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Abstract

Systems with non-Hermitian Hamiltonians, especially those exhibiting parity-time ( PT ) symmetry, are of particular interest

as they can describe physical open systems with balanced loss into and gain from the environment. In this context, the study

of eigenvalue locations and the corresponding phase transitions as a function of the degree of non-Hermiticity γ is accomplished

hereby using feedback theory. This approach provides insight about the behavior of these systems and allows generalization of

the results for higher-order ones. The proposed ideas are analyzed in detail for a class of coupled resonant circuit chains.
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Abstract

Systems with non-Hermitian Hamiltonians, especially those exhibiting
parity-time (PT ) symmetry, are of particular interest as they can describe
physical open systems with balanced loss into and gain from the environ-
ment. In this context, the study of eigenvalue locations and the corre-
sponding phase transitions as a function of the degree of non-Hermiticity
γ is accomplished hereby using feedback theory. This approach provides
insight about the behavior of these systems and allows generalization of
the results for higher-order ones. The proposed ideas are analyzed in
detail for a class of coupled resonant circuit chains.

1 Introduction

The basic property of the operators that represent observables in Quantum Me-
chanics is Hermiticity, since a Hermitian operator has real eigenvalues, which
are the measurable quantities related to a physical magnitude. Consequently,
Hermiticity of the Hamiltonian H, the operator representing the energy of the
system, is a fundamental postulate in quantum mechanics. However, open sys-
tems exhibiting flows of energy, particles, and information, are usually described
by non-Hermitian Hamiltonians, in general associated with the decay of the
norm of a quantum state. Among the non-Hermitian Hamiltonians, those that
exhibit parity-time (PT ) symmetry are of particular interest because they can
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admit real eigenvalues while describing physical open systems with balanced
loss into and gain from the surrounding environment [1]. Those PT systems
may have a real energy spectrum, although in general are non-Hermitian. Be-
sides, as some parameter γ (associated with the degree of non-Hermiticity of H)
changes, a spontaneous PT symmetry breaking occurs and eigenvalues become
complex [2]. For a more detailed explanation see Appendix A

The non-Hermitian description can be applied also to many non-conservative
classical systems, providing a true analogy to explore unconventional wave phe-
nomena in many other fields. In particular, electronic circuits consisting of
identical resonators with linear couplings represent an interesting platform to
evaluate all the phenomena encountered in systems with generalized PT sym-
metries, such as biological oligomers [3]. Many of such devices, that allow direct
observation of a “phase transition” from a real to a complex eigenfrequency
spectrum are reported in the literature [4], [6], [7]. For these systems, feedback
turns out to play a relevant role in symmetry breaking.

In this paper, eigenvalues behavior and their corresponding phase transitions
as a function of the degree of non-Hermiticity γ is analyzed using automatic
control tools, particularly the root-locus technique [8]. To this end, the state
matrix of the system is interpreted in the context of a linear feedback loop, with
γ as a variable gain. Then, the characteristic equation is rewritten in the root-
locus form [9], which allows the drawing of the “closed loop” pole paths (that is,
the roots of the characteristic equation) as continuous trajectories in the Laplace
complex plane. The resulting plot provides insight into the behavior of the
system, and opens the door to the analysis and synthesis of more complex ones,
in particular chains of identical oscillators, which can be applied, for instance,
to the design of high gain sensors [10], [11], [12].

The proposal is first applied to an electronic circuit consisting of two LC
oscillators coupled by a gyrator [3], [4], [13], [14], and symmetric negative and
positive resistors [15], [16]. The use of a gyrator simplifies the analysis, and
avoids the need for magnetic (mutual inductance) couplings, allowing prototypes
to be constructed from standard devices [17]. Spice simulations are presented,
showing their feasibility. Besides, the analysis can be extended to systems of
arbitrary order.

The text is organized as follows: Section 2 presents the electronic circuit
proposed as a typical example of a non-Hermitian system. Section 3 analyzes
such systems as a class of linear feedback loops, with γ being a variable gain.
In section 4 the trajectories described by the eigenvalues as a function of γ are
analyzed using the root-locus technique, followed by simulation results in section
5. Section 6 extends the results to oligomers of order n. Section 7 resumes the
conclusions and suggests further lines.

