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Novel Aspects

e A framework for model benchmarking is outlined
e Defining limits of acceptability for models while allowing for data uncertainties is emphasised
e If all models are rejected then it should instigate a learning process that will improve uncerstanding

Abstract

This commentary discusses a framework for the benchmarking of hydrological models for different purposes
when the datasets for different catchments might involve epistemic uncertainties. The approach might be
expected to result in an ensemble of models that might be used in prediction (including models of different
types) but also provides for model rejection to be the start of a learning process to improve understanding.

On benchmarking and intercomparisons of hydrological models

One of the priority actions identified in the UK Flood Hydrology Roadmap (Environment Agency, 2022)
concerns the issue of how to benchmark models for practical applications in flood hydrology. The aims
would be two-fold: to ensure that the models used for operational applications can be considered as fit-
for-purpose, and to provide a framework to make it easier for moving models from research into practice.
Previous benchmarking exercises commissioned by the Environment Agency have been one-off projects for the
comparison of 1D hydraulic models (Environment Agency, 2010) and later 2D hydraulic models (Environment
Agency, 2013), but these were primarily model to model intercomparisons using hypothetical data sets rather
testing for performance in real applications. At the time, there were good reasons for this: it established
confidence in models giving consistent results without raising the additional concerns of data uncertainties
in both model inputs and inundation datasets for evaluation. However, in the wider flood hydrology context,
concerns about data and boundary condition uncertainties cannot be avoided. The question, therefore, is
how data uncertainties might affect a benchmarking methodology.

There have been international intercomparisons of hydrological models in the past, including those organised
by the World Meteorological Organisation (WMO) for real-time forecasting and snowmelt runoff models



(Sittner, 1976; Cavidias and Morin, 1986; Georgakakos and Smith, 1990;). Benchmarking has also been
applied to land surface models, including for projects such as PILPS and PLUMBER, (Henderson-Sellars et
al., 1996; Abramowitz, 2012; Best et al., 2015; Haughton et al., 2016). More recently, model intercomparison
and benchmarking projects have included DMIP and THM-MIP projects for distributed models (e.g. Smith
et al., 2004, 2012, 2013; Maxwell et al., 2014; Kollet et al., 2017); the Great Lakes Model Intercomparison
project (e.g. Mai et al., 2022); benchmarking of NLDAS land surface models (e.g. Nearing et al., 2016,
2018); and the testing of model ensembles. These have taken the form either of testing which model provides
the best simulations according to some metric (often using a split record test, e.g. Knoben et al., 2019);
or testing against a benchmark model, either a chosen conceptual hydrological model (e.g. Newman et al.,
2017; Seibert et al., 2018) or a purely data-based or machine learning model (e.g. Kratzert et al., 2019; Lees
et al., 2021). Some benchmarking projects have also concentrated on seasonal and low flow forecasts (e.g.
Nicolle et al., 2014; Girons-Lopez et al., 2021)

Experience from those intercomparisons involving hydrological models suggests that for most purposes there
will be no model that can be considered as better than others: the relative performance will depend on which
catchment is being simulated, which period or events are being simulated, and which performance measure
or measures are chosen to do the evaluation. I have, of course, argued for a long, long time that the idea
of an optimum hydrological model should be considered as untenable in favour of a concept of equifinality
of models and parameter sets (e.g. Beven and Freer, 2001; Beven, 2006). Others have also suggested that
the use of multiple metrics can reflect subjective judgments about the acceptability of different models (e.g.
Gauch et al., 2022), though different experts might vary in their rankings (Crochemore et al., 2015).

Perhaps more interesting have been the benchmarking exercises involving comparisons with machine learning
models (e.g. Nearing et al., 2021). In most of these studies it has been shown that the machine learning
methods generally produce better predictions in both calibration and validation. This has included the
training of the machine learning models on a large collection of catchments, when compared against models
calibrated on single catchments (Figure 1). However, it is also the case that better does not always mean
good. Distributions of the NSE efficiency across a large number of the US CAMELS dataset catchments
show that there are some 10% of catchments where less than 50% of the variance in the discharge is captured
by the models. Similar variation in performance has been reported in hydrological modelling studies of large
numbers of catchments in France (Perrin et al., 2001) and the UK (Lane et al., 2019; Lees et al., 2021). So
something else is also going on here, which clearly has an impact on benchmarking in the sense of whether
models might be fit-for-purpose.
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Figure 1. Cumulative distribution of NSE values over 531 catchments taken from the US CAMELS database
using a single LSTM Deep Learning model trained over all the catchments (solid line) and separate LSTM
models trained on the individual catchments (dotted line) (taken from Nearing et al., 2021)

Benchmarking and data uncertainties

There is also now increasing recognition of the way in which data and boundary condition uncertainties
might influence how well models can be evaluated or tested as hypotheses about how catchment function
(e.g. Beven and Binley, 1992; Beven and Freer, 2001; Liu et al., 2004; Coxon et al., 2014; Beven and
Smith, 2015; McMillan et al., 2018; Beven, 2019; Beven and Lane, 2022; Westerberg et al., 2022). Clearly,
we cannot expect any model to perform better than the quality of the data and boundary conditions it is
supplied with, or of the data that are used in evaluation. This applies to both hydrological models and the
machine learning methods that are intended to extract the maximum amount of information from the data.
Indeed, Figure 1 suggests that averaging of potential observation errors across many catchments might be of
value relative to training on only the data from a single catchment, even where those catchments include a
wide range of physical characteristics. One interpretation of this is that epistemic errors in the observations
might dominate model structural errors for some catchments (see also Beven, 2020).

