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Abstract

This investigation proposes a dynamic event-triggered-based anti-disturbance control technique for the uncertain linear pa-

rameter varying (LPV) systems subject to multiple disturbances. The disturbances are comprised of two parts including the

unavailable modeled disturbances and the available unmodeled disturbances. First, an observer is constructed to capture the

unavailable modeled disturbances. Then, a dynamic event-triggered-based feedback controller is proposed. Further, under the

developed event-triggered controller, sufficient conditions are presented for the uncertain LPV systems to achieve the multiple

disturbances suppression and communication transmission resources saving. In the end, the reasonability of the raised dynamic

event-triggered based anti-disturbance control scheme is verified by an example of a turbofan.
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Summary

This investigation proposes a dynamic event-triggered-based anti-disturbance con-
trol technique for the uncertain linear parameter varying (LPV) systems subject to
multiple disturbances. The disturbances are comprised of two parts including the
unavailable modeled disturbances and the available unmodeled disturbances. First,
an observer is constructed to capture the unavailable modeled disturbances. Then,
a dynamic event-triggered-based feedback controller is proposed. Further, under
the developed event-triggered controller, sufficient conditions are presented for the
uncertain LPV systems to achieve the multiple disturbances suppression and com-
munication transmission resources saving. In the end, the reasonability of the raised
dynamic event-triggered based anti-disturbance control scheme is verified by an
example of a turbofan.

KEYWORDS:
Uncertain LPV systems, multiple disturbances, dynamic event-triggered mechanism, anti-disturbance.

1 INTRODUCTION

LPV systems are a special class of linear systems whose state-space matrix is a function of time-varying parameters. When
these time-varying parameters change along a given parameter trajectory, the LPV system degenerates into a general linear
time-varying system; and when these parameters are fixed, the system degenerates into a linear invariant system. Due to the
high complexity in practical systems, linear time-invariant systems and their techniques have been unable to solve the problems
encountered very well1-2. In order to better solve the problems in practical systems, LPV systems and technologies have been
widely used in the fields ranging from ship autopilot driving to aerospace field3-6. The characteristic of the LPV system is that
it is a separate linearized model for each parameter, which ensures that it can approximate the actual system model within a
small range of parameter variation7.

In engineering practice, the control systems are inevitably affected by a variety of disturbances8. Among which, the unavail-
able modeled disturbances are very complex but usually occur in the practical control systems9. Such as unknown constant
load10, harmonics with unknown phase and magnitude11, periodic disturbances in vibrating structures with eccentricity12. Such
disturbances often impose negative influences on the control systems and degrade the anticipated system performance13. Limited
by the production level and cost, it is very difficult to change the equipment structure of the system to reduce the impact of dis-
turbance on the system. For handling such unavailable modeled disturbances, the disturbance-observer-based control approach
was introduced14. The main idea is to construct an observer to capture the disturbances, and then develop a controller with the
observed information to counteract the influence of the disturbances on the control systems. On the other hand, for the measur-
able unmodeled disturbances, many control strategies have been reported . A widely recognized and frequently adopted control
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method is known as robust control. As a special robust control method, 𝐻∞ control plays a beneficial role in attenuating the
effects of measurable unmodeled disturbances. The 𝐻∞ control issue for many control systems have been investigated, such as
the switched systems15-16 and the frctional systems17-19. There have been many studies on the anti-disturbance control issue for
LPV system over the past decades. In20,21,22, the 𝐻∞ anti-disturbance control issue were studied for LPV system. In23, a bump-
less transfer 𝐻∞ anti-disturbance control issue was proposed for switched LPV system. References15-23 used robust control
methods to study the available unmodeled disturbances, without considering the existence of multiple disturbances. At present,
there are few researches on the multiple disturbances control scheme of LPV system, which motivates us to study this topic.

LPV systems need to use networked control equipment for actual control realization, however, the network resources are
always limited, thus it is necessary to study the event-triggered control problem of LPV systems. The event-triggered control
method has been widely exploited in decreasing the communication sources due to its additional flexibility in control design.
Event-triggered logics are the key components of event-triggered control24. Recently, event-triggered control has been employed
to various control systems, such as multi-agent systems25, the impulse systems26, the nonlinear systems27 and so on. The
author of28 studied the event-triggered dynamic output feedback controller for discrete-time LPV systems. In28, the event-
triggered mechanism is static, which saves part of the communication resources. Usually, the proposed dynamic event-triggered
is more popular among researchers because it has a longer trigger interval than static event-triggered. Thus we added non-
negative dynamic variables to the event-triggered condition. Therefore, it is preferable to design the dynamic event-triggered-
based control schemes for practical control systems. There have been some research results on the event-triggered-based anti-
disturbance control issue in LPV systems. For example, the event-triggered-based anti-disturbance control problem of network
LPV systems was studied29. In30, the event-triggered-based anti-disturbance problem of discrete LPV systems was studied.
In31, the dynamic periodic event-triggered-based anti-disturbance control issue of quasi-LPV systems was analyzed. The event-
triggered finite-time 𝐻∞ tracking control was researched for switched LPV systems32. None of these papers have studied the
event-triggered control problem of LPV systems with multiple disturbances.

