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SUMMARY

This article explores recursive algorithms for parameter identification issues of Hammerstein output-error
systems. The proposed approach includes the key term separation auxiliary model recursive gradient
algorithm, which utilizes the gradient search and the key term separation. To enhance computational
efficiency, the system is decomposed into two or three subsystems through the hierarchical identification
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1. INTRODUCTION

In the realm of control systems, the establishment of accurate mathematical models that describe the
essential features of the system is essential for its analysis and optimization [1, 2, 3]. Therefore, the
foremost challenge is to overcome the hurdle of system modeling. System identification techniques
that rely on measured data provide an efficient approach to establishing a mathematical model
of the system [4, 5, 6, 7]. The estimation of system parameters is a crucial prerequisite for
effective system identification and thus has been the subject of extensive scrutiny in the field of
control engineering. Over the years, numerous parameter estimation methods have been proposed
by researchers, contributing to the evolution and comprehensiveness of the theories of system
identification [8, 9, 10].

Nonlinear systems are different from linear systems in that their output variables are not linearly
related to their input variables [11, 12, 13, 14]. Block-oriented nonlinear systems are a typical
class of nonlinear systems, characterized by splitting the dynamic nonlinear system into a dynamic
linear subsystem and a static nonlinear subsystem [15, 16, 17, 18]. Hammerstein systems, also
known as input nonlinear systems, are composed of a static nonlinear link in series with a
linear dynamic subsystem and are widely used to describe dynamic systems with nonlinear input
properties [19, 20, 21, 22]. In the literature of Hammerstein system identification, Kang et al. applied
the key term separation technique for Hammerstein nonlinear autoregressive output-error systems
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utilizing the hierarchical least squares method [23]; Wang et al. investigated a novel expectation
maximization estimation method for Hammerstein systems with data loss [24].

Recursive methods are widely used in system identification and are capable of capturing real-
time information about the systems by collecting dynamic data [25, 26, 27, 28]. The hierarchical
identification principle achieves the purpose of reducing the dimensionality of the parameter vector
by decomposing the system model into several virtual subsystems and identifying their parameters
separately [29, 30, 31, 32]. Recently, Wang et al. [33] reconstructed the bilinear Hammerstein
system into two virtual subsystems utilizing the hierarchical identification principle and investigated
the estimation method of the system. The key term separation technique, which is important for
studying the identification of nonlinear systems [34, 35], usually selects the output of the nonlinear
block as the key term and separates the parameters of the nonlinear part, thereby realizing the
simultaneous identification of the parameters of the linear part and the nonlinear part.

This article considers the parameter estimation problem of Hammerstein output-error (H-OE)
systems. By using the key term separation technique [36, 37], a key term separation auxiliary
model recursive gradient (KT-AM-RG) algorithm is proposed. In order to improve the model
performance, we employ the hierarchical identification principle to decompose the key term
separation identification model into two and three sub-models, and develop a key term separation
auxiliary model two-stage recursive gradient (KT-AM-2S-RG) algorithm and a key term separation
auxiliary model three-stage recursive gradient (KT-AM-3S-RG) algorithm.

The paper is organized as follows. Section 2 introduces some definitions and establishes the
key term separation identification model of the H-OE system. Section 3 proposes a KT-AM-
RG algorithm, a KT-AM-2S-RG algorithm, and a KT-AM-3S-RG algorithm. How to analyze and
compare the computational efficiency of the proposed algorithms can be found in Section 4. Section
5 offers the simulation results to corroborate the obtained algorithms, and Section 6 summarize the
research content of this paper.

Notations: Let "A =: X or "X := A” represent ’A is defined as X”’; I,, denotes an identity
matrix with proper size; 1,, stands for an n-dimensional column vector whose elements are 1.
Take 2 as the unit forward shift operator [zy(t) = y(t + 1), 27 y(t) = y(t — 1)]; Amax denotes the
maximum eigenvalue of matrix. The superscript T represents the transpose of a matrix/vector; the
norm of a matrix X is defined by || X || := tr[X X "], in which X € R"*",

2. THE SYSTEM DESCRIPTION AND IDENTIFICATION MODEL

As shown in Figure 1, the H-OE system is expressed as
B(z)
A(2)
The variable y(¢) € R and u(t) € R are the output and input respectively. v(¢) € R is stochastic

white noise with zero mean, A(z) and B(z) are the polynomials of known orders n, and n;, which
can be defined as

y(t) =

a(t) + v(t). (1)

A(z) =1+ a1z Yt agz 4+ 4 an, 2" ", a; €R,
B(Z) = b0+b1271+b2272+"~+bnbzinb, b; € R,

a(t) € R is the output of the nonlinear part and is a linear combination of a set of known basis
functions f;(u(t)) with parameters c;’s, that is

u(t) = f(u(t)) = crfr(u(t)) + c2fa(u(t)) + -+ + e fn (u(t)), 2

Suppose that the order m is known and y(t) = 0, u(t) = 0, and v(¢) = 0 for ¢t < 0.