That principle will also apply to both the hydrometric data and any tracer or geochemical data (e.g. Harmel
et al., 2009; Krueger et al., 2009; Hollaway et al., 2018a). There have been a number of recent studies using
“tracer-aided” model calibrations and evaluations (Birkel and Soulsby, 2015; Delavau et al., 2017; Smith
et al., 2021; Stevenson et al., 2021) but these have not generally considered uncertainties in the data, and
making use of such data will normally involve the introduction of additional parameters. For some water
quality models, many more parameters might be involved (e.g. Hollaway et al., 2018b).

A particular aspect of epistemic uncertainty in the hydrometric data arises when the observations associated
with individual events have runoff coefficients greater than 1 in catchments where the effects of snowmelt and
longer term storage are not significant so that event-based coefficients can be calculated (Beven, 2019). Many
hydrological models are constrained to satisfy mass balance and can therefore never reproduce an event that
has a runoff coefficient greater than 1 (allowing for recession contributions for the previous event). Beven and
Westerberg (2011) called such events disinformative events, in the sense of not providing useful information
for model calibration (see also Beven et al., 2011; Beven and Smith, 2015; Beven et al., 2022b). Such events
will also have an effect on the simulation of subsequent events since if the rainfall inputs for that event have
been underestimated it will also impact the antecedent conditions for the next event. We can also envisage
that there will also be events where the rainfall inputs are overestimated, with runoff coefficients artificially
low, but these are much more difficult to identify securely. Such issues are a good argument for not imposing
mass balance in flood forecasting models, but rather using data assimilation in real-time to compensate for
errors in estimating the inputs.

For flood hydrology, there is also the issue of uncertainty in the estimation of flood peaks arising from rating
curve uncertainties (e.g. Clarke, 1999; Costa and Jarrett, 2008; Westerberg et al., 2011; Domeneghetti
et al., 2012; Coxon et al., 2015; McMillan and Westerberg, 2015). Uncertainties in rating curves can be
estimated from statistical theory when the rating curves are fitted to observed discharges using regression
methods. However, extrapolating well above the observed data points to estimating peak flows can also
involve epistemic uncertainties as to the functional form of the curve (e.g. Hollaway et al., 2018a). In
some cases, it might be possible to constrain the extrapolation using hydraulic modelling, but this can also
introduce additional uncertainties in boundary conditions and roughness parameter estimates. Thus, in
benchmarking models for flood flows it is important to consider such uncertainties.

Benchmarking for a purpose

This also raises a more general issue for benchmarking. What do we wish to benchmark for? Benchmarking
is really a matter of trying to assess the confidence we might have in a model or models as fit-for-purpose.
But fitness-for-purpose will depend on the purpose. We should expect that different model structures or
parameter sets might be more or less suitable for different types of application, including the utility of data



assimilation in real-time. Thus, the first step in any benchmarking exercise should be deciding on the purpose
(see Figure 2). Different purposes might require different types of evaluation (N-step ahead predictions for
forecasting; flood peaks for evaluating future change in flood hazard; annual exceedance probabilities for
flood frequencies; flood inundation patterns for distributed models; .....) but all benchmarking evaluations
will need to allow for the uncertainties in the observations.

This would be easier if we could safely assume that the uncertainties involved in model forcings and evaluation
could be considered as aleatory and treated as stochastic variables. In that case the power of formal statistical
methods for hypothesis testing can be used. This is not the case, however. As well as the rating curve
extension problem there are other sources of epistemic uncertainty in the modelling process. Probably the
most important is the question of estimating catchment rainfalls, either at the catchment scale or in some
distributed form, from the limited rain gauge and uncertain radar data that might be available. This is an
epistemic uncertainty problem, with the expectation that the uncertainty might vary in both time and space
in rather arbitrary ways.

This then suggests that some alternative to statistical hypothesis testing might be needed for any bench-
marking exercise. One approach is a logical extension of the expectation that there might be equifinality
of model structures and parameter sets for different types of application, hopefully with many that might
be considered as fit-for-purpose. This then suggests turning the problem around to consider what models
and parameter sets might be considered as not fit-for-purpose, while allowing for the uncertainties in the
forcing and evaluation data (Beven, 2018, 2019). Beven and Lane (2019, 2022) discuss the principles upon
which such a rejectionist or model invalidation approach might be based, including the principle of defining
limits of acceptability for a model to be considered as fit-for-purpose prior to any model runs being made.
Of course, because this involves a consideration of epistemic sources of uncertainty, the definition of such
limits of acceptability might require an input of expert judgment (though see Beven and Smith, 2015, Beven,
2019, and Beven et al., 2022a,b for examples of doing so based on historical event runoff coefficients that is
applicable in catchments without significant baseflow). Particularly for the evaluation of distributed models,
such judgments or feedback from local stakeholders might be needed to decide if models are getting the right
results for the right reasons when distributed evaluation data are not available (Beven, 2007; Beven and
Lane, 2022; Beven et al., 2022b).

