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Abstract

Over the past two decades, there has been increasing research into the molecular composition and function of small extracellular

vesicles in the central nervous system. This is due in part to the recognition that small extracellular vesicles likely contribute

to the pathogenesis of neurological diseases such as Alzheimer’s disease, but also an understanding that small extracellular

vesicles are a source of potential biomarkers. Small extracellular vesicles carry specific cargo that reflects their biogenesis and

cellular origins, including protein, RNA and lipid. While the protein and RNA content of small extracellular vesicles in the

central nervous system diseases and have been studied extensively, our understanding of the lipidome of small extracellular

vesicles in the central nervous system is still in its infancy. Lipids play a significant role in maintaining central nervous system

structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including

Alzheimer’s disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer’s disease. We propose

that small extracellular vesicle lipids may provide insight into the pathophysiology and progression of Alzheimer’s disease and

other neurological disorders, and, in the future perhaps, aid in disease monitoring and detection.
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Glossary  
Aβ, amyloid-β   
AD, Alzheimer’s disease  
APP, amyloid precursor protein  
BDEV, brain derived extracellular vesicles  
BMP, bis(monoacylglycerol)phosphate  
CNS, central nervous system  
CDR, clinical dementia rating  
CSF, cerebrospinal fluid  
DG, diglyceride  
DHA, docosahexaenoic acid  
EAL pathways, endosomal, autophagy, and lysosomal pathways  
FFA, free fatty acid  
GL, glycerolipids  
GP, glycerophospholipids   
HDL, high-density lipoproteins   
LBD, Lewy body disorders  
LBPA, lysobisphosphatidic acid  
LDL/VLDL, low-density lipoprotein/very low-density lipoprotein  
LPC, lysophosphatidylcholine   
LPE, lysophosphatidylethanolamine  
MCI, mild cognitive impairment  
MG, monoglyceride  
MISEV, minimal information for studies of extracellular vesicles  
MMSE, mini-mental state examination  
MuS, multiple sclerosis  
NFT, neurofibrillary tangles   
NIA-AA, National Institute on Aging and Alzheimer's Association  
NMR, nuclear magnetic resonance  
PC, glycerophosphocholine  
PC-O, alkyl-ether glycerophosphocholine   
PC-P, alkenyl-ether glycerophosphocholine or plasmalogen-PC  
PE, glycerophosphoethanolamine  
PE-O, alkyl-ether glycerophosphoethanolamine  
PE-P, alkenyl-ether glycerophosphoethanolamine or plasmalogen-PE  
PG, glycerophosphoglycerol  
PS, glycerophosphoserine  
PUFA, polyunsaturated fatty acids  
S1P, sphinsosine-1-phosphate  
SEC, size exclusion chromatography  
sEV, small extracellular vesicles  
SL, sterol lipids  
SM, sphingomyelin  
SP, sphingolipids  
TG, triglyceride  
TG-O, alkyl-ether triglyceride 
 



Abstract 
Over the past two decades, there has been increasing research into the molecular 
composition and function of small extracellular vesicles in the central nervous system. This is 
due in part to the recognition that small extracellular vesicles likely contribute to the 
pathogenesis of neurological diseases such as Alzheimer’s disease, but also an understanding 
that small extracellular vesicles are a source of potential biomarkers. Small extracellular 
vesicles carry specific cargo that reflects their biogenesis and cellular origins, including 
proteins, RNAs and lipids. While the protein and RNA content of small extracellular vesicles in 
the central nervous system diseases have been studied extensively, our understanding of the 
lipidome of small extracellular vesicles in the central nervous system is still in its infancy.  
 
Lipids play a significant role in maintaining central nervous system structure and function, and 
the dysregulation of lipid metabolism is known to occur in many neurological disorders, 
including Alzheimer’s disease. Here we review what is currently known about lipid 
dyshomeostasis in Alzheimer’s disease. We propose that small extracellular vesicle lipids may 
provide insight into the pathophysiology and progression of Alzheimer’s disease and other 
neurological disorders, and, in the future perhaps, aid in disease monitoring and detection. 

  



1. Introduction  
Since their discovery more than 30 years ago, it has become clear that small extracellular 
vesicles (sEV) play a role in the pathogenesis of various neurological disorders [1-5]. A subset 
of sEV are exosomes. Exosomes are formed in the endocytic pathway and then secreted from 
parental cells carrying nucleic acids, proteins, and other metabolites enclosed in a lipid bilayer 
[6-9](Figure 1). sEV have a capacity for intercellular communication, inducing phenotypic and 
molecular alterations in recipient cells [10-13]. They can mediate important cellular processes 
and responses required for normal brain function and neuronal support in the central nervous 
system (CNS) [4, 13-26] but also contribute to disease pathogenesis [2, 4, 27-35]. sEV are 
found in the extracellular environment circulating in body fluids such as cerebrospinal fluid 
(CSF), blood, urine, and breast milk. The cargo packaged within sEV can reflect the 
physiological and pathological condition of their cellular origin, making them an excellent 
source of fluid-based biomarkers. 
 
While the protein and RNA content and function of sEV has been subject to intense 
investigation, only a limited number of studies have been published on sEV lipids [26, 31, 36-
42] and even fewer on CNS sEV lipids [43, 44].  In this review, we describe what is currently 
known about the lipid composition of EVs, with a focus on CNS derived sEV. Changes in lipid 
metabolism and lipid-regulating enzyme activity exists in many neurological disorders, 
including AD [45-51]. We provide a comprehensive summary of the known lipid changes in 
the brain, CSF, and blood in AD and their association with disease pathogenesis. We pose the 
question, ‘could the lipid content of sEV provide insight into biological pathways and aid in 
the diagnosis of Alzheimer’s disease (AD) or other neurological disorders?’ and highlight the 
developments and challenges of sEV isolation for the purposes of lipid profiling.  
 
