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Abstract

This letter proposes a cross-domain WiFi-based gesture recognition system (WiCross) based on a dynamically weighted multi-

label generative adversarial network. Most existing WiFi-based gesture recognition systems are user, orientation, and environ-

ment sensitive, which limits the application of WiFi sensing. Compared with the influence of users and environments on WiFi

sensing systems, the influence of orientation on WiFi sensing systems is more difficult to remove. To alleviate the confusion

caused by the orientation more effectively, we arrange the transmitting and receiving antennas according to the characteristics

of the Fresnel region. We propose to dynamically weight different links according to users’ orientations and use a multi-label

generative adversarial network to obtain domain-independent features. More importantly, WiCross can use domain-independent

features to classify some unknown gestures without modifying any code or data set. Lightweight computing resource consump-

tion allows WiCross to respond in real-time. The experimental results show that WiCross can achieve an in-domain recognition

accuracy of 93.54% and a cross-domain recognition accuracy of 93.11%
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Cross-domain extendable gesture
recognition system using WiFi signals

Yuxi Qin, Su Pan, Zibo Li

This letter proposes a cross-domain WiFi-based gesture recognition
system (WiCross) based on a dynamically weighted multi-label
generative adversarial network. Most existing WiFi-based gesture
recognition systems are user, orientation, and environment sensitive,
which limits the application of WiFi sensing. Compared with the
influence of users and environments on WiFi sensing systems, the
influence of orientation on WiFi sensing systems is more difficult
to remove. To alleviate the confusion caused by the orientation
more effectively, we arrange the transmitting and receiving antennas
according to the characteristics of the Fresnel region. We propose to
dynamically weight different links according to users’ orientations and
use a multi-label generative adversarial network to obtain domain-
independent features. More importantly, WiCross can use domain-
independent features to classify some unknown gestures without
modifying any code or data set. Lightweight computing resource
consumption allows WiCross to respond in real-time. The experimental
results show that WiCross can achieve an in-domain recognition
accuracy of 93.54% and a cross-domain recognition accuracy of 93.11%

Introduction: With the popularity of intelligent devices, human-
computer interaction is no longer limited to mice, keyboards, and touch
screens. In recent years, the gesture recognition based on channel state
information (CSI) of WiFi has drawn considerable research attention,
such as WiTrace [1], WiHGR [2] and WiPass [3]. Compared with
vision-based and wearable sensor-based sensing schemes, the CSI-based
scheme has the advantages of low cost, easy deployment, non-light of
sight sensing, and device-free. In addition, the CSI-based scheme does
not record private information, such as fingerprints, faces, and indoor
environments. Therefore, the CSI-based scheme can effectively protect
users’ privacy while maintaining high recognition accuracy.

Gestures cause changes in the wireless channel when the WiFi
signals propagate. Different movement trajectories of the hands lead
to unique CSI fluctuations, so we can achieve accurate gesture
recognition according to the features of different gestures. Gesture
signals are strongly dependent on orientations [4]. In addition, users and
environments will also affect recognition accuracy.

To address this problem, many systems have been proposed for
cross-domain recognition. Zhang et al. [5] presented Widar 3.0 using
body-coordinate velocity profiles to obtain domain-independent features.
WiDIGR [6] mapped the orthogonal directions to the movement direction
and utilized the spectrograms to estimate the walking direction angle.
EI [7] adopted adversarial learning to remove the environment and
subject specific information. WiGr [8] uses the similarity between the
query samples and the class prototypes in the embedding space to
perform the gesture classification.

However, these systems have obvious limitations. In Widar 3.0, when
gestures move in a non-straight line, the direction of speed changes all the
time, which requires Widar 3.0 to process the signals at each time point.
Therefore, the complex calculation limits the real-time performance of
the system. WiDIGR was designed suitable for the gestures in a single
direction. EI and WiGr did not sufficiently consider that a single link
cannot perceive objects moving along the elliptic boundaries formed by
the Fresnel zones.

In this letter, we propose WiCross, a WiFi-based cross-domain
extendable gesture recognition system. WiCross removes domain
information, such as users, orientations, and environments. Compared
with existing systems, WiCross pays more attention to extracting
orientation-independent features. We propose dynamic link weighting
to perceive gestures in different orientations better. We evaluate the
importance of different links according to the signal characteristics
contained in different links and calculate the corresponding weights.
We propose to use a multi-label generative adversarial network to
extract domain-independent features. We set up four sub-discriminators
for gestures and domain information and apply dynamic link weights
to all sub-discriminators. When the gesture features extracted by the
generator can be recognized by the gesture discriminator, and all the
domain discriminators consider the gestures to belong to any domain
with the same probability, we obtain fully domain-independent features.

