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Abstract

The field of medicine is witnessing an exponential growth of interest in Artificial Intelligence (AI), which enables new research
questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and
deliver clinical value remain rare, especially in the field of allergy and immunology. This narrative review provides a fundamental
understanding of the core concepts of Al and critically discusses its limitations and open challenges, such as data availability
and bias, along with potential directions to surmount them. We provide a conceptual framework to structure Al applications
within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern
supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on
guidelines for good Al practice to guide readers in applying it effectively and safely, along with prospects of field advancement
and initiatives to increase clinical impact. We anticipate that Al can further deepen our knowledge of disease mechanisms and

contribute to precision medicine in allergy.
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Abstract

The field of medicine is witnessing an exponential growth of interest in Artificial Intelligence (AI), which
enables new research questions and the analysis of larger and new types of data. Nevertheless, applications
that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy and
immunology. This narrative review provides a fundamental understanding of the core concepts of Al and
critically discusses its limitations and open challenges, such as data availability and bias, along with potential
directions to surmount them. We provide a conceptual framework to structure Al applications within this
field and discuss forefront case examples. Most of these applications of Al and machine learning in allergy
concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping.
A perspective is shared on guidelines for good Al practice to guide readers in applying it effectively and
safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate
that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in
allergy.
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Introduction

As of February 2023, the US Food & Drug Administration (FDA) has approved 521 medical applications
that utilize Artificial Intelligence (AI) and Machine Learning (ML). Most of these (75%) are in radiology,
followed by cardiology, hematology and neurology. Similar trends are observed in Conformité Européene
(CE)-marked medical devices incorporating Al within the European Union. Currently, no registered Al and
ML-based applications are being utilized in the field of allergy and immunology. One can therefore question if
this field is missing out on new research opportunities and clinical applications either because of insufficient
access to Al applications or a lack of awareness of potential applications. However, given the rapid pace
of technological advances, it can be anticipated that AI and ML algorithms will be increasingly applied in
allergy and immunology soon.

Over the past decade, medicine has witnessed an exponential growth of interest in Al and the yearly num-
ber of scientific articles on AI has increased tenfold since 2012. This trend is fueled by the explosion of
(bio)medical data, including multi-omics, image data, and digital electronic health records (EHRs), along
with advancements in computing power. These developments have paved the way for advanced analytical
approaches to address new research questions on large-scale datasets. Traditional analytical techniques are
no longer adequate to handle such data complexity, volume, and structure. The introduction of accessible
software and methodological advancements in Al have further promoted the use of Al in the (bio-)medical
field. Most importantly, MLL and AI can identify complex patterns in vast amounts of data, such as images,
text, or audio and deliver superior predictive power, often surpassing traditional statistical methods.

This review provides a fundamental understanding of ML and AI’s core concepts. A framework is presented
to structure the broad umbrella term Al, and an overview of several state-of-the-art applications of Al in
medicine and allergy and immunology, specifically, is provided. The focus is on applications that preferably
adhere to any, and ideally multiple, of the following conditions: (1) are externally or prospectively validated,
(2) demonstrate a positive effect on clinically relevant patient outcomes, (3) FDA and/or CE approval, (4)
outperform traditional methods, and (5) answer research questions where traditional analytical techniques
fail. Additionally, we critically discuss the limitations and open challenges of Al applications and share an
outlook on good practices of AI and ML in allergy and immunology.



The fundamentals and terminology of artificial intelligence

Machine learning and deep learning

AT is the discipline in computer science that develops computer systems that can simulate human intelli-
gence and perform tasks that generally require humans (see Glossary for key concepts). This discipline can
be further narrowed down into ML and its subdiscipline deep learning(Figure 1). ML can be described as
an algorithm that learns from data by automatically mapping input data to an output prediction. While
this draws a parallel to traditional regression methods such as ordinary least squares, most machine lear-
ning techniques have the advantage of inherently modeling complex patterns, including non-linearity and
interaction effects. ML concentrates primarily on prediction and finding patterns in vast amounts of data
without making prior assumptions about the distribution of these data. The predictive performance generally
improves when more (high-quality) data is fed to the algorithm.

Insert Figure 1

Over the past years, the ML subfield of deep learning has gained tremendous popularity, as it has yielded
superior results in analyzingunstructured data such as medical images, text data, and audio data. This
technique is based on large artificial neural networks (ANNs). ANNs form networks inspired by the biological
animal brain, consisting of multiple layers of processing units called neurons. Deep learning methods can
detect complex data relationships by automatically compressing data and distilling relevant features in
various levels of abstraction. This makes it different from statistical approaches such as regression methods,
which require explicitly defining independent variables and making assumptions about their relationship to
the outcome variable. Another advantage of deep learning is its ability to continue learning and improve
performance with larger datasets. Besides applications in computer vision, which is the ability to interpret
image data by an AI system, deep learning has also propelled natural language processing (NLP) forward,
which is the capacity of a computer to understand written and spoken human language. We refer to recent,
extensive reviews that cover the subfields of deep learning and its applications in medicine. A state-of-the-art
example is the detection of diabetic retinopathy from retinal images, for which the IDx-DR deep-learning-
based software has been FDA-approved and validated in a clinical setting. Relatedly, deep learning approaches
have outperformed trained physicians in breast cancer detection using imaging data, with currently nine
applications FDA-approved. Some of the latest Al breakthroughs that ignited the general public’s interest
are based on deep learning approaches. These involve generative models that are trained to create new data.
Examples include deep fakes, DALL-E (an OpenAl application that creates figures and art based on written
descriptions), and most recently, ChatGPT, an Al tool that generates highly realistic written text based on
user prompts. Figure S1 displays two Al-generated illustrations of this review’s topic.