2 A non-Hermitian electronic circuit

A typical circuit exhibiting PT symmetry is depicted in Fig. 1. It consists of
two identical LC pairs, connected through a gyrator of transconductance Gg.
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−R L C C
Gg

L R

V1 V2

Figure 1: Non-Hermitian circuit using a Gyrator

One of the circuits has a negative resistance −R, which provides the energy
income, and the other has a positive resistance of identical value R, accounting
for energy losses. Similar topologies have been used for modeling PT systems
in the literature [3], [4], [13]. Circuit equations are straightforward:

{

V̈1 + V1
1

LC − V̇1
1

RC + V̇2
Gg

C = 0

V̈2 + V2
1

LC + V̇2
1

RC − V̇1
Gg

C = 0
(1)

The PT symmetry becomes evident, as interchanging subindex 1 by 2 and
time t by −t in the above equations keep them invariant [3]. As usual in
circuit analysis, these two second-order equations can be written as a sys-
tem of four first-order equations using, for instance, the change of variables
[x1 x2 x3 x4]

T = [V1 V2 V̇1 V̇2]
T , or any linear combination of those. Then,

the state equation ẋ = Ax becomes:









ẋ1
ẋ2
ẋ3
ẋ4









=









0 0 1 0
0 0 0 1

− 1
LC 0 1

RC −Gg

C

0 − 1
LC

Gg

C − 1
RC

















x1
x2
x3
x4









(2)

Let us call

ω2
0 =

1

LC
; γ =

1

RC
; γg =

Gg

C

Here γ accounts for the degree of non-Hermiticity. The state matrix A reads

A =









0 0 1 0
0 0 0 1

−ω2
0 0 γ −γg

0 −ω2
0 γg −γ









(3)

Equivalence to a quantum system can be written from eq.(2) using a Liou-
villian formalism [3], [5] as

dΨ

dτ
= LΨ (4)
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with L = A, Ψ = x, and effective Hamiltonian Heff = iL. Thus, the eigenvalues
of Heff can be studied directly from those of A (real eigenvalues of Heff corre-
spond to pure imaginary eigenvalues of A). The characteristic equation for A
results

F (s) = s4 + s2(γ2g − γ2 + 2ω2
0) + ω4

0 = 0, (5)

which being a bi-quadratic equation has roots:

λ1,2 = ±

√

√

√

√

−(γ2g − γ2 + 2ω2
0) +

√

(γ2g − γ2 + 2ω2
0)

2 − 4ω4
0

2

λ3,4 = ±

√

√

√

√

−(γ2g − γ2 + 2ω2
0)−

√

(γ2g − γ2 + 2ω2
0)

2 − 4ω4
0

2

(6)

The location of these roots is analyzed in detail in the following sections.

3 The Non-Hermitian circuit as a feedback sys-

tem

It is interesting to analyze the behavior of the eigenvalues of the system as the
parameter γ changes. To this end, the system can be studied in the context of
feedback theory, as a “pure” Hermitian system

Ah =









0 0 1 0
0 0 0 1

−ω2
0 0 0 −γg

0 −ω2
0 γg 0









, (7)

with the linear state feedback

Af =









0 0 0 0
0 0 0 0
0 0 γ 0
0 0 0 −γ









, (8)

Matrix Af contains the parameter γ accounting for the degree of non-
Hermiticity, as depicted in Fig. 2. The range of γ values that ensure that all
closed loop poles (eigenvalues of A) remain in the imaginary axis corresponds to
a non-Hermitic Hamiltonian with real eigenvalues. In this way, the PT behavior
of the system is directly related to its closed-loop stability as γ varies.
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+ +
ẋ x∫

Ah

Af

Figure 2: Non-Hermitian system. The dotted box represents the Hermitian system, with Af as a
linear state feedback.

