SCARS: Suturing Wounds due to Conflicts between Non-Functional
Requirements in Robotic Systems

Mandira Roy!, Raunak Bag?, Novarun Deb?, Agostino Cortesi?, Rituparna Chaki', and
Nabendu Chaki *

!University of Calcutta
2Universita Ca’ Foscari Dipartimento di Scienze Ambientali Informatica e Statistica
3Indian Institute of Information Technology Vadodara

June 2, 2023

Abstract

Conflicts among non-functional requirements for robotic systems heavily depend on features of actual execution contexts. The
main objective of this work is to design and experimentally evaluate a framework, called SCARS, providing: (a) a domain-
specific language extending the ROS2 Domain Specific Language (DSL) concepts by considering the different environmental
contexts in which the system has to operate, (b) support to analyze their impact on non-functional requirements, and (c)
the computation of the optimal degree of non-functional requirement satisfaction that can be achieved within different system
configurations. The effectiveness of SCARS has been validated on the Gazebo simulation for iRobot ® Create ®3 robot.

10

11

12

13

14

15

16

17

18

19

20

21

22

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

SCARS: Suturing Wounds due to Conflicts between
Non-Functional Requirements in Robotic Systems

Mandira Roy*! | Raunak Bag? | Novarun Deb? | Agostino Cortesi’> | Rituparna Chaki* | Nabendu
Chaki!

'Dept. of Computer Science &
Engineering,University of Calcutta, West Abstract
Bengal, India

2Dept. of Environmental Sciences,
Informatics and Statistics, Ca’ Foscari features of actual execution contexts. The main objective of this work is to design

Conflicts among non-functional requirements for robotic systems heavily depend on

University, Venice, Italy and experimentally evaluate a framework, called SCARS, providing: (a) a domain-
3Indian Institute of Information Technology,

Vadodara (IIT-V), Gujarat, India
4A.K.C School of Information by considering the different environmental contexts in which the system has to oper-
Technology,University of Calcutta, West

specific language extending the ROS2 Domain Specific Language (DSL) concepts

Bonoal. I ate, (b) support to analyze their impact on non-functional requirements, and (c) the
engal, India . . o . . .
computation of the optimal degree of non-functional requirement satisfaction that

Correspondence

can be achieved within different system configurations. The effectiveness of SCARS
*Mandira Roy, Dept. of Computer Science

& Engineering, University of Calcutta has been validated on the Gazebo simulation for iRobot® Create®3 robot.

Bidhannagar Kolkata, West Bengal, 700106,
India Email: mrcomp_rs @caluniv.ac.in KEYWORDS:

Non-functional requirements, conflicts, contexts, optimization
Present Address

Dept. of Computer Science & Engineering,
University of Calcutta, Bidhannagar
Kolkata, West Bengal, 700106, India

1 | INTRODUCTION

Conflicts among functional and non-functional requirements for robotic systems may leave open wounds (or scars) which may
have disastrous effects when the system is put into operation. This work is intended to help developers handle such conflicts by
providing appropriate relations specific to different contexts.

Modern-day autonomous systems (like self-driving cars, industrial robots, etc.) are so designed that they cater to the needs
of multiple stakeholders and can self-adapt to changing environments (or contexts). The architecture of these systems is inher-
ently complex due to the existence of multiple interacting hardware (like sensors, actuators, and microcontrollers) and software
components (like data processing and route planning)!!. Each component has a set of associated functional goals that it can
perform and a set of non-functional properties that it can strive to achieve (like response time, availability, and security). These
components synchronize with each other to achieve higher-level goals or tasks in different environmental contexts.

The involvement of multiple (heterogeneous) components requires a careful analysis of their functional and non-functional
properties in order to determine their compatibilities toward higher-level system goals. An additional level of complexity results
from the need for autonomous systems to adopt different operational configurations under different environmental contexts 1231,
This switching to different configurations requires an understanding of how contexts affect different non-functional require-
ments (NFRs) (like low illumination may require high robustness), conflicts among non-functional requirements, (like between
robustness and efficiency), and their priorities in different scenarios .

24

25

26

27

28

29

30

31

32

33

34

35

46

a7

48

50

51

52

53

54

55

56

57

58

59

60

61

62

3

a4

2| M. Roy ET AL

Formal specifications are well-known for providing non-ambiguous and consistent representations of hardware and software
systems P Tt is observed that autonomous systems consist of several concepts that can be represented via formal specification
languages, such as (i) simple atomic components and their aggregation to form complex composite components; (ii) communica-
tion among the components (internal or external); (iii) QoS (Quality of Service) parameters associated with the communication
among the components; (iv) operational goals of each component; (v) non-functional properties of different components; and (vi)
environmental context in which system is likely to operate (vii) correlations among environmental contexts and non-functional
properties. Unlike generic software applications, autonomous systems are extremely safety critical. Negligence of NFRs and
their interactions with environmental contexts may cause system failures resulting in the loss of human lives .

As observed from the existing state of the art, most of the meta-models proposed for autonomous systems are limited to
capturing only some of the above-mentioned concepts. There are works ™! that have tried to capture the non-functional prop-
erties of autonomous systems. However, these are often not quite generic and are applicable to specific NFRs only. The existing
meta-models, devised for the purpose, hardly consider any analysis of important issues including conflicts among the NFRs, the
impact of environmental contexts on system performance, etc. This highlights the following two important research objectives-

Q-1 How conflicts among non-functional requirements associated with different usage contexts can be properly represented
for autonomous systems?

Q-2 How the requirements for an autonomous system can be analyzed in the specification phase to tune the parameters so that
the system design can optimally match the actual environmental context?

