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Abstract

Virtual Reality (VR) and Augmented Reality (AR) applications are becoming increasingly prevalent. However, constructing
realistic 3D hands, especially when two hands are interacting, from a single RGB image remains a major challenge due to severe
mutual occlusion and the enormous diversity of hand poses. In this paper, we propose a Disturbing Graph Contrastive Learning
strategy for two-hand 3D reconstruction. This involves a graph disturbance network designed to generate graph feature pairs to
enhance the consistency of the two-hand pose features. A contrastive learning module leverages high-quality generative features
for a strong feature expression. We further propose a similarity distinguish method to divide positive and negative features for
accelerating the model convergence. Additionally, a multi-term loss is designed to balance the relation among the hand pose,
the visual scale and the viewpoint position. Our model has achieved State-of-the-Art results in the InterHand2.6M benchmark.
Ablation studies show the model’s great ability to correct unreasonable hand movements. In subjective assessments, our Graph
Disturbance Learning method significantly improves the construction of realistic 3D hands, especially when two hands are

interacting.
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Abstract

Virtual Reality (VR) and Augmented Reality
(AR) applications are becoming increasingly
prevalent. However, constructing realistic 3D
hands, especially when two hands are interact-
ing, from a single RGB image remains a ma-
jor challenge due to severe mutual occlusion and
the enormous diversity of hand poses. In this pa-
per, we propose a Disturbing Graph Contrastive
Learning strategy for two-hand 3D reconstruc-
tion. This involves a graph disturbance network
designed to generate graph feature pairs to en-
hance the consistency of the two-hand pose fea-
tures. A contrastive learning module leverages
high-quality generative features for a strong fea-
ture expression. We further propose a similarity
distinguish method to divide positive and neg-
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ative features for accelerating the model con-
vergence. Additionally, a multi-term loss is de-
signed to balance the relation among the hand
pose, the visual scale and the viewpoint position.
Our model has achieved State-of-the-Art results
in the InterHand2.6M benchmark. Ablation
studies show the model’s great ability to cor-
rect unreasonable hand movements. In subjec-
tive assessments, our Graph Disturbance Learn-
ing method significantly improves the construc-
tion of realistic 3D hands, especially when two
hands are interacting.

Keywords: hand shape reconstruction, graph
contrastive learning, hand pose estimation

1 Introduction

With the development of virtual reality and aug-
mented reality (VR/AR), hand poses are widely



Figure 1: Interactive & non-interactive hand
shape reconstruction from an RGB
image. Geometric deformation occurs
in case of the two-hand interaction,
which limits visual quality of 3D hand
reconstruction.

used for virtual-real interaction in many scenar-
ios. Recently, hand shape reconstruction, which
is considered an extension of hand pose estima-
tion, has drawn a lot of attention due to its real-
istic demonstration. Previous studies [1, 2] have
successfully employed 3D hand techniques to
visualize hand joints. However, visualizing two
interacting hands still presents significant chal-
lenges.

Many existing studies have concentrated on
single-hand reconstruction from RGB [I, 2,
3, 4], depth [5], or sparse keypoints [6, 7].
When dealing with interacting two-hand recon-
struction, these single hand-based methods have
poor performance, since it increases the diffi-
culty including inter-hand collisions and mu-
tual occlusions. Recently, some large-scale
interacting hand datasets are released to sup-
port the two-hand shape reconstruction. Two-
Hand-Shape-Pose [8] and IHMR [9] reconstruct
two-hands by estimating MANO [10] parame-
ters, which are later mapped to triangular hand
meshes using a pre-defined statistical model
(i.e., MANO). IntagHand [11] directly regresses
a fixed number of mesh vertex coordinates us-
ing a graph convolutional network (GCN). Nev-
ertheless, few effective methods are proposed to
resolve the problem of two-hand 3D reconstruc-
tion, as the complex occlusion and deformation
occur from the interaction of two hands.