3.1 Rewriting the characteristic equation

The location of the eigenvalues of matrix A as a function of a parameter can be
analyzed using the root-locus technique [8], [9], [18]. To this end, the charac-
teristic equation F (s) is rewritten in the so-called root-locus form:

F (s) = 1 +KG(s) = 0 (9)

with K being a variable gain and G(s) a fixed rational function of the Laplace
variable s. The root-locus is simply the plot of all points in the complex plane
s = σ + iω which verify ‖KG(s)‖ = 1 and ∠(KG(s)) = 2(n + 1)π, that is,
the roots of the characteristic equation for each value of the parameter K. The
methodology provides a set of simple rules to plot the diagram without the need
for solving the characteristic equation roots, and gives insight into the behavior
of the system as the parameter γ changes. Operating on eq.(5) gives:

s4 + s2(γ2g + 2ω2
0) + ω4

0 − s2γ2 = 0 (10)

1− γ2
s2

s4 + s2(γ2g + 2ω2
0) + ω4

0

= 0 (11)

which resembles eq.(9), with

G(s) =
s2

s4 + s2(γ2g + 2ω2
0) + ω4

0

(12)

and K = −γ2. The root-locus diagram can be done manually, applying the
standard rules of construction (as customary among control practitioners), or
using any control analysis software. The diagram starts on the open-loop poles
(the eigenvalues of the Hermitian system), and ends on the zeros of G(s) for
γ → ∞.
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4 Root-locus and the path to exceptional points

The starting point for the diagram is for the γ = 0 condition, that is, the
Hermitian case. The eigenvalues for this condition are

λh1,2 = ± 1√
2

√

−(γ2g + 2ω2
0) +

√

(γ2g + 2ω2
0)

2 − 4ω4
0

λh3,4 = ± 1√
2

√

−(γ2g + 2ω2
0)−

√

(γ2g + 2ω2
0)

2 − 4ω4
0

(13)

(γ = 0)

(γ = 0)
γ = γPT ω0

ω0

(γ = ∞)

Figure 3: Root-locus of the non-Hermitian circuit. The diagram shows real vs. imaginary parts of
the eigenvalues of matrix A as the parameter −γ2 varies from 0 to ∞.

These values are pure imaginary, given that (γ2g + 2ω2
0)

2 > 4ω4
0 and (γ2g +

2ω2
0) >

√

(γ2g + 2ω2
0)

2 − 4ω4
0 . This corresponds to a pair of separate peaks in

the frequency response. As γ2 increases, the roots move on the imaginary axis,
getting closer until they coincide for γ = γPT at ω = ω0. In such a case a
multiple pole on the imaginary axis appears. This means that the characteristic
equation and its derivative must vanish. Thus, the condition to find γPT is
∂G(s)
∂s = 0. From this analysis results:

γPT = γg (14)

which in turn involves
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R =
1

Gg
(15)

Interestingly enough, this condition corresponds to an “adapted” circuit,
that is, one in which the Maximum Power Transfer Theorem is verified [19]
[20]. The overall shape of the root-locus diagram is shown in Fig. 3. For
γ > γPT , eigenvalues become complex, and describe a circle of radius ω0. In
this condition, the two oscillation modes have the same frequency, associated
with exponential envelopes of the same value but different signs (one stable and
the other unstable). In the frequency response this corresponds to a single peak
with decreasing quality factor Q [21] as γ grows, due to the increment in the
real part of the poles (dissipation). The presence of an unstable mode precludes
measurements on the experimental circuit, but the results are still clearly visible
in Spice simulations. For γ → ∞ the plot has an asymptotic behavior, with two
roots going to ∞ and two approaching the pair of zeros at s = 0.

5 Methods

5.1 Spice model

The proposed circuit can be simulated using standard packages such as LT-
Spice [22]. Although a gyrator is not included in the standard LT-Spice libraries,
it can be easily implemented using two voltage-dependent current sources [13].
Initial conditions for the simulation are set by the initial capacitor voltages and
inductor currents. For this example, circuit values were chosen as L = 1mHy,
C = 0.1µF , Gg = 1mS, resulting in ω0 = 100Kr/s and γg = 10Kr/s, for an
oscillation frequency f0 = ω0

2π
∼= 16kHz. The root-locus is shown inf Fig. 4.

Open loop (γ = 0) poles are located at±95, 12492e+003i and±105, 1249e+003i,
respectively.