We address these research questions by introducing an operational framework supporting the specification of robotic systems
that takes into account the different environmental contexts in which the system has to operate and analyzes their impact on
concerned NFRs. Eventually, an optimal degree of NFR satisfaction for different system configurations is computed.

The operational framework, named SCARS (Specification Framework for Non-Functional Requirements Conflict Analysis in
Robotic Systems), operates in three stages:

1. System and Scenario Specification: A domain-specific language (DSL) is introduced to support a context-aware specifi-
cation of ROS2f}based robotic autonomous systems. The requirement analysts, in conjunction with the system designers,
specify all components and concepts associated with their robotic autonomous system using the proposed DSL. The
proposed DSL metamodel has been developed on the MPS‘E] framework.

2. Requirement Analysis: The domain-specific requirements specified using the proposed DSL are then subjected to different
analyses that can identify inconsistencies, incompatibilities and conflicts among the requirements. The requirements are
analyzed in different contexts, by identifying the risks associated with conflicting NFRs. We have used the in-built model
checker in MPSE to implement the different types of analyses. The MPS model checker consists of different modules
to perform the following tasks: (i) identification of conflicts among NFRs; (ii) assessing the severity of each conflict;
(iii) handling incompatibility issues among QoS profiles associated with communication components; and (iv) resolving
inconsistency among NFR properties of different components operating together.

3. NFR Optimization: In the final stage, our framework derives the optimum satisfaction values of each NFR in different
contexts, given their conflicts and association with different FRs. These values help the system designers in choosing the
appropriate software operationalizations to fulfill those NFRs while minimizing the risk of system refactoring and failures
in the future.

The model checker generates a multi-objective optimization problem for different components of the system. The conflict
relationships among NFRs are used as the constraints of the multi-objective optimization function. The optimization
problem is solved using pymod|library in Python to obtain the optimal satisfaction values of the conflicting NFRs.

Stage 1 is intended to address the first research objective (Q-7) and stages 2 and 3 are intended to address the second research
objective (Q-2).

https://www.ros.org
Phttps://www.jetbrains.com/mps/
https://pymoo.org/

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

105

106

107

108

M. Roy ET AL | 3

As a proof of concept, we have used the Create®3 robolﬂ simulator for conducting experiments. The objective of these
experiments is to assess the whole procedure and to validate the optimal satisfaction values generated by SCARS.

The main contribution of this research work is the proposed SCARS framework that not only provides a generic structure
for specification but also conflict analysis of NFRs. The proposed DSL metamodel is built on top of the ROS2@ DSL concepts
already proposed in the literature. Reusing concepts ensures backward compatibility. The proposed DSL metamodel can be
adapted for other types of autonomous systems in general with minimal changes, as the classes defined in the metamodel are
also applicable to other autonomous systems.

The rest of the paper is structured as follows. Section [2] elaborates on the existing state-of-the-art. Section [3| recalls some
preliminary notions that will help the reader to better understand the work. Section] explains the proposed SCARS framework.
Section 5 discusses the experiments. Section [6] highlights the different threats to the validity of this work. Section[7] concludes
and discusses possible future work.

2 | RELATED WORK

To frame our contribution in the current research context, we first discuss the different metamodels and domain-specific lan-
guages for robotic systems; we then discuss the different formal analysis approaches in the literature, and finally, we discuss the
different NFR conflict analysis approaches that have been proposed so far.

2.1 | Metamodels and DSL

Researchers in!!¥ have proposed a Domain-specific modeling language known as RoOBMEX for the specification of drone
missions. ROBMEX consists of 3 metamodels- one metamodel for ROS systems (ROSProML), another for general-purpose
operations using ROS variables (RosModL), and the third one for drone missions (ROSMiLan). Authors in"l have presented
RoboChart, a domain-specific modeling language based on UML for robotic applications. RoboChart is supported by RoboTool
which enables modeling, performs type checking and analysis of well-formedness, and automatically calculates CSP models. It
helps to capture robotic platforms, parallel controllers and machines’ synchronous and asynchronous communications. In"4l, a
domain-specific language called RobotML suitable to specify missions, environments and robot behaviors has been proposed.
The DSL aims to ease the definition of specific robotic architecture (reactive, deliberative, hybrid) and specific components
that form the architecture (sensors, actuators, planners, mapping, etc.). The communication mechanisms between components
(sending/receiving of event notifications and data) are also captured in this framework.

In®® authors have proposed a formal specification framework known as Self Adaptive Framework for Robotic Systems
(SafeRobots). It proposes two models- 1) a functional model capturing behavioral or functional requirements that specify the
inputs (stimuli) to the system, the outputs (response) from the system, and the behavioral relationships between them, 2) a
non-functional model for specifying non-functional aspects or quality claims of the system. In®! authors have proposed an
Eclipse-based metamodel known as RoOQME. RoQME defines two meta-models: (1) the RoOQME meta-model, responsible for the
definition of Non-Functional Properties, contexts and Observations; and (2) the ROQME-to-RobMoSys mapping meta-model,
responsible for binding each context defined in a RoOQME model with the RobMoSys Service Definition acting as the correspond-
ing context provider. Researchers in '3l have proposed a domain-specific language (DSL) that allows domain experts to specify
(i) quality of service (QoS) requirements of the communication channels; and (ii) QoS capabilities of the software components
in robotic systems. They have developed ROS 2 based DSI and also allow to verify the QoS specification for any incompatibility.
Authors in!#! have argued that most languages for human-machine systems provide support for functional behavior, while non-
functional properties are specified through informal comments. They have proposed a metamodel for modeling non-functional
aspects of both human and machine models. In">! authors have provided an extension of the UML MARTE profile for mod-
eling and quantitative analysis of robotic-specific non-functional requirements. The extended UML MARTE profile is used for
modeling safety properties for a robot navigation system.