In this paper, we present a graph contrastive
learning based approach to reconstruct two in-
teracting hands, where an explicit graph disturb-
ing strategy is performed at the feature level
to augment the hand feature. The explicit dis-
turbances change the external properties of the
hand graph, such as graph dimension, graph
edge and some feature noise. To effectively
utilize these features, we incorporate a graph
contrastive learning for generating strong hand-
feature expression. We also propose a similarity
distinguish approach to divide positive and neg-
ative features for accelerating the model conver-
gence. Finally, a new loss function is designed
to enhance 3D visual quality by balancing re-
lation among the hand pose, the visual scale
and the viewpoint position. Experimental results
prove that our approach achieves a qualitative
improvement compared to existing methods on
subjective and objective evaluation.

Overall, our contributions are summarized as
follows:

* We propose a novel graph disturbance
learning to solve the problem of 3D two
hands reconstruction by generating graph
feature pairs without compromising con-
sistency to hand pose. Explicit as well as
implicit graph disturbance is added, which
improves the expression of the features.

¢ We incorporate a scheme of similarity con-
trol in order to smooth the learning curve
and reduce divergence within the con-
trastive learning structure.

¢ We design a multi-term loss function that
deals with the pose, the scale and the cam-
era parameter separately so that the model
can balance the weight of each task.

2 Related works

According to different downstream task, 3D
hand field can be categorized into three: 1) 3D
hand pose estimation; 2) 3D hand shape recon-
struction, 3) hand-object interactions. There are
numerous datasets [12, 13, 14, 15, 16, 17, 18]
proposed these years of above three, which
greatly boost the machine understanding of hu-
man hands.



3D hand pose estimation. Previous works
mainly focus on the depth domain [19, 20, 21,
22] and the RGB domain [1, 3, 15, 22, 23, 24,
25]. Compared with 2D hand, 3D hand pose
has more complexity and lack one dimension
of information for single RGB naturally. Re-
cently, 3D hand pose estimation from a monocu-
lar RGB image has achieved great progress [18].
To alleviate the confusion of uniform appear-
ance in hands, the method in [26] uses Res-
GCN based refinement and conditional adver-
sarial learning scheme to fully exploit hand fea-
tures. [27] associates keypoints in the heatmap
with hand joints using multi-head self-attention
to predict complex hand interactions. The work
of [28] shows that contrastive training scheme
extracts better hand feature representation espe-
cially for those vague or easily confused cases.
Graph CNN based hand shape reconstruc-
tion. GCN [29] has been proved that it is stable
to convey 3D hand shape information with less
computational expense. [2] proposed a pipeline
to make mesh generation from coarse to precise
via GCN in hand shape reconstruction. In [30],
RGB images are encoded into embedings of a
graph morphable model, which helps the recon-
struction of 3D hand from RGB space. These
two works mentioned above are the first to con-
struct 3D hand mesh by GCN, and both stand
for the great ability of GCN in hand shape re-
construction. After them, GCN is widely used
in this aera. [31] designs two transformer-based
modules to predict the shape of hands at the
occlusion part. [11] adds cross-hand attention
modules behind the GCN operation within three
blocks to refine the representation of two-hand
interactions.

Contrastive learning. Self-supervised methods
have been intensively studied in recent years. As
one of them, contrastive learning is competitive
due to its simple structure as well as high per-
formance. [32] makes it possible to catch up
supervised methods in image classification us-
ing a simple framework of contrastive learning.
The work of [33] shows that pretraining with
contrastive learning can also boost the perfor-
mance of fine-tuning on a few labeled dataset.
[34] builds a dynamic dictionary with a queue
and a moving-averaged encoder to enable a large
and consistent dictionary that facilitates con-
trastive unsupervised representations learning.

