Decentralised Deconfliction of Aerial Robots in High Intensity
Traffic Structures

Verdon Crann', Peyman Amiri!, Samuel Knox!, and William Crowther!

!The University of Manchester Faculty of Science and Engineering

May 11, 2023

Abstract

Projections for future air mobility envisage intensely utilised airspace that does not simply scale up from existing systems
with centralised air traffic control. This paper considers the implementation and test of a software and hardware framework
for decentralised control of aerial vehicles within intensely used airspace. Up to 10 rotary wing vehicles of maximum all up
mass of 1 kg are flown in an outdoor volume with length scale of 100 m with GPS and WiFi connectivity. Flight control is
implemented using a Pixhawk 4 flight controller running the PX4 firmware with guidance algorithms run on a separate onboard
companion computer. Deconfliction is implemented using a simple elastic repulsion model with a guidance update rate of 10
Hz. Traffic structures are constructed from a path of directed waypoints and associated cross sectional geometry. Junctions are
implemented when two paths converge into one or when one path diverges into two. Agents engage with structures through
execution of flow, merge and swirl velocity rules. Calibration experiments showed that the worst case latency in agents sharing
position information was of the order of 0 .5 s made up from delays due to finite guidance update rate, WiFi processing and
centralised message processing. A choice of vehicle cruise speed of 2 m/s and conflict radius of 2 .5 m provided an acceptable
compromise between experiment time efficiency (speed) and spatial efficiency (resolution) within the test volume. Results from
recirculating junction experiments show that peak deconfliction activity occurs at the junction node, however biased distribution
of agents within a corridor means the peak intensity is pushed ahead of the node. Use of meshed helical junction structures

significantly reduces the intensity of conflict at the expense of reduced junction time efficiency.

Decentralised Deconfliction of Aerial Robots in High Intensity

Traffic Structures

Verdon Crann 0000-0002-3725-726X, Peyman Amiri 0000-0002-8575-2978,
Samuel Knox 0000-0002-2765-2813, and William Crowther 0000-0002-0613-9375

Abstract

Projections for future air mobility envisage intensely utilised
airspace that does not simply scale up from existing systems with
centralised air traffic control. This paper considers the implemen-
tation and test of a software and hardware framework for decen-
tralised control of aerial vehicles within intensely used airspace.
Up to 10 rotary wing vehicles of maximum all up mass of 1 kg are
flown in an outdoor volume with length scale of 100 m with GPS
and WiFi connectivity. Flight control is implemented using a Pix-
hawk 4 flight controller running the PX4 firmware with guidance
algorithms run on a separate onboard companion computer. De-
confliction is implemented using a simple elastic repulsion model
with a guidance update rate of 10 Hz. Traffic structures are con-
structed from a path of directed waypoints and associated cross
sectional geometry. Junctions are implemented when two paths
converge into one or when one path diverges into two. Agents en-
gage with structures through execution of flow, merge and swirl
velocity rules. Calibration experiments showed that the worst case
latency in agents sharing position information was of the order of
0.5 s made up from delays due to finite guidance update rate, WiFi
processing and centralised message processing. A choice of vehicle
cruise speed of 2 m/s and conflict radius of 2.5 m provided an ac-
ceptable compromise between experiment time efficiency (speed)
and spatial efficiency (resolution) within the test volume. Results
from recirculating junction experiments show that peak deconflic-
tion activity occurs at the junction node, however biased distribu-
tion of agents within a corridor means the peak intensity is pushed
ahead of the node. Use of meshed helical junction structures signif-
icantly reduces the intensity of conflict at the expense of reduced
junction time efficiency.

Keywords: Distributed Control, Aerial Robotics Framework, Un-
manned Traffic Management.

Correspondence

Verdon Crann, University of Manchester, Manchester, UK
Email: verdon.crann@manchester.ac.uk

Funding: This work was part of the EPSRC CASCADE
Program EP/R009953/1.

1 Introduction

Anticipated development of urban air mobility and aerial
drone delivery services benefits from intensely utilised
airspace that does not simply scale up from existing trans-
port systems with centralised air traffic control (Airbus, 2018;
Bauranov and Rakas, 2021; Federal Aviation Administration,
2020; Federal Aviation Administration and NASA, 2020).

Current road transport systems use both centralised and de-
centralised management, e.g. traffic lights and delegated
driver autonomy, respectively, and vehicles flow through pre-
defined networks of various classes of roads connected via
junctions. Similar concepts are proposed for 3D aerial traf-
fic networks as in (Hoekstra et al., 2015; Jang et al., 2017;
D. D. Nguyen et al., 2021; Quan and Li, 2020; Sunil et al.,
2015; Tony et al., 2020). The present work addresses the
problem of developing and testing algorithms for automated
following of aerial traffic structures whilst maintaining safe
separation between agents (deconfliction). The work is based
on development of a practical outdoor test environment us-
ing commercial off the shelf drones operated within line of
sight regulations. The aim is to progress the state of the art
in deployment of laboratory-based aerial robotics techniques
for multi-agent aerial traffic flow experiments. The following
literature review is separated into three parts: the first con-
siders frameworks for implementing a practical multi aerial
robot experiment, the second Uncrewed Traffic Management
(UTM) simulation, and the third latency in multi-agent com-
munications.

A summary of existing frameworks developed to support
practical aerial robotic applications is shown in Table 1. A
framework is defined as a set of standards, libraries, and tools
that integrates with one or more flight control hardware fami-
lies. Telekyb (Grabe et al., 2013) provides a controller capable
of implementing decentralised flight formations and supports
trajectory planning, state estimation, and tracking. Mavwork
(Mellado-Bataller et al., 2013) focuses on visual control of
multiple micro aerial vehicles for indoor applications. Twirre
(Van De Loosdrecht et al., 2014), was developed for vision-
based autonomous flight of mini UAVs in both GPS-enabled
and GPS-deprived environments. Paparazzi (Hattenberger
et al., 2014) is an open-source drone hardware and software
project for rotary and fixed-wing drones that supports pop-
ular autopilot firmware. In (Preiss et al., 2017), an indoor
practical demonstration of a swarm of 49 Crazyflie 2.0 drones
with a VICON positioning system was conducted. This work
was extended with a SITL framework enabling simulation and
integration with ROS and Gazebo (Silano and Iannelli, 2020).
Aerostack (Molina et al., 2020; Sanchez-Lopez et al., 2017;
Sanchez-Lopez et al., 2016) is a multi-layered framework for
autonomous aerial robots that supports a wide range of ap-
plications and platforms and has been successfully used for
outdoor applications.