2. What is known about sEV lipids? 
Lipids, including fatty acyls, glycerophospholipids (GP), sphingolipids (SP), sterol lipids (SL), 
and glycerolipids (GL) among others [52, 53], are the building blocks for biological membranes 
and are critical for maintaining membrane structure and function, energy storage, and 
intercellular signaling [54, 55]. sEV possess a specific lipid signature relative to the cell 
membrane. It is lipids that are key to maintaining sEV morphology and enabling sEV (and their 
cargo) to travel in biofluids without degradation [56-58]. Typically, sEV are enriched in 
cholesterol, sphingomyelin (SM), ceramide, glycerophosphoserine (PS), ether 
glycerophosphoethanolamine (PE), lysophosphatidylethanolamine (LPE), and 
lysophosphatidylcholine (LPC) relative to their parental origin, with some variation noted for 
different cell and tissue types [6, 59-66]. The biogenesis and cargo sorting pathways of sEV 
are highly lipid regulated [41, 58, 67, 68]. Ceramide, cholesterol, and phosphatic acid (PA) are 
involved in sEV formation, vesicle transport and release (reviewed by Hessvick et al. [6]) while 
lysobisphosphatidic acid (LBPA, also known as bis(monoacylglycerol)phosphate, BMP) is 
thought to bind the protein ALIX, to regulate vesicle budding and membrane fusion [56-58, 
69].  
 
Only a handful of studies to date have examined the biological activity of sEV lipids [59, 70-
72]. Extracellular vesicle PE and PS are known to participate in membrane dynamic 
modulation and facilitate sEV-cell membrane fusion. PE lipids are present on both leaflets of 
the sEV membrane in an asymmetric manner while the localization and dynamics of PS lipid 
reorganization within the membrane bilayer are still unclear [10, 60, 64, 73-75]. When PS 



lipids localize to the sEV outer membrane leaflet, they are recognized by PS receptors (TIM1/4, 
Annexin 5) on recipient cells, facilitating sEV uptake/fusion and molecular transfer [24, 73, 74, 
76].  
 
Investigations into sEV lipids in disease are still in the discovery phase, and none have yet 
progressed to validation or clinical use. Most studies on human sEV lipid composition have 
come from the cancer field, of note colorectal, prostate, renal, and pancreatic cancer [61, 62, 
77-80]. Some in vitro studies include Lydic et al. that characterized the lipid composition of a 
colorectal cancer cell LIM1215, and their derived sEV [61, 62], and reported an enrichment in 
total lipid content, a distinct sphingolipid profile, and alterations in fatty acyl chain length and 
saturation degree in sEV compared to the parental cells [62]. An in-depth lipidomic 
characterization of the metastatic prostate cancer cell, PC3, and their derived sEV by Llorente 

et al, reported that sEV are 8.4 times more enriched in lipids per mg protein compared to cells, 
specifically, glycosphingolipids, SM, cholesterol, and PS [61].  
 
In recent years, a number of clinical studies have investigated the utility of peripheral sEV 
lipids as potential biomarkers. Urine sEV have been examined in prostate cancer, diabetic 
kidney disease, and non-alcoholic fatty liver diseases. Urinary sEV lipid species, including 
PS(18:1/18:1) and lactosylceramide(d18:1/16:0), were identified as being able to distinguish 
prostate cancer patients from healthy controls [79]. In another study, urinary sEV showed 
significant differences in glycerophosphocholine (PC), LPC, 
glycerophosphoinositolphosphate-2 (PIP2), diglyceride (DG), and ganglioside lipids that could 
distinguish diabetic nephropathy and diabetic mellitus patients [81]. More recently, Zhu et al. 
showed that a panel of urinary sEV lipids, composed of free fatty acids FFA(18:0), 
LPC(22:6/0:0), FFA(18:1), and phosphatidylinositol PI(16:0/18:1), could report on disease 
progression to non-alcoholic steatohepatitis, with an area under the curve of 92.3% [82].  
 
The lipid content of vesicles in blood and bronchoalveolar lavage fluid (BAL) has been 
investigated, however whether these vesicles are sEV is unclear. A study examining serum 
vesicle lipids in pancreatic cancer found LPC(22:0), PE(16:0/18:1), and alkenyl-ether 
(plasmalogen-) containing PC(P-14:0/22:2) associated with disease stage and tumor diameter, 
with PE(16:0/18:1) correlating with survival rate [80]. Plasma vesicle eicosatrienoic acid 
(C20:3) has been proposed as a potential biomarker for severe acute pancreatitis [83] and 
plasma vesicle lipids are suggested to differentiate between early and late stage of non-small 
cell lung cancer [84]. Significant changes in glycerophosphoglycerol (PG), ceramide-
phosphate, and ceramide have been reported in vesicles isolated from the BAL of asthmatics 
patients and SM(34:1) is thought to be increased in asthmatic patients exposed to 
secondhand smoke [85]. 
 