Most of the DSL or metamodels proposed in the literature are aimed toward representing the robot behaviors (functional
behaviors). There are limited works that have tried to capture different components (different categories of hardware components)
of these systems. Existing literature does not explore how the functional and non-functional properties of components are related

dhttps://iroboteducation.github.io/create3_docs/

109

110

115

116

117

118

119

120

121

122

131

132

133

137

138

139

140

141

142

4 M. Roy ET AL

Table I Qualitative Comparison with Existing Works

Requirements Analysis
R h k ROS-
esearch wor 0S-based Components .. L. Intra-NFR Inter-NFR ..
. Ci Ci FR-NFR Context-NFR N . Communication
(atomic and . FRs | NFRs . conflict conflict e
. among components | QoS parameters Dependency | Correlation N QoS compatability
composite) (component wise) | (among components)
Ramaswamy et al. B! | Yes Yes Yes No Yes | Yes Yes No No No No
Parra et al.l12 Yes Yes Yes Yes No | No No No No No Yes
Ladeira et al. 1" Yes Yes Yes No Yes | No No No No No No
. T Temporal NFRs
Miyazawa et al. Yes Yes No No Yes only No No No No No
Cristina et al. Not mentioned | No No No No Yes No Yes No No No
Dhouib et al. 2 Not mentioned | Yes Yes No Yes | No No No No No No

especially when they operate together to achieve a higher-level goal or task. Also, we find that there is a lack of a generic
framework that can model NFR concerns specific to robotic systems and their inter-relationships in particular.

2.2 | Requirements Analysis

Researchers in!% used behavior trees to describe a particular task scenario (or functional goals) for robots. The behavior tree
is further mapped to HFSM (Hierarchical Finite State Machine) and the temporal properties are verified using NuSMV. This
framework also automates code generation and does runtime monitoring of those properties as well. ForSAMARAF]is another
project where authors have specified robot skills using behavior trees. These are then converted to a model that can be verified.
It uses Octomap to simulate environments in which the robots may operate. The model and the map are then fed into the model
checker along with safety properties (specified using LTL) to be verified. Authors in! have proposed a tool named LTLMoP
which includes a parser that automatically translates English sentences belonging to a defined grammar into LTL formulas.
This grammar can capture robot behavior and the environment in which it can operate. A task that is captured using an LTL
formula, is synthesized into an automaton. It builds an automaton from the specification as long as the assumptions regarding
the environment hold true. In"®! a new specification language (LTL based) for reactive systems has been proposed. It comes
with the Spectra Tools 8, to perform analyses, including a synthesizer to obtain a correct-by-construction implementation, and
also additional analyses aimed at helping engineers write higher-quality specifications. Starting with the formal specifications,
it analyses if it is realizable and generates the state machine. If the state machine is not realizable then there may be conflicting
safety and liveness properties.

In" the author has reviewed different NFRs specific to robotic systems: how they are modeled and analyzed in the run-
time environment? The author has highlighted that existing state-of-the-art focuses only on some specific NFRs in specific
environments. The challenge lies in combining heterogeneous models that analyze different non-functional properties. The
author has also highlighted how conflicts among NFRs are not addressed in these works. Authors in®l have surveyed the state
of the art in formal specification and verification for autonomous robotics and the challenges posed. In#! authors have discussed
the need for system reconfiguration arising out of the relationship between NFRs and the environmental context for autonomous
systems. HAROSﬂ framework is another category of work where quality assurance of robotic software is done using static
analysis. It performs design checks for robotic software from a middleware perspective.

2.3 | NFR Conflict Analysis

NFRs impact the satisfaction (or denial) of other NFRs very frequently. An NFR conflict is identified as a situation where the
fulfillment of two NFRs contradicts each other i.e., realizing one NFR has a negative impact on the fulfillment of another
NFR. Most of the proposed NFR conflict identification approaches in the literature are based on either heuristics or ontology.
Heuristic conflict identification approaches are mostly explored in literature and has resulted in creating a knowledge base (con-
flict catalog2122l) that can be used by industry experts in system design. Ontology-based approaches are focussed on creating
different categories of ontologies and provide different conflict detection rules?*l. Catalog-based approaches for NFR analysis
are found to be more useful 223 Inl8l authors have tried to address the issue of conflicts among NFRs in robotic systems.
They have provided a conflict resolution approach based on a weighted sum. However, their conflict resolution is not generic

¢ForSAMARA - Formal safety analysis in modular robotic applications is cascaded funded by European Horizon2020 project RobMoSys (grant agreement No.
732410).
fhttps://github.com/git-afsantos/haros

143

144

145

146

148

149

155

156

157

158

159

160

161

168

169

170

171

M. Roy ET AL | s

and limited to resolving between time and other non-functional properties only. There are limited works I8! in the existing
state of the art that have tried to analyze conflicts among the NFRs specific to robotic autonomous systems.

Table[l|provides a detailed comparison of some of the formal approaches for robotic autonomous systems. The table includes
only those works that have at least provided a metamodel or DSL in their proposal.

3 | PRELIMINARIES

This section explains some of the preliminary concepts that may be helpful for the readers to better understand the proposed
framework.