Data preprocessing

Cross-domain feature extraction

Gesture recognition
Known gestures Unknown gestures

K-means

Gestures

Outlier removalCSI Wavelet transform
Link 1

Link n

Bandpass filter

Discriminator

Gesture

User
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more 
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Fig. 1. Overview of WiCross

WiCross uses only one pair of WiFi devices with multiple antennas to
reduce system complexity and realize real-time gesture recognition. Most
existing systems are not extendable, and adding new gestures requires
retraining the models. We constrained the feature distribution of the same
class to make the features in the same class more clustered as far as
possible. We used the K-Means algorithm to estimate the total number of
unknown gesture classes without supervision, and then classify gestures.
The main contributions of this work can be summarised as follows:

• We propose a dynamic link weighting algorithm to assign more
weights to valuable links and rearrange all links according to the
weights to solve the dependency of gestures on orientations.

• We design a novel cross-domain extendable gesture recognition system
based on the weighted multi-label generative adversarial network,
which can extract domain-independent features from WiFi signals.

• We add the coefficient of variation of the same gestures to the loss
function of the gesture discriminator to make the features of the
same gestures more clustered, so that WiCross can classify unknown
gestures without modifying any code and retrain the model.

• We implement a prototype of WiCross with only one pair of
commercial WiFi devices and evaluate its performance in terms
of accuracy and efficiency. The experimental results show that the
recognition accuracy of cross-domain is 93.11%, and the average
response time is 27.3 ms.

System design

Overview: As shown in Figure 1, WiCross contains three parts: data
preprocessing, cross-domain feature extraction, and gesture recognition.
We first remove noise and non-gesture information from the signals, so
the preprocessed data contains cleaner gesture information. However,
the data preprocessing cannot remove domain-dependent information
because we cannot judge which information is domain-dependent based
on a single sample. Therefore, we need to obtain domain-independent
features from the preprocessed data. We propose a dynamic link
weighting algorithm to remove gestures’ dependence on orientations and
weight important features. We use a multi-label generative adversarial
network to obtain cross-domain features. Finally, we use an extended
gesture discriminator to classify known and unknown gestures.

Data preprocessing: The raw CSI contains a large amount of noise and
a few outliers, so we need to preprocess the signals first. We use a
sliding window to detect outliers by applying the Pauta criterion [9].
Since all the links are obtained from the same receiver device, we
remove some noise by conjugate multiplication of the two links [10].
The frequency of gesture signals is usually between 5 and 30 Hz, so a
band-pass Butterworth filter is used to remove high-frequency noise and
static components. It is worth mentioning that keeping static components
in in-domain scenes can effectively improve the recognition accuracy,

ELECTRONICS LETTERS



but it will hinder cross-domain recognition. Finally, we utilize wavelet
transform to reduce the dimension of samples and preserve important
features.

Dynamic link weighting: According to many researches on Fresnel
zone [6, 11], we know that objects moving along the boundary of
the Fresnel zone cannot be perceived, which is determined by the
propagation characteristics of wireless signals and cannot be changed
by any algorithms. The simplest way to solve this problem is to use
multiple links in different orientations. As shown in Figure 2, we evenly
arrange the three transmitting antennas and the three receiving antennas
alternately into a circle. The human body weakens the links sensing
gestures behind the body, and our arrangement allows the links to sense
the gestures no matter which direction the user is facing. The importance
of each link is different for different gestures and orientations. We believe
the higher the proportion of gesture signals in the link, the more valuable
it is. We calculate the value of the ith link by equation 1.

Vi(X, t) =

∑
peaks(X, tg)−

∑
troughs(X, tg)

K ∗ δ2(X, ts)
, (1)

where X is a CSI segment in the time span t. tg and ts denote the
time span with and without gesture. peaks(X, tg) and troughs(X, tg)

are functions that calculate the peaks and troughs of the signals in the
time span tg . δ2(X, ts) represents a function that calculates the variance
of X in time span ts, and K is a fixed scaling factor. The link value V is
much larger than 1, so we utilize equation 2 to normalize V .