Observing the H-OE systems, it can be seen that @(t) is a latent variable and any pair of
(af(x)), B(z)/«) and (f(x), B(z)) with nonzero constant « will generate identical input and output
relationship for the model in (1). To ensure identifiability, it is required to normalize the parameter
of u(t) or B(z). Here, we let by = 1.

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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PARAMETER ESTIMATION FOR HAMMERSTEIN NONLINEAR MODELS 3

Figure 1. The H-OE system.

The noise-free output of the system in Figure 1 is given by

x(t) :== a(t) € R. 3)

Choosing @(t) as the key term to parameterize the noise-free output,

Na

z(t)=— Zax(t—z +Zbut—z)+bou()

=1 =1
Na ny m
== aw(t—i)+ Y _balt —i)+ > c;fi(ult)). @)
i=1 i=1 =1
Define the sub-parameter vectors a, b and c,

a = [a17a27a37 o 7ana]T S Rnaa

b:= [bl, bg,bg, v ,bnb}T S Rnb,

C:= [017627 C3,° 7CnC}T S Rma

and the sub-information vectors ¢, (t), ¢, (t) and f(t):
a(f)i= (e 1), (e =2) (e =), —s(t — )] € R
ep(t) = [t — 1), a(t - 2),a(t - 3),-- @*nm e R™,
F(@) = [fr(u(®)), f2(u(?)), fs(u(t)), - 7ﬁd )" eR™.

Then, equation (1)—(3) can be reformulated as:

u(t) = f'(t)e, (5)
z(t) = ph(t)a+ ey ()b + f'(t)e, (6)
y(t) =(t) +v(t)

=pi(t)a+ @y ()b + f(t)e+v(t). ©)

Let n := ng, + np + m, define the parameter vector 9 and the information vector (t) as
9:=[a",b",c"|" € R™.
e(t) = [pa(t), (1), f1 ()] € R™.
System (1) can be rewritten as

y(t) = @' ()9 +v(t). (8)

Hence, one can obtain the key term separation identification model in (8) of the H-OE system in
(1)-(2), where parameter vector 1 to be identified contains all parameters of the original system.

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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3. THE KEY TERM SEPARATION AUXILIARY MODEL RECURSIVE GRADIENT
ALGORITHMS
3.1. KT-AM-RG algorithm

For the identification model in (8), defining the criterion function:

j=1
Define the stacked output vector Y (¢), and the stacked information matrix ®(¢) as
Y(t) = [y(1)7 y(2)7 T 7y(t)]T € Rtv
®(t):=[p(1),0(2), - (1) € R™™.

Then the criterion function .J; (1) can be expressed as
1
L) = Y () - @@)d]*.

To better illustrate the identification problem, some useful recursive relations are defined:
() =B ()Y (t) = &(t — 1) + @(t)y(t) € R™, 9
R(t):=®"(1)®(t) = R(t — 1) + p(t)p"(t) € R™*"™. (10)

The gradient vector of the criterion function .J; () can be obtained by taking the first-order partial
derivative of .J; (1) with respect to the parameter vector 1

9J1(9)
oY

Let 9(t) be the estimate of ¥ at time ¢. The gradient vector at ¥ = (¢t — 1) is

grad[J; ()] == = —BT(})[Y(t) — B(t)9] € R™. (11)

grad[J; ({9(15 —1))] = grad[J: (9 ‘19 d(-1)

=—2" ()Y (1) + @ (1) B()D(t — 1)
=—[&(t) — R(H)D(t —1)]. (12)
Minimizing .J; (¢) by using the negative gradient search,
Dt ):{9(t —1) — p(t)grad[ 1y (D(t - 1))]

=9(t = 1) + p(t)[(t) — R()D(t - 1)]
[T — ()Rt — 1) + p()&(1), (13)
where 1(t) < 0 is a step-size. To ensure the convergence of 9(t), all the eigenvalues of matrix

[I,, — p(t)R(t)] must be in the unit circle, this is to say u(t) should satisfy —1I,, < I,, — u(t)R(t) <
I,,, so a reasonable choice of p(t) is to satisfy

2
1) < s = 2Amax R()]. (14)
PRI 0)
To reduce the complexity of the calculation, an alternative way for p(t) is to take
2
t) < = 2{tr[R(t)]} " 15
H(0) < oy = 20 {RO) (1)

