 0.588 0.832
ACP 0.528 0.417 0.377
ADC 0.204 0.308 0.128 0.274
AE 0.872 0.843 0.758 0.352 0.34
AM 0.868 0.664 0.631 0.511 0.179 0.889
ATD 0.139 0.184 0.285 0.19 0.108 0.157 0.136
HDR 0.567 0.575 0.405 0.588 0.141 0.402 0.522 0.177
SAZ 0.504 0.519 0.553 0.182 0.246 0.739 0.659 0.099 0.382
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Figure 2. Measurement model of architectural erosion

5.4 Structural Model Assessment

The assessment of the structural model was critical in continuation with the first step of the research model
evaluation. A structural model shows the relationship between constructs and related theories based on
existing literature. According to study 94 a large number of characteristics were necessary to evaluate the
structural model. This model has only direct effect hypothesis only to be tested i.e., direct effect relationships.

5.4.1 Hypothesis Testing

The hypothesis on the direct effect was tested using bias-corrected 95% confidence intervals, and the impact
of the independent constructs on AE was determined using the Partial Least Squares Structural Equation
Modelling (PLS-SEM) technique. The results of the hypothesis testing and their accompanying interpreta-
tions can be viewed in Table 10.

Hypothesis 1 (H1) proposed that ACH significantly identifies an occurrence of the AE, results revealed that
ACH had a statistically significant impact on AE (B = 0.172, t = 2.866, p = 0.004), hence H1 was supported;
Hypothesis 2 (H2) postulated that ACO significantly identifies an occurrence of the AE, results showed that
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ACO had a statistically significant impact on AE (B = 0.119, t = 2.142, p = 0.033), so H2 was supported;
Hypothesis 3 (H3) anticipated that ADC significantly identifies an occurrence of the AE, analysis findings
showed that ADC had also a statistically significant impact on AE (B = 0.229, t = 4.23, p < 0.001), so H3 was
also supported; Hypothesis 4 (H4) predicted that ACP significantly identifies an occurrence of the AE, results
of the analysis revealed that ACP had not a statistically significant impact on AE (B =0 .063, t = 1.067, p
= 0.286), therefore H4 was not supported; Hypothesis 5 (H5) forecasted that ATD significantly identifies an
occurrence of the AE, results exhibited that ATD had not a statistically significant impact AE (B = 0.05,
t = 0.869, p = 0.385), so H5 was also not supported; Hypothesis 6 (H6) proposed that AM significantly
identifies an occurrence of the AE, findings revealed that AM had a statistically significant impact on AE
(B = 0.379, t = 6.263, p < 0.001), so H6 was approved; Hypothesis 7 (H7) projected that ABS significantly
identifies an occurrence of the AE, findings showed that ABS had a statistically significant impact on AE (B
= 0.215, t = 3.356, p = 0.001), so H7 was supported; Hypothesis 8 (H8) anticipated that HDR significantly
identifies an occurrence of the AE, data analysis revealed that HDR a statistically significant impact on
AE (B = 0.152, t = 3.313, p = 0.001), so H8 was also supported; Hypothesis 9 (H9) estimated that SAZ
significantly identifies an occurrence of the AE, findings exhibited that SAZ a statistically significant impact
on AE (B = -0.196, t = 4.11, p < 0.001), so H9 was approved.

Table 10. Findings of the hypothesis tests.

Hypo Path St.d Beta Std. Error T-value P-value Decision

H1 ACH AE 0.172 0.065 2.866 0.004 Supported**
H2 ACO AE 0.119 0.057 2.142 0.033 Supported*
H3 ADC AE 0.229 0.054 4.23 0.000 Supported**
H4 ACP AE 0.063 0.060 1.067 0.286 Not Supported
H5 ATD AE 0.05 0.058 0.869 0.385 Not Supported
H6 AM AE 0.379 0.068 6.263 0.000 Supported**
H7 ABS AE 0.215 0.066 3.356 0.001 Supported**
H8 HDR AE 0.152 0.050 3.313 0.001 Supported**
H9 SAZ AE -0.196 0.047 4.11 0.000 Supported**