Wi =
exp(Vi)∑n

j=1 exp(Vj)
, (2)

where n is the total number of links, and W represents the weights of
links. Since the orientations and gestures may change, the weights are
not fixed and will be recalculated for each sample.

Extractor: We use sub-extractors to extract cross-domain features from
each denoised link. We reorder the link according to the W and take
the link with the largest Wi as input of the first sub-extractor, and so
on. The advantage of this idea is that the features with high value can
be fixed in the first few sub-extractors, which is conducive to using
prior knowledge to weigh the features and improve the recognition
accuracy of the classifiers. Our extractor contains four parts: Gaussian
noise, one-dimensional convolutional neural network (1D-CNN), long
short-term memory (LSTM), and fully connected part. Adding Gaussian
noise to the input effectively prevents over-fitting. LSTM and 1D-CNN
show outstanding performance in processing time sequence data. LSTM
can find the correlation between data at different time points, and 1D-
CNN can efficiently extract the features in each time period. Since relu
activation function does not have the vanishing gradient problem, and
there is no complex exponential calculation, the training speed is fast, so
all activation functions in the extractor are relu.

Discriminator: The discriminator consists of two parts: gesture
discriminator and domain discriminator. Gesture discriminator is built for
gesture recognition. The input features should be usable by most ordinary
classifiers, not only by specific network structures. Therefore, the gesture
discriminator uses a simple fully connected network consisting of
two hidden layers, the first hidden layer and the second hidden layer
containing 40 and 20 relu nodes, respectively. The activation function of
the output layer uses softmax. To recognize the new custom gestures,
features of the samples in the same class should be close together. Based
on cross-entropy, we add the coefficient of variation of features as the
loss function:

Lg(X, y, ŷ) =−
n∑

i=1

Wi

 s∑
j=1

yj log ŷj +
δ(Xi)

X̄

 , (3)

where s is the number of samples. yj and ŷj denote jth true label and
prediction label. δ(X) and X̄ represent standard deviation and the mean
of sample X.

Domain discriminator aim to extract domain-independent features.
We divide domain information into three categories: user, orientation,
and environment. We can find differences in user domains if we ask
different users to make the same gesture in the same environment.
Therefore domain discriminator is designed for finding differences in
domains. When the feature from the generator is considered to be equally

𝑇𝑇3

𝑇𝑇1 𝑇𝑇2
𝑅𝑅3

𝑅𝑅2 𝑅𝑅1
1m
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1.4m Transmitter
antennas

Receiver
antennas

link linklink

Fig. 2. Experimental scenario

likely to come from all domains, we can assume that the domain-
dependent feature has been removed. It is worth noting that the domain
discriminator can not correct to identify domain information that does
not represent does not contain domain information. For example, the
domain discriminator recognizes all gestures in one room as being in
another room, which just incorrectly maps the domain information, but
the domain information still exists. Therefore, only when the recognition
results are evenly distributed in each domain can we consider domain-
dependent information to be removed. We define the loss functions for
different users (Lu), as shown in equation 4, and the loss functions for
different orientations (Lo) and environments (Le) can be followed by
analogy.

Lu =
1

nd

n∑
i=1

Wi

d∑
j=0

δ2 (P(Xi|yu,j ; ŷu,j))∈ [0, 1], (4)

where d is the total number of users in the dataset. P(Xi|yu,j ; ŷu,j)
denotes probability distribution of jth user domain in all user domains for
link i. yu,j and ŷu,j represent true label and prediction label of jth user
domain. Now we obtain the loss function of all the sub-discriminators, so
the loss function of the discriminator is:

Loss= αLu + βLo + γLe + εLg , (5)

where α, β, γ, and ε are fixed scaling factors, and we can adjust them
according to our preference for certain domains.

Gesture recognition: In order to make the WiCross extendable for
unknown gestures, we add an unknown class to the output of the existing
gesture discriminator as a new gesture classifier and train this classifier
using the features obtained from the generator. The purpose of not
including the unknown class in the gesture discriminator is to make
the gesture discriminator focus more on optimizing gesture features and
reducing the complexity of the discriminator. For known classes, the
classifier can indicate what the labels of the gestures are. However,
unknown gestures do not have labels, so we use the K-Means clustering
algorithm to classify unknown gestures. The K-Means algorithm first
needs to traverse the all sample set to determine the number of classes,
and then select the central points according to the number of classes
for clustering. Therefore, we only need to assign a specific meaning to
the clustering results to classify unknown gestures without making any
changes to WiCross.