3.1 | Non-functional Requirements of Robotic Systems

Robotic autonomous systems consist of certain specific NFRs of concern like safety, transparency and fairness. Several studies
have been conducted in the literature that have listed out the NFRs concerned with these systems 12261,

Typically, NFRs are classified into two broad categories?!): (1) Architectural NFRs and (2) Run-time NFRs. Architectural
NFRs are those that are not directly measurable from the system’s operational environment. They are more of a design issue.
Run-time NFRs are those that can be directly measured from the system’s operational environment by observing the performance
characteristics. In this research work, we have limited our focus only to run-time NFRs, as they are measurable both qualitatively
and quantitatively. The document provided at[f]shows the NFR categorization as architectural and run-time NFRs. Each of these
run-time NFRs is expressed in terms of one or more metrics 2!, However, there are some run-time NFRs for which no specific
metrics have been defined in the literature. Keeping this in mind, we have further refined our run-time NFR list to contain only
those NFRs that have a well-defined metric associated with them (refer td2)).

The run-time NFRs being considered can be further classified into the following two categories-

1. Optimistic Low (C-1): We assign those NFRs to this category for which a lower value of the associated metric implies
better satisfaction of the NFR. For example, NFRs like response time and cost, are optimistic toward minimum value i.e,
lower the response time of the system better is the system performance.

2. Optimistic High (C-2): We assign those NFRs to this category for which a higher value of the associated metric implies
better satisfaction of the NFR. For example, NFRs like accuracy and availability, is optimistic toward maximum value i.e,
higher the availability of the system more reliable it becomes.

3.2 | NFR Conflict Identification

As NFR conflict knowledge base for robotic autonomous systems we rely on data collected from the existing literature
(namely, 2122126285321y and by collating knowledge from domain experts. The document provided at® contains the NFR conflict
catalog that we have built and used in this research work.

3.3 | QoS Policies

Quality of service policies allows us to tune communication between nodes. ROS2@ has defined several QoS policie{] for the
communicating nodes. In the definitions, of the QoS policies a publisher refers to the node sending a message or data and a
subscriber refers to the node receiving a message or data. The QoS policies? can be captured in the proposed DSL metamodel.

3.4 | Challenges in the design of Robotic Autonomous System

Robotic autonomous systems consist of various nodes deployed internally or externally that coordinate and exchange data to
execute some tasks. The components of these systems belong to two categories (i) operational components (hardware and

https://github.com/RESSA-ROB/SCARS/blob/main/NFR_Catalog.pdf
Phttps://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html

179

180

181

182

183

184

185

186

193

196

197

198

6 | M. Roy ET AL

software) and (ii)) communication components. These components are associated with several constraints like NFRs, dependency
(between FR and NFR), compliance with standards, scenario constraints and others. Such a component-based system that has
a variety of operational tasks, non-functional properties and communication channels gives rise to the following concerns or
issues -

I-1 Intra NFR Conflict- Whether the non-functional properties of a component are in conflict? If they are in conflict how
they can be operationalized so that all required priorities are met?

I-2 Inter NFR Conflict- Whether there exist conflicts among the non-functional properties of a group of components (like a
swarm of robots or a group of heterogeneous components) when they are deployed in a particular environment?

[-3 NFR Compliance- How compliance of NFRs with standards can be ensured at design time?

I-4 Context-NFR Correlation- How the satisfiability of non-functional properties of the system are affected in different
contexts?

I-5 QoS Compatibility- Whether communicating nodes have a compatible set of QoS policies?

These issues are related to the research objective (Q-2). Each of these issues involves different analyses of the system
specification. The SCARS framework addresses in particular the issues I-1, I-2, I-4 and I-5 above.

4 | THE SCARS FRAMEWORK

This section illustrates the overall workflow and different modules of SCARS (refer to Figure[T). We assume that the following
conditions are satisfied:

1. The availability of conflict catalogs (based on state-of-the-art literature). These catalogs must include conflicts between
NFRs specific to the robotic autonomous system (refer td8l).

2. The availability of a QoS policy list for the system under consideration.

: 3 k
H Refine No .
| feeemeresmsssssssmsssmsanas e Identified NFR conflicts

Problem

Optimal Satisfaction

1
1
1 A. SYSTEM AND SCENARIO SPECIFICATION Scenario | 1! B. REQUIREMENT ANALY SIS !
Constraints] !
! ! | Request for Change 1
] 1
| TP Bttt tet e et ea st a s ieiiiaietaatearaaaraaraaaas !
1 : " :
i . 1
f Integration M 1 Compatible 1
1 — > i H ! profiles
' Duplication . 1 1
N . 1
USRS Pt P : 1} Communeatos ! | Compati incompatble | — '
. . . T > isi
' : : T o I profiles Revisit k .
L . : " Requirement:
! Usage of Y .4 " Inconsistent :
Concepts 1
- § . e Tl 1! comomn [[w17 imommls .
1 DSL i 1 c
Specification Check |
1 Metamodel Scenario-specific requirement sets [recl Continue '
N ! Consistent Analysis
| N NFR profiles 1
1
L I R 1
: 1
P L) Yy, Mgk —
. Expected V. Component | \eR Conflict | | o 1
i NFR values 1 » Check < 1
! Proceed to k i h !
[Design Scenario-NFR ! 1
" g \ Value Impact ! .
1 Analyzer FR-NFR L
. Dependency N !
1
! i
1
1
1
1

values of NFRs Formulation

]
1
]
1
1 C. NFR OPTIMIZATION S S— !
1
] T 1
1 1
1 G Conflict Optimi 1
1 1
1 1

Problem Solver| '€ &/

Input/ Output

Figure 1 The SCARS architecture

199

200

201

202

203

204

205

206

M. Roy ET AL 7

3. Relevant data on the environmental contexts under which the system shall operate.

The architecture of SCARS is shown in FigurdI] The end-to-end flow of activities is shown using solid arrows. The dotted arrows
represent some of the optional activities that can be performed by the system designer. The architecture is partitioned into three
modules, namely: (A) SYSTEM AND SCENARIO SPECIFICATION (B) REQUIREMENTS ANALYSIS and (C) NFR OPTIMIZATION.
The following subsections illustrate each module in detail.