While these works rely on hard negative sam-
ples, [35] cast contrastive pairs only using pos-
itive samples via a momentum encoder trained
by the parameter update strategy of moving av-
erage, which makes pretraining easier and more
friendly to low memory devices. These classi-
cal contrastive learning methods above all focus
on the encoding of original data to extract better
representation while our point is on the decoder.
Before this paper, [36] builds hand representa-
tion by making expressive positive pairs on mul-
tiview images. They take the images of one hand
in multiviews as positive samples that share the
identical inherent representation, and learn these
representations by the similar method of [34].
However, the geometric property of hands is not
fully extracted and the contrastive pretraining
can not get regular performance when deals with
complex hand poses or two-hand interactions.
To solve these problems, we introduce graph
contrastive learning to the field of 3D hand pose
estimation and shape reconstruction in this pa-
per. As for graph contrastive learning, existing
methods [37, 38, 39, 40, 41] excavate inherent
features on graph in contrastive manners that in-
spire us utilize it in hand graph domain. We use
a simple but powerful framework named Sim-
Siam [42] that combines the advantages of clas-
sical contrastive learning, and mixes augmenta-
tions in hand graph domain to learn geometry-
structured hand representation deeply.

3 Methodology

3.1 Overview

An overall structure of our model is illustrated
in Fig.2. The main pipeline at the top of the fig-
ure shows the main workflow of the hand shape
reconstruction task, which can be summarized
as image feature extraction, graph feature con-
version, disturbing graph contrastive learning
and MANO-hand construction. The disturbing
graph contrastive learning network (DGCLNet)
module utilizes graph contrastive learning to
generate pairs with consistent hand pose infor-
mation, which is specially designed for graph-
level visual contrastive learning task. Note that
DGCLNet is only used to train the GCN, which
means that DGCLNet are removed except the
inside GCN during evaluation. The similarity
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Figure 2: Architecture overview. Given an RGB image, our model uses ResNet-50 for feature extrac-
tion and then the feature is divided into left hand and right hand via positional embedding.
Both of the hand feature are further processed by two independent MLP layers, and build
up the graph feature using the knowledge of Laplacian matrix. Next our DGCLNet makes
disturbance by regenerating the graph feature through a graph u-net [43]. The pair of graph
feature is passed through the same GCN, and the similarity between them is maximized.
Finally the graph feature of original branch is thrown into the up sample layer to get the
position of 778 vertices in standard MANO [10] way.

distinguish is an extended module of DGCLNet
to calculate similarity of a pair precisely from
a feature-pose pool, and makes the model con-
verge faster and better. Detailed information of
the pipeline will be discussed in this section.

3.2 Disturbing Graph Contrastive
Learning

Our model tackles the challenging visual task of
two-hand shape reconstruction in a simply con-
structed end-to-end framework. The graph con-
trastive learning modules are proved to well de-
code image embedings to hand mesh in the form
of graph representation.

Explicit Graph Disturbing (EGD) Strategy.
Naturally, we consider using basic image-to-
image data augmentation methods to perturb the
target image features. In the location of the
graph u-net in DGCLNet depicted in Fig.2, we
applied the following four types of disturbance
operations to the model. (a)Random mask on

feature dimension. (b)Random noise on feature
space. (c)Add random edges on graph. (d)Flip
the edges on graph. After disturbance is added,
the shared GCN processes the feature pair and a
loss function is used to maximize the similarity
of them.

However, there is an essential problem on
steps above that is whether the intrinsic essence
is changed by disturbance. It is well known that
classical contrastive method does not change
the intrinsic essence because the disturbance is
mainly pixel-level and the effect of the distur-
bance makes slightly different on feature level.
Therefore, the feature vector extracted by en-
coder maintain its consistency and contrastive
method works out. But now we have the graph
features distorted which makes it possible that
the consistency of different branches is broken.

Disturbing Graph Contrastive Learning Net-
work. To avoid this problem, we design a new
contrastive structure to generate pairs of distur-
bance as Fig.2 described, which corresponds to



the Lgeif contrast- The core of DGCLNet is a
generative neural network essentially, which can
be noted as Fyc,,. And we use graph u-net [43]
in this paper. The input of DGCLNet G is the
original graph features which built by the previ-
ous network, and G is the graph features after
disturbance. All G are normalized before use,
but for the sake of brevity, this step is omitted in
the formula. Simply, we have

G = Fuen(@), (1)

The two graph features G, G are considered as a
contrastive pair just like other contrastive learn-
ing method. Fy,, replaces those 4 kinds of sim-
ple graph-level operations above and the other
setting remains the same. Therefore, the model
feeds the contrastive pairs to the main GCN de-
coder and get graph features with lower feature
dimension noted as Gy, Gk.