Significant level at p** <0.01, p*<0.05

Based on the empirical evidence, it can be concluded that ACH, ACO, ADC, AM, ABS, HDR, and SAZ have
the most significant influence on the identification of the AE construct, as shown in Figure 3. However, the
effect of ACP and ATD is not statistically significant, as indicated by the non-significant p-value. Therefore,
it is recommended to remove ACP and ATD from the structural model.
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Figure 3. The findings of the structural model’s evaluation for architectural erosion

5.4.2 Coefficient of Determination ( R2)

Model accuracy is measured by R2. This metric illustrates how much endogenous (dependent) variance is
accounted for by exogenous constructs. In order to calculate the value of R2 that is associated with the
dependent constructions, Smart PLS was utilised. According to the findings, the total R2 predicted for
CCCU was 0.819, which indicates that approximately 81.9% of the variance in identifying AE is explained
by its independent components (i.e., ACH, ACO, ADC, AM, HDR, ABS, ACP, ATD, and SAZ). As a result,
the value of R2 is regarded to be high because it is greater than 0.67, as suggested by101.

5.4.3 Assessment of Effect Size ( F2)

In accordance with the classification approach proposed by102 and the approach proposed by 94, Table 11
shows that, in the context of the constructs impacting the identification of AE. ADC and AM were ascertained
to have a medium effect size. Concurrently, it was determined that the effect sizes for ACH, ACO, ABS,
HDR, and SAZ were all small, while the remaining constructs which are ACP and ATD, had a no effect size.

Table 11. The results of effect (F 2)
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Construct F 2 Effect size status

ACH 0.048 Small
ACO 0.034 Small
ADC 0.189 Medium
ACP 0.013 No effect
ATD 0.012 No effect
AM 0.240 Medium
ABS 0.075 Small
HDR 0.076 Small
SAZ 0.117 Small

5.4.4 Assessment of Predictive Relevance ( Q2)

If the value of Q2 is more than zero, the model is said to have the potential to have predictive relevance for a
cretin endogenous component, as stated by 94. The value of Q2 corresponding to the endogenous constructs
(i.e., AE) is 0.446, thus, this demonstrates that the model possesses the required predictive relevance.

5.4.5 Goodness of Fit of the Model - GoF

Combining effect size and convergent validity is how the GOF is measured105 and the allowable range for
this measurement is 0 to 1. GOF value was well-acceptable, whereas obtained value is 0.693. This value is
considered to be large as stated by 108when above of 0.36. Consequently, the overall fitness of the structural
model was demonstrated to be confirmed by the findings of this investigation. Moreover, multicollinearity
for the structural model was also assessed. VIF values beyond 5 are indication of collinearity94, inner VIF
value which is 3.402 showed that structural model was well fitted. Figures in the supplementary materials
provide a detailed structural model with or without architectural technical debt and complexity constructs.

6. Discussion

In this section, the most important results obtained will be dealt with, analysed and discussed, and the
implications of the importance of the results will be clarified in terms of their division. In addition, some
recommendations will be presented in order to identify future research directions in relation to this domain.

6.1 Instrument validity and reliability

After the preliminary work on the software metrics model for architectural erosion that was published in
13.This idea was originally created using a set of 92 metrics representing 10 quality factors for monitoring
architectural erosion. Each metrics practice was assigned to one of the measures approaches (10, 11, 22,
7, 10, 13, 5, 5, and 9 items for Historical data revision, Architectural bad smell, Architectural dependency
coupling, Architectural complexity, Architecture modularization, and Architectural change, Architectural
technical Debt, Architectural cohesion, and Software architecture size respectively.