Learning strategies

A useful categorization of Al is made on the learning strategy, which defines how an algorithm learns from
data. Three different approaches are distinguished: supervised, unsupervised, and reinforcement learning.
We provide a conceptual framework to structure AI applications based on learning strategy, learning goal,
data modality, and medical domain in Figure 2.

Insert Figure 2
Supervised Machine Learning

Most machine learning applications concern supervised learning , where a model is trained to predict a known
outcome, called the target variable, label or dependent variable. Supervised learning often requires manual
labeling of the target variable. Supervised learning can be applied in almost all medical domains, such as
disease diagnosis, treatment outcome prediction, or classifications in medical imaging. One such example is
the FDA-approved Koios DS for Breast application. This tool supports clinicians in breast cancer diagnosis
by classifying ultrasound images into benign, probably benign, suspicious, and probably malignant. It has



been shown to improve assessment performance compared to the clinician’s assessment in a retrospective
study. Supervised machine learning has also surged in screening, predicting, contact and tracing, and drug
development. For example, during the COVID-19 pandemic, supervised ML was used to predict which
potential drug compounds could be effective against SARS-CoV-2 targets by developing prediction models
for the drug-likeliness of candidate compounds from chemical libraries based on chemical descriptors. Within
supervised ML, gradient-boosted decision tree methods have been among the most popular and performant,
with the leading algorithms being Random Forest, XGBoost, and Light GBM (Glossary).

Unsupervised Machine Learning

In unsupervised learning, the aim is to learn groupings in data or reduce their dimensionality. Contrary to
its supervised counterpart, there are no known labels to predict. Unsupervised learning is often used for
clustering analysis. Here, the algorithm aims to describe the data in a limited number of clusters or groups,
where goodness-of-fit tests determine the most parsimonious model. An example®° is the discovery of asth-
ma phenotypes based on longitudinal wheezing patterns or clinical variables. Techniques for unsupervised
learning are latent class analysis (LCA), k-means clustering, principal component analysis (PCA), and Mul-
tidimensional Scaling (MDS). Recently, also semi-supervised learning has grown in popularity, which aims to
overcome the lack of sufficiently large, labeled datasets and the tedious task of manual labeling. It leverages
a dataset of yet unlabeled data to improve the performance of a model that is initially trained on labeled
data.

Reinforcement learning

Reinforcement learning has recently delivered breakthroughs in the biomedical field. This strategy is charac-
terized by an iterative process that aims to take actions that deliver maximum reward based on a defined
objective function. This is comparable to nature, where animals have learned to interpret signs such as hunger
as negative, whereas satiety after food intake is seen as positive reinforcement. When animals learn how to
behave to gain optimal positive reinforcement, they show reinforcement learning. Applications within medici-
ne have indicated its potential. For example, an “Al Clinician” algorithm has been developed to improve the
treatment of sepsis by suggesting the personalized treatment of intravenous fluids and vasopressors. While
still requiring prospective validation, an independent validation cohort was used to assess this algorithm,
showing that mortality was lowest when clinicians’ treatment policy was close to Al recommended policy
and higher when deviating from it.

Challenges and pitfalls for AI application in medicine

AT is not without pitfalls, and serious challenges must be overcome to deliver its full potential. The most
critical challenges are described below, with potential directions to surmount them. For a more in-depth
discussion of Al’s current most pressing issues, the reader is referred to several excellent reviews.

Data

AT systems and models are as good as the data they learn from. This relates to the data’s (1) quality and
quantity, (2) suitability, and (3) availability. The first challenge refers to data quality and quantity. Low
quality of input data, leading to biased outcomes, is often referred to as the GIGO (‘garbage in garbage out’)
principle. Data quantity also remains challenging, since AI models are extremely ‘data hungry’, especially for
deep learning methods. The availability and quality of data labels are critical, as label inaccuracies directly
impair model reliability. In particular for images, manual labeling of images is time-consuming. Combining
and harmonizing multiple datasets is increasingly used to overcome these data limitations. The use of syn-
thetic data may also help, where additional data is generated by simulating from a known data distribution,
which has been shown to improve model performance. Similarly, in image analysis, data augmentation is often
used to (fictively) increase the data sample size by applying data transformations on existing (non-synthetic



data points). Another strategy to improve model reliability on relatively small datasets is transfer learning ,
especially popular in NLP and image analysis. This technique enables researchers to train a complex model
on relatively small datasets by recalibrating existing parameters of known models.

Data suitability poses a second challenge. Akin to traditional analytical methods, AI approaches need ade-
quate study designs to yield reliable outcomes, from data collection to the appropriate analytical strategy.
Training algorithms based on unsuitable data may lead to biased outcomes. For example, it is increasingly
clear that AT and ML algorithms can engrain racial bias when models are trained using racially imbalanced
data sets.