In order to address the multiple disturbances suppression and communication resources saving in uncertain LPV systems,
in this article, we study the dynamic event-triggered-based anti-disturbance control issue for the uncertain LPV systems with
multiple disturbances. The pivotal contributions of this paper can be encapsulated as follows.

i) Different from the existing investigations on the LPV systems with the single available unmodeled disturbances20,21,34, the
multiple disturbances (i.e., the unavailable modeled disturbances and the available unmodeled disturbances) alleviation issue is
studied in the present research. In fact, the co-existence of both types of disturbances is more general for practice.

ii) Instead of using the system state to design the event-triggered condition in22,31, we use control input as event-triggered cri-
terion. This saves the signal transmission resources from the controller to the system instead of the signal transmission resources
from the system to the controller like that in35,36. Unlike the event-triggered control investigations on the uncertain LPV sys-
tems in22,30,33,37, the developed event-triggered condition is dynamic, which usually allows bigger triggering intervals than the
static ones in22,30,33,37.

iii) The event-triggered rule, controller and disturbance observer are co-designed to force the multiple disturbance suppression
and communication transmission resource saving of the uncertain LPV systems. The corresponding sufficient conditions are
developed, which ensure that the event-triggered-based anti-disturbance control problem of the uncertain LPV system is solvable.
Structure. In Section 2, we introduce the system description and the control objective. A new dynamic event-triggered-based

anti-disturbance control method is proposed in Section 3. Via Section 4, the simulation verification is given. And the conclusions
are developed in Section 5.

The symbols of this article are standard and summarized in Table 1.

2 PROBLEM STATEMENT

2.1 System statement
We take the following system

𝑥̇(𝑡) = 𝐴(𝜛(𝑡))𝑥(𝑡) + 𝐵(𝜛(𝑡))[𝑢(𝑡) + 𝑑1(𝑡)] + 𝐵(𝜛(𝑡))𝑑2(𝑡),
𝑦(𝑡) = 𝐶(𝜛(𝑡))𝑥(𝑡) +𝐷(𝜛(𝑡))𝑑2(𝑡)

(1)

into consideration, where 𝑥(𝑡) ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑤 and 𝑦(𝑡) ∈ 𝑅𝑞 are the system state, control input and control out-
put, respectively, 𝑑1(𝑡) ∈ 𝑅𝑤 , 𝑑2(𝑡) ∈ 𝑅𝑤 are the unavailable modeled disturbance and available unmodeled disturbance,
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Table1
Nomenclature
Notation Meaning

𝑁 (𝑁+) The set of all non-negative (positive) integers
𝐴 > 0 ( 𝐴 < 0) A is a symmetric positive (negative) definite matrix
𝐼 Identity matrix
𝜆𝑚𝑖𝑛(𝐴) The smallest eigenvalue of 𝐴
𝑥𝑇 Transpose of 𝑥
||𝑥|| Euclidean norm of 𝑥
𝑑𝑖𝑎𝑔{} Diagonal matrix

respectively. 𝐴(𝜛(𝑡)), 𝐵(𝜛(𝑡)), 𝐶(𝜛(𝑡)) and 𝐷(𝜛(𝑡)) are the matrix of appropriate dimensions. The parameter 𝜛(𝑡) =
[𝜛1(𝑡), 𝜛2(𝑡), ..., 𝜛𝑠(𝑡)]𝑇 , 𝜛𝑖(𝑡) is completely measurable on the positive real axis, 𝑖 ∈ {1, 2,⋯ , 𝑠}. And 𝑑1(𝑡) is obtained from
the following external model

𝜁̇ (𝑡) = 𝐺(𝜛(𝑡))𝜁 (𝑡) +𝐻(𝜛(𝑡))𝑑3(𝑡),
𝑑1(𝑡) = 𝐸(𝜛(𝑡))𝜁 (𝑡),

(2)

where the disturbance signal 𝑑3(𝑡) is denoted as 𝑑3(𝑡) ∈ 𝑅𝑤 belonging to 𝐿2[0,∞), 𝜁 (𝑡) is external system state,
𝐺(𝜛(𝑡)),𝐻(𝜛(𝑡)) and 𝐸(𝜛(𝑡)) are the matrices of appropriate dimensions.

Remark 1. Many systems can be modeled as LPV systems, such as the inverted pendulum control system40, the aircraft con-
trol system41, the missile control system42, the aircraft control system43, and the aircraft engine control system44, etc. The
disturbance 𝑑1(𝑡) considered in system (1) is an unmeasurable disturbance, which exists widely in practice. This unmeasurable
disturbance can be represented using model (2), where 𝑑3(𝑡) is the additional perturbation generated by system uncertainties and
perturbations.

Remark 2. 𝑑1(𝑡) is an additional disturbance that results from uncertainties and perturbations in the exogenous system. Many
kinds of disturbances in practical processes can be described by this model, such as unknown constant load10, harmonics with
unknown phase and magnitude11, periodic disturbances in vibrating structures with eccentricity12.