Benchmarking and fitness-for-purpose in predicting the future

One of the implications of taking such an approach is that all the models tried might be rejected (see, for
example, Brazier et al., 2000; Page et al., 2007; Choi and Beven, 2007; Dean et al., 2009; Hollaway et al.,
2018b). As I have written many times before, this is, of course, a good thing in that it forces a re-evaluation
of some sort. This could be a re-evaluation of model structures, of how the model parameters are sampled,
of the consistency of the available observations, or of the range for the limits of acceptability. Since it
will always be possible to extend the limits arbitrarily to ensure that not all the models are rejected, it is
important that the assumptions on which the limits are based be clearly stated. We can extend this to the
requirement that there should be an audit trail to justify and record all the assumptions associated with
any benchmarking study, that then allows those assumptions to be revisited later (Beven and Alcock, 2012;
Beven and Lane, 2022). The CURE uncertainty estimation toolbox, for example, has a facility for producing
such an audit trail as an output from an analysis (Page et al., 2023).

In setting limits of acceptability, we are necessarily constrained to using evaluations based on past events
and historical time series (unless doing so on a purely subjective basis as to what might be considered
fit-for-purpose). Beven and Lane (2022) suggest 8 principles for setting limits of acceptability, including
where this might involve expert elicitation. However, in many cases the reasons for using a hydrological
model are to predict what might happen under future conditions. This could be an expected change in the
inputs projected by a climate model, or a change in catchment characteristics as a result, for example, of
natural flood management measures, deforestation or urbanisation. In the case of changes in inputs, the
value of evaluations based on historical data will depend on the range of past conditions monitored (see Wi
and Steinschneider, 2022, for an example using a deep learning model). If future conditions, especially the



extremes are expected to be outside the range of past behaviours, then both process-based and data-based
or machine learning models might be limited in their abilities to predict such changes outside any training
data (e.g. Beven, 2020). In the case of changes in catchment characteristics, the training data might again
not include examples of such changes. We then either have to transfer information from catchments where
similar changes have occurred or make subjective judgments about changes in parameter values. This can
work (e.g. Buytaert and Beven, 2009) but might not work consistently. Where catchments have been
monitored over periods of such change, then evaluations of predictions of such change could be assessed. If
acceptable models are found, this can give increased confidence in applications elsewhere.

It is clear that the types of limits of acceptability that might be used in model evaluation, and the way in
which they might be defined before making model runs will very much depend on the purpose for which a
model might be used. Taking each of the vertical pathways in Figure 2, for example, it will be appreciated
that what is required for N-step ahead real time forecasting will be different to the use of a catchment model
for continuous simulation flood frequency simulation, or for the prediction of future catchment change,
distributed inundation predictions for planning purposes, or for tracer or water quality variables. What
figure 2 provides, however, is a common framework for assessing model performance in a way that can
allow considerations of data uncertainties (and more subjective evaluation measures) to be incorporated in
a consistent and thoughtful way. It provides an alternative to considering benchmarking in terms purely of
relative values of performance indices, that in the past have often ignored the effects of observational errors
on model performance (but which might also include some additional dimensions of ease of understanding
and use and costs of application). In this respect we should learn from the poor performance of both machine
learning methods and conceptual hydrological models in some catchments to really think about what might
be considered as fit-for-purpose for a particular application.

Of course, if it is necessary to reject all the models that are tried for a particular purpose in a particular
catchment of interest, it should be the start of a learning process (as shown in Figure 2). This could be
learning about the failings of a particular model structure, though it may often be difficult to understand
why a model has failed, especially in the case of a machine learning model. In many cases it will be a result of
providing the modelling process with inadequate or inconsistent data. Machine learning, for example, should
be able to deal with data that have consistent errors (Beven, 2020). The fact that it still seems to provide
poor results on some catchments (e.g. Frame et al., 2023) would certainly suggest that there are inconsistent
errors or forms of disinformation in some catchment datasets that limit predictive performance. While such
rejections do not help a decision maker, they are important to advancing understanding of the modelling
process (e.g. Beven, 2018). In extremis a decision maker could still have resort to trying to characterise the
errors associated with each model run, and to allow for those errors by being precautionary in her decisions.
Still better, of course, would be to understand just why models might fail benchmarking tests.
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Figure 2. A framework for model benchmarking for different purposes. Light shading indicates the need for
decisions about how temporal ands spatial observations and their uncertainties are used to define limits of
acceptability. Learning from model rejections indicates an area of research that is largely unexplored (though
intrinsic to most model development).
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