3. What is known about CNS derived sEV lipids? 
Extensive evidence suggests altered lipid metabolism and abnormal activity of lipid regulating 
enzymes in the context of neurological disorders, including Alzheimer’s disease (AD) [45-51], 
Parkinson’s disease [86-91]; frontotemporal dementia [92]; multiple sclerosis (MuS) [43, 93], 
and Lewy body disorders (LBD) [44]. At the time of writing, only a handful of studies have 
reported the lipid profile of CNS derived sEV [43, 44, 94] and the potential function of sEV 
lipids or lipid-regulating proteins [26, 43, 44, 94-96]. Our group has shown that lipid 
dyshomeostasis in AD is also evident in sEV isolated from subject frontal cortex tissue and 



that brain derived extracellular vesicles (BDEV) are enriched in PS and ether-PS lipids [94]. 
Pieragostino et al investigated CSF EV lipids of MuS patients with a particular focus on SP lipids, 
namely SM [43]. Acid sphingomyelinase, ASMase, a key enzyme in sphingolipid metabolism 
hypothesized to be involved in MuS, is also found enriched and active in MuS patient CSF EVs 
[43]. Another study carried out by Kurzawa-Akanbi et al. reported LBD CSF EVs were heavily 
loaded with ceramides, a characteristic of LBD [44]. From the few studies thus far, it is 
becoming apparent that the lipids and lipid-regulating proteins in sEV can report on the 
biological changes that occur as a consequence of the cellular impairments that characterize 
some neurological conditions [26, 44, 94-96]. 
 
Together these studies showed that sEV in the CNS have a similar lipid content to sEV from 
other tissues, but they are enriched in lipids pertinent to the physiological or pathological 
state of the CNS. Of note, these studies demonstrate the benefit of analysing sEV over gross 
tissue/CSF for enhancing lipid signals [43, 44, 94]. With improved detection of lipids will come 
greater insight into the biological/biochemical changes that occur as a cause or consequence 
of disease mechanisms, the role of sEV in disease progression and further understanding into 
whether sEV lipids drive pathology and or report on preclinical disease. CNS disorders 
hallmarked by lipid dysregulation [96, 97]  including AD [45-51],  are likely to benefit from the 
insight to be gained from profiling sEV lipids. Below, we provide an overview of what is 
currently known about lipid dysregulation in AD and suggest that sEV could serve as indicators 
of AD-associated lipid pathobiology and candidate biomarkers to aid in disease diagnosis. 
 
4. Alzheimer’s disease (AD) 
AD is a neurodegenerative condition responsible for 60-80% of dementia cases worldwide 
[98]. Patients experience memory loss and changes in personality and behavior. 
Unfortunately, patients are generally diagnosed after the onset of clinical symptoms [99-101] 
and limited treatment options exist [102]. 
 
The cause of AD is multifactorial and although a variety of genetic, lifestyle, and 
environmental factors have been implicated, age is the number one risk factor [103-106].  
Mutations in the amyloid precursor protein （APP） , presenilin-1 and presenilin-2 are 

associated with early onset familial AD [105]. The ApoE-ε4 allele is regarded as the major 
genetic risk factor for late-onset AD, with carriers of ApoE-ε4 having a higher risk of 
developing dementia than ε3 allele carriers and carriers with the protective ε2 allele [103-
106]. Lifestyle and environmental risk factors that contribute to the likelihood of developing 
AD include diet, educational attainment, physical exercise, and brain injury, amongst others 
[101]. The importance of any one of these environmental factors in increasing or decreasing 
the risk of AD will differ from person to person. 
 
Although an extensive array of factors in varied combinations may result in AD, two 
pathological hallmarks in the brain define the disease: amyloid-β (Aβ) plaques and 
neurofibrillary tangles (NFT). Aβ plaques accumulate outside neurons and are primarily 
composed of aggregated Aβ40/42 peptides generated from the cleavage of the APP [107, 
108]. NFT, on the other hand, are intra-neuronal and primarily composed of hyper-
phosphorylated tau protein [109]. Prior studies have revealed total-tau and phosphorylated 
tau are associated with cognitive decline in mild cognitive impairment (MCI) and AD [110-
114]. In addition to Aβ plaques and NFT, a range of other AD pathological hallmarks include 



neuro-inflammation, synaptic dysfunction [115], hypo-metabolism [116-119], oxidative stress 
[115, 120-125], brain atrophy [126, 127] and lipid dysregulation [50, 51, 128].  
 
No single biochemical test can diagnose AD. The National Institute on Aging and Alzheimer's 
Association (NIA-AA) have emphasized diagnostic guidelines focusing on differential diagnosis 
of three stages of AD; preclinical [129], MCI due to AD [130], and dementia due to AD [131]. 
Current AD diagnosis consists of neuropsychological and pathophysiological assessments. 
Neuropsychological assessments, including the broadly accepted clinical dementia rating 
(CDR) [132] and the mini-mental state examination (MMSE) [133, 134], are employed to 
evaluate an individual’s cognitive performance. These tests are also utilized to stage disease 
progression. Pathophysiological assessments include the detection of biomarkers, mainly 
Aβ40, Aβ42, total tau and phosphorylated tau (p-tau) species in CSF and blood, and imaging 
(PET and MRI) [135-141]. While biochemical measurements and imaging can be used to 
accurately diagnose dementia due to AD, they are not routinely performed due to factors 
such as resource accessibility and cost [99-101].  
 
The pathophysiological process of AD occurs decades before the appearance of symptoms 
and clinical diagnosis [142-145]. This long ‘preclinical’ phase is an opportunity for therapeutic 
intervention; however early diagnosis (and available treatments) is required for this to occur. 
Recent years have seen considerable breakthroughs in detecting, identifying and quantitating 
Aβ species, total tau and p-tau species [114, 146-155] as well as protein markers, i.e. glial 
fibrillary acidic protein and neurofilament light protein [156, 157], in CSF and blood. However, 
several challenges remain, such as the variability in acceleration/deceleration rate of changes 
in molecules of interest, the complexity and the variable biomarker baselines among 
individuals, and the specificity of biomarkers. There remains an urgency to develop efficient 
and accurate blood-based biomarker strategies for clinical and pre-clinical AD diagnosis and 
to identify new therapeutic targets. 
 