2.2 Observer and event-triggered rule design
To capture the unavailable modeled disturbances 𝑑1(𝑡), we design the following observer

𝜃̇(𝑡) = [𝐺(𝜛) + Λ(𝜛)𝐵(𝜛)𝐸(𝜛)][𝜃(𝑡) − Λ(𝜛)𝑥(𝑡)] + Λ(𝜛)[𝐴(𝜛)𝑥(𝑡) + 𝐵(𝜛)𝑢(𝑡))] +
𝜕Λ(𝜛)
𝜕𝜛

𝜛̇𝑥(𝑡),

𝜁 (𝑡) = 𝜃(𝑡) − Λ(𝜛)𝑥(𝑡),
𝑑1(𝑡) = 𝐸(𝜛)𝜁 (𝑡),

(3)

where 𝜃(𝑡) is the observer state, Λ(𝜛) is the observer gain to be yield, 𝑑1(𝑡) is the estimation of 𝑑1(𝑡).
The observation error is defined as follows

𝑒(𝑡) = 𝜁 (𝑡) − 𝜁 (𝑡). (4)
Substituting (2) and (3) into (4) produces the following error system

𝑒̇(𝑡) = 𝜁̇ (𝑡) − ̇̂𝜁 (𝑡)
= 𝐺(𝜛)𝑒(𝑡) + Λ(𝜛)𝐵(𝜛)𝑑2(𝑡) +𝐻(𝜛)𝑑3(𝑡),−Λ(𝜛)𝐵(𝜛)𝐸(𝜛)𝜁 (𝑡) + Λ(𝜛)𝐵(𝜛)𝑑1(𝑡)

+
𝜕Λ(𝜛)
𝜕𝜛

𝜛̇𝑥(𝑡) −
𝜕Λ(𝜛)
𝜕𝜛

𝜛̇𝑥(𝑡)

= (𝐺(𝜛) + Λ(𝜛)𝐵(𝜛)𝐸(𝜛))𝑒(𝑡) + Λ(𝜛)𝐵(𝜛)𝑑2(𝑡) +𝐻(𝜛)𝑑3(𝑡).

(5)

For the system (1), usually, the following feedback controller can be designed

𝑢(𝑡) = −𝑑1(𝑡) +𝐾(𝜛)𝑥(𝑡), (6)
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where 𝐾(𝜛) is the controller gain to be designed.
For reducing the communication resources from the controller to the actuator, we design the following dynamic event-

triggered rule
t𝑘+1 = min{𝑡 ≥ 𝑡𝑘|𝜇𝑒

𝑇
1 (𝑡)𝑒1(𝑡) ≥ 𝑐1𝛽

𝑇 (𝑡)𝛽(𝑡) + 𝜅(𝑡) + 𝑚}, 𝑘 ∈ 𝑁, (7)

where 𝛽(𝑡) =
[

𝑥𝑇 (𝑡) 𝑒𝑇 (𝑡)
]𝑇 , 𝑒1(𝑡) = 𝑢(𝑡𝑘) − 𝑢(𝑡), 𝑐1 ≥ 0, 𝑚 > 0, 𝜇 ≥ 1 and

𝜅̇(𝑡) = −𝑏𝜅(𝑡) + 𝑐2𝛽
𝑇 (𝑡)𝛽(𝑡) + 𝑚 − 𝑒1

𝑇 (𝑡)𝑒1(𝑡),

where
𝜅(0) > 0, 𝑏 ≥ 1, 𝑐2 ≥ 𝑐1.

Remark 3. The proposed dynamic event-triggered mechanism can save more communication resources than static event-
triggered in [37], thus we added non-negative dynamic variables 𝜅(𝑡) to the event-triggered condition (7). We will prove its
non-negativity below.
When 𝑡 ∈ [0,+∞),
from

t𝑘+1 = min{𝑡 ≥ 𝑡𝑘|𝜇𝑒
𝑇
1 (𝑡)𝑒1(𝑡) ≥ 𝑐1𝛽

𝑇 (𝑡)𝛽(𝑡) + 𝜅(𝑡) + 𝑚},
one can get

𝑐1𝛽
𝑇 (𝑡)𝛽(𝑡) + 𝜅(𝑡) + 𝑚 − 𝜇𝑒𝑇1 (𝑡)𝑒1(𝑡) ≥ 0,

thus
𝑐1𝛽

𝑇 (𝑡)𝛽(𝑡) + 𝑚 − 𝜇𝑒𝑇1 (𝑡)𝑒1(𝑡) ≥ −𝜅(𝑡).

Then, from the dynamics of
𝜅̇(𝑡) = −𝑏𝜅(𝑡) + 𝑐2𝛽

𝑇 (𝑡)𝛽(𝑡) + 𝑚 − 𝑒1
𝑇 (𝑡)𝑒1(𝑡),

we have
𝜅̇(𝑡) + (𝑏 + 1)𝜅(𝑡) ≥ 0, 𝜅(0) > 0 𝑎𝑛𝑑 𝑏 ≥ 1,

thus
𝜅(𝑡) ≥ 𝑒(−𝑏−1)𝑡𝜅(0) + 1

(𝑏 + 1)
(1 − 𝑒(−𝑏−1)𝑡)

which guarantees that 𝜅(𝑡) is non-negative.

When the event is triggered, the true control signal is

𝑢(𝑡) = 𝑢(𝑡𝑘) = −𝑑1(𝑡𝑘) +𝐾(𝜛)𝑥(𝑡𝑘). (8)

Substituting (8) into (1) , the following closed-loop system can be get
𝑥̇(𝑡) = 𝐴(𝜛)𝑥(𝑡) + 𝐵(𝜛)[𝑑1(𝑡) − 𝑑1(𝑡𝑘) +𝐾(𝜛)𝑥(𝑡𝑘) + 𝑑2(𝑡)],

= [𝐴(𝜛) + 𝐵(𝜛)𝐾(𝜛)]𝑥(𝑡) + 𝐵(𝜛)[𝑒1(𝑡) + 𝑑1(𝑡) − 𝑑1(𝑡) + 𝑑2(𝑡)],
= [𝐴(𝜛) + 𝐵(𝜛)𝐾(𝜛)]𝑥(𝑡) + 𝐵(𝜛)[𝑒1(𝑡) + 𝐸(𝜛)𝑒(𝑡) + 𝑑2(𝑡)].