Data availability may pose a third challenge, as data is often siloed within individual institutions, and cu-
rated, publicly accessible clinical datasets remain rare. The reason for this includes patient privacy, lack of
data-sharing infrastructure, and competition among institutions. In immunology, efforts are being made to
break open silos and democratize datasets. Examples include the National Institutes of Health (NIH)-curated
resources on open-access COVID-19 data, or the European Health Data Space for the safe exchange and
reuse of health data. These developments are aided by novel data sharing and integration approaches, such
as federated learning, where a model is centrally trained while the data are kept locally. Recently Swarm
Learning was introduced, a decentralized machine-learning approach that does not require central coordina-
tion. The researchers demonstrate that the model outperforms individual sites in disease classification while
retaining complete confidentiality.

Explainability

The lack of explainability of Al algorithms hampers clinical implementation. Unlike statistical methods such
as regression, which are inherently explainable, the learned patterns of Al models are more complex, and
their estimated parameters are not directly interpretable (Figure 3).

Insert Figure 3

Deep learning models suffer from this due to their hidden learning behavior and up to billions of parameters.
One recent study made this vividly clear. When researchers trained a model to distinguish COVID-19 patients
with pneumonia from those with other respiratory diseases based on chest radiographs, the algorithm based
its prediction on the printed dates on the radiological images; it found a shortcut and classified all patients
dated since 2020 as COVID-19 cases. Thus, there is a growing demand for ‘white box’ approaches, referring
to methods and models that are easy to explain and interpret. This need is further amplified when the aim
is to bring applications to clinical practice, which has many technical, medical, legal, and ethical dimenions.
The urgent need for explainability has accelerated methodological innovations to ‘open the black box’.
Relevant examples are SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Model-agnostic
Explanations), and CAM (Class Activation Maps). For example, SHAP was recently implemented to describe
the contribution of features selected for inclusion in asthma prediction models. These analytical methods
calculate how each input feature contributes to each prediction, providing detailed insights into the learning
patterns of the AI model.

Validation and generalizability

A structured modeling process is essential in developing an ML prediction model to create a reliable model
and establish confidence in its outcomes. There are many ML algorithms, and it is difficult to tell which will
perform best beforehand. This is called the no-free lunch theorem, which emphasizes the need to develop
and evaluate ML models iteratively. Thus, multiple ML methods should be applied to the data and their
performance compared. Figure 4 depicts the steps to build a supervised learning prediction model for disease
risk. The steps needed for unsupervised learning overlap to a large extent. Skipping or mismanaging these
steps poses a risk to model reliability, for example, by not properly separating the training and validation
data, which may lead to overfitting of the prediction model.



Insert Figure 4.

One of Al’s significant benefits is its ability to scale intelligence at an unprecedented pace. In a time in
which a clinician could diagnose a single patient, an Al system could analyze unlimited number of patients,
at least in theory. However, the same scalability holds for mistakes and faulty diagnoses, and validation is
of the utmost importance to prevent the lack of generalizability of AI models. AI models tend to ‘overfit’
on the training data, which results in a model that works seemingly well on the training population but
poorly predicts future or other patient outcomes, especially in high-dimensional models. One example was
from IBM’s Watson, which recommended unsafe cancer treatments, because it was trained on a sample
size too limited for its dimensionality. For models to be more broadly applicable and generalizable to other
populations, diligent validation and replication (in external datasets) are paramount. Unfortunately, this
is often insufficient or altogether missing, respectively. Even FDA-approved Al applications fall short in
this domain: Only 11/118 FDA applications (up until 2021) reported a validation set of more than 1,000
samples, and only 19/118 reported a multi-reader, multicenter validation study. Site-specific recalibration
or retraining on multiple datasets are solutions to adapt a model to another context, although caution is
required to avoid spurious learning patterns.

Randomized control trials (RCTs) or prospective validations are scarce in medical AI®%81. Most applications
are only tested on retrospective data and have not passed prospective validation in an independent dataset.
New guidelines have been emerging for reporting and evaluating RCTs with an Al intervention component
in the past two years, such as the CONSORT-AI standard and SPIRIT-AI. A systematic review from 2022
reported that none of the 41 assessed RCT's adhered to this standard and suggested that Al applications with
FDA approval do not always prove efficacy. Thus, the clinical utility and safety remain uncertain, providing
a clear direction for future research to confidently implement AI in clinical medicine.

Ethical considerations

AT systems often rely on and are trained on confidential personal data, such as health records, imaging, or
genomic data. The more voluminous these data become, especially with integrating multiple data sources and
unlocking new data sources, the more critical privacy becomes. The EU’s General Data Protection Regulation
(GDPR) already provides a ‘right to explanation’ when decisions are based on “automated processing” such
as Al. There is a complicated relationship between privacy and trust. If the mechanisms of algorithms
remain hidden for privacy reasons, this could also impede trust in the solution and slow down adoption by
patients and clinicians. Furthermore, being overprotective of privacy in data collection, usage, and sharing
can also hinder potential patient benefits from using these data to drive Al solutions for novel diagnostic or
therapeutic options. Novel approaches are emerging that preserve privacy without slowing down innovation,
such as the generation of synthetic data. Rather than (pseudo)-anonymizing samples, Al-generated synthetic
data samples can be used for safe data sharing or even new model development.