5. Disruption of lipid homeostasis in the brain in AD and association with disease 

pathogenesis. 

Lipidomic studies, primarily on post-mortem tissues, suggest that dysregulation of lipid 
metabolism is a hallmark of AD [46-51, 128, 158-164] (see Table 1 for a summary of published 
studies).  
 
An overall decrease in AD in the GP lipid category has been reported in the temporal and 
frontal lobes [46, 165-167]. The majority of studies report decreased plasmalogen-PE and -PC 
levels in multiple cortical regions and cerebellum in MCI and end-stage AD [163, 165, 168-
174], with one study reporting increased plasmalogen-PE in the superior-middle frontal gyrus 
and the superior temporal gyrus via nuclear magnetic resonance (NMR) [167]. For the GL lipid 
category, an overall increase in monoglyceride (MG) and DG is observed in MCI and AD post-
mortem frontal cortex [163, 164], an increase of DG lipids is further evident in the recent 
study in the neocortex brains, accompanied with an increase of triglycerides (TG) lipids [174].   
 
In the CNS, SP lipids are involved in signaling cascades, synaptic function, cholinergic function, 
signal transmission, and neuronal growth (axonal growth). The SM/ceramide cascade is 
impaired in AD [175] but there is little agreement between studies on the relative expression 
of SM and ceramide lipid species [47, 176]. The level of SM has depended on the brain region 



examined [46, 167, 177] and could be attributed to the density of myelinated axons in white 
and grey matter [47, 178, 179]. An increase in ceremide is a consistent finding in the frontal 
cortex [176, 180], the grey matter of the frontotemporal cortex [47], and the middle frontal 
gyrus [177], with specificity in terms of fatty acyl chain composition [179]. There is evidence 
suggesting saturated ceramides are present in Aβ plaques in the superior temporal gyrus 
(Braak stage VI) [181]. Increased ceramide is linked to mitochondrial dysfunction, oxidative 
stress, neuronal apoptosis and Aß generation [162, 177, 182-184], which implicates a role for 
ceramides in disease pathogenesis. The enzymes involved in SM/ceramide pathways are 
dysregulated in AD, which is another possible explanation for the enhanced biosynthesis of 
ceramide [47, 176, 185]. Sphingosine-1-phosphate (S1P), a neuroprotectant against Aβ-
induced apoptosis, is downregulated in AD and suggested to enhance apoptosis [47, 183, 186]. 
Sulfatide depletion has been reported in MCI (CDR 0.5) [178] and (Braak stage ≥ II) [165]. 
Degradation of sulfatides is suggested to cause hypo-myelination, resulting in neuronal 
dysfunction, shrinkage, and cholinergic dysfunction [47, 178, 186]. 
 
Ganglioside lipids, including GM2, GM3, GD3, and GM4, are increased in AD post-mortem 
tissue [46, 187, 188]. GD3 is regarded as pro-apoptotic [189, 190], suggesting a role in 
modulating cell death. The complex gangliosides, GT1b, GD1b, GD1a, and especially GM1, 
which tightly bind Aβ42 [191], are generally down-regulated in AD [188, 192].  Cholesterol, a 
major component of myelin sheaths and lipid rafts, is altered in AD [46, 177, 179, 193] with 
an increase in cholesterol proposed to enhance Aβ production and secretion [128, 194, 195] 
and contribute to memory impairment [195]. It is reported that cholesterol accelerates the 
binding of Aβ to GM1 [196], forming an Aβ-GM1 cluster that not only causes membrane 
damage but also seeds Aβ accumulation and induces oligomerization and fibril formation 
[197-201]. Aβ is well known for interacting with membranes during the aggregation of Aβ 
plaque, which disrupts membrane structure, alters membrane permeability, and causes 
cytotoxicity [97, 195, 202-209]. 
 
The brain contains polyunsaturated fatty acids (PUFA), cholesterol, and has a high oxygen 
level for energy consumption, making it susceptible to oxidative stress, and subsequent 
oxidative modification. Oxidative stress and lipid peroxidation occur in AD, but their 
contribution to disease progression (cause or consequence) remain unclear [120, 123, 210-
213] [115, 121, 124, 212-216]. One of the main PUFA species, docosahexaenoic acid (DHA), is 
decreased in AD brain, CSF, and plasma [163, 171, 217]. DHA is capable of attenuating Aβ 
amyloidogenesis [217-222] making it neuroprotective. Peroxidation products including 4-
hydroxyhexanal, 4-hydroxynonenal, neuroprostanes, neuroketals, isoprostanes, and 
oxysterols are increased in AD brain and CSF [123, 211, 218, 222-228]. Lipid peroxidation 
products play an active role in reactive oxygen species propagation, disruption of membrane 
integrity, protein-protein interactions, metabolism, and neurotransmission, and they 
promote Aß42 accumulation and neuroinflammation [120, 123, 218, 222, 223, 229-233].  
 