Following a strict methodology, including a content validity evaluation process and a reliability analysis, the
model was fine-tuned. Experts provided feedback during the content validity round, suggesting answers and
comments that would help refine the language used and explicitly declare the convergence of some metrics
and their refinement into a single concept that explains the extent of its strong significance through the
various definitions of some items. This is what provides a considerable explanation for the integration of
many convergent items in an abstract idea to recognize a concept that aims for the coherence of a unified
definition. It should be noted that many of the metrics items were proposed by several researchers. These
same items are used in more than one study, each time with a concept that is quite different from the one
used in the other study. As a consequence of this, a large number of metrics were commonly used among the
researchers based on the unified understanding of the study’s authors. Thus, this model provides an initial
contributory perception that can be utilized to establish and refine the metrics of unified significance under
the classification or appropriate approach appropriate approach for identifying architectural erosion.
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In historical data revision construct, HDR1 and HDR4 items were combined to form one coherent concept,
while the HDR3 and HDR10 items were deleted because the required criteria were not met. It is also
noticeable in architectural dependence coupling construct stands out because it has the most items of any
of the others. However, six of these items are so similar in definition—each one converges with another
in the same concept—that they could be reduced to only three. On the other hand, eight other items
of this construct were eliminated since they did not fulfil the requirements. A similar observation holds
correct when we examined the architectural erosion construct, we found five items—AE6, AE7, AE8, AE9,
and AE10—present a convergent concept that is essentially one. This is probably since past research and
expert judgement have concluded that all of these things represent only a single concept. This led to their
consolidation into a single concept, which satisfies all the necessary criteria. The rest of the other constructs
are only included in the removal of some items due to the failure to meet these criteria. Notably, the content
validation was adopted in the first round and subsequently passed to the same experts, with no changes
made to the path taken in the adopted round. It would be inappropriate to proceed with another round
using the same items and evaluation criteria 112.

As soon as the agreement was established on the model’s content validity, an additional round was included
to investigate the items’ and construct’s internal consistency reliability. Researchers with backgrounds in
software engineering were asked to evaluate items on the constructs again, using a 5-point Likert scale. In
this context, the reliability, as determined by Cronbach’s alpha, is evidence that the items represent the
constructs in a consistent manner. All the items per each construct indicate none of them significantly
reduced the value of the alpha coefficient if they were removed from the construct, except for HDR1, ABS1,
and ACP7 items; their values increased from 0.874 to 0.876, 0.922 to 0.928, and 0.854 to 0.858 respectively.
However, increasing the value of these items is a minor change that will have no effect on the items and their
constructs, especially since these values represent the study’s initial sample. Furthermore, even though these
are the least closely related items, their corrected item-total correlation is high, and these values are greater
than the specified value of 0.2. Therefore, the resulting value indicates that the model has high reliability.

6.2 Measurement Model Assessment

When conducting an analysis of a research model, the first thing that has to be done is to take into consid-
eration the measurement model assessment. This is because the measurement model is the one that decides
whether or not each construct being tested is being correctly assessed. In this respect, the findings indicated
that the quality of the predictive validity of the measurement model was ensured, which was based on the
criteria that were decided to be investigated in order to evaluate this model. This explains that examin-
ing the content in terms of formulating items and categorizing them within the appropriate construct and
reconsidering the concepts in a comprehensive and investigative manner, in addition to the consistency of
reliability, has provided a strong indication of the coherence and ensuring the predictive power of the model
in terms of constructs and their items.

In connection with the results obtained, the model was passed on the criteria, as the measuring factor
loading should be at least 0.50 as stated by 94, 109 in order to be reliable, most of our scale factor loadings
were above 0.53, thereby, every item must have at least this value to be considered for preservation, hence
it’s important that this number be as high as possible. Composite reliability (CR) revealed that internal
consistency reliability the threshold for the reliability of the measure is > 0.7 which is a greater estimation
of true reliability than Cronbach’s alpha (CA), and whether the values are Composite reliability (CR) or
for Cronbach’s alpha (CA), they all achieve the required value, thereby, it could be that the concept of
reliability to present as an indication that has a significant impact when two terms work with each other to
produce same results with high considerable. Furthermore, all constructs and items that meet AVE criteria
and HTMT values for predictability in the measurement model were shown to have evidence of convergent
and discriminant validity.