Let u(t) := %, r(t) == tr[R(t)] = r(t — 1) + [l (t)||?, r(0) = 1. Combining (9)—(15) constructs
the following recursive relationships:

N N 1 “
I(t)=9(t—1)+ @[E(t) — R(t)9(t — 1)]. (16)
Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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PARAMETER ESTIMATION FOR HAMMERSTEIN NONLINEAR MODELS 5

Equation (16) is unable to determine the parameter estimate f?(t) because the information vector
¢(t) includes the unknown entries such as z(t — i) and @(¢t — ¢). To overcome this problem, an
auxiliary model is constructed to improve the parameter estimation algorithm and address the issue
of unmeasured intermediate variables. Specifically, based on equation (6), the following auxiliary
model is constructed:

0, (17)
(18)

/—\
=
1l
~

=
—~
~~
~—
o>
—~
~+
~—

where a(t), b(t) and ¢&(t) are the parameter estimates of a, b and ¢ at time ¢, respec-
ively. @u(t)i=[an(t— D —au(t = 2-s:~aglt = no)! € R, fu(t) =t = D).l
2), - s 1a(t — )] € R, and p(t) = [@1(8), @h(t), £ (D] € R,

From the above derivation, we can obtain the key term separation auxiliary model recursive
gradient (KT-AM-RG) algorithm:

IO =Bt —1) + o [E) ~ RO - 1), (19)
r(t)=r(t—1)+[e®)]? (20)
E()=¢&(t— 1)+ @()y(t) e R, 1)
R(t)=R(t— 1)+ p(t)@' (1) € R™", (22)
@(t) = [@a(t), @ (1), FT ()" €R™,  ni=ng+mny+m, (23)
@o(t) = [xa(t = 1), —wa(t = 2), -+, —za(t — na)]" € R™, (24)
Py(t) = [Ua(t — 1), U0 (t = 2), -+, Ua(t —m)]" € R™, (25)
F@) =[fr(u(t), f2(u(t)), -, fm(u(t))]" € R™, (26)
ua(t) = F(t)e(t), 27
za(t) = @ (t)alt) + @y (t)b(t) + ta(t), (28)
D) = [a" (). b (), & ()", (29)

The KT-AM-RG algorithm involves the following steps:

1. Setall variables be zero when ¢ < 0, and set the data length L and the basis function f;(x). Let
t =1 and set the initial values: 9(0) = 1,,/po, £4(0) = 1/po, @a(0) = 1/po, £(0) = 1,,/po
and R(O) = In/po, Po = 106.

2. Collect the observation data u(t) and y(t), and construct the sub-information vector @, (t),

@, (t) and f(t) using (24)—(26). From ¢(t) using (23).

Compute the step-size r(t) by (20), the vector £(t) by (21), the matrix R(t) by (22).

Update the estimation vector 9(t) using (19) and extract a(t), b(t), and é(t) from (29).

Compute the outputs @, (¢) and z,(t) of the auxiliary models by using (27)—(28).

Compare ¢ with L: if ¢t < L, increase ¢ by 1 and go to Step 2; otherwise terminate this

procedure, and output the estimation vector @(L)

Al

3.2. KT-AM-2S-RG algorithm

Next, to further reduce the computational burden, the model (8) is decomposed into two or three
sub-models for identification using hierarchical identification principle.

According to Equations (7), one combines the linear partial parameter vectors a and b. Then
model (8) can be equivalently expressed as

y(t) = Y110 + £ (t)e + v(t), (30)

—— a ni P Soa(t) n1 P
0._M ER™, (t) = [%(t)] ER™, ny:i=ng+ . 31)
Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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6 L.LV, W. SUN, J. PAN

For the above identification model (30), define two intermediate variables:

yi(t) =y(t) - f (e eR, (32)

y2(t) :=y(t) — " (t)0 € R. (33)
Equation (30) can be decomposed into the following two fictitious subsystems:

yi(t) =" ()0 + (1), (34)

ya(t) = 1 (t)e +v(t). (35)

Thus, the key term separation two-stage identification model in (34)—(35) can be obtained. Define
two criterion functions:

t

5(0):= 23 (i) ~ ¥ (6P

Define the stacked output vectors and the stacked information matrices as

Yi(t):=[y(1),31(2),513), - ;@] R,
Yo(t) = [12(1), 42(2), 52(3), -+ 3 (8)]" € R,
(1) :=[(1),9(2),%(3), -, ()] € R,
F(t):=[f(1), £(2), F(3), -+ . fF(1)]" € R

Hence, we have
1

J2(60) =5 Y1(t) - ®(1)6),
1

J3(c) =S¥ () ~ F(t)c|?.