4.1 | SYSTEM AND SCENARIO SPECIFICATION

This module consists of: (1) Requirement Specification using the DSL metamodel; and (2) Integration of scenario constraints
in the requirement specification. They are described in the following subsections.

4.1.1 | Requirement Specification using the DSL. metamodel

The proposed DSL metamodel is depicted in Figure[2] consisting of three categories of artifacts: (i) Operational Artifacts (ii)
Communication Artifacts and (iii) Constraints. It is to be noted that operational and communication artifacts have already been
proposed in the literature in different forms. However, a single DSL metamodel in the literature does not consist of all the
artifacts together. We introduce the constraints as the new artifact for making NFR conflicts and inconsistencies in different
environmental contexts explicit. Each of these artifacts consists of one or more classes. The concepts (or class) of the DSL
metamodel are further illustrated using examples created on the MPS platform.

e Operational Artifacts- The classes representing the operational artifacts are as follows (marked in blue in Figure [2))-

— AutonomousSystem is the root class of the metamodel. Its instances are characterized by a systemName that can be
used to refer to the domain where robots are deployed. For example the class AutonomousSystem can represent a
Hospital where a swarm of robots are deployed.

— Components class represents the different components of robotic autonomous systems. Each instance of
Components class has a Name. The Components class can represent composite components of the system.
Hence each artifact that is defined using Components class, consists of one or more sub-components. These sub-
components can again be composite (defined using Components class) or atomic (defined using Hardware or
Software class). The AutonomousSystemn class is composed of one or more Components.

Example 1 in Table|[[I|captures the specification of a robot that is a composite component defined in MPS platform.
The Sub Components class in this example contains other composite components that make up the robot.

— The Components class is composed of two subclasses Hardware and Software. The Hardware and Software
classes are used to represent atomic components.

— The instances of Hardware class are characterized by its HID (a unique identifier), Type (represent the type of the
device which may be sensors or actuators), and Category (captures the class of devices mechanical or electrical part).

— The instances of Software class are characterized by its SID (a unique identifier), ModuleType (that may be
connectivity, power management) and Category (captures the class of software like operating system or user
interface).

Devices like cameras and actuators can be defined as atomic components (using Hardware class) or as composite
components (using Components class). This depends upon the level of detail the system engineers need to capture.
Example 2 in Table[[l} a camera is defined as a composite component. Example 3 in Table I} a wheel (actuator)
is defined as an atomic component. CAM2 and Robot Wheel are the components referred in the specification of
ROBOT1 in Example 1.

— The FunctionalObjective class captures the FRs. The instances of FunctionalObjective are characterized by
their FRName (identifier for a functional objective) and Description. The Hardware, Software and Components
classes are composed of class FunctionalObjective. The functional goals of each atomic and composite com-
ponent can be captured in the DSL metamodel. Example 1 and Example 3 in Table [l show some sample FRs of a
robot and a wheel, respectively.

242

243

244

247

252

253

254

255

256

257

258

M. Roy ET AL

.| Connections

[1..*] QoSProfileRef

[1..*] connections iport : ElntegerObject [2..*] ports
~ oport : ElntegerObject
~ TopicType : EString
|D AutonomousSystem] [1..*] components L/ Components [0.4] ports ‘ | Ports |
‘ = systemName : EString J ~ name : EString I Port_ID : ElntegerObject ’
f T [0..*] components ?
[1..*] FR
[1..*] hardware [1..*] software
| L Hardware | ‘ L Software | | ! InputPort | | L/ OutputPort |
= HID : EString © SID : EString ' Message : EString ~ Message : EString
= Type : EString = ModuleType : EString ' ReceiveTopicType : EString — SendTopicType : EString
= Category : EString I Category : EString
1..*] NFR
[1..*] FR T [
[1.*] FR g [1..*] NFR [1..*] QoSProfileRef
[1..*] NFR

‘ g FunctionaIObjective|

£ NonFunctionalObjective

= FRName : EString
= Description : EString

[1.*1FR [1..*] NFR

~ NFRID : EString

~ NFRName : EString

~ MetricName : EString

© Minval : EIntegerObject

~ MaxVal : EintegerObject

) MostLikelyVal : EIntegerObject
— Parameters : EString

~ Operation : EString

[1..*] NFR

Profile

[/ ContextNFRAssociation |

_, QoSprofileType :
EString

| L DependencyAssociation |

[2..*] NFR

> NFRID : EIntegerObject
~ DependencyValue : EIntegerObject

= FRID : EString ’

‘ L ConflictAnalysis

~ NFRpairs : EString
I ConflictimpactValue : EIntegerObject

[1..*] NFR

~ ContextName : EString
~ ContextValue : EString
~ ImpactedNFRList : EString

’ [2..*] QoSProfile

[1..*] Context

L/ Scenario

~ ScenariolD : EString
~ Contextlist : EString

| QoscompatibilityCheck

~ QoSProfilePair : EString
I ProfileCompatability : EString
@ CompatabilityCheck()

[1..*] Scenario

L' ScenarioNFRImpact

I RiskType : EString
@ Conflictidentification()
@ AffectionFunction()
@ NFROptimization()

[1..*] ScenarioNFRImpact

I ScenariolD : EString

= NFRID : EString

~ MinValue : EIntegerObject

© MaxValue : EIntegerObject

= MostLikelyValue : EIntegerObject

Figure 2 DSL Metamodel

o Communication Artifacts- The classes representing the communication artifacts are as follows (marked in green in Figure

2):

— The Ports class is used for representing communication ports. The Components class is also composed of one or
more Ports. Each instance of Ports class is characterized by a Port_ID. The attribute Port_ID represents a unique

identification number of each port.