6.3 Structural Model Assessment

In this perspective, hypotheses were established to test the possibility of a relationship between classifica-
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tions of various metrics approach and the architectural erosion. The hypotheses were empirically tested to
determine whether the categorization of metrics approaches significantly identifies architectural erosion. The
results of the evaluation of the structural model show that all classifications of various metrics approach sig-
nificantly identify the architectural erosion except for the architectural complexity (ACP) and architectural
technical debt (ATD).

We observed empirical evidence for ACH significantly identifies an occurrence of the AE based on obtained
result (B = 0.172, t = 2.866, p < 0.004, F2 = 0.048), hypothesis H1 can be accepted. This demonstrates
that ACH is considered to be a crucial stage in the process of architectural tactics and knowledge analysis
113, which aims to predict problems in a software system using metrics that can identify architectural
deterioration 19, 114. In addition to this, assessing architectural change can provide clues as to the presence
of flaws 32, as well as information regarding the connection between architecture change, deterioration,
and the manifestation of vulnerabilities 27. In same context, as a consequence of the fact that the ACO
and ADC significantly detect an occurrence of the AE (B =0.119, t = 2.142, p <0.033, F2 =.034; B =
0.229, t = 4.23, p < 0.001, F2= 0.189 respectively), hypothesis 2 (H2) and hypothesis 3 (H3) were able to
be accepted as valid hypotheses. This agrees with the findings of the architectural cohesion and coupling
analysis 15, 31, and it is a major approach to identifying architectural inconsistency by analysing system
releases based on the degree of coherence and dependency coupling between the modules, packages, or
classes. Focusing on hypothesis 6 (H6), introduced satisfied results in terms of identifying an occurrence of
the AE (B = 0.379, t = 6.263, p < 001, F2 = 0.238). Therefore, the findings of the correlation between
AM and the emergence of AE are consistent with the observations by115, besides, modularization metrics
provide a better representation picture for fault prediction, design flaw detection, identifying source code
anomalies and architectural degradation116 , as well as improving architecture117 with regard to the analysis
of faults and changes that could be isolated and separated. Moreover, the results regarding the relationship
between ABS and the occurrence of AE (B = 0.215, t = 3.356, p 0.001, F2 = 0.075) are consistent with the
analysis and examination of the various study on architectural smells and their relationship to determine the
presence of architectural erosion55, 56, 59, 60, 118 and instability in order to identify hidden defects in software
architecture 119. Concerning hypothesis 8 (H8), it was determined that statistically indicates an occurrence
of the AE ( B = 0.152, t = 3.313, p < 0.001, F2 = .074).This provides significant evidence supporting
the hypothesis, which is in line with research showing that historical metrics may automatically discover
violations of design principles34, high-performance forecasting of low architectural quality (i.e., architectural
erosion) in architectural modules, and even in the case of rapid decay 19, estimation of severity based on
analysis of change over time 37, as well as historical metrics for assessing and forecasting architecture quality
condition 36.

Specifically, hypothesis 9 (H9) exhibited SAZ findings in terms of identification of AE (B = -0.196, t = 4.11,
p <0.00, F2 = 0.117) which significantly negative impact. Mostly since the hypotheses were looking at both
sides in terms of determining the erosion, rather than the effect. The appearance of size metrics with a
negative determination does not necessarily imply that using such metrics would be useless. As a result,
many studies 15, 31, 47, 50have pointed out the significance of studying the metrics of architecture size from
this perspective, suggesting that these metrics may be reached in the study of the size of architecture with
other measurements of another classification (e.g., cohesion or coupling metrics) or analysis of negative side
for erosion in terms of effect.