Define the following recursive relationship:

£(1): =T ()Y 1(t) =& (t — 1) +(t)yi(t) € R™, (36)
Ri(t):=W"(1)®(t) = Ry(t — 1) + ¥(t)yp" (t) € R™*™, (37
&o(t) = F' ()Y o(t) = & (t — 1) + f(t)y2(t) € R™, (38)
Ry(t):=F'(t)F(t) = Ry(t — 1) + f(t) f'(t) € R™*™. (39)

Let O(t) € R™t and é(t) € R™ be the estimates of 6 and c at time ¢. Minimizing .J5(8) and J5(c)
lead to the following recursive relations:

0() = 0t ~1) — —serad[A(B(t — 1))

= (= 1)+ s l6a(0) — Ra(0(t — 1) (40)
ri(t):=ri(t =1+ lp@))?  r1(0) =1, (41)
e(t) = e(t—1) — %(t)grad[Jg(é(t — 1)

= 2t = 1)+ s lx() — Ra(0)e(t — 1) “2)
ra(t) :=ra(t = 1) + | F(O)]?. r2(0) = 1. (43)

Unluckily, equations (40)—(43) cannot calculate the estimates 6(t) and &(t), as these equations
involve the unmeasured terms z (¢ — ) and @(t — ¢). We adopt the auxiliary model identification idea

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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PARAMETER ESTIMATION FOR HAMMERSTEIN NONLINEAR MODELS 7

to solve this problem. Replacing these unknown terms with their corresponding estimates x,(t — ¢)
and @, (t — ) based on the auxiliary model. From (17), we can compute the output z,(t) of the
auxiliary model by a,(t) = 9 (1)8(t) + FT(D)&(t). (1) := (@1 (1), PL (D] € Rt

Substituting the vector ¥ (t) in (40)—(43) with its estimate t(t), we can derive a key term
separation auxiliary model two-stage recursive gradient (KT-AM-2S-RG) algorithm:

b(t)=6(t -1+ )[ €1(t) — Ra(H)0(t — 1)), (44)
ri(t)=r(t—1) + [l 45)
§)=¢&@-1)+ A( )y (t)
=& (t— 1)+ P(t)y(t) — £ (et — 1)), (46)
Ri(t)=Ry(t— 1) + () (1) € R™*™, 7)
o(t) = e(t — 1) + 1”[ () — Ra(t)e(t — 1), (48)
ra(t) =ra(t — 1) + [ F ()7, (49)
52@) 252( 1) (t)y ( )
—&(t— 1)+ F(O[y() — P (HB(t —1)] € R™, (50)
Ry(t) = Ro(t — 1) + f(1) f'(t) e R™*™, (51)
P(t) = [—za(t — 1), , —2a(t — ng), Ua(t — 1), , Ua(t —np)]" € R™, (52)
F@)=[fr(u®), f2(ult)), -, fm(u(t))]", € R™, (53)
U (t) = fT(t)e(t), (54)
za(t) =9 (DB(E) + Tal?). (55)

The KT-AM-2S-RG algorithm involves the following steps:

1. Setall variables be zero when ¢ < 0, and set the data length L and the basis function f;(x). Let
¢ = 1 and set the initial values: 8(0) = 1,,, /po, 24(0) = 1/po, ia(0) = 1/po, &€, (0) = 1., /po,
R1(0) = I,,, /po, €5(0) = 1,,,/po, and R»(0) = I, /po, po = 10°.

2. Collect the observation data u(¢) and y(t), and construct the sub-information vector @, (),

and f(¢) using (52)—(53).

Compute &,(t) and R4 (t) by (46)—(47). Compute &,(t) and Rs(t) by (50)—(51).

4. Compute the step-size 71 (t) and r5(t) by (45) and (49). Update the estimation vectors 0(t)

and ¢(t) using (44) and (48).

Compute the outputs u,(t) and z,(t) of the auxiliary models by (54)—(55).

6. compare ¢t with L: if t < L, increase ¢ by 1 and go to Step 2; otherwise terminate this
procedure, and obtain the §(L) and &(L).