While AT systems are not moral agents, their decisions can have ethical consequences. Especially bias and
fairness are two key concepts in this context, and various cases of embedded biases exist in developed models.
The 2021 AT action plan from the FDA, warns that biases in healthcare systems, such as racial or gender
biases, can be inadvertently introduced to algorithms. This will lead to research conclusions and applications
biased toward specific populations while overlooking others. If they are not corrected, this could further
reinforce biases and exacerbate health inequalities experienced by certain underrepresented populations by
excluding them from Al-driven medical innovations. Therefore, researchers need to ensure that the training
sample is diverse and represents any future population to which the AI model will be applied.

While the above risks are important, it is essential to realize that humans are not free from implicit biases. For
instance, cardiologists are trained to recognize symptoms of coronary artery disease more frequently in men,
resulting in underdiagnosis in women. The advantage of data and algorithms is that biases may be detected,
corrected, or prevented. From the study’s outset, during the data collection phase, investigators should strive
for a representative training dataset that resembles the data distribution the algorithm would encounter once



deployed. Before model development, guidelines have been defined to assess the risk of algorithmic bias, such
as the PROBAST tool. Likewise, new techniques for the modeling phase are emerging that can help to
mitigate bias, such as adversarial debiasing. Lastly, dedicated tools have been developed to evaluate the
fairness of algorithms along a variety of fairness definitions, like the open-source Python library AI Fairness
360.

When the above considerations are not managed adequately, an Al system may make mistakes. This raises
the intricate question of (moral) accountability, which becomes increasingly pressing with more clinical ap-
plications in place. However, the traditional notion of accountability is problematic in the context of an Al
system. It is questionable whether a clinician can be held responsible for such a system’s decisions. Further-
more, the system’s complexity can make it infeasible for the clinician, and sometimes even the designer, to
understand precisely why certain decisions are made. Therefore, we anticipate that the introduction of Al in
clinical medicine will first be limited to decision support systems, with the final clinical decision to be made
by the caring physician.

Clinical implementation

Despite exciting showcases, Al has been criticized for underdelivering tangible clinical impact. Translating
solid AI models to effective action remains an open challenge and actual clinical use is still nascent. Recently,
even with the surge of COVID-19-related AI research, the clinical value of AI applications remained limi-
ted. Important challenges for clinical implementation include questionable clinical advantages, inadequate
reporting, and adoption and integration in clinical practices.

Developers of algorithms are also urged to be transparent and complete in their reporting to provide a
fair view of improving patient care. RISE criteria (Regulatory aspects, Interpretability, Interoperability,
Structured Data, and Evidence) can support overcoming major pitfalls in developing AI applications for
clinical practice. Recently, the DECIDE-AI guideline has been introduced as a reporting checklist of Al-
based (early-stage) clinical evaluation of decision support systems. In addition, clinicians and patients must
adapt to working with and trusting new Al systems, and such behavioral change is notoriously hard. There is
a need for (better) AT education for clinicians that will need to adapt to new roles and tools to support them
in their decision-making. To smoothen this transition, integration into the medical education system has been
proposed. The recent American Academy of Asthma, Allergy and Immunology workgroup has underscored a
knowledge and an educational gap in the allergy and immunology field. Furthermore, interoperability of Al
systems is vital to ensure that they can be integrated with existing clinical and technical workflows across
sites and health systems.

Current state of Al in the allergy research field

AT applications within the allergy field can be broadly categorized into three domains: clinical research,
fundamental research, and drug and therapy development (Figure 5).

Insert Figure 5.

Many studies leveraging Al have been published in the research setting. Virtually all applications concern
supervised learning and unsupervised clustering, whereas semi-supervised learning and reinforcement learning
are mainly absent. Overviews of the use of ML in asthma and eczema research over the last seven decades
have recently been published.

Clinical research

Diagnosis of allergic diseases



The diagnosis or classification of allergic disease has been the area in which AI has been applied most, an
exemplary case of supervised learning!?° 19, ML has used a wide range of data sources to improve allergy or
asthma diagnosis: text data from electronic health records (EHRs), sound data of wheezes,image data from
lung CT scans, or large-scale multi-omicsdata. The extraction of relevant clinical features from EHRs using
NLP has successfully diagnosed (childhood) asthma in discovery and replication cohorts. In a study of a US
birth cohort study, Seolet al. (2020) applied an AI algorithm to define asthma using established predictive
and diagnostic criteria in 8196 children. Of all patients that met those criteria, 30% did not have a physician
diagnosis of asthma, signifying the potential for early disease identification and population management with
EHRs.

Additionally, several studies have investigated the potential of omics data for diagnosis. One study developed
an ML model that diagnosed IgE-sensitized allergic disease in 16-year-old children based on nasal cell DNA-
methylation of only three CpG sites. External validation in an independent cohort indicated the prospect
of reproducible epigenetic tests for diagnosis. Alag et al. (2019) pursued a similar approach to diagnosing
food allergy, where neural networks were trained on blood epigenetic markers. The predictive markers were
subsequently associated with a 13-gene profile linked to immune response. This study highlights the potential
of novel diagnostic approaches to food allergy.