5.2 Symmetry breaking and exceptional points.

Figure 4 shows the results of the simulations. The root-locus is presented in
Figure 4(a), for 0 ≤ γ < ∞. The small box indicates the zone where the PT
symmetry is broken. There are another two break points at s = ±ω0, where the
eigenvalues of A become real. In Figure 4(b) the normalized imaginary and real
parts of the “closed loop” system are displayed versus the normalized degree of
Hermiticity, for values of γ around the symmetry break condition. In Figure 5
the time response is displayed for different pole locations, after and before the
(PT ) symmetry breaking occurs. Initial conditions for eq. 1 are set as an initial
charge in the “left” capacitor. For each case, the inset shows the corresponding
fft. In the non-Hermitian range of operation, there are two well-defined peaks,
that come closer as γ approaches γPT . Once the symmetry is broken, there is
a single peak in the frequency response, which gets wider (decreasing quality
factor Q) as the real parts of the roots increase. The root-locus provides a

7



(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.3

-0.15

0

0.15

0.3

f−/f0

f+/f0

f−/f0

f+/f0

γ/γPT

(b)

Figure 4: Simulation results. (a) Root-locus of the closed loop eigenvalues of matrix A in the
Laplace plane s. Box indicates the region where Hermiticity breaks. The complete plot shows
two exceptional points corresponding to γ = γg , where Hermiticity is spontaneously lost, and two
additional breakpoints when the eigenvalues become purely real. (b) Normalized imaginary and
real components of the eigenvalues vs. normalized degree of Hermiticity, for values of R around the
exceptional point (Box)

.
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simple way to interpret these results as a single graph. The phase difference
between V1 and V2 can be appreciated in the slow envelopes in Figure 4. It
varies from π/2 for the γ = 0 condition in Figure 4(a) to 0 in the exceptional
point, Figure 4(c).

The overall shape of the diagram is preserved even if the coupling between
oscillators is changed to any linear mechanism, for instance, a physical inductor
or the mutual inductance coupling between inductors [6], the only difference
being in the relative phase of the fast oscillations. In the gyrator case, such
oscillations are in phase. This can be seen in Figure 5.

6 Generalization

The above results can be generalized to a chain of n coupled oscillators, using
the same tools. The 2n×2n state matrix has four n×n blocks with the general
form

A =

[

A11 A12

A21 A22

]

=





































0 In

γ −γg . . . 0 0
γg 0 −γg 0 0

(−ω2
0)× In 0

. . .
. . .

. . .
...

... 0 γg 0 −γg
0 . . . 0 γg −γ





































(16)

with In a n × n identity matrix. The lower right block is a tridiagonal matrix
(Toeplitz in the Hermitian case), which simplifies determinant calculation [23],
[24]. This structure has important consequences for the root-locus:

The relative degree of G(s) (that is, the difference between the number of
finite poles and zeros) is always m = 2, because sn does not have γ as a
coefficient, as sn−2 does.

The independent term of the characteristic equation is ωn
0 (also indepen-

dent of γ), which means that in the numerator or G(s) there is always a
double zero at the origin of the s plane.

Therefore, the root-locus diagram for all oligomers described by A will have
only two asymptotes (that is, the behavior of the diagram as s → ∞), which
imply that only two eigenvalues remain complex as γ → ∞, as in the dimer
case. This is not surprising, because only the first and last oscillators have gain
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0
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0
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Figure 5: Simulation results. Time response: (a) Hermitic circuit. (b) Non-Hermitic circuit response
for γ < γPT . (c) and (d): Response for γ > γPT , showing the widening of the spectra as the real
part of the eigenvalues rises. The insets show the corresponding fft. Both V1 and V2 present a
fast oscillation (λ1 + λ3) with a slow envelope (λ1 − λ3). Gyrator coupling ensures that the fast
oscillations are always in phase, while the phase between the slow envelopes varies from π/2 to 0
as the parameter γ ranges from 0 (Hermitian) to γPT (symmetry break).
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and losses, respectively. Being a block matrix, the eigenvalues in eq. 16 can be
calculated as [23]:

det(SI −A) = det(s(sIn −A22) + ω2
0In) = det(B) (17)

with In a n×n identity matrix. Therefore, B is a n×n tridiagonal matrix with
the following regular structure:

B =

















s(s− γ) + ω2
0 sγg . . . 0 0

−sγg (s2 + ω2
0) sγg 0 0

0
. . .

. . .
. . .

...
... 0 −sγg (s2 + ω2

0) sγg
0 . . . 0 −sγg s(s+ γ) + ω2

0

















(18)

which can be written as

B =

















bn sγg . . . 0 0
−sγg bn−1 sγg 0 0

0
. . .

. . .
. . .