Plasmalogens, a group of functional ether-containing lipids, are predominantly synthesized in 
peroxisomes and are abundant in the brain. Plasmalogens are characterized by a vinyl-ether 
linkage (the alkenyl or plasmalogen group) at the first hydroxyl moiety of the glycerol 
backbone, the sn-1 position (according to the stereospecific numbering system). The loss of 
peroxisomes, which participate in regulating metabolic and catabolic pathways, including lipid 
metabolism [234, 235], leads to dyshomeostasis of fatty acid and plasmalogen metabolism in 



AD [172, 236]. Plasmalogens have multiple biological functions, including being scavengers of 
free radicals [237-241] and playing an active role in modulating membrane dynamics and 
enhancing membrane fusion [237, 240, 242-245] due to the hydroxyl moiety at the sn-1 
position and their ability to accommodate second messengers, namely the PUFAs, at the sn-
2 position on the glycerol backbone [246, 247]. Amyloid-β has been suggested to interfere 
with alkyl-dihydroxyacetonephosphate-synthase expression, the rate-limiting enzyme 
involved in de novo synthesis of plasmalogens [169]. Plasmalogens exhibit a protective 
feature by suppressing amyloidogenesis and neuroinflammation induced by 
lipopolysaccharide in a mouse model [248] and PUFA-containing plasmalogens are suggested 
to attenuate nitric oxide production in microglia cells [249]. It has also been reported that 
PUFA-containing plasmalogens induce ferroptosis (a type of programmed cell death 
dependent on iron) that has been implicated in AD [214, 250-253]. Although the molecular 
mechanism and the biological function of plasmalogens in the brain are not fully understood, 
changes in peroxisome function and plasmalogen levels could be both biomarkers and 
therapeutic targets for AD [254]. 
 
6. Lipid changes in AD CSF and blood  
Changes in the lipid content of CSF (Table 2) and blood (Table 3) occur in preclinical and 
clinical AD. In CSF, PC lipids and the PC substrates, phosphocholine and choline, are increased 
[255] and the levels of ceramide and SM lipids, as well as specific PC lipids positively correlate 
with CSF Aβ42, tau, and p-tau181 [161, 180, 256]. Kosicek et al. reported increases in multiple 
CSF SM species in MCI but no change in mild or moderate AD compared to cognitively normal 
controls [257, 258]. A significant reduction in sulfatide has also been reported in AD CSF [259], 
consistent with that reported in the brain [178, 186].   
 
Serum biomarker discovery studies have identified specific lipids capable of distinguishing AD 
from healthy control individuals in discovery studies (Table 3). Saturated and short chain PC, 
LPC and a group of lipid peroxidation products are up-regulated, while PE, especially 
plasmalogen-PE, are decreased in AD serum [173, 260-263]. A longitudinal study spanning 
nine years showed that serum SM and ceramide levels had potential as predictive biomarkers 
for memory impairment [159] while in the Alzheimer's Disease Neuroimaging Initiative (ADNI) 
serum study, PUFA-TG negatively correlated with AD neuropathology and brain atrophy in 
MCI and AD patients compared to controls [264]. 
 
The majority of lipidomic studies have been performed on patient plasma (relative to CSF or 
serum). In plasma, a few PC lipids, mainly the PUFA containing species, are decreased in AD 
[265-267] with an increase in PC(40:4) reported by Proitsi et al. [268]. Ether lipids, mainly 
alkyl-ether PC/PE (PC-O and PE-O) and alkenyl-ether PC/PE (PC-P and PE-P), were down-
regulated in The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and 
ADNI AD cohorts [269]. Dysregulation in PE and plasmalogen lipid metabolism are worth 
examining further to pinpoint if alterations in these pathways could serve as targets for 
therapeutic intervention, or if changes in these lipids are simply a consequence of the disease 
[270]. Alterations in the levels of plasma SM and ceramides were also reported [158, 269, 
271]. Importantly, they are altered in MCI and associated with cognitive decline and 
hippocampal volume loss [160, 272]. In the AIBL and ADNI cohorts, ceramides containing 
different acyl chains correlated with AD, irrespective of their sphingoid base, with negative 
correlation observed in C22:0 and C24:0 species and positive correlation observed in C18:0, 



C20:0 and C24:1 species [269].  The ratio of very long chain to long-chain ceramides, for 
example, C24:0/C16:0 and C20:0/C16:0, were inversely associated with the risk of developing 
incident dementia and AD [271]. However, the ratio of ceramides C24:0/C16:0 was also found 
to be negatively correlated with coronary artery disease and acute coronary syndromes in 
three different patient cohorts [273], indicating that lipid changes in blood can be attributed 
to multiple factors. The PUFA-TG species, especially, C22:6 containing TG(58:8), together with 
alkyl-triglyceride (TG-O) lipids, were negatively associated with AD in the AIBL and ADNI 
cohorts [269], consistent with findings in serum (ADNI) [264].  
 
7. Could the lipid content of sEV provide insight into biological pathways and aid in the 

diagnosis of Alzheimer’s disease or other neurological disorders?  
The first report suggesting EVs may contribute to AD was published by Rajendran et al in 2006 
[274]. Since this time, the field has expanded with numerous discovery studies on the function 
of EVs in AD and their potential as a source of protein and RNA biomarkers. The protein and 
RNA content and function of EVs in AD will not be reviewed here as it has been covered by 
others in detail [31, 275, 276]. 
 
While there are numerous studies on the protein and RNA content of sEV, there are few 
studies on sEV lipids in AD. Recently, our group undertook a comprehensive and semi-
quantitative lipid profiling of sEV isolated from human post-mortem frontal cortex [94] using 
an established protocol to isolate BDEV [277]. We identified differentially abundant lipids in 
BDEV that distinguished AD from neurological control tissue. AD BDEV contained decreased 
PUFA-containing lipids, including PS(40:6), PE(40:6) and LPE(22:6) containing DHA, LPE(22:4) 
containing docosatetraenoic acid, and PC(38:4) and PE(38:4) lipids containing arachidonic acid, 
consistent with that observed in AD tissue [94]. Plasmalogen-PE lipids, including PE(P-36:2) 
and PE(P-38:4), were significantly upregulated in AD BDEV compared to controls [94]. This 
lipidomic data also suggested remodeling of the sphingolipid metabolism pathway in a N-acyl 
chain dependent manner [94].    
 