ML-based modelling of the component-resolved diagnostic multiplex array data has shown that component-
specific IgE responses to multiple allergenic proteins are functionally coordinated and co-regulated, and
that the networks of interactions are associated with asthma diagnosis and severity. Machine learning has
also been used to predict disease risk or persistence. In a prospective study of 704 children aged 2 to 13
months, unsupervised clustering on 16S rRNA data was used to identify profiles of longitudinal changes
in nasal airway microbiota that were significantly associated with asthma risk at age seven. These results
affirm that the microbiome plays a vital role in the early development of asthma and show promise for
early identification and prevention strategies. In another study, a supervised machine learning model was
able to predict asthma persistence in almost 10,000 patients diagnosed before age 5 for persistence by age
10. The XGBoost algorithm delivered the most robust performance (AUC=0.86), using clinically relevant
features such as the number of (non) asthma-related visits before age five and noninvasive pulse oximetry
data. The study was not independently replicated, which is essential in pursuing clinical support tools.
Kothalawala et al. (2021) used data from birth cohorts to train and validate two predictive models, CAPE
and CAPP, to predict the likelihood of asthma at school-age using predictors from 0-2 and 0-4 years of age,
respectively. Predictive performance was externally validated in the Manchester Asthma and Allergy Study
(MAAS) cohort. Support Vector Machine (SVM) algorithms provided the best performance for both the
CAPE (AUC=0.71) and CAPP (AUC=0.82) models, and both demonstrated good generalisability in the
replication cohort, performing better than previous regression-based models.

AT guided image analysis has been performed to diagnose eczema. One study developed a classifier of ato-
pic dermatitis in multiphoton tomography images, reaching over 97% accuracy through transfer learning.
Highlighted areas of interest in the images could support clinicians in faster diagnosis.

Prediction of asthma exacerbations and hospitalizations Asthma exacerbations are related to increased mor-
bidity, mortality, and healthcare use, yet these are challenging to predict. Several studies have applied ML to
predict exacerbations. In a large study involving EHR data from 60.000 patients, researchers used different
ML techniques in a supervised setup to predict three exacerbation outcomes: oral glucocorticoid bursts,
ED visits, and hospitalization. The study achieved a ROC AUC of 0.88 on the latter outcome, which is
significantly higher than the results of previous studies (AUC of 0.77); this was replicated in an independent
cohort. Important predictors for hospitalization included oral glucocorticoid burst, inhaled corticosteroid,
and blood creatinine, the latter being unexpected. Another study used self-reported daily home monitoring
data of asthma symptoms and peak expiratory flow, which were reduced in dimensionality using PCA and
then fed to various supervised ML methods. The best model achieved a sensitivity of 90% and specificity
of 83%, predicting severe asthma exacerbations on the same day or up to three days in the future. A more
extensively validated example is Asthma-Guidance and Prediction System (a-GPS), an AT tool to optimize



asthma management. A-GPS uses NLP on open text from EHRs to provide clinicians with the most relevant
clinical information. In a randomized control trial, the tool significantly reduced the time for reviewing EHRs
(11.3 to 3.5 min), but no significant change in clinical outcome (i.e., exacerbations) was observed. Sensor
data from an electronic multi-dose dry powder inhaler (eMDPI), such as inhalation volume and duration,
has also been utilized to predict exacerbations with a ROC AUC of 0.83.

Disease management

Medication non-adherence in allergic diseases is common in clinical practice and can negatively impact
disease control. To address this issue, researchers explored ML approaches for disease management and
medication adherence. One such approach involves using ML to provide early warnings for loss of control in
the Asthma Mobile Health Study data of 5,875 patients, containing over 75,000 daily surveys on symptoms
and medicine use, medical history, demographics, location and EuroQol 5D questionnaire. The supervised
classifier obtained an AUC of 0.87, but peak flow readings did not further enhance its performance. External
or prospective validation is strongly needed.

In addition to early warning systems, chatbots have also been proposed to support disease management
by providing personalized advice to patients and tracking medication compliance. One example is KBot, an
early prototype of a chatbot for asthma that utilizes contextual information (such as high pollen triggers) and
NLP for dialogue processing. Al can also leverage the capabilities of wearables and mHealth technologies to
monitor disease outside clinical contexts. A recent study tested a prototype application for real-time counting
of coughs using a deep learning model on ambient sound recorded by mobile phone . This yielded accurate
and real-time cough count with a specificity of 92% and a specificity of 98%. Another study applied ML
to analyze the sounds of asthma inhalers to predict adequate usage and drug actuations. Recorded sound
on mobile devices has also been proposed to monitor lung function in asthmatics. While requiring further
validation, these techniques could be used to develop future telehealth solutions including smartphone-based
applications, which have the potential to aid decision-making and self-monitoring in asthma.

Fundamental research Al can provide insights into disease classification, pathophysiology, and the underlying
biological mechanisms, by clustering large numbers of data points into interpretable patterns.