...
... 0 −sγg b2 sγg
0 . . . 0 −sγg b1

















(19)

The determinant d of matrix B can be easily calculated for any dimension
n using the following recursion:

d0 = 1 (20)

d1 = b1 (21)

d2 = b2d1 + s2γ2gd0 (22)

...

di = bidi−1 + s2γ2gdi−2 (23)

An interesting example is the trimer, depicted in Fig. 6. The characteristic
equation is

F (s) = s6 + s4(3ω2
0 + 2γ2g − γ2) + s2(3ω4

0 + 2γ2gω
2
0 − γ2ω2

0) + ω6
0 (24)

Following the procedure just described, we have

G(s) =
s2(s2 + ω2

0)

s6 + s4(3ω2
0 + 2γ2g) + s2(3ω4

0 + 2γ2gω
2
0) + ω6

0

=

=
s2(s2 + ω2

0)

(s4 + 2s2(ω2
0 + γ2g) + ω4

0)(s
2 + ω2

0)

(25)
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−R L C C
Gg Gg

L L C R

V1 V2 V3

Figure 6: Non-Hermitian trimer using Gyrators

and K = −γ2. The term (s2 + ω2
0) is a factor of both numerator and denom-

inator, which implies a superposition of a pole and a zero in G(s). In fact, all
odd-order oligomers have an open-loop pole at ω0. As the diagram starts in
the poles of G(s) and ends in its zeros [9], this implies that the pole in ω = ω0

remains fixed. The other two poles approach each other, and coincide, also in
ω = ω0 for γ = γPT =

√
2γg. The resulting root-locus diagram is depicted in

Fig. 7 (a), while (b) shows the corresponding plot of imaginary and real parts of
the eigenvalues versus γ. The four exceptional points are easily obtained from
∂G(s)
∂s = 0 resulting in ±ω0 and ±i ω0. These results agree with those presented

in the literature [25]. As n → ∞, the oscillator chain tends to behave like a
transmission line.

7 Conclusions

The presented proposal allows a systematic approach to the analysis of an os-
cillator chain exhibiting non-Hermiticity. The inclusion of feedback as a mech-
anism for non-Hermiticity opens the door to the use of a vast amount of tools
and techniques for the study and design of structures presenting PT symme-
tries, giving insight on the behavior of those systems. The approach allows
an easy determination of the range of the parameters that ensure real-valued
eigenvalues for non-Hermitic Hamiltonians and characterizes the spontaneous
symmetry breaking occurring at exceptional points. Applications could include,
among others, optics, photonics, and biological oligomers.
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Appendix A Spontaneous symmetry breaking

As it is well known in Quantum Mechanics, an operator PT represents a sym-
metry if it commutes with the Hamiltonian of the system, namely

[H,PT ] = (H PT − PT H) = 0

As mentioned in the main text, the PT -symmetry is spontaneously broken
(triggered by parameter γ) when it goes through an exceptional point. In the
symmetric phase, the Hamiltonian has real eigenvalues below the exceptional
point γ⋆, and complex conjugate ones above it. Explicitly

H ψ1,2 = λ1,2 ψ1,2

with λ1 and λ2 real for γ < γ⋆ and with complex λ2 = λ⋆1 for γ > γ⋆

As was stated before, the presence of the symmetry implies that

H (PT )ψ1,2 = (PT )H ψ1,2 = (PT ) (λ1,2 ψ1,2)

and in the region where the eigenvalues are real one has

PT (λ1,2 ψ1,2) = λ1,2 (PT ψ1,2)

meaning that PT ψ1,2 is also eigenfunction of H and that ψ1,2, the solution, has
the same symmetry that the one present in the Hamiltonian. In this region the
symmetry is said to be Wigner-Weyl realized.
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Above the exceptional point γ⋆ the situation is different because the sym-
metry operator also acts on the complex eigenvalues conjugating them,

H (PT )ψ1 = (PT ) (λ1 ψ1) = λ⋆1(PT )ψ1 = λ2 (PT )ψ1

or
(PT )ψ1 = ψ2

which explicitly shows that the PT symmetry is not present in the solution
and turns one solution to the other. This is the natural appearance of the
spontaneous symmetry breaking. The symmetry of H has a Nambu-Goldstone
realization because the solutions do not respect it.
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