There are several simulation frameworks that implement
Uncrewed Traffic Management (UTM) rules that are relevant

Features Aerostack Paparazzi Telekyb Twirre Mavwork
(Sanchez-Lopez (Remes et al.,, (Grabe et al, (Van De Loos- (Mellado-
et al., 2016) 2013) 2013) drecht et al., DBataller et al.,

2014) 2013)

Compatibility with Pixhawk Yes Yes No No No

flight controllers

Demonstrated implementa- Yes Yes Yes No No

tion of decentralised control

Compatibility with ROS Yes No Yes No No

Built in SITL implementa- Yes Yes Yes No No

tion

Does not require external Yes Yes No Yes Yes

motion capture system

Agent to agent communica- Yes Yes Yes No No

tion supported

Maximum number of aerial 5 5 4 Not specified Not specified

robots demonstrated flying

simultaneously

Open Source Yes Yes Yes Yes Yes

Allows implementation of Yes Yes Yes No Yes

custom behaviours without

modification of architecture

Tab. 1: Practical frameworks
to the present work. A simulation framework based on ROS
and Gazebo was proposed in (Millan-Romera et al., 2019) Waypoint I Waypoint

and (Capitdn et al., 2021) to develop in-flight deconfliction
and control services, then implement and test them in cus-
tomised configurations and scenarios, including use of auto-
mated threat management and conflict resolution. In (Car-
raminana et al., 2021) and (Besada et al., 2022), an agent-
based UTM simulator platform was presented to simulate the
effects of availability of various UTM information sources and
sensors on pre-flight and in-flight stages. A 2D agent-based
Python simulation framework for low-altitude UTM systems
including variable collision avoidance algorithms and useful
definition of safety, capacity and efficiency metrics was intro-
duced in (Ramee and Mavris, 2021). In (Zhao et al., 2019),
a multi-agent air traffic and resource usage simulation frame-
work was used to evaluate different air traffic management
policies and obtain a relationship between policy, environ-
ment and resulting traffic patterns.

Also of relevance to the present work are studies investi-
gating latency in multi-agent communications, which is a key
driver of performance. The latency of a multi-agent robotic
system was measured for up to 4 agents for different message
sizes in (Berna-Koes et al., 2004). Communication back chan-
nels were proposed to decrease the latency. In (C. P. Nguyen
and Flueck, 2011), a stochastic model which can be adjusted
by system configuration to predict and simulate latency in
multi-agent power grids was presented. In (Pasandideh et al.,
2023) a systematic literature review on aerial robot network-
ing was carried out which presents the limitations of existing
flying ad hoc networks and identifies possible future work.

Whilst previous work identified the core components re-
quired for successful demonstration of distributed aerial con-
trol for UTM evaluation, the lack of an off-the-shelf solu-
tion for the specific research objectives required the develop-

Flow Velocity Flow Velocity

! demand
Drone position

vector normal
to path

T Swirl Velocity
Q' 9 demand (out of

g o Page)

Merge Velocity
demand

Path

Envelope radiusT Path envelope

Fig. 1. Definition of flow, merge and swirl guidance velocities for
agent path following

ment of a framework with bespoke elements. In particular,
there was a need to implement custom on-board guidance al-
gorithms and run efficient data gathering experiments with
multiple drones.

2 Traffic Management Implementation

An aerial routing network is comprised of paths (edges) and
junctions (nodes). A path is defined both by its geometry and
the guidance rules used to follow it. The geometry of a path
is defined by a directed series of waypoints that forms a cen-
treline. A cross sectional shape is swept along the centerline
to form an envelope. Path guidance is provided by flow that
governs the agent velocity parallel with the path centreline,
merge which governs velocity normal to the centreline, and
swirl that governs velocity normal to flow and merge, Figure
1.

Different types of paths are obtained by varying the topol-

Xconﬂict‘

‘Vd ‘ :Vcruise
max

‘Vd| = kd ‘iconﬂict‘

Deconfliction velocity, V

Deconfliction

r conflict

velocity, V4 T -
for agent A Conflict distance |Xconct |
Fig. 2: Agent deconfliction model based on a virtual contact

sphere.

ogy of the path cross-section. A line has an envelope radius
of zero. A ribbon has a cross-section formed by a line of finite
length forming a 2D surface. A cylinder has a given enve-
lope radius with agents able to occupy the volume anywhere
within this radius. A tube is a special case of a ribbon which
is wrapped around itself and the sides are connected to form
the surface of a cylinder, with agents only able to occupy the
cylindrical surface defined by the radius. Helical tubes are a
special case of tubes in which agents have both axial and tan-
gential velocity. Following from the definitions above, a line is
consistent with common usage for lane, a ribbon is consistent
with strip and a cylinder is consistent with corridor. There is
no common name for tubular structures. A binary junction
is formed when two paths combine into one path (a converg-
ing junction) or one path splits into two (diverging junction).
Junctions are not reversible, i.e. the behaviour of a converg-
ing junction is not the same as that of a diverging junction
with a simple sign change. Arbitrarily complex intersections
can be formed by the assembly of multiple binary junctions.

Deconfliction is provided by a sphere around each agent
defined by a conflict radius, Figure 2. This sphere behaves
as a virtual contact surface that provides a repulsive velocity
demand proportional to penetration with conflict spheres on
other agents. The stiffness of the response is controlled by
a deconfliction gain parameter. The maximum deconfliction
demand is limited to vehicle cruise speed.

3 Methodology

3.1 Hardware Setup

The system architecture used for this work is shown in Figure
3.