Heterogeneity and endotype discovery

There is an increasing awareness that allergic diseases (asthma, eczema, rhinitis, food allergy) are umbrella
terms of subtypes characterized by distinct disease mechanisms (endotypes). Developments in ML techni-
ques provide new ways to capture the heterogeneity in longitudinal patterns of the development of distinct
symptoms of allergic diseases in individual patients. For example, childhood wheezing illness has been ex-
tensively investigated using ML approaches to derive more homogenous groups for genetic, mechanistic,
and therapeutic studies. Most studies modelled repeated measurements of wheeze through the life-course
to derive classes. These different symptom patterns may indicate distinct biological mechanisms, and their
discovery may facilitate stratified treatment, but this is not certain (i.e., the classes may not directly trans-
late to endotypes). The derived classes . However, recent studies from the US CREW and UK UNICORN
consortia demonstrated that LCA using binary information on wheezing might classify individuals impreci-
sely, and children with identical wheezing patterns can be assigned to different phenotypes. Recently, a novel
data-driven method suggested a potential way to improve assignment to wheeze “phenotypes”. Repeated
observations of current wheezing were transformed to derive multidimensional indicators of wheezing spells
(reflecting duration, temporal sequencing, and the extent of persistence/recurrence). Clustering these indi-
cators resulted in a structure that was much more robust to data imputation, and with a remarkably high
agreement between cluster assignment of individual children when using complete or imputed data.

Similarly, over the past five years, longitudinal data on eczema was clustered using data-driven approaches.
There were notable differences in the estimated prevalence of each phenotype, and inconsistent associations
with the filaggrin (FLG ) genotype.

Bayesian machine learning approach has been used to model the development of eczema, wheeze, and rhinitis

10



from birth to school-age. The developmental profiles were heterogeneous, and the progression of the symptoms
fitting the atopic march profile was rare among those with atopic comorbidities . The findings revealed eight
latent profiles of symptom development, each with different temporal patterns of their co-manifestation,
and distinct genetic associates. Further studies indicated that atopic march, as initially described, occurs
rarely, that most 2-disease combinations occur by chance, but that there is a very important cluster of
multimorbidity (affecting “8% of the population that have a high disease burden).

Numerous studies have applied ML clustering to identify asthma subtypes too. Different endotypes may have
a specific response to treatment, making this differentiation potentially clinically significant. Using k-means
clustering, researchers identified four distinct clusters of asthma patients in the Severe Asthma Research
Program with different responses to corticosteroids (CS). One cluster involves patients, that despite severe
baseline airflow limitations, have the lowest response to CS with almost no improvement in lung function,
suggesting that this group would benefit from alternative treatment options. The authors also show that the
variables that characterize the clusters robustly predict cluster assignment in an independent test set.

A hypothesis-generating unbiased analysis which included data on lower airway inflammation and infection
from bronchoalveolar lavage in preschool children with severe wheeze revealed four distinct pathophysiolo-
gical clusters of approximately equal size: (1) Atopic; (2) Non-atopic, low infection rate; (3) Non-atopic,
high infection rate; and (4) Non-atopic, low infection rate, no inhaled corticosteroids (ICS), with marked
differences in BAL microbial profiles between the clusters. In a multicenter prospective study, authors used
clustering on integrated clinical, virus, and serum proteome data to identify a cluster in children with bron-
chiolitis with a significantly higher risk of developing asthma by age six. Multi-omics has also been employed
in this domain, such as the novel and open-source method Merged Affinity Network Association Cluste-
ring (MANAclust), which provides an automated pipeline to integrate clinical and omics data. The authors
identified clinically and molecularly distinct asthma clusters that responded differently to treatment, and
substantial heterogeneity in healthy controls. In another recent study, researchers used unsupervised clus-
tering on proteomics data of infants hospitalized with bronchiolitis. They identified two distinct clusters
with dysregulated pathways and a higher risk for developing asthma. ML approaches have also shown uti-
lity for clustering exhaled volatile organic compounds (VOCs) in exhaled breath (breathomics), an exciting
non-invasive biomarker for airway disease sensitive to inflammation.

Pathways and disease mechanismsMulti-omics and system biology are comprehensive approaches expected to
increase insight into the complex biological mechanisms underlying allergic and immunological diseases. The
level of detail of such studies can be increased further using single-cell methods, analyzing gene expression
profiles, chromatin accessibility, CpG methylation, or the proteome in thousands of cells individually'?>:196. A
fully integrated reference atlas has recently been released for the lung, with consensus annotations for 61 cell
types based on data from more than 100 healthy tissue donors. Using a trained model of this fully integrated
healthy lung cell atlas, the dataset was expanded by projection and transfer learning using scArches to a
dataset of more than 2.4 million cells from more than 480 individuals. This illustrates the use of deep learning
in biology, to define cell types and states. This extended Lung Cell Atlas allowed direct comparison of cell
types across datasets based on consensus labels, leading to the identification of disease-associated cell states
common to multiple lung diseases!®7198.

Drug and therapy development and precision medicine Al has the potential to accelerate drug discovery
and development throughout the whole pipeline and contribute to precision medicine. Precision medicine
promises to enable personalized and more effective treatments based on an individual’s genetic variability,
environmental exposures, and lifestyle. We here highlight promising examples for treatment response analysis
and drug repurposing.