98]

hd

3.3. KT-AM-3S-RG algorithm

According to the identification model in (5)—(7), introduce three intermediate variables:

Ya(t) :=y(t) — pp(t)b — f1(H)c € R, (56)

() =y(t) — pa(t)a— f1(t)e €R, (57)

Ye(t) :=y(t) — pa(t)a — @y (t)b € R. (58)
Equation (7) can be decomposed into the following three fictitious subsystems:

Ya(t) = @a(t)a + v(t), (59)

Yb(t) = @y ()b + v(t), (60)

ve(t) = £ (e +v(t). (61)
Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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This is a three-stage identification model based on the key terms separation. Define the stacked
output vectors and the stacked information matrices,

Ya(t) = [Ya(1),4a(2),4a(3), -, ya(t)]" € R,
Yo (t) = [y(1), 16(2), 6 (3), -+ ()] € R,
Yo(t) = [ye(1), 4e(2), 5e(3), -+ ()] € R,
P0(t) = [Pa(1), a(2), u(3), - o, ()] € RPN,
By (t) = [0y (1), 04(2), 5(3), -+ L@y (1)]" € R,
F(t):=[f(1), £(2), f(3), - . fF(O)]" € R™™.

For the subsystems in (59)—(61), one defines three criterion functions:
Jila):= [V ult) ~ @a(t)al,
J5(b) = 31Y3(0) — @u(0)0]*
Jo(e)i= 1Y elt) ~ Flt)el”.

Define the following recursive relationship:

€a(1) = @, ()Y a(t) = £,(t — 1) + pu (t)ya(t) € R, (62)
Ry(t) = @, (t)Pa(t) = Ra(t — 1) + @, () (t) € R, (63)
€(1) =Py ()Y (1) = §,(t — 1) + @y (D (t) € R™, (64)
Ry(t) := @, (t)®s(t) = Ro(t — 1) + @ (1) (t) € R™ X", (65)
E.(t):=F ()Y c(t) = £.(t — 1) + f(t)ye(t) € R™, (66)
R.(t):= F'(t)F(t) = R(t — 1) + f(t)f'(t) € R™™. (67)
Let a(t), b(t) and &(t) be the estimates of the parameter vectors a, b and ¢ at time ¢. Minimizing
Jy(a), Js5(b) and Jg(c) by using the negative gradient search, we have
a(t) = alt ~1) ~ —samad{Ji(a(t ~ 1)
=a(t = 1)+ —[€,(0) - Bullalt — 1) (68)
b(1) = bt — 1) ~ —gradlJs (b(t — 1))
b(t)
= b(t— 1)+ < [6,(0) ~ Ry()b(t — 1) (69)
Tb(t)
elt) = et — 1) = —semad{o(e(t ~ 1)
=t = 1)+ 60— Rl — 1), (70
where 1/7,(t), 1/r(t) and 1/r.(t) are the step-size and satisfy
ra(t)=ra(t = 1) + [ea @17 ,7a(0) =1, (71)
(1) :=ro(t = 1) + eI m(0) =1, (72)
re(t) =re(t =)+ [FOI*  re(0)=1,. (73)

However, similar problems arise. The vectors ¢, (t) and ¢, (¢) contain the unmeasured terms
z(t — i) and u(t — 7). Equations (68)—(73) cannot be executed directly. Using the similar approach
as in KT-AM-RG algorithm, replace the unknown z(t —4) and @(¢t —¢) with their estimates
2o (t — i) and @, (¢t — %) based on the auxiliary model identification idea.

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
Prepared using acsauth.cls DOI: 10.1002/acs



PARAMETER ESTIMATION FOR HAMMERSTEIN NONLINEAR MODELS 9

Replacing ¢, (t) and ;(t) in (68)—(73) with their estimate @, (¢) and @, (t), we can derive the
key term separation auxiliary model three-stage recursive gradient (KT-AM-3S-RG) algorithm:

a(t)=alt—1)+ ﬁ[m) ~ Ru(Malt - 1)), (74)
ra(t) =7ra(t — 1) + @, (1)1, (75)
E.(t) =&, (t— 1)+ @, ()[y(t) — gy ()b(t — 1) — F(t)e(t — 1)] € R™, (76)
Ro(t) = Ra(t — 1) + @, ()P (1) € R ", (77)
b(t) = b(t — 1) + s I64(1) — R0t~ 1), (78)
ro(t) =rp(t — 1) + (|25 ()%, (79)
& (1) =&, (t — 1) + @, ()[y(t) — @a(t)alt — 1) — fT(t)e(t —1)] € R™, (80)
Ry(t) = Ry(t — 1) + sob(t) y(t) € R””"b (81)
et)=e(t—1)+ et )[éc(t) R.(t)e(t — 1)), (82)
re(t) =re(t = 1) + || F (D), (83)
E(t) =&t — 1)+ F(O)[y(t) — pr(t)a(t — 1) — @y (t)b(t — 1)] € R™, (84)
R.(t)=R.(t—1)+ f(t)f'(t) € R’”Xm (85)
Po(t) = [—a(t — 1), —wa(t — 2), -+, —2a(t — na)|" € R™, (86)
Py(t) = [ta(t — 1), Ua(t = 2), -+, Ua(t —mp)]" € R™, (87)
@) =1f1(u®)), f2(u(t),- -, fm(u(t)]" € R™, (88)
ta(t) = F(1)e(t), (89)
za(t) = @y (t)alt) + @y (£)b(t) + ta(t). (90)