Ground Control Station

LWiFi Module

— UART USB

Onboard Computer|

Ground Control Computer

QGroundControl @
T

Ground Control Computer

1

1

i

HeixioGul () | |
¥ 1

1

i

i

Flight Controller
- (PX4 based)

|uarT

Aerial Robots

Legend : | WiFi MAVIlink WiFi L
[] Hardware — Wired 1 | (2.4 GHz, Bridge (Linux based)
Software = = Wireless : | _MAViink) | ! = SBUS| Receiver
Single Points of Failure 1 Control Link s
@ communication Redundancies| ! ___®8MHy !

Fig. 3: System architecture diagram (Knox et al., 2022).

3.1.1 Aerial Robot Hardware

Flight demonstration hardware was built around a custom
five-inch frame racing quadcopter, Figure 4 and Figure 5. A
weight breakdown for the vehicle is shown in Figure 6. Power
was provided by a 14.8 V' 3700 mAh lithium polymer bat-
tery and propulsion by four 2206 2300 kv motors running
5 inch propellers with a 3.5 inch pitch. Typical flight time
for a standard configuration was 10 minutes. The principal
avionics system components were:

e Onboard Computer: Raspberry Pi 4B with 2 GB of
RAM used to run high-level control software, receive mis-
sion commands from the GCS, and send commands to
the flight controller through UART.

e Flight Controller: Pixhawk 4 running PX4 Firmware
used to provide low-level control and interfaces with the
Mission computer via UART.

e USB WiFi Communication Module: Dynamode
2.4 GHz USB WiFi adapter, used to communicate
telemetry information between agents and receive com-
mands from the ground control program. Connected to
the onboard computer via USB.

¢ GPS Module: Ublox NEO-MS8N, used to provide po-
sition, velocity and heading information to the Flight
Controller.

e MAVlink WiFi Bridge Module: Adafruit Huzzah
with MavESP8266 firmware, used as a secondary control
link to connect the Flight Controller with QGroundCon-
trol.

e 868 MHz Receiver: TBS Crossfire Nano RX, provides
a reserve data link through which agents can be con-
trolled manually in an emergency, or a kill command can
be issued.

GPS Module

Battery

MAVIlink WiFi

Flight
J Bridge

Controller

USB WiFi

— Receiver
Module -

Mission
Computer

Fig. 4: Multirotor vehicle used for experimental work.

Fig. 5: Definition of main dimensions of the multirotor vehicle used
for experimental work, all units in mm.

Onboard Processing (5%, 49g)
Raspberry Pi 4B, heatsinks \

Communications (2%, 23g)
USB WiFi module, Mavlink WiFi
bridge, 868MHz Receiver
Flight Control (7%, 639)
Pixhawk 4, GPS Module

Power (40%, 3859)
Battery, PDB

Secondary Structure (11%, 1079)
Onboard computer case,
mounting hardware

Primary Structure (17%, 163g)
Carbon fibre frame, fasteners,
landing legs

Propulsion (17%, 163g)
Motors, ESC, propellers

Total Mass: 953g

Fig. 6: Mass breakdown of the multirotor vehicle used for experi-
mental work.

3.1.2 Ground Control Hardware

The Ground Control Station (GCS) hardware includes:

e GCS Computer: Runs the MQTT broker software, the
experiment control program and QGroundControl

e Router: Manages the passing of packets between the ac-
cess point and the GCS Computer, also handles assigning
IP addresses to devices on the network.

e Access point: Used to improve the range of the router
network using high-gain directional antennas.

3.2 Software Setup

The software architecture used for experimental work is
shown in Figure 7. The software has three main components:

e Experiment Monitoring and Control: Runs on the
GCS Computer. Shows agent status via a Graphical User
Interface (GUI). Provides capability for sending control
commands to agents individually or collectively. Ex-
ample commands include take-off, land, hold, return to
home, go to pre-start positions and start experiment.

e Mission Management: Runs on the agent Mission
Computer. Implements high-level flight rules based on
self position and position of other agents. Commands
are sent to the Flight Controller using MAVSDK. Com-
mands are internally generated or forwarded from the
Monitoring and Control program. JSON files are used
to define the geometry and parameters of each experi-
ment. A flow chart for the code running on the mission
computer is shown in Figure 8.

e Communication: Runs on the agent Mission Com-
puter. An MQTT client provides a low latency publish
and subscribe network protocol. Each agent publishes
their telemetry to a topic which other agents can sub-
scribe to. Brokerage is provided by software running on
the Ground Control Computer.

Aerial Robots
User specified Module

Experiment
JSON File

Parameters -Agent
JSON File .‘

| Communication Manager | || Drone Communication |
—]

| mgtt_client Package N
' Mosquitto MQTT Broker -

Ground Control Station
GUI

paho-mqtt Package ||

Communication Protocol

Fig. 7. Communication system and framework software (Knox et
al., 2022).

START

Receive latest
telemetry
from all agents,

Eligible for
switching?
Y
Passed next
waypoint?

Calculate flow,
deconfliction,
merge and
rotation velocities

Passed last
waypoint?

Fig. 8: Flow chart of operations performed on the onboard com-
puter in one time step.

Switch to next
path
Set next waypoint

Set all velocities to
zero except
deconfliction

Output ;

velocity
command

A cross platform GUI application was developed in Dart to
support field deployment of experiments. Users are presented
with options for sending mission commands and experiment
settings to agents. Data from each agent is displayed to show
status and warnings. As a specific safety feature, a hold com-
mand can automatically be sent to all the agents if two or
more agents get closer than an adjustable minimum spatial
distance.

A Model In The Loop (MITL) simulation tool was devel-
oped to evaluate and verify guidance algorithms using ide-
alised kinematic models for the agents with no disturbances
and perfect sensing. This provided good initial estimates for
the tuning parameters, which were then adapted and verified
using Software In the Loop (SITL) experiments. SITL exper-
iments were performed with the same set up as MITL, except
using instances of the PX4 firmware simulated in a Gazebo
model. This process was particularly useful for identifying
collision risk, allowing operators to retune parameters accord-
ingly. Parameters tuned using SITL were then implemented
in hardware and tested in-flight. Finally, a visualisation tool
was developed to plot agent trajectories from post-flight log
data.