Cohn et al used a similar isolation approach [277] to examine sEV in the parietal cortex in AD, 
specifically examining microglia derived sEV (CD11b enriched BDEVs) [95]. In agreement with 
our study, Cohn et al also reported a decrease in phospholipids harboring DHA in microglia 
BDEV. They additionally reported upregulation of the most abundant lipid species of LBPA 
and monohexosylceramide. LBPA is an endo-lysosomal specific lipid, its presence in sEV likely 
reflects impairments in the endo-lysosomal pathway [4, 5].  
 
It is well known that sEV, specifically exosomes, are formed in the endocytic pathway and are 
packaged with proteins and lipids that almost exclusively come from the endosomal, 
autophagy, and lysosomal (EAL) pathways [5, 11]. Crosstalk between the exosome biogenesis 
and EAL pathways contributes to cellular homeostasis in the form of coordinated release of 
exosomes and modulation of their cargo depending on the needs of the cell. Alterations in 
the endosomal/autophagy/lysosomal (EAL) pathways are well-recognized early 
neuropathological features of AD, marked by prominent enlargement of endosomal 
compartments, progressive accumulation of autophagic vacuoles and lysosomal deficits [278-
280]. Therefore, the composition of the released exosomes might provide insight into the 
interactions between EAL compartments and enables detection, outside the cell, of pathway 
specific changes in AD. 



 
Studies by Cohn et al [95] and our team [94] suggest that sEV could be used as a tool for 
integrating the EAL pathways and identifying molecular species in the blood that originate 
from these intracellular pathways. Some of the developments and challenges that need to be 
overcome for the potential of clinical sEV profiling to be realized are outlined below. 
 
8. Future developments and challenges  
One of the main challenges associated with sEV isolation from plasma or serum is the removal 
of co-isolated lipoproteins. Due to their common physical features, namely density and 
particle size, lipoproteins are often co-purified with sEV when using currently available ‘EV’ 
isolation techniques or kits [281, 282]. Lipoproteins are rich in lipids, which, when co-isolated 
with sEV, confound the identification of sEV specific lipid profiles [283, 284]. This is one of the 
main reasons that a precise lipid profile of EVs in blood is still unresolved. Several groups 
intending to profile the lipid content of sEV in serum or plasma, have likely analyzed EVs in 
the presence of lipoproteins [285-288]. For example, Peterka et al. isolated plasma ‘sEV’ via 
polymer precipitation, a method known to co-isolate lipoproteins [286], and not surprisingly 
reported an approximately 55-82% increase in TG (mol% lipid abundance) in ‘sEV’ relative to 
plasma via different mass spectrometry platforms [289]. Cholesteryl ester and TG lipids are 
predominant in lipoproteins [284, 290]. Chen et al took a more stringent isolation approach, 
using serial ultracentrifugation and density gradient separation, however their isolation 
method most likely would have still co-isolated high-density lipoproteins (HDL), which have a 
similar density to sEV [287]. In another study that used a commercial precipitation kit, 
negligible ApoA1 and ApoB proteins were detected in plasma- and serum-derived sEV 
compared to HDL and low-density lipoprotein (LDL) enriched particles. However, only GP and 
SP lipid categories were reported and the differential cholesteryl esters and GL lipid data were 
not reported [288]. Size exclusion chromatography (SEC)  [291, 292] and serial 
ultracentrifugation [293] have also been used to isolate vesicles in blood for the purposes of 
EV lipid profiling, however these techniques, are unable to separate EVs from HDL (using SEC 
alone) and other lipoproteins (using ultracentrifugation).  
 
Of the studies published thus far on blood EVs, PS lipids have either not been detected, or are 
only present as a small percentage of the total lipid concentration [287-289, 291, 293]. 
However, PS lipids are known to be highly enriched in EVs isolated from other sources [56-58, 
65, 94]. This discrepancy may relate to the source of EVs or the EV corona in plasma and serum 
[283, 294, 295]. The minimal information for studies of extracellular vesicles (MISEV) 2018 
guidelines, suggest using apolipoprotein A1/A2 (major components in HDL), apolipoprotein B 
(major components LDL/VLDL), and albumin levels to demonstrate the efficiency of 
contaminant removal (lipoprotein and plasma proteins) from sEV preparations [296]. 
Removal of contaminates can be achieved when density gradient and size exclusion are used 
in tandem and while these methodologies together may reveal the true lipid content of sEV 
in blood, they are low throughput, so unsuitable for use in large scale discovery studies and 
clinical applications [286, 297]. Thus, new generation, high throughput products capable of 
enriching sEV from blood plasma and serum without co-isolation of contaminants are needed.  
 
It has been suggested that sEV can cross the blood-brain barrier, possibly via transcytosis [291, 
298, 299]. This provides the opportunity to profile the lipid content of BDEV in patient blood. 
This is of particular interest in CNS disorders characterized by impairments in lipid metabolism. 



Capturing legitimate BDEV from blood, however, has proven difficult. Several groups have 
isolated and characterized neuronal, astrocytic, or microglial exosomes (NDE, ADE, MDE 
respectively) [300-306]. The isolation of these populations has been via the use of a 
commercial polymer precipitation kit followed by immuno-capture with cell type specific 
antibodies. Questions have arisen as to whether this technique isolates EVs of specific origin 
firstly because of lack of antibody specificity [307] and secondly the use of polymer 
precipitation which is widely known to isolate EVs of low purity. The field is currently 
reassessing targets for EV immuno-capture and exploring new methods to capture CNS cell 
type specific EVs from blood. The question will then be, ‘are there sufficient numbers of the 
EV population of interest for downstream lipid analysis and detection of changes associated 
with disease or treatment?’ 
 