(9)

Let 𝑑(𝑡) = [𝑑𝑇
2 (𝑡) 𝑑𝑇

3 (𝑡)]
𝑇 , 𝛽(𝑡) = [𝑥𝑇 (𝑡) 𝑒𝑇 (𝑡)]𝑇 , combining (5) and (9) one can deduce the augmented dynamics

𝛽̇(𝑡) = 𝑀(𝜛)𝛽(𝑡) +𝑁(𝜛)𝑑(𝑡) + 𝑃 (𝜛)𝑒1(𝑡),
𝑦(𝑡) = 𝐶̄(𝜛)𝛽(𝑡) + 𝐷̄(𝜛)𝑑(𝑡),

(10)

where
𝑀(𝜛) =

[

𝐴(𝜛) + 𝐵(𝜛)𝐾(𝜛) 𝐵(𝜛)𝐸(𝜛)
0 𝐺(𝜛) + Λ(𝜛)𝐵(𝜛)𝐸(𝜛)

]

,

𝑁(𝜛) =
[

𝐵(𝜛) 0
Λ(𝜛)𝐵(𝜛) 𝐻(𝜛)

]

, 𝑃 (𝜛) =
[

𝐵(𝜛)
0

]

,

𝐶̄(𝜛) =
[

𝐶(𝜛) 0
]

, 𝐷̄(𝜛) =
[

𝐷(𝜛) 0
]

.

(11)
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2.3 Control objectives
The purpose of this article is to address the issue of dynamic event-triggered-based anti-disturbance control of the system (9).

For the system (9), if there exist the disturbance estimator (3), the controller (8) and such the following properties are ensured:
i) If 𝑑(𝑡) ≡ 0, the system (10) is practically stable;
ii) If 𝑑(𝑡) ≠ 0, the 𝐿2-gain index

∞

∫
0

𝑦𝑇 (𝑠)𝑦(𝑠)𝑑𝑠 ≤ 𝜃2
∞

∫
0

𝑑𝑇 (𝑠)𝑑(𝑠)𝑑𝑠 + ℵ (12)

holds, where 𝜃 > 0 is a constant specially labelled as the 𝐿2-gain index, ℵ is a positive constant.
Then the dynamic event-triggered-based anti-disturbance control problem of system (9) is said to be solvable.

3( )d t

1( )d t
2 ( )d t

( )y t

( )x t

+

—

   +
( )u t( )ku t

LPV system

Exo-system

Disturbance observer

1
ˆ ( )d t

Event-dectctor

Actuator

ZOH

Network

FIGURE 1 The configuration of the dynamic event-triggered-based anti-disturbance control scheme.

The following lemma will be used in this article.
Lemma 1. 36 For any matrix 𝐀,𝐁,𝐂,𝐃, if 𝐂𝐓𝐂 ≤ 𝐈 holds, then for any positive constant 𝐡, the inequality:
𝐀 + 𝐁𝐂𝐃 + 𝐁𝐂𝐃𝐓 ≤ 𝐀 + 𝐡𝐁𝐁𝐓 + 𝐡−𝟏𝐃𝐃𝐓

holds.

3 MAIN RESULT

In this section, we display how the event-triggered schemes (7) can exclude Zeno behavior, and how the dynamic event-triggered-
based anti-disturbance issue is solved by the disturbance estimator (3) and the controller (8). Fig. 1 shows the structure of the
dynamic event-triggered-based anti-disturbance control strategy.

First of all, the avoidance of Zeno behavior for the event-triggered strategy (7) is exhibited.

Theorem 1. Consider the event-triggered rule defined in (7). The Zeno phenomenon can be prevented with the triggering
interval given by

𝑡𝑘+1 − 𝑡𝑘 ≥
𝑚

𝑚0 + 𝑚 + 𝑚1
, (13)

where
𝑚0 =

‖

‖

‖

𝑑
𝑑𝑡
𝑑1(𝑡)

‖

‖

‖

,
𝑚1 = ‖𝐾(𝜛)𝑥̇(𝑡)‖ .
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Proof. In the triggering interval [𝑡𝑘, 𝑡𝑘+1), we can get
𝑑 ‖

‖

𝑒1(𝑡)‖‖
𝑑𝑡

≤
‖

‖

‖

‖

𝑑𝑒1(𝑡)
𝑑𝑡

‖

‖

‖

‖

=
‖

‖

‖

‖

𝑑
𝑑𝑡

(−𝐾𝑥(𝑡) + 𝑑1(𝑡))
‖

‖

‖

‖

,

≤ ‖𝐾𝑥̇(𝑡)‖ +
‖

‖

‖

‖

𝑑
𝑑𝑡

𝑑1(𝑡)
‖

‖

‖

‖

+ 𝑚,

= 𝑚0 + 𝑚 + 𝑚1,

(14)

where 𝑚 > 0 is a constant.
Solving (14) for 𝑡 under the initial condition, we can get

‖

‖

𝑒1(𝑡)‖‖ ≤ (𝑡𝑘+1 − 𝑡𝑘)(𝑚0 + 𝑚 + 𝑚1).