More details and information about the Framework have
been provided in (Knox et al., 2022) by the authors of this
work.

3.3 Experimental Method

Experiments were conducted at an outdoor flight test site
within a working volume 130 x 130 x 110 m box, Figure 9.
Test volume was constrained by requirement for line of sight
operations and a maximum ceiling of 120 m under UK CAA
regulations. These dimensions also allowed adequate coverage
using a single WiFi access point.

Side View

Fig. 9: Experiment test volume geometry and operational layout.
Centre of test volume located at 53.408336, -2.124308.

Choice of vehicle target cruise speed and conflict radius for
the experiments was determined by consideration of the ve-
hicle minimum stopping distance at maximum deceleration,
including communication delays. Worst case is two vehicles
approaching each other head on at cruise speed. A vehicle
guidance update rate of 10 Hz was chosen based on suit-
able compromise between performance and stability. Vehicle
maximum deceleration was set to the flight control system de-
fault of 3 m/s?. The latency in sharing position information
between drones is comprised of a WiFi transmit delay, the
MQTT message processing time and a WiFi transmit delay,
Figure 10. Experimental evaluation of the system loop-back
time, Figure 11, showed that there is a baseline processing
delay of around 0.05 s due to MQTT message parsing with
an additional WiFi delay that increases proportional to the
number of drones on the network, Figure 12. The worst case
delay in reporting position information for two drones (out
of a total of six) on a collision path was estimated based
on a delay of 0.2 s, due to information being two guidance
frames late and a worst case loop-back time also of 0.2 s,
giving a total latency of 0.4 s. At a cruise speed of 2 ms™1,
the vehicle will travel 0.8 m during this period. Stopping
distance from 2 m/s is around 1.4 m, verified by experi-
ment, Figure 13., thus the total stopping required distance
is around 1.4 m + 0.8 m = 2.2 m. The vehicle physical
hardware is bounded within a sphere of radius approximately
0.15 m giving a minimum required deconfliction radius of
2.2 m+0.15 m = 2.35 m. On this basis, a conservative value
of 2.5 m was chosen for the conflict radius. This radius allows
a maximum packing of 26 vehicles along the linear dimension
of the test volume, which provides adequate spatial resolu-
tion for traffic flow experiments to be carried out. Choice of
a faster cruise speed would have improved experiment produc-
tivity, but with adverse effect on spatial resolution. Choice of
conflict radius here is conservative in that the head on colli-
sion case, whilst possible, is unlikely in practice because any
slight offset in velocity alignment will cause drones to pass
either side of each other.

Agent A state update provided by flight controller

Agent A
H H “ Flight controller state

updates at 10 Hz

H ‘ H State management
module publishes at 10Hz

Guidance
frames at 10Hz

Ground Station
WiFi MQTT WiFi
Receive Delay Transmit
Agent B

State information
used in guidance frame
after being received

le——Total delay = 0.4s in the worst case—————»!

Agent B uses Agent A state information

Fig. 10: Sequencing diagram illustrating the time delays in trans-
mission of a message between two agents. Diagram drawn to scale
with one guidance frame representing 0.1 s.

1. Timestamp published 2. Message passed

o O by agent to MQTT Broker
R
x > < MQTT
O O Router Broker
. . 3. M Program
Aerial Robot 4. Timestamp message - Message
re-published

received by agent
and compared

Ground Control
Computer

Access Point

Fig. 11: Drone to base station communication path showing how
loop-back time is measured.

o

2 Agents
w 40 I 40 I I
g Mea 52
S I | | | S| 22
g | [L
5 20f | | 20 |
(]
Qo
o |
ES = 0 = mm
0 005 01 015 02 025 0 005 01 015 02 025
3 Agents 4 Agents
» 40 I I 9 40 9
o
o | |
S
g [[
5 20 | 20
a | |
S} |
& ol | 0
0 005 01 015 02 025 0 005 01 015 02 025
5 Agents 6 Agents
w 40 | | 9 40 9
e
o | |
S
g I I
5 20 | | 20
a | |
o
X, 1 - o =
0 005 01 015 02 025 0 005 01 015 02 025
Loopback time [s] Loopback time [s]
©0.15
> Mean loopback time
g [MQTT transmission delay
S o1 i
I
0
£
w0
c
Zo.05F g
w I I I I I l
(=]
©
%]
%]
%) 1 1 L 1 L 1
1 2 4 5 6

3
Number of agents

Fig. 12: Average loop-back time results for 1 to 6 agents. The
green line on each sub-figure represents the mean, the dotted red
line represents the standard deviation. The red bars in the bottom
chart represent the results from a separate experiment where the
message transmission delay of the MQTT broker was measured
with different numbers of publishers and subscribers representing
agents.

2.5 T T T T T T T T
| Experimental Theoretical
_ 2p==- " Target velocity |
w
£158 4
z |3 3\ Xstopping 1.4m
9] k= =)
o 1r= < b
I
o
0.5F o g
9 g
/5, o)
0 1 1 1 1 1 |D
0 1 2 3 4 5 6 7 8 9

Time [s]

Fig. 13: Velocity-time plot for drone acceleration to cruise speed
followed by deceleration to stop at max deceleration. Cruise speed
=2m/s.

The maximum practical number of drones in an experiment
is limited by increasing latency and/or decreasing bandwidth
per drone. Increasing latency increases the required conflict
radius of each drone and hence reduces the physical num-
ber of drones that can exist conflict-free in the test volume.
Bandwidth per drone has a minimum lower limit based on
data packet size and the frame update rate. Figure 14 shows
how the required bandwidth changes with number of drones
assuming different guidance frame rates. Message rate is as-
sumed to be quadratic with number of drones (all drones

Variable Unit Logging Rate
Time S 10 Hz
Loopback Time S 1Hz
Current Waypoint n/a 10 Hz
Position m [NED] 10 Hz

Flow Velocity m/s [NED] 10 Hz

Merge Velocity m/s [NED] 10 Hz
Deconfliction Velocity m/s [NED] 10 Hz

Swirl Velocity m/s [NED] 10 Hz

Tab. 2: Data acquisition variables recorded onboard each agent.

share position information). For a guidance frame rate of
10 Hz and MQTT packet length of 50 bytes, the theoretical
maximum number of drones based on bandwidth is around
116. In practice, the maximum would be less than this due
to latency constraints at high drone count. Bandwidth con-
straints could be significantly reduced using a mesh network
approach in which drone position was only transmitted to
nearby agents.