The KT-AM-3S-RG algorithm involves the following steps:

1. Set all variables be zero when ¢ < 0, and set the data length L and the basis function f; (x). Let
¢ = 1 and set the initial values: 9(0) = 1,,/po, £4(0) = 1/po, @a(0) = 1/po, £,(0) = 1,., /po.
R.(0) :6 I, /po. &/(0) =14, /po, Ry(0) = I, /po, £€.(0) = 1y /po, and R.(0) = I, /po,
Po = 10°.

2. Collect the observation data u(t) and y(t), and construct the sub-information vector @, (t),
() and £(t) by (86)~(88).

3. Compute &,(t) and R, (t) by (76)—(77). Compute &,(¢) and Ry(t) by (80)—(81). Compute
£.(t) and R.(t) by (84)—(85).

4. Compute the step-size ra( ), rp(t) and r.(t) by (75), (79) and (83). Update the parameter

estimation vectors a(t), b(t) and ¢(t) using (74), (78) and (82).

Compute the outputs @, (¢) and z,(t) of the auxiliary models by using (89)—(90).

6. Compare t with L: if ¢ < L, increase ¢t by 1 and go to Step 2; otherwise terminate this
procedure, and obtain the estimates a (L), b(L) and &(L).

e

4. CALCULATION ANALYSIS

The efficiency of the algorithm depends on its complexity, which can be measured by the
computational burden. The computational burden of an algorithm can be evaluated by counting the
number of floating-point operations, which is the sum of the number of multiplication and addition
operations (note: division is considered as multiplication, and subtraction is considered as addition).

The computational burden of the KT-AM-RG, KT-AM-2S-RG, and KT-AM-3S-RG algorithms
at each recursive calculation is shown in Tables I-III.

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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Table I. Computational burden of the KT-AM-RG algorithm

Expressions Multiplications Additions
D) = Ot — 1) + [£(t) — R()O(t — 1)]/r(¢) n?+n n?+n
r(t) = r(t — 1) + [ @(0)]2 n n
£(t) = &(t — 1) + p(Dy(®) n n
R(t) = R(t—1) + @)@ (1) n? n?
@ (t) = Fr(t)e(t) m m—1
za(t) = GL(1)a(t) + @p (£)b(t) + Ta(t) na + 1 na +mp
Total flops Ny :=4n?2 +8n—1
Table II. Computational burden of the KT-AM-2S-RG algorithm
Expressions Multiplications Additions
Ot) =6(t —1) +[&,(t) — Ri(£)0(t — 1)]/r1(2) n? +n1 n? +nq
ri(t) =ri(t—1) + [l ()]? ni n
£1(t) = &1(t = 1) + @) [y(t) — FT ()&t — 1) ni+m n1+m
Ri(t) = Ri(t — 1) + %19 (t) n? n2
e(t) =e(t—1)+ [€5(t) — Ra(t)e(t — 1)]/ra(t) m2+m m2 +m
r2(t) = r2(t — 1) + [ F (1) m m
€2(t) = &t — 1) + FO)ly(®) — %' (HO(t - 1) ni+m ni+m
Ry(t) = Ra(t = 1) + F (1) 7 (1) m? m?
a(t) = £ (1)e(t) m m—1
za(t) =% ()8() + Ta(?) n n
Total flops Ny :=4n? +4m? + 10n; + 10m — 1
Table III. Computational burden of the KT-AM-3S-RG algorithm
Expressions Multiplications Additions
a(t) = a(t — 1) + [€,(t) — Ra(t)a(t — 1)]/ra(t) nZ +nq n2 +na
ra(t) = ra(t —1) + (1@, (B Na Na
%](t) =&,(t= 1) + @, (1) — e (1)b(t — 1) — FT(D)e(t ny, +m ny +m
Ra(t) = Ra(t — 1) + @, (1)@a (1) n; n;
b(t) = b(t — 1) + [&,(t) — Ry(8)b(t — 1)]/ry(t) ng +mny ng +mny
rp(t) = ro(t — 1) + l|@y (8)]? np np
%b](t) =&t = 1)+ @, ()y(t) — @a(v)alt — 1) — fT(1)e(t - na +m na +m
Ry(t) = Ry(t — 1) + @, (D95 (1) np np
&t) =&t —1) + [£.(t) — Re(t)&(t — 1)]/rc(t) m2+m m2 +m
re(t) =re(t —1) + | F ()7 m m
(1) = €.(t — 1) + F(Dy(t) — @a(t)alt — 1) — @ (1)b(t — 1)] Na + np Na + N
Rc(t) = Re(t — 1) + F(t) f7 (1) m? m?
tq(t) = fT(t)e(t) m m—1
za(t) = GE(1)a(t) + @p (1)b(t) + Ta(t) na +mp na + 1
Total flops N3 :=4nZ +4n? +4m? + 10n — 1