Gr = GCN(G),Gr = GCN(G), ()

Gy, Gy are actually in a pool of features and
poses, which accounts for their subscript. The
similarity can be predicted as

S =Gy- Gy, 3)

The S here describes the similarity between one
graph feature and its generative copy. Gy is
passed to next part of the model while all other
features in DGCLNet are abandoned.

But how to train DGCLNet? DGCLNet is
also trained in end-to-end manner. In order to
preserve pose information during training, we
innovatively add a linear MLP after G to pre-
dict hand pose labels which is taken as a subtask
of hand reconstruction.

A~

Jp = MLP(G). (4)

It is because of the subtask that G, G are forced
to maintain sufficient supervised information
while G cannot be identical with G due to
the bottleneck structure of DGCLNet. Then
we get a disturbance reproduction without los-
ing the intrinsic essence of the hand pose nat-
urally, which ensures the consistency that the
contrastive learning scheme needs. Besides, the
feature output by the graph u-net will not be
identical with the input because of the bottle-

neck structure. Therefore this operation can be
considered as disturbing. Note that the DG-
CLNet is only used during training, our goal is
to get a great GCN decoder. The simplicity of
the model during inference is also one of our ad-
vantages.

3.3 Similarity Distinguish

Based on the pre-estimate relative hand joints
location, we intend to extend to the contrastive
space of positive and negative samples, which
can improve the cross-pose contrastive learn-
ing performance. According to the general con-
trastive learning paradigm, the ground truth of
similarity between a positive sample pair is set
to 1, while for a negative sample pair it is set to
0. To express it in a neat form, assuming similar-
ity between a random pair from a feature-pose
pool is noted by Sp,. The pool is defined as a
dictionary of extracted features and their corre-
sponding 3D poses as [34] did.

Splm,n] = G - G}, (5)

And we need it equals to 1 when the two of
the pair are positive, equals to 0 when negative,
which means the quantity of the similarity is dis-
crete. However, we can make it continuous by
defining a ground truth of similarity, which is a
real number between 0 and 1. The pre-estimate
relative hand joints location, noted J, can be
used to build the ground truth of similarity. Sup-
pose we have J,,, and J,,, the

Sylm,n] = Jm - J,\ . (6)

where Sg is the ground truth similarity of Sy,.

3.4 Loss Functions

The loss functions we implement in this paper
can be divided into three categories, main train-
ing objective, auxiliary training objective and
contrastive training objective. The As noted in
the following formulas are hyper-parameters to
balance the losses.

L = Lipain + Lau:ciliary + LDGCLNEtv (7)

Main training objective. The main training ob-
jective contains three parts, 3D hand joints loss,



3D hand mesh vertices loss and 2D hand joints
loss. These three losses make sure the model
performs a basical level of hand estimation. This
part of the loss is calculated by minimizing the
distance between the results of the main pipeline
and the ground truth label.

Lnain = )\1L3djoints+)‘2L3dverts+)‘3L2djointsa

®)
Note that the location of 3D hand joints and 3D
hand mesh vertices is aligned with a root joint
and is scaled by a length parameter. There-
fore the two loss only describe the pose infor-
mation of hand. The absolute position informa-
tion and the scale information are learned by 2D
hand joints loss. Besides, the camera parame-
ter and rotation matrix are also learned by 2D
hand joints loss, which can make projections to
the 2D plane of images for the use of demon-
stration. We use L1 loss for all the three losses
of the main training objective. In detail, it is L1
distance between estimated results and ground
truth labels.

Auxiliary training objective. The auxiliary
training objective contains three parts, length
loss, consistent loss and transition loss. These
three parts improve the model performance in
some aspects.