200 T T T T T T T T T
50 byte packets at 5Hz
180 50 byte packets at 10Hz b
50 byte packets at 20Hz
. 160 [A
) Makeup of an MQTT Packet
£ 140 sl Topic 7
= Jlo i
z 5 § Length Topic Payload
5 120 F 5= 1L 1L 1 T
S 1B 1B 2 Bytes 6 Bytes 40 Bytes
T 100 B
=
- 80r
e
e
2 802.11g WiFi Specification = >
40 o &
b >
Q
20 3 3
a @
0 : 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Number of Drones

Fig. 14: Theoretical bandwidth requirements for swarms of differ-
ent sizes

The geometry of a typical flight experiment for assessing
the performance of a junction is shown in Figure 15. Drones
are recirculated during an experiment to generate a statisti-
cally meaningful number of data points. Typically 3 drones
were used on each branch and each drone circulated six times.
Test geometry size was based on a compromise between com-
pactness to improve experimental productivity and spatial
resolution in terms of the number of deconflicted agents that
could occupy the junction envelope at any given time. An
illustration of different junction envelope radii used in the ex-
periments and the maximum capacity in terms of cross sec-
tional packing of deconflicted agents is shown in Figure 16.

Experimental results involving velocity are non dimension-
alised via the agent cruise speed and results involving length
via the agent deconfliction radius.

Top View Side View
3m

| > e

Oom

l—]
w9
20m

woz

41m

Ground Plane

Junction geometry

Test Volume !
to scale with
T test volume
5m . :
| Agent conflict
5m diameter
Junction test envelope « Waypoint

Recirculation envelope
Path

Converging junction node
¥ Diverging junction node

Fig. 15: Definition of test geometry for a recirculating junction
experiment. Diverging node is due North of converging node.
conflict

tla o |B

/NN

3m Corridor Radius 4m Corridor Radius 5m Corridor Radius

Agent

Fig. 16: Geometry of recirculating junction experiments to scale
with the conflict radius of an agent. A front view of each corridor
is shown with the maximum number of conflict radii which can fit
in the cross-section. The corridor envelope is shown in yellow and
the conflict radius is shown in blue.

For safe operations, flight testing required a crew of a min-
imum of two people, with one person responsible for vehicle
flight management and experiment control using the GCS,
and a second person responsible for manual control of individ-
ual drones using dedicated radio control transmitters should
an emergency arise that can not be managed by the GCS.
Flight tests were undertaken in wind speed conditions from
0 up to 25 km/h (7 m/s), which represents maximum wind
speed at which drones could reliably hold position. Tests
were conducted at air temperature down to 0 degrees Celsius.
However flight at low temperatures reduced experimental pro-
ductivity due to temperature related reduction in battery ca-
pacity. Flights were not undertaken during precipitation. A
typical flight operation would involve the following steps: 1)
Manually position drones in their ground start locations and
power up, 2) upload experiment plans to each drone in form
of JSON files, 3) Initiate drone take off and go to experiment
start position 4) Initiate flight experiment, 5) Stop experi-
ment and return drones to land at takeoff position and down-
load log files. To simplify operations, a method was developed
to safely position the aerial robots in their experiment start
positions without relying on active deconfliction using only
goto commands included in PX4, Figure 18. Agents are sep-
arated vertically by a pre-defined separation distance before
flying to the desired x-y positions and finally moving to the
desired altitude.

Fig. 17: Photos captured during experimental testing at Snowdonia
Aerospace Centre.

(I

(a) Take Off (b) Vertical Separation
x/vx
a0 v
x><' TgT TmT TmT
?
Ny
(c) Fly to correct XY (d) Fly to correct Z

Fig. 18: Centrally controlled sequence to get drones safely into
start positions without using active deconfliction (Knox et al.,
2022).

4 Results

A summary of the results from converging junction experi-
ments showing trajectories and computed congestion (mean
deconfliction velocity) for different corridor radii is shown in
Figure 19. The most significant region of congestion is around
the node of the junction, as expected. Increasing the corridor
radius increases the spatial distribution of the agent paths but
otherwise trajectories are generally similar. Of note is that
agents tend to travel on the outside surface of the corridor
with respect to the rotation axis of the circuit. This leads
to the mean paths from each circuit crossing ahead of the
junction node, which is non-ideal behaviour from a deconflic-
tion point of view. This issue is also related to the relatively
simple projected distance algorithm for deciding when a way-
point has been achieved. For this particular node, changing
to increment upon reaching the Easterly coordinate of the
waypoint would bring forward the switching point of both
left and right hand circuits and reduce the closing velocity at
the point of intersection, and hence reduce the intensity of
deconfliction required.

Measurements of the integral of deconfliction and merge
velocities for each of the six circuits in the junction experi-
ments referred to above are shown in Figure 20. Integration
is with respect to time over one circuit and is per agent. Ve-
locities are presented in dimensionless form where a value of
unity is a guidance demand velocity equal to the vehicle cruise
velocity. Recorded deconfliction and merge velocities are sig-
nificantly higher in the first circuit due to the influence of
the use of agent starting locations that were not within the
circuit. In subsequent plots, mean integrated velocities are
presented based on circuits 2-6 only.

3m Corridor Radius
T

Warm—'up run Experir'nent I [!
Deconfliction velocity
I Merge Velocity
1 -
3
>
2 L | || - | -
K 1 2 3 4 5 6
- 4m Corridor Radius
g 2 T T T T T T
(0]
I
3
B l
S
o
g 0 L I- e I [P 1
2 1 2 3 4 5 6
© 5m Corridor Radius
a 2 T T T T T T
9]
=
£
1 - -
O L 1o Lo | I- I-
1 2 3 4 5 6
Circuit

Fig. 20: Integrated non-dimensional deconfliction and merge ve-
locities for each circuit through the 3 m, 4 m and 5 m corridor
radii junctions. The first circuit has relatively higher deconfliction
and merge velocities due to increased proximity at start and is not
included in averaged quantities.