From Tables I to III, the computational efficiencies of the KT-AM-RG, KT-AM-2S-RG, and KT-

AM-3S-RG algorithms are
Ny :=4n? +8n—1,

Copyright © 2023 John Wiley & Sons, Ltd.
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Ny :=4n? +4m? + 10n; 4+ 10m — 1
= 4n? +4m? +10n — 1,

N3 :=4n? +4n? 4+ 4m? + 10(n, 4+ ny +m) — 1
= 4n2 4+ 4ni +4m? + 10n — 1.

When n,, np, m > 1, the difference in computational burden between the three algorithms is,

Ni — No=4n? +8n — 1 — (4n3 4+ 4m? + 10n — 1)
=4n? —4n? —4m? — 2n
=8nim —2(ny +m) >0,
Ny — Ny =4n? +4m? + 10n — 1 — (4n2 + 4n} + 4m? +10n — 1)
=4n? — 4n? — 4n}
=8ngnp > 0.
Obviously, N1 > Ny > N3. To highlight the differences between each algorithm more clearly, we
present a specific numerical comparison below. Assuming n, = 10, n; = 10, m = 10, we obtain
N7 = 3839, Ny = 2299, and N3 = 1499. As the system dimension increases, this gap becomes more

pronounced, indicating that the computational efficiency of the KT-AM-3S-RG algorithm is superior
to that of the KT-AM-RG and KT-AM-2S-RG algorithms.

5. SIMULATION RESULTS

The following H-OE system is used for the simulation,
B(z)
() = () + o)
Az)=14a1z7 ' +az2z7? =1+ 04027 — 0.56272,
B(2)=by+ bz 4+ byz7? =1-0.322""1 —0.26272,
a(t) = f(u(t)) = cru(t) + cou?(t) + csu®(t) = —3.35u(t) — 1.86u>(t) + 2.36u>(t),
9= [al, as, bl7 bg, C1,C2, Cg]T = [040, —0.56, —0.32, —0.26, —3.35, —186, 236]T,

where {u(t)} is taken as an independent persistent excitation signal sequence with zero mean and
unit variance, and {v(¢)} is a white noise with zero mean and variance o = 0.10% and 03 = 0.602,
respectively. Set the data length L. = 3000 and apply the proposed algorithms to estimate the
parameters of this example system. The parameter estimates and errors & := ||9(t) — 9| /|9 is
shown in Tables IV-VI, the parameter estimation errors versus ¢ are plotted in Figures 2-3.

From this simulation, some conclusions can be obtained as follow.

* The parameter estimates of all three methods are getting closer to the true values with ¢
increasing. Hence, the proposed recursive algorithms are effective for this model.

¢ The KT-AM-3S-RG algorithm has a higher estimation accuracy compared to the other two
algorithms under the same simulation conditions.

* It can be observed that the estimation accuracies of KT-AM-2S-RG and KT-AM-3S-RG
algorithms are similar when the data length is large. The accuracy of the parameter estimates
from the proposed algorithms improves with decreasing noise levels.

6. CONCLUSION
This paper investigates the parameter estimation of the Hammerstein output-error systems. To
achieve this, we introduce the KT-AM-RG algorithm, which is derived from the key term separation

technique. The presented KT-AM-2S-RG and KT-AM-3S-RG algorithms utilize the hierarchical

Copyright © 2023 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2023)
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Table IV. The KT-AM-RG estimates and errors under different o2

o2 t ai as by bs c1 Co c3 0 (%)

0.10> 100 0.48257 -0.62631 -0.35853 -0.22114 -0.25581 -1.61125 0.82878 75.76551
200 0.48015 -0.50028 -0.53214 -0.09344 -0.75329 -2.00215 1.13486 63.20271
500 0.38954 -0.52346 -0.39593 -0.25366 -1.45364 -2.07173 1.45585 46.22993
1000 0.45127 -0.50168 -0.29253 -0.26345 -2.18688 -1.95730 1.81566 28.23173
2000 0.50813 -0.46041 -0.23473 -0.25066 -2.79771 -1.91106 2.10294 13.88215
3000 0.50577 -0.45718 -0.23232 -0.24105 -3.07824 -1.88478 2.23070 7.60945