Treatment responseln a pediatric cohort, asthma control after six months of medication could be accura-
tely predicted using an AdaBoost classification algorithm, outperforming traditional logistic regression.'®7
Wu et al. (2022) developed a supervised ML model to predict low response to dupilumab in atopic der-
matitis patients. The authors identified various indicators of nonresponse, including a high Quan-Charlson
Comorbidity Index value, a claim for ibuprofen, or no claims for prednisone medication before dupilumab
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initiation. Similar approaches have been pursued to analyze nonresponse to Type 2-directed biologics in
asthma patients.

Drug repurposingArtificial intelligence has been used extensively in drug repurposing to overcome the immen-
se time and investments required for new drug development. Al has been applied for virtual drug screening,
treatment combination optimization, and drug-target interaction predictions. Patrick et al. (2019) developed
a workflow to model drug-disease relationships using unsupervised text analysis and supervised classifica-
tion for cutaneous diseases, including atopic dermatitis. They created word embeddings — a dimensionality
reduction method that creates a lower-dimension projection of high-dimensional text data — from 20 milli-
on abstracts in PubMed. Some of the strongest identified associations were not directly mentioned in any
research article, demonstrating how the analysis of large-scale textual data can unveil novel repurpose op-
portunities. Despite promising results in other medical fields, we identify a research gap in target discovery
and clinical trial optimization applied in the allergy and immunology domain. Also, of over 10,000 clinical
studies related to allergic diseases, we could only identify five with a fundamental role for artificial intelligence
(search ClinicalTrial.gov, performed March 13, 2023).

Future prospects

Successfully translating AI proof of concepts into clinical practice remains pivotal for fully realizing Al’s
impact.

While practical guidelines and best practices are emerging in medical Al, they are not always adhered to and
require frequent reassessment due to the pace at which the Al field is moving forward. When implementing
Al it is strongly recommended to verify available guidelines to ensure applications are reliable and provide
meaningful outcomes. We here propose a set of minimal requirements for good practice in AI (Table 1)
based on published guidelines of the FDA, literature on best-practice model development in biomedicine, or
expert-based checklists for developing and reporting algorithms (e.g., STARD-AI, TRIPOD checklist, and
awaited TRIPOD-AI adaptation).

In the allergy and immunology field, research beyond proofs-of-concept is relatively scarce, let alone meaning-
ful clinical applications. We provide an expert outlook on noteworthy Al trends. Firstly, the ever-increasing
accessibility, automation, and transferability of ML tooling are expected to drive Al adoption further, enab-
ling non-specialized researchers to apply novel techniques. Secondly, we expect an increase in the use of
unstructured data. Innovations such as Al-based image analysis, NLP, and generative Al are at the forefront
of academic efforts in computer science while being underutilized in our field. For clinicians, an Al clinical
assistant akin to readily available ‘home assistants’, could quietly listen in on consults and subsequently sup-
port in documentation in EHRs, diagnosis, and therapy suggestions. Clinical solutions that leverage speech
recognition are entering the market, aiming to improve the clinical workflow and efficiency, although adop-
tion and showcases of tangible impact are still limited. Thirdly, the emerging trend of multi-modal learning
can open new research avenues by integrating multiple data sources and modalities in a singular analytical
approach, hereby creating more holistic models and insights.

The largest future impact from Al is expected when current proofs-of-concept are translated successfully to
clinical practice. The US and the EU are making steps towards developing Al and algorithm regulations, to
facilitate updates and improve privacy, security and transparency.

The developers of algorithms play a role in clinical translation, and clinicians would need to adapt to the
integration of Al within healthcare. While most Al systems are designed as a support mechanism rather
than a replacement, it will change their work and role. Clinician training in the fundamentals of AT is needed
to gain trust in these systems and work with them effectively. One of the common concerns regarding Al
is that these systems will replace humans in their installment. While many studies position their analytical
solution in a head-to-head comparison with humans, most clinical applications are designed as decision-
support tools that strengthen and assist experts in their profession rather than replacing them?!. Lastly, we
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foresee further developments in dynamic learning systems, which continuously evolve based on clinical usage.
Such approaches are rare, and FDA-approved tools are generally ‘locked’, referring to a fixed algorithm state.
The FDA is working on an action plan to better assess and support such applications.

In conclusion, the potential of Al to transform clinical medicine is evident, but the steps from a proof of
concept to clinical applications are not easily made. Innovations from the field of AI can address many
important open questions in allergy; we anticipate that good future utilization of AI (Table 1) will deepen
our knowledge of disease mechanisms and contribute to precision medicine in allergy.
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Glossary

TERM

DEFINITION

Artificial neural network (ANN)
Convolutional neural network (CNN) Class of neural networks that is charactericed by convolution filters that slide over

Decision tree

Technique that is build up of a network of interconnected nodes (neurons) that pr

Among the most popular ML algorithms that learns to split data on certain condi

Generative adverserial network (GAN) Class of deep neural networks for the generation of new data samples. GANs has |

Gradient boosting

Machine learning model type that uses an ensemble of weak prediction models (of;

k-means Unsupervised clustering method that aims to partition observations into k clusters
Light GBM Popular ML algorithm of relatively recent origin (2016), similar performance to X
Natural language processing (NLP) The discipline in Al involved in the understanding of written and spoken human I:
Overfitting A model that captures the training data too closely, hereby hindering generalizatic
Principal component analysis (PCA) Dimensionaliry reduction technique that uses linear transformation to map data t

Random forest

Support vector machine (SVM)

Tabular data
Transfer learning
Unstructured data
XGBoost

Popular ML algorithm that builds an ensemble of decision trees, improving on the
Supervised model that aims to find the optimal hyperplane that best seperates dif
Data that is organized in a table with rows and column

Technique to improve model learning by leveraging knowledge gained on a related
Data that has an internal structure but one that is not represented in a row-colun
Popular ML algorithm that uses gradient boosting and builds decision trees iterat

Table 1. Guidelines for good AI and ML usage.