According to the empirical results of hypotheses 4 (H4) and (H5), the findings showed no significant identi-
fication on AE (B = 0.063, t = 1.067, p <0.286, F2 = 0.013; B = 0.05, t = 0.869, p < 0.385, F2 = 0.012)
respectively. Hence, the hypothesis (H5) which is ATD was not supported. 15 indicated that ATD metrics
are not appropriate to identify architectural inconsistencies. In contrast, 120 indicated that bad code smells
contribute to technical debt. Code smell correlates more with technical debt than architectural degrada-
tion. Few studies include architectural degradation and code smell, suggesting it’s linked to technical debt.
Therefore, this observation demands further investigation and consideration.

The quality of the output of the structural model suggests that the predictive quality, which was measured
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by Q2, R2, and goodness of fit (GOF), is well-acceptable. Furthermore, the values of Q2, R2, and GOF
are regarded as high, which confirmed the overall fitness of our structural model. This reveals a general
observation of these results that all classifications of metrics approaches have a statistically significant for
identifying architectural erosion, except for the ATD and ACP approaches, which were not statistically
supported. In the same line, it would be wonderful to see an initiative done to empirically analyse this
relation within the context of an independent study. This would be a terrific step forward. As a consequence
of this, the study model can be utilized for the purpose of recognizing the context of architectural erosion.

7. Implications for research and practice

The primary objective of this study was to develop a model that would customize and categorize metrics
used in previous studies to identify architectural erosion. The validity and reliability of the model were
empirically evaluated to prove its effectiveness and improvement. This study aimed to address the research
gap and make a valuable contribution to the literature for future researchers pursuing similar goals.

As a matter of fact, the model provides a unique broad classification based on various metrics approaches
to address architectural erosion for academic research from different aspects (e.g., varieties of measurement,
classifications of metrics approaches, and quality attributes of monitoring architectural erosion). This model
provides also researchers with methods for assessing architectural erosion from multiple angles, such as the
combination of these classifications or relevant metrics to propose solutions approach in a different manner
that could have considerable efficiency rather than ones.

In addition, the model highlights to researchers and practitioners the ambiguity in directly investigating
erosion in terms of the approach that is taken to handle this phenomenon. In anticipation of additional
research attention in this field, the improved model will also be an effective and useful tool for classifying
the current and forthcoming metrics for addressing and recognizing architectural erosion. This is because
the developed model will consider the effects of architectural erosion in a more comprehensive manner.

In this respect, the empirical findings of this study will assist software developers and architects in under-
standing the relationship between architectural erosion and software metrics. Additionally, the developed
model primarily focuses on the most classifications of measure approaches and most-related quality attributes
architectural degradation, which makes it easier for identifying erosion to conduct control assessment. This
contrasts with evaluating all the approaches of various metrics with mapping all quality attributes.

8. Threats to Validity of the study

This section discusses the four key threats to the validity which are described 121, 122 in this study and the
mitigation proposed to deal with them are below.

8.1 Threats to external Validity

The ability of the researchers to generalize the findings of academic research to applications in the industry is
one of the factors that contribute to the study’s external validity 121. The number of respondents in this study
should be deemed a sufficient sample size for the SEM analysis 123. Although this number of people that
participated in the survey could lead to potential criticism of this study for having limited generalizability,
but the model is simple and the sample of the target population is restricted to specific experts around the
world, as well as, target respondents have a variety of academic and industrial backgrounds and experiences
from different countries.

8.2 Threats to internal Validity

Internal validity lies in the extent to which the independent factors that influence or cause a change in the
dependent factors are determined122. One of the most important limitations in this study is the extent to
which different metrics approaches (independent variables) are selected within an appropriate classification
and the extent to which it is able to determine architectural erosion. It is acknowledged that there may
be alternative approaches for assessing architectural erosion, however, this study is limited to metric-based
approaches that have been demonstrated to be the most popular solutions in the field. The findings of
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relevant studies were analysed to categorize these approaches into relevant classifications and provide a clear
understanding of architectural erosion.