The effect of changing corridor radius on mean integrated
deconfliction and merge velocities is shown in Figure 21. The
trend is expected in that these quantities reduce with increas-
ing corridor radius, which reduces the density of agents (re-
duces conflict) and relaxes the lateral manoeuvering required
to stay within a corridor cross section. The trend with chang-
ing corridor radius is not linear, and in particular there is
some feature of the combined geometry of 4 m radius case
evident from Figure 19 that introduces additional deconflic-
tion requirements.

. 0.5 T T T
<> Deconfliction Velocity

° I Merge Velocity

© 04t J
>

k=l

&

e 03f B
]

©

>

=

8 0.2 b
o

>

el

]

© 0.1r b
o

9]

=

=

- 0 1 1 1

3m 4m 5m

Corridor Radius

Fig. 21: Integrated mean non-dimensional deconfliction and merge
velocity for 3 m, 4 m and 5 m corridor radii averaged over circuits
2-6 (steady state).

A detailed time history of proximity (distance between
agents) and congestion (mean deconfliction velocity) for one
circuit of a single pair of agents is shown in Figure 22. This
result serves to verify the implementation of deconfliction in
that mean deconfliction velocity demand is non zero when the
separation distance between any two agents is less than the
agent conflict diameter, as required. The deconfliction veloc-

— 30
S
e
=
5 20+ 0B
c El
£ 5
= 02 ®
[[=]
O 10} E1
c =2
-% 0153
5 o 5
= <
I 01 @
o
e A
= =
g-10f 005 o
c . ‘1<)
©
8
i)
o 0

20 A L i K sl ' - 4 L A
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Distance from Junction centre east [m] Distance from Junction centre east [m] Distance from Junction centre east [m]
Fig. 19: Paths of each agent through the recirculating junction experiment for corridor radii of 3 m, 4 m and 5 m overlaid with
deconfliction velocity. Deconfliction data only shown for deconfliction velocity greater than 0. Each loop contains three agents (total

of 6 agents in experiment). Experiment is run for six complete circulations through the junction. Agent conflict radius was 5 m, shown

to scale in inset. The yellow envelope represents the junction experiment test region. Grey is the return path.

ity has a large peak prior to the junction node then a smaller
one afterwards. The second peak is due to influence of the
change in direction once the junction node waypoint has been
reached.

Deconfliction Threshold

0 5 10 15 20 25
Time [s]

Fig. 22: Time history of the proximity between the two closest
agents (green) and mean deconfliction velocity for all 6 agents
(blue) for one circuit of a junction experiment with corridor radius
of 3 m. The horizontal dashed line represents the proximity at
which deconfliction is triggered.

The cycle-averaged deconfliction velocity per agent as a
function of distance through the junction is shown in Figure
23. The trends for the different corridor radii are similar
with a small peak in congestion around the waypoint at the
entrance to the junction and a larger peak at the junction
node. There remains evidence of the double peak around the
junction node for the 3 m radius case after cycle averaging,
however this feature is less evident in the 4 m and 5 m cases.

0.3 T T T T T T T
3m Corridor Radius
x 4m Corridor Radius
0.25 F 5m Corridor Radius | |
x ' A Converging junction
node
Junction entrance
L] . N
& 0.2 and exit waypoints | 4
frl
©
°
2 o015t .
c
2
s
Y
€ 01} i
<]
v
)
©
=
] /- :
= \ I)
0 l/,\N:J\\\M»—A«»J /. A kw\".’\—;/mq,;,w W §
-8 -6 -4 -2 0 2 4 6 8

Non dimensional distance through junction

Fig. 23: Mean non-dimensional deconfliction velocity (congestion)
against distance through junction for converging junction exper-
iments for different corridor radii. Distance through junction is
measured on line of symmetry normalised by conflict radius of
2.5 m.

The cycle-averaged merge velocity per agent as a function
of distance through the junction is shown in Figure 24. The
merge peaks coincide approximately with the entrance way-
point and the junction node, but with the peak being slightly
ahead at the entrance and behind at the node. The peak
merge velocity is highest for the smallest corridor radius, con-
sistent with the need to follow a tighter turn radius to stay
within the corridor. A direct comparison of deconfliction ve-
locity and merge velocity for the 3 m corridor radius case plot-
ted on the same axes is shown in Figure 25. The fact that the
deconfliction peak is substantially ahead of the merge peak
at the junction node confirms that it is the crossing streams
effect ahead of the node that is causing the high deconflic-
tion rate rather than the funnelling effect of the converged
corridors.

10

0.3 T T T T T T T
3m Corridor Radius
4m Corridor Radius
0.25 F 5m Corridor Radius | |
rg\a &° Converging junction
node
Junction entrance
0.2 and exit waypoints |4
<>E
2
8 015f -
[
>
[
2
Q 0.1r E
€
c
©
9]
= o.0sf AA//X 4
LN I
-6 -4 -2 0 2 4

6 8
Non dimensional distance through junction

Fig. 24: Mean non-dimensional merge velocity against distance
through junction for different corridor radii.

o & 0.3 ; ; : ; ; : ;

. Deconfliction Velocity
Merge Velocity
Converging junction
node
Junction entrance
and exit waypoints

0 /A\\ A/\\A =
-6 -4 -2 0 2 6 8

4
Non dimensional distance through junction

I

N

&
T

s

o
< = o
[” N
T T T
.

o

o

v
T

Mean velocity demand, V4 and ¥,

Fig. 25: Comparison of mean deconfliction and merge velocities
against distance through junction for a corridor radius of 3 m.