CATEGORY

GUIDING PRINCIPLE

Purpose & relevance

Model development

Replicability

Explainability

System design & usage

P1.
P2.
P3.

M1.
M2.
M3.
M4.
R1.
R2.
R3.

El.
E2.
S1.

Disclose which clinical problem the model addresses and how it fits in a clinical workflow
Collect modeling data in a consistent, clinically relevant and generalizable manner that ali
Benchmark performance to existing clinical standards of care or previous Al studies or pre
Design a conceptual model with a definition of the predicted outcome and its presumed re
Safeguard appropriate separation between training, validation, and test datasets

Ensure proper documentation and execution of model optimization steps

Determine the evaluation procedure, metrics and rationale up-front, before starting the m
Evaluate model performance in a prospective study, randomized trial, or at least an indep
Perform sensitivity and robustness checks to assess whether the system is impartial to cha
Disclose data preprocessing and the way in which data quality is assessed and ensured
Determine and provide appropriate levels of interpetability, depending on use case and use
Leverage interpretability toolkits and libraries for black box models

Focus on multi-displinary collaboration during the full AI solution lifecyle
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CATEGORY GUIDING PRINCIPLE

S2. Invest in the instruction of users on how to interact with the system and predictions
S3. Set up monitoring processes to track technical and analytical performance
S4. Set up a feedback flow to facilitate iterative system improvement
Risks & ethics R1. Define and evaluate the ethical considerations of the system, e.g. algorithmic fairness
R2. Assess the potential risks involved in the system and outline approach to manage and mit

Caption Table 1. Guidelines for good AI and ML usage. Best practices are coherent with existing
frameworks, where the overlap is annotated with Roman numbers as I - CONSORT-AI; II - FUTURE-AI,
III - DECIDE-AT; IV - TRIPOD; V - TRIPOD-AI (in development); VI - STARD-AI (in development); VII
- MI-CLAIM; VIIT - MINIMAR; IX - FDA checklist; X - RISE criteria. Reporting guidelines (I-VIII) are
generally broader than just the ATl and ML component, with substantial overlap with standard protocols for
academic reporting, such as encouragement of code availability and well-described participant characteristics.
Our focus is on the unique and new elements when applying Al in a biomedical context. Components are
referenced to TRIPOD-AI when the Delphi round 1 consensus was larger than 80% for being essential and
desirable to include as reporting.

Main figure captions

Figure 1. Hierarchy of disciplines of artificial intelligence.The discipline of Al is often categorized
as part of computer science, although it also builds upon other fields, such as mathematics and cognitive
sciences. ML is a subdiscipline of Al, whereas deep learning is a further specialization within ML, generally
characterized by large-scale artificial neural networks consisting of many layers, hence the term deep. The
right part of the figure displays typical terms that one encounters within the (sub)discipline.

Figure 2. A conceptual framework for AI applications in the biomedical domain. The framework
is structured by learning strategy, learning goal and data modality. The included studies are selected
as illustrations of how AI is used within the medical field and how its applications can be conceptually
categorized. They are not necessarily selected based on the inclusion criteria stated in the introduction.
References for the shown studies are included in the Supplementary References.

Figure 3. Difference between ordinary least squares (OLS), machine learning (ML), and deep
learning (DL) methodology. (a) In OLS, features (or predictors) are modeled manually, and their
relationship is assumed linear to the output variable unless specified differently. Interpretation of the model
and learned patterns (inference) is straightforward. (b) A similar procedure is followed with ML, but the
algorithm can learn more complex patterns from the provided features. Nevertheless, thorough feature
engineering by the practitioner is a critical step for delivering a performant model. (c) With DL, especially
when applied to unstructured data, feature engineering is an inherent behavior of the interconnected neural
network layers. The relationship between input features (tabular data fields, image pixels, text snippets,
etc.) to the predicted output is more opaque and harder to interpret.

Figure 4. Workflow of developing a machine learning model to predict disease risk. The best
practice in machine learning modeling is using distinct training, validation (or tuning), and test datasets.
The modeling steps till testing are generally executed in sequential order, where it is common to iterate
multiple times based on validation results that inform model improvements. It is discouraged to assess and
improve test performance iteratively, as this can lead to overfitting. The steps preceding model development
are excluded, primarily consisting of problem definition and study design, data collection, and preprocessing.

Figure 5. Application domains of artificial intelligence within the allergy field. Domains identified
as currently most active and discussed in the main text. Other areas, such as clinical trial optimization,
have been excluded due to the limited number of impactful applications.
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Figure 1. Hierarchy of disciplines of artificial intelligence
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Figure 3. Difference between ordinary least squares (OLS),
machine learning (ML), and deep learning (DL) methodology
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Figure 4. Workflow of developing a machine learning model to predict disease risk
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