When 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), ‖‖𝑒1(𝑡)‖‖ ≥ 𝑚, the event is triggered. Accordingly

𝑚 ≤ ‖

‖

𝑒1(𝑡)‖‖ ≤ (𝑡𝑘+1 − 𝑡𝑘)(𝑚0 + 𝑚 + 𝑚1),
(𝑡𝑘+1 − 𝑡𝑘) ≥

𝑚
𝑚0+𝑚+𝑚1

> 0.

Then, a criterion is established to ensure the solvability of the dynamic event-triggered-based anti-disturbance issue for the
system (1).

Theorem 2. Consider the system (10). If there exist symmetric matrix 𝑄(𝜛) > 0, scalars 𝑐2 > 0, 𝑏 > 0, 𝑚̄ > 0, 2𝑚̄ − 𝑏 < 0
and 𝑚 > 0 satisfying the following constraint

⎡

⎢

⎢

⎢

⎢

⎣

Γ11 Γ12 0 Γ14
∗ −𝐼 0 0
∗ ∗ Γ33 0
∗ ∗ ∗ Γ44

⎤

⎥

⎥

⎥

⎥

⎦

< 0, (15)

where
Γ11 = 𝑀𝑇 (𝜛)𝑄(𝜛) +𝑄(𝜛)𝑀(𝜛) + 𝜕𝑄

𝜕𝜛
𝜛̇ + 2𝑚̄ + 𝑐2 +𝑄(𝜛)𝑄(𝜛) + 𝐶̄𝑇 (𝜛)𝐶̄(𝜛),

Γ12 = 𝑄(𝜛)𝑃 (𝜛),
Γ14 = 𝐶̄𝑇 (𝜛)𝐷̄(𝜛),
Γ33 = (2𝑚̄ − 𝑏)𝐼,
Γ44 = 𝑁𝑇 (𝜛)𝑁(𝜛) + 𝐷̄𝑇 (𝜛)𝐷̄(𝜛) − 𝛼2𝐼,

the controller (6) can be applied to realize the 𝐿2-gain property (12) of the system (1).

Proof. Choose the following Lyapunov-like function

𝑉 (𝑡) = 𝛽𝑇 (𝑡)𝑄(𝜛)𝛽(𝑡) + 𝜅(𝑡), (16)
one can get

𝑉̇ (𝑡) = 𝛽̇𝑇 (𝑡)𝑄(𝜛)𝛽(𝑡) + 𝛽𝑇 (𝑡)𝑄(𝜛)𝛽̇(𝑡) + 𝛽𝑇 (𝑡) 𝜕𝑄
𝜕𝜛

𝜛̇𝛽(𝑡) + 𝜅̇(𝑡)

= 𝛽̇𝑇 (𝑡)𝑄(𝜛)𝛽(𝑡) + 𝛽𝑇 (𝑡)𝑄(𝜛)𝛽̇(𝑡) + 𝛽𝑇 (𝑡) 𝜕𝑄
𝜕𝜛

𝜛̇𝛽(𝑡) − 𝑏𝜅(𝑡) + 𝑐2𝛽
𝑇 (𝑡)𝛽(𝑡) + 𝑚 − 𝑒𝑇1 (𝑡)𝑒1(𝑡)

= 𝛽𝑇 (𝑡)[𝑀𝑇 (𝜛)𝑄(𝜛) +𝑄(𝜛)𝑀(𝜛)]𝛽(𝑡) + 2𝑑𝑇 (𝑡)𝑁𝑇 (𝜛)𝑄(𝜛)𝛽(𝑡) + 2𝑒𝑇1 (𝑡)𝑃
𝑇 (𝜛)𝑄(𝜛)𝛽(𝑡)

+ 𝛽𝑇 (𝑡) 𝜕𝑄
𝜕𝜛

𝜛̇𝛽(𝑡) − 𝑏𝜅(𝑡) + 𝑐2𝛽
𝑇 (𝑡)𝛽(𝑡) + 𝑚 − 𝑒𝑇1 (𝑡)𝑒1(𝑡)

≤ 𝛽𝑇 (𝑡)[𝑀𝑇 (𝜛)𝑄(𝜛) +𝑄(𝜛)𝑀(𝜛)]𝛽(𝑡) + 2𝑒𝑇1 (𝑡)𝑃
𝑇 (𝜛)𝑄(𝜛)𝛽(𝑡) + 𝑚 + 𝛽𝑇 (𝑡) 𝜕𝑄

𝜕𝜛
𝜛̇𝛽(𝑡) − 𝑏𝜅(𝑡)

+ 𝑐2𝛽
𝑇 (𝑡)𝛽(𝑡) − 𝑒𝑇1 (𝑡)𝑒1(𝑡) + 𝑑𝑇 (𝑡)𝑁𝑇 (𝜛)𝑁(𝜛)𝑑(𝑡) + 𝛽𝑇 (𝑡)𝑄(𝜛)𝑄(𝜛)𝛽(𝑡)

=
⎡

⎢

⎢

⎣

𝛽(𝑡)
𝑒1(𝑡)
√

𝜅(𝑡)

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

Γ̂11 Γ12 0
∗ −𝐼 0
∗ ∗ −𝑏

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛽(𝑡)
𝑒1(𝑡)
√

𝜅(𝑡)