Lauxiliary = )\4Llength + A5Lccmsistem&"i‘ (9)

AﬁLtransitiona

Lconsistent - ”sz - ijla (10)

The length loss here refers to the distance be-
tween joints. It can not only learn the scale of
the hands but also can regularize the geometric
stucture of the hands. The consistent loss means
the consistency between the graph features and
the hand pose that the feature represents. With
the help of the consistent loss, the model will
be more stable and interpretable. The difference
between the consistent loss and the 3D joints
loss mentioned above is whether the GCN mod-
ule is used. Consistent loss is calculated lin-
early from the feature generated by graph u-net
while 3D joints loss is from MANO upsample
layer. The former only contains pose informa-
tion while the latter decodes pose information
to precise 3D location. It can be calculated by
the L1 distance between joint locations .Jj, and

ground truth labels .J,. And the transition loss
is the relative translation of each pair of vertices
from left and right hand, which is a widely used
restriction for two hand reconstruction mission.
Contrastive training objective.

LDGCLNet = _)\7(Lcross,contrast+Lself,contrast)a
(11)
Lcross,contrast - HSp - SgH27 (12)

exp(S/7)
L =log=——"——"-—.
sel f_contrast og Z 633])(5/7’)

Note that Lcross,contrast and Lself,contrast de-
scribe cross-pose contrastive loss and self-pose
contrastive loss. The cross-pose loss is evalu-
ated by the similarity distinguish module, which
contains Sg and Sy,. The self-pose contrastive
loss is calculated by maximizing the similarity
of input and output of the graph u-net. In or-
der to utilize large enough batch size in our im-
plementation, we adopt MoCo-like[34] dictio-
nary settings to save the graph features of recent
batches.

(13)

4 Experiments

4.1 Experimental Settings

Implementation Details. Our network is
implemented using Pytorch. And the main
model structure as well as the training pipeline
is based on Pytorch lightning. All experi-
ments are conducted on 4 NVIDIA RTX 2080ti
GPUs.Training minibatch size is set as 32 and
Adam is used for model optimization. The
learning rate is initialized with 1 x 1074, and
decays by half when the training loss decreases
less than 10~* continuously in 4 epoch. The
minimum of learning rate is set by 1075, The
whole training takes 50 epochs, which takes
about 2 days. We take input image of 256 x 256.
The encoder is ResNet50 pretrained on Ima-
geNet. And the GCN decoder is Chebyshev
spectral graph CNN that is initialized randomly.
A1 = A2 = 10 for 3d joints loss and 3d vertices
loss. A3 = Ay = 1073 for 2d joints loss and
length loss. A5 = Ag = 1 for consistent loss and
transition loss. And \; = 10~2 for contrastive
loss. The MoCo-like dictionary is implemented
by a queue of 2048 and the model updates mo-
mentumly.
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Figure 3: Qualitative results of our method on InterHand2.6M test dataset and comparison with SOTA

method proposed by Li et al.[11].

Evaluation Metrics. We used the Mean Per
Joint Position Error (MPJPE) to evaluate the
hand pose estimation performance. MPIJPE is
defined as the mean Euclidean distance between
ground truth and predicted 3D joint positions.
Similarly the Mean Per Vertex Position Error
(MPVPE) is used to evaluatethe hand shape re-
construction performance. Note that MPJPE
and MPVPE in this paper are reported after
aligning the root joint and scaling the length of
the middle metacarpal for fair comparison. All
the measures mentioned above are calculate in
millimeters.

4.2 Dataset

Our model is trained and tested on Inter-
Hand2.6M [18] following the dataset settings of
[11]. 366K training samples and 261K testing
samples are picked out from the original Inter-
Hand2.6M dataset. And these samples are all
the interacting two-hand data with annotation by
both human and machine. The image samples
are cropped and resize to 256 X 256 resolution.

Methods | MPIPE| | MPVPE]|
Boukhayma et al.[1] 16.63 17.98
Zhang et al.[8] 13.48 13.95
Rong et al.[9] 13.56 -
Kim et al.[44] 12.08 -
Meng et al.[45] 10.97 -
Lietal.[11] 8.79 9.03
Ours 8.86 9.14

Table 1: Comparison with state-of-the-art meth-
ods on InterHand2.6M. The MPJPE
and MPVPE are reported in mm.