0.602 100 0.36319 -0.57269 -0.41838 -0.16995 -0.15748 -1.66081 0.72776 78.61923
200 0.33698 -0.53620 -0.53421 -0.19697 -0.72051 -2.05058 0.99673 65.12947
500 0.34722 -0.55723 -0.43802 -0.26496 -1.38651 -2.17678 1.38932 48.49767
1000 0.44141 -0.51119 -0.29352 -0.26912 -2.12777 -1.99574 1.77370 29.84273
2000 0.51372 -0.45581 -0.22587 -0.25261 -2.73874 -1.92828 2.06969 15.39589
3000 0.51393 -0.44967 -0.22507 -0.23896 -3.03344 -1.89765 2.20183 8.78473

True values 0.40000 -0.56000 -0.32000 -0.26000 -3.35000 -1.86000 2.23600

Table V. The KT-AM-2S-RG estimates and errors under different o2

0'2 t aq a9 bl b2 C1 C2 C3 6 (%)

0.102 100 0.27749 -0.74607 -0.64188 -0.10531 -2.75337 -1.80724 2.03452 17.52649
200 0.20296 -0.73220 -0.59708 -0.17639 -3.45427 -1.83547 2.40786 8.91333
500 0.20733 -0.72826 -0.52240 -0.26039 -3.41853 -1.90508 2.38778 7.38306
1000 0.27536 -0.67744 -0.44163 -0.27680 -3.37987 -1.90557 2.37073 4.76719
2000 0.34716 -0.61073 -0.36937 -0.27282 -3.36507 -1.89964 2.36451 2.16415
3000 0.37626 -0.58262 -0.34187 -0.26799 -3.35871 -1.89461 2.36119 1.17656

0.602 100 0.24326 -0.82164 -0.63344 -0.19643 -2.84984 -1.93404 2.04801 16.19865
200 0.14341 -0.80328 -0.62993 -0.22796 -3.46706 -2.02361 2.43019 11.31459
500 0.15107 -0.78176 -0.54956 -0.29944 -3.51319 -2.00566 2.44582 10.27505
1000 0.25540 -0.69918 -0.43912 -0.30646 -3.38958 -1.97173 2.38335 5.83822
2000 0.33209 -0.62736 -0.37112 -0.29402 -3.34867 -1.94556 2.36222 3.11278
3000 0.35722 -0.60251 -0.35270 -0.28343 -3.34085 -1.93205 2.35231 2.25115

True values 0.40000 -0.56000 -0.32000 -0.26000 -3.35000 -1.86000 2.23600

identification principle to reduce the computational burden. In terms of computation complexity,
both the KT-AM-2S-RG and KT-AM-3S-RG algorithms have a lower computationally intensive
than the KT-AM-RG algorithm. The effectiveness of the presented methods have been verified by
the simulation, and the accuracy of parameter estimation can be improved by using hierarchical
identification principle.
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Table VI. The KT-AM-3S-RG estimates and errors under different o2

02 t aq a9 bl b2 C1 C2 C3 1) (%)

0.102 100 0.49325 -0.48924 -0.49124 0.05491 -2.59528 -1.63895 2.05047 20.24565
200 0.44988 -0.51738 -0.36682 -0.12323 -3.30638 -1.72877 2.34487 4.61767
500 0.41684 -0.51917 -0.30659 -0.21204 -3.40239 -1.75340 2.38358  3.02299
1000 0.42725 -0.52922 -0.30440 -0.22352 -3.39186 -1.77508 2.37886 2.45401
2000 0.42930 -0.52851 -0.30083 -0.23466 -3.38060 -1.80017 2.37807 1.91998
3000 0.43000 -0.52950 -0.29875 -0.23904 -3.36043 -1.81104 2.36684 1.58866

0.60> 100 0.41111 -0.58119 -0.54909 0.03876 -2.15320 -1.57373 1.93905 29.62455
200 0.37582 -0.59711 -0.45592 -0.10956 -2.87220 -1.72822 2.22225 12.13515
500 0.33784 -0.58609 -0.37828 -0.23092 -3.22949 -1.74034 2.34183 4.26210
1000 0.35098 -0.60039 -0.37416 -0.23753 -3.29102 -1.76734 2.34992 3.06570
2000 0.35514 -0.59968 -0.37227 -0.24876 -3.31166 -1.80397 2.35952 2.30006
3000 0.35660 -0.60017 -0.37148 -0.25088 -3.30563 -1.81860 2.34625 2.19873

True values 0.40000 -0.56000 -0.32000 -0.26000 -3.35000 -1.86000 2.23600
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Figure 2. The estimation errors J versus ¢ (a2=0.102).
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