— The Ports class is a supertype for two subclasses InputPort and OutputPort.

— The instances of InputPort are characterized by the attributes - Message (data/message component receives) and
ReceiveTopicType (type of message received, for example traffic alert, object detection).

— The instances of OutputPort are characterized by the attributes - Message (data/message component sends) and

SendTopicType (type of message send).

We have pre-defined some of the plausible topic types?! while implementing the language model in MPS. The
designer can select a topic from the list while creating a specification. This list can be extended as required. Example
4 in Table [T shows a component’s sample input and output port specification.

— The Connections class defines how the information flow occurs between the ports of one device to another. The
instances of this class are associated with attributes iport (refers to input ports), oport (refers to output ports) and
TopicType (records the type of data exchanged). Each instance of Connections class defines data flow from an

output port to an input port. The AutonomousSystem class is composed of one or more connections. For instance,

Table II Examples of Operational Artifacts

Operational Artifacts
Component Name: ROBOT1
Sub Components
CAM1
CAM2
Hardware Components
Actuator: Robot Wheel
Sensor: H1
Controller: H103
Example 1 Software Components
Path Planner
Functional Objective
FR Name: Fetch
Description: Fetch
clothes from the racks.
FR Name: Deliver
Description: Deliver clothes
to the washer.
Component Name: CAM2
Sub Components

Example 2 Hardware Components
Sensor: Lens 1.2

Software Components
Motion Detector

Hardware component: Robot Wheel
Type: Actuator
Category: Mechanical HID: W101
Example 3 Functional Objective
FR Name: Rotation
Description: Wheels should
rotate 360 degrees.

Example 5 in Table[[T]|shows connections defined between pairs of ports. Each connection also includes the type of
data exchanged between the ports.

The QoSProfile class represents the different quality of service parameters associated with communicating nodes.
Each instance of QoSProfile consists of - QoSprofileType (this profile type corresponds to the different topics
of input and output ports) and policyList (list of QoS policies). The specification of QoSprofileType is significant
as the exchange of different information may require different QoS parameters. The InputPort and OutputPort
classes are associated with one or more QoSProfile classes. Example 6 in Table [[T]] shows how QoS policies
are captured in the proposed DSL. Each QoS policy has a type associated with it. The type of InputPort and
OutputPort i.e. attributes ReceiveTopicType and SendTopicType respectively, must match the type of QoS profile
(attribute QoSprofileType) assigned to it (as shown in Example 4 in Table ITI).

The QoSCompatabilityCheck class captures the compatibility issues between different QoS profiles. The instances
of this class are characterized by the attributes - QosProfilePair (QoS profiles whose policies are incompatible)
and ProfileCompatability (records the compatibility issues). The QoSCompatabilityCheck class consists of the
CompatabilityCheck() function that checks for the compatibility of QoS profiles associated with different ports

10 M. Roy ET AL

Table III Examples of Communication Artifacts

Communication Artifacts
(Input Port) ID — IN101
Receive Topic Type: Location
Message: Object Detected.
QoS Profile: Check3
QoS Profile Type: Location
(Output Port) ID — OT101
Send Topic Type: Warnings
Message: Failed to complete tasks.
QoS Profile: Check1
QoS Profile Type: Warnings

Example 4

Connections

Topic Type: Location
Example 5 OT102 — IN105

Topic Type: Warnings

OT101 — IN108

Policy List: Checkl
QoS Profile Type: Warnings
Reliability == RELIABLE
Durability == TRANSIENT _LOCAL
Liveliness == MANUAL_BY_TOPIC
Deadline == 12
Lease Duration == 10
Policy List: Check2
QoS Profile Type: Traffic

Example 6 | ¢ liability = BEST_EFFORT

Durability == VOLATILE

Liveliness == AUTOMATIC

Deadline == 15

Lease Duration == 12

Policy List: Check3

QoS Profile Type: Location

Reliability == RELIABLE

Deadline == 7
273 that communicate to exchange data. The CompatabilityCheck() method refers to the QoS compatibility rules
274 defined for ROS2H,
275 e Constraints- We have defined several constraints as classes in the metamodel.
276 — The NonFunctionalObjective class captures the NFRs associated with operational artifacts. The instances of
277 NonFunctionalObjective class are characterized by the following attributes:
278 * NFRID: A unique identifier.
279 % NFRName: It represents the NFR category, such as security.
280 x MetricName: Captures different metrics that are associated with each NFR category, such as encryption level
281 for security.
282 % MinVal: Represents minimum value of an NFR.

*

283 MaxVal: Represents maximum value of an NFR.

284

285

286

287

* MostLikelyVal: Represents the most likely value of an NFR.

x Parameters: It captures other NFRs on which a particular NFR is dependent. This is applicable mostly in the case
of composite components that are made up of several sub-components (atomic or composite). The satisfaction
of the NFR of a high-level composite component may be dependent on the NFRs of its sub-components.

* Operation: It specifies how the NFRs of lower-level sub-components are related to the NFR of the higher-level
component.

The minimum, maximum and most likely values are expected to be provided by the system analyst. The Hardware,
Software and Components classes are composed of class NonFunctionalObjective. Example 7 in Table
shows the NFRs defined for component ROBOT1 of Example 1 in Table [} The NFR N601 is related to two NFRs
N101 and N301 and the operation is max. Then the maximum of the most likely values of these two NFRs must
match with the most likely value of NFR N601.