4.3 Qualitative Results

Fig.3 shows our qualitative results for hand
shape reconstruction. We compare the perfor-
mance of our model to state-of-the-art recon-
struction methods, which can be integrated with
virtual reality (VR) or augmented reality (AR)
applications. It is clear that our model offers a
much better result in the details of processing
double hands, especially the interactions among
them, which makes the hand mesh closer to
the natural state. Our model demonstrates the
ability to successfully capture and reconstruct



| MPIPE| | MPVPE]

GCN baseline 9.97 10.63

GCN + random mask 10.35 10.65
GCN + random noise 10.56 10.89
GCN + random edge 10.59 10.93
GCN + flip edge 10.92 11.30
GCN + DGCLNet 9.02 9.31
GCN + DGCLNet*(Ours) 8.86 9.14

Table 2: Ablation study of module choice on
InterHand2.6M. * represents similarity
distinguish strategy is used.

complex interactions of two hands. The first
column of our qualitative results indicates that
our model has fewer collisions. The results of
Columns 2 and 4 indicate that the performance
of our model is superior when the two hand
meshes are close to each other, yet not mak-
ing contact. Columns 3 and 5 indicate that our
model results in a better matching between the
hand mesh and the hand mask, which implies
enhanced location accuracy. The last column of
our results highlights that our model has a deep
understanding of hand occlusion, and is able to
reconstruct detailed hand poses competently.

4.4 Ablation study

Baseline GCN. Before implementing our con-
trastive method, we run a GCN decoder as a
baseline for following comparison. The result is
shown in Tab. 2. The GCN is built on the base of
[2] and [11]. Moreover, the graph laplacian ma-
trix obtained from MANO-pretraining was fixed
during training. We observe that the baseline
is strong, but may struggle with fingertip align-
ment and encountering obstacles.

Adding contrastive module. We tested the con-
trastive module with both EGD and DGCLNet
based on GCN baseline. The result is shown
in Tab.2. As discussed in Section 3.4, explicit
graph disturbing methods may lead to a loss of
consistency for graph features which accounts
for their poor performance. We see that DG-
CLNet module reduces the error by 1.6 mm.
Thanks to the disturbance network, the model
is able to learn from slightly different graph fea-
tures without compromising the consistency of
the pose and feature. The qualitative results are
given in Fig.4. It is clear that our DGCLNet
module improves the baseline by reducing colli-

GCN baseline GCN+DGCLNet

Original

Figure 4: Qualitative ablation study on Inter-
Hand2.6M.

sions, resulting in a hand mesh that is more re-
alistic and lifelike. Besides, the overlap of hand
mask is more precise, which indicates the higher
performance in visual comprehension.
Similarity distinguish. Our similarity distin-
guish method makes the target of contrastive
pairs more reliable and yields better robustness
while testing. Contrastive learning can be noto-
riously difficult to converge and can easily be-
come trapped in severe oscillations. We manage
to solve this problem by making the similarity
of the pose of embedded feature the target sim-
ilarity of embedded graph feature. The ablation
result is shown in Tab. 2.

5 Conclusion

In conclusion, this paper introduces a novel
graph contrastive method for two-hands 3D re-
construction from a single image. To deal with
challenges such as hand-hand occlusion and
the homogeneous and self-similar appearance
of hands, we introduce novel graph contrastive
method to enhance model ability to rebulid 3D
topographical structure. More specifically, an
explicit graph disturbing is tried but does not
perform well due to its inconsistency. To resolve
that issue, a DGCLNet was proposed to force
the features of disturbed data to remain consis-
tent. A similarity distinguish strategy was fur-
ther used instead of the discrete settings which
made the model more robust and yielded better
results. Moreover, a multi-term loss is designed
to balance the relation among the hand pose, the
visual scale and the viewpoint position. Exper-



iments validate the superiority of our proposed
method over the state-of-the-art methods.
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