⎤

⎥

⎥

⎦

+ 𝑑𝑇 (𝑡)𝑁𝑇 (𝜛)𝑁(𝜛)𝑑(𝑡) + 𝑚,

where
Γ̂11 = 𝑀𝑇 (𝜛)𝑄(𝜛) +𝑄(𝜛)𝑀(𝜛) + 𝜕𝑄

𝜕𝜛
𝜛̇ + 𝑐2 +𝑄(𝜛)𝑄(𝜛).
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Thus, the following inequality can be held
𝑉̇ (𝑡) + 2𝑚̄𝑉 (𝑡) + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛼2𝑑𝑇 (𝑡)𝑑(𝑡)

≤
⎡

⎢

⎢

⎣

𝛽(𝑡)
𝑒1(𝑡)
√

𝜅(𝑡)

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

Γ̂11 + 2𝑚̄ Γ12 0
∗ −𝐼 0
∗ ∗ Γ33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛽(𝑡)
𝑒1(𝑡)
√

𝜅(𝑡)

⎤

⎥

⎥

⎦

+ 𝑑𝑇 (𝑡)𝑁𝑇 (𝜛)𝑁(𝜛)𝑑(𝑡) + 𝛽𝑇 (𝑡)𝐶̄𝑇 (𝜛)𝐶̄(𝜛)𝛽(𝑡)
+ 2𝛽𝑇 (𝑡)𝐶̄𝑇 (𝜛)𝐷̄(𝜛)𝑑(𝑡) + 𝑑𝑇 (𝑡)𝐷̄𝑇 (𝜛)𝐷̄(𝜛)𝑑(𝑡)
− 𝛼2𝑑𝑇 (𝑡)𝑑(𝑡) + 𝑚

=

⎡

⎢

⎢

⎢

⎢

⎣

𝛽(𝑡)
𝑒1(𝑡)
√

𝜅(𝑡)
𝑑(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎢

⎢

⎣

Γ11 Γ12 0 Γ14
∗ −𝐼 0 0
∗ ∗ Γ33 0
∗ ∗ ∗ Γ44

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛽(𝑡)
𝑒1(𝑡)
√

𝜅(𝑡)
𝑑(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑚.

From (15), we can get

𝑉̇ (𝑡) + 2𝑚̄𝑉 (𝑡) + 𝑦𝑇 (𝑡)𝑦(𝑡) ≤ 𝛼2𝑑𝑇 (𝑡)𝑑(𝑡) + 𝑚,
when 𝑑(𝑡) = 0, one have

𝑉̇ (𝑡) + 2𝑚̄𝑉 (𝑡) ≤ 𝑚.

It is not difficult to draw that
𝑉 (𝑡) ≤ 𝑒−2𝑚̄𝑡𝑉 (0) + 𝑚

2𝑚̄
(1 − 𝑒−2𝑚̄𝑡)

which means
𝛽𝑇 (𝑡)𝑄(𝜛)𝛽(𝑡) ≤ 𝑒−2𝑚̄𝑡𝑉 (0) + 𝑚

2𝑚̄
(1 − 𝑒−2𝑚̄𝑡).

Thus, both the system state 𝑥(𝑡) and the estimation error 𝑒(𝑡) converge exponentially to the region

𝑠(𝑣) = {𝑣 ∈ 𝑅 ∶ ‖𝛽(𝑡)‖ ≤
√

𝑚
2𝑚̄𝜆min(𝑄(𝜛))

}.

This implies the practical stability of the system (1) with 𝑑(𝑡) = 0 and the convergence of the observer (3) can be obtained.
When 𝑑(𝑡) ≠ 0, for ∀𝑑(𝑡) ∈ 𝐿2[0,∞], integral of inequality 𝑉̇ (𝑡) + 2𝑚̄𝑉 (𝑡) + 𝑦𝑇 (𝑡)𝑦(𝑡) − 𝛼2𝑑𝑇 (𝑡)𝑑(𝑡) ≤ 𝑚 at zero initial

conditions respecting to the variable 𝑝 produces, one can get
∞

∫
0

[𝑦𝑇 (𝑝)𝑦(𝑝) − 𝛼2𝑑𝑇 (𝑝)𝑑(𝑝)]𝑑𝑝 ≤ 𝑚
2𝑚̄

, (17)

thus, we can get the 𝐿2-gain property (12) while 𝑡 → ∞ and where 𝑚
2𝑚̄

≤ ℵ.

Remark 4. Theorem 2 gives a condition by which the dynamic event-triggered-based anti-disturbance control problem of the
system (1) with (2) is solved. Furthermore, the linear matrix inequality (LMI) expressed in the (15) contains nonlinear terms,
which makes it difficult to solve.

Now let us explain in detail how to solve LMI (15).
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Theorem 3. If there exist Π1(𝜛) > 0,Π2(𝜛) > 0, matrices 𝐾(𝜛),Λ(𝜛), scalars 𝛼 > 0, 𝑏 > 0, 𝑚̄ > 0, 2𝑚̄ − 𝑏 < 0 and 𝑐2 > 0
satisfying the following constraint

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙11 𝜙12 𝐵(𝜛) 0 𝜙15 0 Π1(𝜛) 0 𝜙19 0 0
∗ 𝜙22 0 0 0 0 0 𝐼 0 Υ(𝜛) 0
∗ ∗ −𝐼 0 0 0 0 0 0 0 0
∗ ∗ ∗ 𝜙44 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 𝜙55 𝜙56 0 0 0 0 𝜙11