We now consider results from a more sophisticated converg-
ing junction concept in which the agents travel in a helical
fashion on the surface of cylindrical corridors. The corridors
are joined at a junction node using the principle of meshing
helical gears such that agents are able to transfer (switch)
from one cylinder to an adjacent meshing cylinder without
having to cross paths with any other agents. Agent trajec-
tories from a MITL simulation of the junction is shown in
Figure 26. Experimental measurements of mean deconflic-
tion velocity through the junction are shown in Figure 27,
with comparison to an equivalent simple converging junction.
The magnitude of separation velocity for the meshed helical
junction is significantly less than that for a simple converg-
ing junction, as expected. However, for the helical junction,
improved deconfliction does come at the cost of decreased
transport efficiency as the helicity increases the effective path
length and hence transit time through the junction.

10 70

40

50

Fig. 26: Definition of the helical junction geometry used in Figure
27. Dimensions in m.

<
i

Cylinder

o
w
w

o
W

o
N
w

o
=
w

Non dimensional rule output velocity
o
N

\ ! \ N Il
0 0.5 1 1.5 2 2.5 3
Non dimensional distance through junction

Fig. 27: Comparison of deconfliction velocity for a simple converg-
ing junction and a meshed helical junction.

The correct ensemble behaviour of the agents was verified
by flying a number of different paths in simulation and in
the real world. Figure 28 shows the MITL simulation output
side by side with a long exposure photograph of the flight
test. There are some small differences due to real-world effects
such as communication latency and sensor measurement error
however the ensemble behaviour is clearly correct.

5 Conclusion

Design of field trials for testing deconfliction of aerial robots
with line of sight constrained test volumes is driven by satisfy-
ing conflicting requirements for maximising spatial resolution
(maximising the number of deconflicted agents that can be
packed in the test volume by minimising the conflict radius)
and maximising experiment time efficiency by maximising the
vehicle cruise speed. Minimum deconfliction radius is set by
the distance given by the product of latency and cruise speed
and the stopping distance at maximum deceleration, hence
spatial resolution for a given cruise speed and vehicle accel-
eration performance is increased by minimising latency. For
the experimental setup used, there was a baseline delay of
0.05 seconds due to centralised message brokering that was
approximately independent of the number of drones (up to

11

Dimensions

220m

Simulation

Experiment

90m

Simulation

Experiment

Fig. 28: Long exposure photo of a flight test next to the output from MITL simulation to verify correct ensemble behaviour.

10 drones) and a WiFi delay that increased roughly propor-
tional to the number of drones. The mean latency with 6
drones was approximately 0.1 seconds with a standard devi-
ation of 0.05 seconds. Further delays are introduced due to
asynchronous update of guidance and communication frames
at 10 Hz giving a total worst case latency of around 0.4 sec-
onds. A choice was made to operate experiments at cruise
speed of 2 m/s, which required a deconfliction radius of 2.5 m
to satisfy worst case stopping criteria. A higher cruise speed
for the same conflict radius would have allowed greater ex-
perimental productivity in terms of the amount of useful data
that could be obtained between battery changes. With the
present constraints, increasing the cruise speed also increases
the required conflict radius and hence has neutral effect on
experimental productivity. Mean latency could be reduced in
future by adopting a mesh networking approach that reduces
the centralised communication burden, however this may not
address the peak latency, which is what drives the required
deconfliction radius. The total number of drones flown simul-
taneously in the present experiment was a relatively modest
six. From an available WiFi bandwidth perspective, it should
be possible in theory to fly up to 116 drones with 10 Hz com-
munication frame rate in the same experimental setup how-
ever larger conflict radii or lower cruise speeds would need to
be used due to increased latency.

An experiment was successfully conducted to evaluate de-
confliction within a converging junction between two traffic
corridors with three vehicles continuously circulating on each
of two different loops to improve data productivity, with ex-
periments repeated for traffic corridors of different radius.
The principal experimental measurements for each drone were

position, deconfliction velocity demand and (corridor) merge
velocity demand. Aggregate junction performance in terms
of congestion was measured based on the integral of deconflic-
tion velocity per drone per cycle through the junction. Inte-
grated merge velocity per drone per cycle provided evidence
of the equivalent impact of corridor following on guidance de-
mand. Increasing corridor radius decreased congestion and
aggregate merge velocity as expected. Due to the relatively
low density of drones in each circuit and that turns were all
of the same handedness, drones paths tended to be around
the outside edge of the corridor for each circuit, resulting in
path crossing just ahead of the junction node. This gener-
ated a region where drones had high closing velocity in close
proximity and hence the deconfliction activity was high. The
experiment could be improved in this respect by adapting the
merge rule logic to ensure a more uniform distribution across
the corridor or by introducing corridor curvature of opposite
sign to align the principal flow with the centreline. Evaluation
of a more sophisticated junction concept using meshed heli-
cal corridors with implicit velocity alignment significantly re-
duces congestion compared to non velocity aligned junctions,
albeit with agents taking more time to transition through the
junction. A complete torroidal helical corridor was imple-
mented experimentally as an example of building block for
development of composite helical interchanges.

Acknowledgment

This work was part of the EPSRC CASCADE Program
EP/R009953/1.
Long exposure photographs taken by Dan Koning.

12

References

Airbus. (2018). Blueprint for the Sky (tech. rep.). Airbus.

Bauranov, A., & Rakas, J. (2021). Designing airspace
for urban air mobility: A review of concepts and
approaches. Progress in Aerospace Sciences, 125,
100726.

Berna-Koes, M., Nourbakhsh, I., & Sycara, K. (2004). Com-
munication efficiency in multi-agent systems. IFEFE
International Conference on Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04. 2004, 2004 (3),
2129-2134.

Besada, J. A., Carraminana, D., Bergesio, L., Campana, 1., &
Bernardos, A. M. (2022). Modelling and Simulation
of Collaborative Surveillance for Unmanned Traffic
Management. Sensors, 22(4), 1498.

Capitdn, C., Pérez-Ledn, H., Capitén, J., Castaio, A., &
Ollero, A. (2021). Unmanned Aerial Traffic Manage-
ment System Architecture for U-Space In-Flight Ser-
vices. Applied Sciences, 11(9), 3995.

Carraminana, D., Campana, I., Bergesio, L., Bernardos,
A. M., & Besada, J. A. (2021). Sensors and Com-
munication Simulation for Unmanned Traffic Man-
agement. Sensors, 21(3), 927.