The DependencyAssociation class is used to capture the associations between FunctionalObjective and
NonFunctionalObjective. The instances of DependencyAssociation class are characterized by FRID,
NFRID and DependencyValue. The attributes FRID and NFRID refers to the attributes FRName and NFRID of
FunctionalObjective and NonFunctionalObjective class respectively. The DependencyValue represents the
degree of dependency between FRs and NFRs. These associations are expected to be identified by the system engi-
neers. Example 8 in Table[[V]shows an association among the NFRs of Example 7 with the FRs defined in Example
1 for the component ROBOT1.

Table IV Examples of Constraints

Constraints

Non-Functional Objective

Non-functional Property:

ID: N601

NFR Category: Availability —>

Metric: Probability percentage of system uptime
Minimum value: 70 Maximum value: 90

Most Likely value: 85

Parameters: N101 NFR Category: Availability —>
Metric: Probability percentage of system uptime
N301 NFR Category: Availability —>

Metric: Probability percentage of system uptime
Example 7 | Operation

Max

Non-functional Property:

ID: N602

NFR Category: Performance —>

Metric: Response Time

Minimum value: 2 Maximum value: 10

Most Likely value: 5

Parameters

<<LoL>>

Operation

<L.>>

Continued on next page

302

303

305

12

M. Roy ET AL

Table IV — continued from previous page

Constraints

Example 8

Deliver ->N601 NFR Category

Availability —>Metric: Probability percentage of system uptime
Dependency Value: 8

Deliver ->N602 NFR Category

Performance —>Metric: Response Time

Dependency Value: 9

Fetch ->N601 NFR Category

Auvailability —>Metric: Probability percentage of system uptime
Dependency Value: 8

Fetch ->N602 NFR Category

Performance —>Metric: Response Time

Dependency Value: 6

Example 9

Contexts-NFR Association

ID: C1 Name: Lightning Values: Dim

Impacted NFR: N601 NFR Category:

Availability —>Metric: Probability

percentage of system uptime N602 NFR Category:
Performance —>Metric: Response Time

Contexts-NFR Association

ID: C2 Crowd: Low

Impacted NFR: N601 NFR Category:

Auvailability —>Metric: Probability percentage of system uptime
N602 NFR Category:

Performance —>Metric: Response Time

Contexts-NFR Association

ID: C3 Name: Crowd: Heavy

Impacted NFR: N601 NFR Category:

Auvailability —>Metric: Probability percentage of system uptime
N602 NFR Category:

Performance —>Metric: Response Time

Example 10

Scenario:

Scenario ID: S1

Contexts: C1 -Lightning: Dim , C2 - Crowd: Low
Scenario ID: S2

Contexts: C1 -Lightning: Dim , C3 - Crowd: Medium

Example 11

Scenario-NFR Impact

Scenario ID: S1 NFR: N601 NFR Category:

Auvailability —>Metric: Probability percentage of system uptime
Min Value: 60 Max Value: 80

Most likely Value: 70

Scenario ID: S2 NFR: N602 NFR Category:

Performance —>Metric: Response Time

Min Value: 5 Max Value: 10

Most likely Value: 7

— The ConflictAnalysis class captures the conflict relationship between different NonFunctionalObjective. The
instances of this class consist of the following attributes:

* NFRpairs: The pair of NFRs that are identified to be in conflict by the Conflictldentification() function.
% ConflictImpactvalue: The degree of conflict among NFRs.

306

307

309

310

311

312

318

319

320

321

322

327

328

329

337

338

339

340

341

342

343

344

345

349

350

351

352

M. Roy ET AL 13

% RiskType: The risk imposed by each identified conflict.
The ConflictAnalysis class also consists of three functions-
x Conflictldentification(): 1dentifies pair-wise conflict among NFRs.
% AffectionFunction(): It derives the degree of conflict and risk involved.
* NFROptimzation(): It derives an optimized satisfiability value of each NFR in conflict.

— The class ContextNFRAssociation is used to represent the different environmental contexts and correlates these
contexts with NFRs. The context represents environmental conditions in which system has to operate. The instance
of this class is characterized by the ContextName, ContextValue and ImpactedNFRList. The attribute ContextName
and ContextValue defines an environmental context and its label respectively. The attribute ImpactedNFRList lists
the different non-functional properties that may get affected in a particular context. Example 9 in Table [[V|shows
instances of sample contexts and impacted NFRs as defined in MPS platform.

— The Scenario class in the metamodel is used to represent different scenarios in which the system has to operate.
Its instances are characterized by the ScenariolD and ContextList (that is inherited from ContextNFRAssociation
class). Each scenario is a combination of multiple environmental contexts. The attribute ContextList consists of the
set of contexts that makes up a particular scenario. Example 10 in Table [V]shows how the contexts of Example 9
are combined to create different scenarios.

— The class ScenarioNFRImpact captures how multiple contexts when occur together affects different non-functional
properties of the system. Its instances are characterized by the following attributes: ScenariolD, NFRID (this NFRs
must match with the one defined with the contexts for a particular scenario), MinValue, MaxValue and MostLikely-
Value. The parameters MinValue, MaxValue and MostLikelyValue capture how the NFR values may undergo changes
for a particular scenario. This class addresses the issue I-4 mentioned in Section[3.4]

Example 11 in Table[[V]shows the correlation between NFRs and scenarios. The NFR N601 that was defined earlier
in Example 7 in Table [[V]undergoes a change in its specification in scenario S1 in Example 11. These correlations
are to be determined by system analysts manually.