8.3 Threats to construct Validity

The concept of construct validity is concerned with the degree to which there exists a gap between the
theoretical depiction of a concept and its practical use 124. One of the most significant limitations that
poses a threat to the construct’s validity and reliability is the self-selection bias for respondents chosen. In
current investigation, the potential for concerns was addressed by identifying the most suitable experts and
engaging with them through a comprehensive mapping study process. The goal was to present the actual
picture of the concepts in a manner that was correct and accurate based on knowledge and experience that
the experts possess in the relevant field of work. Another threat to this validity is the collection of metrics
and their association within specific approaches categories. To mitigate this threat, the metrics used in the
study are widely used and well established in the literature. Thus, they accurately represent the concepts
they propose to measure. Furthermore, the specified metrics represent all the concepts and approaches to
these categories, as well as experts, agreed these categories at the stage of the content validity and reliability.

8.4 Threats to conclusion validity

The ability to draw a correct and legitimate conclusion about a connection between independent variables
provided by the experiment (dependent variable) resulting from it is what is being evaluated by the concept
of conclusion validity 122. According to94, VIF values should be less than 5, so we excluded common method
bias (CMB) by ensuring that no predictor variable had a VIF of more than 3.402 as shown in Table 8.
Another limitation of this study is the use of immature subjects, which may represent a significant threat to
conclusion validity. However, our study’s representative sample was comprised of professionals working on
this topic, whether they belong to academic or industry fields.

9. Conclusions and Future Research

The comprehension of the significant metrics approaches and practices in the identification of architectural
erosion context and the identification of the key quality attributes associated with architecture degradation
is an opportunity to deepen knowledge of erosion and generating additional discussions on the topic. Since
the primary objective of the study is to develop a model with aim to assess and classify the metrics within
the earlier approaches that have been used in studies to recognize architectural degradation. Furthermore, it
is possible to consider this work to be the first one of its kind, to the best of the authors’ knowledge, to build
a theoretical model of metric approaches classification for architectural erosion that has been validated and
is reliable. To evaluate this model from an initial conceptualization perspective, instrument content validity
and reliability testing were used. A questionnaire-based survey was used to collect data from 130 software
engineering professionals with experience in the architecture erosion and software metrics. After several steps
are achieved in terms of measurement and structural mode, the needed model fit, reliability, and validity
were attained. The findings revealed that there is a significant relationship between all the classifications of
metrics approaches and architectural erosion, with the exception of architectural complexity and architectural
technical debt.

During this research, various concepts and improvements were considered as potential directions for future
work. Specifically, the focus was on established metrics and quality attributes for monitoring architectural
erosion, based on systematic mapping studies. This study was limited to the investigation of these ap-
proaches. The authors of this work do not intend to imply, however, that these approaches of established
metrics and quality attributes of monitoring degradation associated with architectural erosion are unique.
As a result, further study is needed to fully broaden the model’s scope to include many different perspectives.
Second, although this study introduced an empirical report on each classification of metrics approaches on
identification of the architectural erosion, it did not consider the identification of each classification of metrics
approaches on each quality attribute of architectural erosion. In subsequent research, it may be possible to
investigate these relationships, for instance, the measures of architectural complexity approach for identifi-
cation of the usability (e.g., understandability attribute) (as one of the indicators of monitoring architecture
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degradation) In addition, despite the fact that the measures of architectural complexity approach (external
change) for determining architectural erosion was not statistically supported in this study, it would be in-
teresting to see if there was an initiative to empirically investigate the relationships between the measures of
architectural complexity approach and identification of the architectural erosion independently. Third, on
the other hand, according to an analysis of the systems utilized in the previous studies, monolithic architec-
ture is one of these measures that is most frequently used. This demonstrates to developers and architects
that this model is appropriate for systems based on monolithic architecture, however, the applying this model
to another architecture may result in inconsistent outputs (e.g., the microservice architecture). From this
point, researchers have a great opportunity to do an additional empirical study based on a combination of
system contexts with different architectural patterns, with the goal of finding a solution to this issue.
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