Federal Aviation Administration. (2020). Unmanned Aircraft
System (UAS) Traffic Management (UTM) Concept
of Operations, V2.0 (tech. rep.).

Federal Aviation Administration & NASA. (2020). Urban Air
Mobility (UAM) Concept of Operations v1.0 (tech.
rep.). FAA.

Grabe, V., Riedel, M., Bulthoff, H. H., Giordano, P. R., &
Franchi, A. (2013). The TeleKyb framework for a
modular and extendible ROS-based quadrotor con-
trol. 2013 Furopean Conference on Mobile Robots,
19-25.

Hattenberger, G., Bronz, M., & Gorraz, M. (2014). Using the
paparazzi UAV system for scientific research. IMAV
2014, International Micro Air Vehicle Conference
and Competition 2014, pp—247.

Hoekstra, J., Kern, S., Schneider, O., Knabe, F., & Lamis-
carre, B. (2015). Metropolis — Concept design.
341508, 1-56.

Jang, D. S., Ippolito, C., Sankararaman, S., & Stepanyan, V.
(2017). Concepts of airspace structures and system
analysis for UAS traffic flows for urban areas. ATAA
Information Systems-AIAA Infotech at Aerospace,
2017, (January), 1-15.

Knox, S. J. C., Crann, V. J., Amiri, P., & Crowther, W. J.
(2022). A practical framework for multi agent experi-
ments in aerial robotics. 2022 7th International Con-
ference on Mechanical Engineering and Robotics Re-
search (ICMERR), 108-113.

Mellado-Bataller, I., Pestana, J., Olivares-Mendez, M. A.,
Campoy, P., & Mejias, L. (2013). MAVwork: A
Framework for Unified Interfacing between Micro
Aerial Vehicles and Visual Controllers. In Studies in
computational intelligence (pp. 165-179).

Millan-Romera, J. A., Acevedo, J. J., Castano, A. R., Perez-
Leon, H., Capitan, C., & Ollero, A. (2019). A UTM
simulator based on ROS and Gazebo. 2019 Work-

shop on Research, Education and Development of
Unmanned Aerial Systems (RED UAS), 132-141.

Molina, M., Carrera, A., Camporredondo, A., Bavle, H.,
Rodriguez-Ramos, A., & Campoy, P. (2020). Build-
ing the executive system of autonomous aerial robots
using the Aerostack open-source framework. Interna-
tional Journal of Advanced Robotic Systems, 17(3),
172988142092500.

Nguyen, C. P., & Flueck, A. J. (2011). Modeling of communi-
cation latency in smart grid. 2011 IEEE Power and
Energy Society General Meeting, 1-7.

Nguyen, D. D., Rohacs, J., & Rohacs, D. (2021). Autonomous
Flight Trajectory Control System for Drones in
Smart City Traffic Management. ISPRS Interna-
tional Journal of Geo-Information, 10(5), 338.

Pasandideh, F., Joao, —., Da Costa, P. J., Kunst, — R.,
Hardjawana, W., & Pignaton De Freitas, —. E.
(2023). A systematic literature review of flying ad
hoc networks: State-of-the-art, challenges, and per-
spectives. Journal of Field Robotics.

Preiss, J. A., Honig, W., Sukhatme, G. S., & Ayanian,
N. (2017). Crazyswarm: A large nano-quadcopter
swarm. Proceedings - IEEE International Conference
on Robotics and Automation, 3299-3304.

Quan, Q., & Li, M. (2020). Sky highway design for dense
traffic. ArXiv, abs/2010.09159.

Ramee, C., & Mavris, D. N. (2021). Development of a Frame-
work to Compare Low-Altitude Unmanned Air Traf-
fic Management Systems. AIAA Scitech 2021 Forum,
1 PartF, 1-24.

Remes, B., Hensen, D., van Tienen, F., De Wagter, C., van der
Horst, E., & de Croon, G. (2013). Paparazzi: how to
make a swarm of Parrot AR Drones fly autonomously
based on GPS. Imav 2013, (September), 17-20.

Sanchez-Lopez, J. L., Molina, M., Bavle, H., Sampedro, C.,
Sudrez Ferndndez, R. A., & Campoy, P. (2017).
A Multi-Layered Component-Based Approach for
the Development of Aerial Robotic Systems: The
Aerostack Framework. Journal of Intelligent &
Robotic Systems, 88(2-4), 683-709.

Sanchez-Lopez, J. L., Suarez Fernandez, R. A., Bavle, H.,
Sampedro, C., Molina, M., Pestana, J., & Campoy,
P. (2016). AEROSTACK: An architecture and open-
source software framework for aerial robotics. 2016
International Conference on Unmanned Aircraft Sys-
tems (ICUAS), 332-341.

Silano, G., & Tannelli, L. (2020). CrazyS: A Software-in-the-
Loop Simulation Platform for the Crazyflie 2.0 Nano-
Quadcopter. In Studies in computational intelligence
(pp- 81-115). IEEE.

Sunil, E., Hoekstra, J., Ellerbroek, J., Bussink, F., Nieuwen-
huisen, D., Vidosavljevic, A., & Kern, S. (2015).
Metropolis: Relating airspace structure and capacity
for extreme traffic densities. Proceedings of the 11th
USA /Europe Air Traffic Management Research and
Development Seminar, ATM 2015, (June).

Tony, L. A., Ratnoo, A., & Ghose, D. (2020). Corridrone:
Corridors for drones, an adaptive on-demand multi-
lane design and testbed. CoRR, abs/2012.01019.

Van De Loosdrecht, J., Dijkstra, K., Postma, J. H., Keun-
ing, W., & Bruin, D. (2014). Twirre: Architecture for

13

autonomous mini-UAVs using interchangeable com-
modity components. International Micro Air Vehicle
Conference and Competition, (August).

Zhao, Z., Luo, C., Zhao, J., Qiu, Q., Gursoy, M. C., Caicedo,
C., & Basti, F. (2019). A Simulation Framework For
Fast Design Space Exploration Of Unmanned Air
System Traffic Management Policies. 2019 Integrated
Communications, Navigation and Surveillance Con-
ference (ICNS), 1-10.