5
∗ ∗ ∗ ∗ ∗ 𝜙66 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 𝜙77 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (18)

where
𝜙11 = Π1(𝜛)𝐴𝑇 (𝜛) + Π1(𝜛)𝐾𝑇 (𝜛)𝐵𝑇 (𝜛) + 𝐴(𝜛)Π1(𝜛) + 𝐵(𝜛)𝐾(𝜛)Π1(𝜛) − Π̇1(𝜛) + 𝐼,
𝜙12 = 𝐵(𝜛)𝐸(𝜛),
𝜙15 = Π1(𝜛)𝐶𝑇 (𝜛)𝐷(𝜛),
𝜙19 = Π1(𝜛)𝐶𝑇 (𝜛),
𝜙22 = Υ(𝜛)𝐺(𝜛) + Υ(𝜛)Λ(𝜛)𝐵(𝜛)𝐸(𝜛) + Π̇2(𝜛)𝐸𝑇 (𝜛)𝐵𝑇 (𝜛)Λ𝑇 (𝜛)Υ(𝜛) + 𝐺𝑇 (𝜛)Υ(𝜛) + 𝐼,
𝜙44 = (2𝑚̄ − 𝑏)𝐼,
𝜙55 = 𝐵𝑇 (𝜛)𝐵(𝜛) +𝐷𝑇 (𝜛)𝐷(𝜛) − 𝛼2,
𝜙11
5 = 𝐵𝑇 (𝜛)Λ𝑇 (𝜛),

𝜙56 = 𝐵𝑇 (𝜛)Λ𝑇 (𝜛)𝐻(𝜛),
𝜙66 = 𝐻𝑇 (𝜛)𝐻(𝜛) − 𝛼2,
𝜙77 = −(2𝑚̄ + 𝑐2)−1𝐼,

then, the controller (6) is a solution to the dynamic event-triggered-based anti-disturbance control issue of the system (1).
Proof. From Theorem 2, it is clear that if (15) is ensured, then the issue of dynamic event-triggered-based anti-disturbance for
the system (1) is addressed.

Letting Υ(𝜛) = Π−1
2 (𝜛), 𝑄(𝜛) =

[

Π1(𝜛) 0
0 Π2(𝜛)

]

, then substituting (11) into (15) , one can get

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙11 Φ12 𝐵(𝜛) 0 𝜙15 0 Π1(𝜛) 0 𝜙19
∗ Φ22 0 0 0 0 0 Π2(𝜛) 0
∗ ∗ −𝐼 0 0 0 0 0 0
∗ ∗ ∗ 𝜙44 0 0 0 0 0
∗ ∗ ∗ ∗ Φ55 𝜙56 0 0 0
∗ ∗ ∗ ∗ ∗ 𝜙66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 𝜙77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (19)

where
Φ12 = 𝐵(𝜛)𝐸(𝜛)Π2,
Φ22 = 𝐺(𝜛)Π2(𝜛) + Λ(𝜛)𝐵(𝜛)𝐸(𝜛)Π2(𝜛) + Π2(𝜛)𝐸𝑇 (𝜛)𝐵𝑇 (𝜛)Λ𝑇 (𝜛) + Π2(𝜛)𝐺𝑇 (𝜛) − Π̇2(𝜛) + 𝐼,
Φ55 = 𝐵𝑇 (𝜛)𝐵(𝜛) + 𝐵𝑇 (𝜛)Λ𝑇 (𝜛)Λ(𝜛)𝐵(𝜛) +𝐷𝑇 (𝜛)𝐷(𝜛) − 𝛼2,



AUTHOR ONE ET AL 9

and then applying the Schur complement lemma, we can get

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙11 Φ12 𝐵(𝜛) 0 𝜙15 0 Π1(𝜛) 0 𝜙19 0
∗ Φ22 0 0 0 0 0 Π2(𝜛) 0 0
∗ ∗ −𝐼 0 0 0 0 0 0 0
∗ ∗ ∗ 𝜙44 0 0 0 0 0 0
∗ ∗ ∗ ∗ 𝜙55 𝜙56 0 0 0 𝜙11

5
∗ ∗ ∗ ∗ ∗ 𝜙66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 𝜙77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜙77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0. (20)

Multiplying the inequality (19) to the left and right by 𝑑𝑖𝑎𝑔{𝐼,Υ(𝜛), 𝐼} and applying the Schur complement lemma again
we can obtain the inequality (18).

Remark 5. In fact, a smaller 𝐿2 gain lever indicates that the considered system has a better disturbance attenuation performance.
In other words, a smaller 𝐿2 gain lever is more desirable. To obtain a minimal 𝐿2 gain lever, the following optimization problem
can be utilized in the design process:

min
𝑠.𝑡.(18)

𝛼
𝑄(𝜛)>0

.

Remark 6. By solving Theorem 3, we can get the controller and observer gains and design the controller and observer to meet
the control requirements.

4 SIMULATION EXAMPLE

For purpose of the effectiveness illustration, a turbofan example is given to carry the simulation study.
Here, the turbofan mode of39 represented by

[

Δ𝛼̇(𝑡)
Δ𝛽̇(𝑡)

]

= 𝐴(𝜛(𝑡))
[

Δ𝛼(𝑡)
Δ𝛽(𝑡)

]

+ 𝐵(𝜛(𝑡))
[

𝑢(𝑡) + 𝑑1(𝑡)
]

+ 𝐵(𝜛(𝑡))𝑑2(𝑡),

𝑦(𝑡) = 𝐶(𝜛(𝑡))
[

Δ𝛼(𝑡)
Δ𝛽(𝑡)

]

+𝐷(𝜛(𝑡))𝑑2(𝑡)
(21)

is considered, in which Δ𝛼(𝑡) indicates the turbofan state representing the fan speed increment and Δ𝛽(𝑡) presents core speed
increment, respectively, 𝑢(𝑡) is the input signal representing the fuel flow increment, 𝑦(𝑡) is the measurable output signal , 𝑑1(𝑡)
and 𝑑2(𝑡) are the noise and disturbance representing the turbofan deterioration parameters.