Advances in mass spectrometry are beginning to enable high-throughput, sensitive, 
comprehensive, and quantitative detection of lipid species from clinically relevant biological 
samples [62, 269]. With further technological advances, we envisage that detection of 
oxidized lipids will also become easier. As oxidative stress is a hallmark of several neurological 
diseases [120, 121, 124, 177, 213], we predict that comprehensive profiling of oxidized lipids 
will advance our understanding of disease mechanisms. In the future, mass spectrometry-
based lipidomics will become a powerful tool to facilitate comprehensive clinical profiling for 
disease diagnosis [308] however its clinical application is currently limited for a number of 
reasons (see Meikle et al for a comprehensive review on the subject [308]). One reason is the 
complex nature and number of the lipids in biological fluids, particularly blood plasma and 
serum. Complexity reduction of clinical samples, such as blood, could be achieved by 
enriching for sEV to remove non-EV associated lipids. We have shown that sEV not only have 
a unique lipid signature, but they also provide improved detection of lipids of interest, relative 
to gross or more complex tissues [94]. 
 
9. Conclusion 
There is great potential in sEV lipids, particularly in the aspect of diagnosing neurological 
disorders associated with lipid dyshomeostasis. To take full advantage of this potential, 
current limitations must be resolved. To overcome these limitations, future research needs 
to focus on developing high throughput products capable of enriching sEV from blood without 
co-isolation of contaminants, novel isolation methods to capture CNS cell type specific EVs, 
and the development of clinically applicable lipidomic platforms. Additionally, research 
should focus on understanding the role of sEV lipids in health and disease, as well as 
developing strategies to manipulate sEV lipids for therapeutic purposes. With the right 
combination of technological advances and scientific understanding, the potential offered by 
sEV lipids could be fully realized. 
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Table 1 | Lipid dysregulation in AD brain 
Lipids Findings 

Glycerophospholipids 

PE • Reduction in AD superior temporal gyrus [167] and prefrontal cortex [46]. 

PI • Reduction in AD superior temporal gyrus [167]. 

PA • Reduction in AD superior temporal gyrus grey matter [167]. 

PS • Reduction in AD inferior parietal lobule and in occipital cortex [167]. 

PG • Reduction in AD superior temporal gyrus grey matter [167]. 

Plasmalogen-PE • Plasmalogen-PE deficiency present in frontal, parietal, temporal and cerebellar white matter and grey matter in early stage of AD (CDR 
0.5) with no further depletion in white matter in CDR 1, 2 and 3 samples while further depletion was observed with the progression of AD 
in grey matter in all examined brain regions except for cerebellar cortex [170].  

• Deficiency of plasmalogen-PE to PE ratio in AD mid-temporal cortex and in cerebellar grey matter [168]. 

• Elevation of plasmalogen-PE in the AD superior-middle frontal gyrus and superior temporal gyrus [167]. 

Plasmalogen-PC • Deficiency of plasmalogen-PC in stage V-VI (modest AD) prefrontal cortex but no alteration in plasmalogen-PE [171]. 

Fatty acyl chain length • Down-regulation of long chain fatty acids (C>40) and increase in short chain (C=34) [46]. 

Sphingolipids 

SM • Increased SM in AD inferior parietal lobule [167], cerebellar cortex [167] and entorhinal cortex [46]. 

• Increased SM in middle frontal gyrus (MFG) grey matter and no change in MFG white matter [179]. 

• Decreased SM in superior temporal cortex white matter in late stage, no change in early stage [178]. 

• Decreased soluble cytosolic SM and no change of membrane SM in AD frontotemporal grey matter [47]. 

• Decreased SM C24:0 in middle frontal gyrus [177]. 

Ceramides • Increased soluble cytosolic ceramide in AD frontotemporal grey matter [47]; Increased ceramide in AD frontal cortex [180] 

• Increased ceramide C24:0 in AD middle frontal gyrus grey matter but not in white matter where ceramides C16:0, C22:0 and C24:1 were 
significantly down-regulated [179]. 

• Increased ceramides C18:0 and C24:0 in AD middle frontal gyrus [177]. 

Sphingosine and S1P • Increased soluble cytosolic sphingosine and decreased soluble cytosolic S1P in AD frontotemporal grey matter while no change was 
observed in either sphingosine or S1P in membrane fraction [47]. 

• Decreased S1P/sphingosine ratio with increasing Braak stage in hippocampus and temporal gyrus [186]. 

Sulfatides • Decreased sulfatide in early stage AD (CDR 0.5) cerebral and cerebellar grey and white matter [178], and in preclinical AD superior frontal 
gyrus [165]. 



Hexosyl-ceramide • glucosylceramide and galactosylceramide were found to be increased in the prefrontal cortex [46]. 

Gangliosides  • Increased simple gangliosides GM2, GM3 and GM4 and decreased complex gangliosides GT1b, GD1b, GD1a and GM1 in AD frontal and 
parietal cortex [187, 192, 309]. 

• Increased GM3, especially long chain GM3, i.e., GM3 (d18:0/24:0), GM3 (d18:1/22:0) and GM3 (d18:1/24:0) in AD entorhinal cortex [46]. 

• Decreased GM1 and GD1a in AD temporal cortex grey matter [188] 

Glycerolipids 

MG, DG and TG • Increased pool of DG lipids in AD prefrontal cortex and selected triglyceride (TAG) species in AD entorhinal cortex [46]. 