Implementation and evaluation

Experimental setting: We implement WiCross using two computers
equipped with Intel 5300 WiFi cards and six antennas. As shown in
Figure 2, the six antennas are arranged evenly in a circle with a radius of
one meter. All antennas are extended with 3.5 m cables and placed 1.4 m
above the ground using tripods. The band and bandwidth of WiFi signals
are 5.32 GHz and 20 MHz, respectively. The transmission rate is 200
packets per second. We use the same gestures as Widar 3.0 (push, sweep,
clap, slide, circle, zigzag), with each gesture repeated 20 times in every
domain. Our dataset contains 6 users, 12 orientations and 6 environments,
so the total number of gestures is 8640. In order to train the unknown

2



(a) In-domain (b) Cross-domain

Fig. 3. Overall performance

Table 1: The recognition accuracy systems.

system cross user cross orientation cross environment in-domain

WiCross 92.4% 92.6% 93.3% 93.5%

Widar 3.0 88.9% 82.6% 92.4% 92.7%

WiGr ≥ 90% 84% 92% 83.5-93.0%

gestures in the classifier, we randomly collect 200 samples of arbitrary
gestures, and try to make each gesture as different as possible.

Overall performance: We evaluate the overall performance of WiCross
in in-domain and cross-domain scenarios. Four-fold cross validation is
used to separate the training set and the test set. Figure 3 displays the
confusion matrix for gestures. The average accuracy of WiCross in the
in-domain and cross-domain scenarios are 93.54% and 93.11%, and
there is a tiny difference between the two scenarios. Therefore, WiCross
removes domain information well. Table 1 shows the average accuracy
of WiCross, Widar 3.0, and WiGr. We learn from the table that Widar 3.0
and WiGr cannot perform well in cross orientation scenarios, and the
accuracy is much lower than that of other scenarios.

Extendibility evaluation: We use 2-6 unknown gestures to test the
extendibility of WiCross, and the unknown gestures are inspired by
the WriFi [12]. We write letters in the air, and the writing region size
used in our experiments is 65× 65 cm. We choose the letter ’A’, ’B’,
’E’, ’G’, ’H’, and ’K’ as the unknown gestures, and the experimental
results are shown in Figure 4 (a). With the increase of unknown gestures,
the detection accuracy does not change significantly, but the clustering
accuracy of the K-Means algorithm decreases significantly. When the
number of unknown gestures is no more than 3, the recognition accuracy
of in-domain and cross-domain exceed 90% and 88%, respectively. In
order to prove that the cross-domain features can be used by most
classifiers, support vector machine (SVM), K-nearest neighbor (KNN),
and decision tree are used to replace our classifier. The recognition
accuracy is shown in Figure 4 (b). We learn that SVM has the highest
recognition accuracy but little difference with KNN and decision tree. As
a result, WiCross has good extendable performance.

Efficiency evaluation: We compare system efficiencies without
considering unknown gestures, as shown in Table 2. Our test platform
is built on a PC with Ubuntu 18.04 system, Intel i7-9700 processor,
and 16G DDR3 memory. We learn from the table that the overall time

(a) Performance of unknown gestures (b) Performance of common algorithms

Fig. 4. Performance of extendibility.

Table 2: The time consumption for 1000 samples in different systems.

system preprocessing time training time testing time

WiCross 30.6 s 30.6 s 27.3 s

Widar 3.0 55.7 s 38.2 s 20.5 s

WiGr 21.7 s 54.3 s 50.6 s

consumption of WiCross is less than that of Widar 3.0 and WiGr.
Compared with Widar 3.0 and WiGr, WiCross focuses more on using
prior knowledge to extract features instead of using complex system
structures. WiCross and WiGr utilize one pair of WiFi devices, but
Widar 3.0 utilizes at least three pairs of WiFi devices, which allows
Widar 3.0 to spend more time preprocessing data.

Conclusion: This letter proposes and implements WiCross, a cross-
domain WiFi-based gesture recognition system based on a dynamically
weighted multi-label generative adversarial network. WiCross removes
domain information of users, orientations, and environments from the
CSI and generates domain-independent features that can be used in
common classifiers. We propose a dynamic link weights algorithm to
solve the cross orientations problem, which achieves better performance
than existing systems. In addition, WiCross has good real-time
performance while maintaining high accuracy.
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