The parameters in the mode (21) are provided as follows:

A(𝜛) =
[

−3.6284 −0.5373
0.9017 −4.6475

]

+𝜛
[

−1.8470 −0.7489
−0.0996 −1.4302

]

,

𝐵(𝜛) =
[

0.01
0.03

]

+𝜛
[

0.01
0.05

]

,

𝐶(𝜛) =
[

1 0
]

+𝜛
[

0.11 0
]

,
𝐷(𝜛) = 0.12 + 0.11𝜛,

𝐺(𝜛) =
[

−1.01 3
−3.10 0

]

+𝜛
[

−0.01 0.02
−0.10 0

]

,
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𝐻(𝜛) =
[

0.11
−0.02

]

+𝜛
[

0.02
−0.01

]

,

𝐸(𝜛) =
[

−1
−15

]

+𝜛
[

−1.1
−0.5

]

,

𝑑2(𝑡) = 5𝑒−𝑡 sin(2𝑡), 𝑑3(𝑡) = 5𝑒−𝑡 cos(2𝑡),
𝑎 = 10, 𝑐1 = 1.1, 𝑐2 = 5.2, 𝑏 = 1.6, 𝜇 = 2.1, 𝑚̄ = 1.03.

By solving the relation of Theorem 3, we derive 𝜃 = 2.5,

𝑄(𝜛) =

⎡

⎢

⎢

⎢

⎢

⎣

1.2141 0.8957 0 0
0.8957 1.2409 0 0

0 0 1.3915 −0.1453
0 0 −0.1453 2.5927

⎤

⎥

⎥

⎥

⎥

⎦

+𝜛

⎡

⎢

⎢

⎢

⎢

⎣

1.1211 0.8277 0 0
0.8277 1.8044 0 0

0 0 2.1798 −0.2099
0 0 −0.2099 3.5132

⎤

⎥

⎥

⎥

⎥

⎦

,

Λ(𝜛) =
[

9 0
0 27

]

+ 𝜛
[

18 0
0 36

]

,

𝐾(𝜛) =
[

3.5 0
0 1.75

]

+ 𝜛
[

7 0
0 2.333

]

.
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FIGURE 2 The fan speed increment Δ𝛼(𝑡) and core speed increment Δ𝛽(𝑡) .

The simulation results are shown by Figs. 2-5. Fig. 2 exhibits the fan speed increment Δ𝛼(𝑡) and core speed increment Δ𝛽(𝑡).
Fig. 3 shows the disturbance estimation errors 𝑒1(𝑡)) and 𝑒2(𝑡). The trajectory of control signal 𝑢(𝑡) and 𝑢(𝑡𝑘) are shown by Fig.
4. Fig. 5 depicts the inter-intervals of the ET rule (7) expressed by {𝑡𝑘+1 − 𝑡𝑘}. Easily, it can be observed from Figs. 2 and 3
that the system state and the observation error tend to zero. From Fig. 4 we can see that the control signal 𝑢(𝑡) also tend to
zero in the case of without , static, dynamic event-triggered and the communication resources are reduced. And Fig. 5 shows
that the event-triggered interval is greater than zero. Especially, we can see that the proposed dynamic event-triggered method
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FIGURE 3 The disturbance estimation error 𝑒1(𝑡) and 𝑒2(𝑡)
.
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FIGURE 4 The control signal 𝑢(𝑡).

has a longer event-triggered interval than the static event-triggered strategy45, and thus, saves more communication resources.
Therefore, we can declare that the designed dynamic event-triggered-based anti-disturbance control scheme is effective.
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FIGURE 5 The event-triggered interval {𝑡𝑘+1 − 𝑡𝑘}.

5 CONCLUSIONS

In this paper, we have studied the dynamic event-triggered-based anti-disturbance control technique for the uncertain linear
parameter varying systems subject to multiple disturbances. First, the unavailable disturbances have been estimated by a dis-
turbance estimator. Second, the dynamic event-triggered criterion has been set based on the system input signal. The proposed
dynamic event-triggered mechanism has a longer event-triggered interval than most existing static event-triggered strategy.
Third, the dynamic event-triggered-based anti-disturbance control strategy has been established under which the theoretical con-
dition has been developed to assure the solvability of the dynamic event-triggered based anti-disturbance control issue for the
uncertain LPV system. Under the presented dynamic event-triggered-based anti-disturbance control method, the unmeasurable
modeling disturbance is compensated, the measurable unmodeled disturbance is suppressed. At last, the turbofan case study has
been provided to exhibit how the developed dynamic event-triggered-based anti-disturbance control strategy effectively works.
The main difficulties is how to achieve the multi-resource disturbance alleviation, while saving the communication transmis-
sion resources for the uncertain LPV systems. In addition, in this paper, the considered LPV system is continuous-time, and the
delay influence may be cased by the event-triggered mechanism is also not considered. In the future, we will make the further
study in the dynamic event-triggered-based anti-disturbance control for the discrete time LPV systems with time delay.
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