• Increased MG and DG but no significant changes in TG in frontal cortex [164] 

 • Overall increase of DG and TG lipids in mild AD (Braak 3-4) and AD (Braak 5-6) compared to no cognitive impairment (Braak 0-2) 
neocortex [174]. 

Sterol lipids 

Cholesterol 
 

• Increased cholesterol in AD cerebral cortex [193] and middle frontal gyrus grey matter [177, 179], with a trend of increase as disease 
progresses in frontal cortex [177]. 

• No change observed in AD prefrontal cortex or entorhinal cortex [46]. 

Cholesterol esters • Increased CE (C18:1) in AD middle frontal gyrus grey matter [179] 



Table 2 | Potential lipid biomarkers reported in CSF of AD patients 

Lipids Findings 

Glycerophospholipids 

PC metabolites • Increased choline metabolites, phosphocholine, free choline and PC in AD CSF suggested PC breakdown in AD brain [255]. 

PC • PC(32:0), PC(34:1), PC(36:1), PC(38:4) and PC(38:6) were significantly enhanced in CSF from patients with “AD-like pathology” compared 
to normal [256]. 

Sphingolipids 

 SM • Increased in pre-clinical patients compared to non-demented controls but no change in mild or moderate patients compared to controls 
[257, 258]. 

• Significant increase of SM (d18:1_18:0) CSF level of patients displaying “AD-like pathology” [256]. 

• All examined SM species were positively correlated with all A species and total-tau [161]. 

Ceramides • Ceramide C18:0 was positively correlated with all CSF A38, A40 and total-tau [161]. 

• Increased ceramide levels in AD CSF compared to age matched neurological controls [180]. 

• Ceramide in moderate (CDR 2) AD was significantly higher than that in mild (CDR 0.5-1) and severe (CDR 3) dementia [180].  

Sulfatides • Decreased in MCI patient due to incident dementia (CDR 0.5) [259]. 



 

Table 3 | Potential lipid biomarkers reported in serum and plasma from AD patients 

Serum 

Lipids Findings 

Glycerophospholipids 

PC • Increased saturated and short chain fatty acids containing PC lipids with decreased PUFA-PC [260].  

LPC • Increased LPC lipids [263]. 

Plasmalogen-PE • Decreased plasmalogen-PE lipids and the depletion is correlated with disease progression [173, 260-262]. 

Sphingolipids 

SM and ceramides • High level of SM and ceramide lipids is associated with memory impairment [159]. 

• Decreased SM level [263]. 

lipid peroxidation 
products 

• Increased oxidized PC, oxidized TG and F2-isoprostane [263]. 

Glycerolipids 

TG • Negative correlation between PUFA- TG species with AD neuropathology and brain atrophy in MCI and AD patients compared to control 
in the ADNI study [264]. 

Plasma 

Lipids Findings 

Glycerophospholipids 

PC • Various PC lipids, especially the PUFA containing PC species, (i.e., PC(16:0/20:5), PC(16:0/22:6) and PC(18:0/22:6)) were found to be 
decreased in MCI and AD [265-267]. 

• Increased PC(40:4) in AD patients [268]. 

Ether lipids • Decreased ether lipids, PC-O, PC-P, PE-O and PE-P in the AIBL and ADNI cohorts [269]. 

• No change between AD and control but decreased plasmalogen-PE level was observed a year later in the same AD cohort [270]. 

Sphingolipids 

SM • Decreased SM C22:1 and C24:1 [158]. 

Ceramides • Increased ceramides C16:0 and C21:0 [158]. 

• No change in ceramide level between AD vs control while lower levels of very long chain ceramides, C22:0 and C24:0, were found in MCI 
patients; Among MCI patients, higher level of ceramides C22:0 and C24:0 predicted further cognitive decline [272].  

• Ceramides C18:0, C20:0 and C24:1 had positive correlation with AD and negative correlation observed in ceramides C22:0 and C24:0 
[269]. 



• Ratios of ceramide C24:0/C16:0 and C20:0/C16:0, were inversely associated with the risk of developing incident dementia and AD [271]. 

SM and ceramides • Increased ratio of ceramide to SM containing same fatty acyl chain in AD [158]. 

• Increased SM/ceramide and dihydrosphingomyelin/dihydroceramide ratio predicted slower disease progression among AD patients 
[160]. 

Glycerolipids 

TG • Decreased PUFA-TG, C22:6 containing TG(58:8) and TG-O species in AD patients [269]. 

• Decreased TG(57:1) in AD patients [268]. 

MG and DG • Increased MG and DG in MCI patients [164]. 

Free fatty acid • A general increase of free fatty acids was observed in AD plasma [270]. 

Sterol lipids 

Cholesterol esters • The level of long chain cholesteryl esters followed the trend of decrease from CTL to MCI and AD [310]. 
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Figure 1. A simplified illustration of the endocytic biogenesis pathway and lipid cargo of 
small extracellular vesicles (sEV). 
A subset of sEV are referred to as exosomes. They are formed from invagination of the limiting 
endosomal membrane of the late endosome /multivesicular body (MVB). The MVB fuse with 
plasma membrane and releases the internalised vesicles as sEV into the extracellular 
environment. sEV lipid bilayer is key to maintaining vesicle morphology and enabling sEV (and 
their cargo) to travel in biofluids without degradation [56-58]. sEV are enriched in cholesterol, 
sphingomyelin (SM), ceramide, glycerophosphoserine (PS), ether 
glycerophosphoethanolamine (PE), lysophosphatidylethanolamine (LPE) and 
lysophosphatidylcholine (LPC) relative to the parental cell. 

 