4.1.2 | Integration of scenario constraints in the requirement specifications

The requirement engineer will use the DSL metamodel to generate a general requirement specification for the target system. The
specification must then include the different scenarios (Scenario constraints in Figure[I)) in which the system has to operate
and how in different scenarios the non-functional properties of the system are affected (refer to Example 11 in Table[IV). The
Integration and Duplication process in the framework takes the general requirement specification of the target system and
augments them with scenario information. That is for each scenario a scenario-specific requirement specification is created and
fed into the subsequent processes of the framework. Suppose, if there are n scenarios in which the system has to operate, our
framework creates n separate requirement set (one for each scenario) for further analysis (refer to Figure [I). The objective of
doing this is to separately check the risk factors (conflicts, inconsistencies) associated with different scenarios. This will assist
the system designer to build various configurations of the system with minimum risk. In Example 11 there are two different
scenarios. Each scenario has some effect on the non-functional properties that were specified in Example 7. Hence the Integration
and Duplication process creates two separate scenario-specific requirement specifications (say R1 and R2). In requirement
specification, R1 the specification of NFR N601 will be replaced with the one mentioned for scenario S1 in Example 11. In R1
specification of NFR N602 will remain the same as in Example 7. In requirement specification, R2 the specification of NFR
N602 will be replaced with the one mentioned for scenario S2 in Example 11. In R2 specification of NFR N601 will remain the
same as in Example 7.

It is to be noted that each scenario can impact multiple NFRs. In our examples, we have shown only a single instance for
simplicity. In requirement sets R1 and R2 only NFR specification of different components is changed. Figure 3] shows the FRs
and NFRs description for ROBOT1 in scenarios S1 and S2.

4.2 | REQUIREMENT ANALYSIS

In this module, each of the scenario-specific requirement specifications is subjected to analyses. It includes three different
processes that check for incompatibilities, inconsistencies and conflicts in the requirement sets respectively. These processes
can be executed in parallel and are explained in the following subsections.

353

354

355

356

357

358

14

M. Roy ET AL

R1 {Scenario §1)

R2 (Scenaio 52)

FR Name: Fetch
Description: Fetch
clothes from the racks
FR MName: Deliver
Description: Deliver clothes
to the washer.

NFR ID: N601 NFR Category:
Availability —> Metric: Probability
percentage of system uptime
Min Value: 60 Max Value® 80
Most likely Value: 70
NFR ID: N602 NFR Category:
Performance —=
Metric: Response Time
Minimum value: 2 Maximum value: 10
Most Likely value: 5

FR Name: Fetch
Description: Fetch
clothes from the racks
FR Name: Deliver
Description: Deliver clothes
1o the washer.

NFR ID: N601 NFR Category:
Availability —=
Metric: Probability percentage of
system uptime
Minimum valug: 70 Maximum value: 90
Most Likely valug: 85
NFR ID: N602 NFR Category:
Performance —= Metric: Response Time
Min Value- 5 Max Value: 10
Most likely Value: 7

Figure 3 Scenario-specific requirement set

4.2.1 |1 QoS Compatibility Check

The management of QoS policies is an important aspect of an autonomous system as different devices communicate among

themselves to publish and subscribe to information. The quality parameters associated with the communication ports of the
devices define the characteristic of communication. The QoS Compatibility Check module of the framework takes as input the
system specification (in different scenarios), which includes the devices that are communicating among themselves to share
information. The module generates incompatible QoS profiles for different communicating devices. The ROS2 community has
already defined the set of QoS profiles that are incompatible. We have implemented those rules® in the model checker in MPS.

This QoS Compatibility Check module addresses the issue I-5 mentioned in Section [3.4}
Let us consider two QoS profiles profilel and profile2 shown in Example 12 in Table [V|that are associated with ports 0T102

and IN105 respectively (refer to Example 5 in Table[[TI). The port 0T102 is publishing location information that is subscribed by

Table V Example of Qos Profile

QoS Profile

Example 12

Policy List: Profilel

QoS Profile Type: Location
Reliability == BEST_EFFORT
Durability == VOLATILE
Deadline ==

Policy List: Profile2

QoS Profile Type: Location
Reliability == RELIABLE
Durability == VOLATILE
Deadline ==

ss 4.2.2 | NFR Consistency Check

366

367

port IN105. In Figure] we can see that the QoS profiles associated with these two ports are incompatible due to their Reliability
and Deadline policy.

An autonomous system is built from an aggregation of several atomic and composite components. These heterogeneous
components coordinate among themselves to achieve particular tasks.

368

369

370

371

372

373

374

375

376

381

382

383

384

385

M. Roy ET AL 15

54 issues found
Errors (37 issues)
5 Demo 37 usages

m Demo.a_model 37 usages

N Path Planner
N ROB1 9u

N Error: The Profiles OT102 and IN105 are incompatible due to Deadline policy.
#Error: The Profiles OT102 and IN105 are incompatible due to Reliability policy.

Figure 4 QoS Profile Compatability Check Result

Consider the situation where a robot is expected to deliver some goods in the hospital from point A to point B and the expected
response time for the task is #, sec. Now in performing this task the sensing device of the robot (response time ¢, sec) will locate
the goods, the task and motion planning software modules (response time ¢,, sec) compute a route for the robot and the wheels
(time required to move from point A to B is #,, sec based on wheel velocity) help in the movement. Each of these components
has its own individual response times. Hence it is necessary to compare whether these individual response times (¢, t,,, t,,) of
the components are sufficient to obtain the response time required for the task (z,).

In our DSL metamodel, we have the provision for specifying NFRs for each individual component, and how the NFRs of differ-
ent components are related. Algorithm[T|checks whether NFRs associated with high-level composite components are consistent
with the non-functional properties of its constituting components. This consistency check is performed at the inter-component
level that is among different components (both atomic and composite). The COMPUTE function applies the specified operation
on the most likely values of the NFRs in the parameters field and stores it in variable cvalue. The function COMPARE com-
pares the cvalue with the most likely value of the NFR in concern. This comparison also depends on the NFR category (refer to

Section{3.1).

Algorithm 1 NFR Consistency Check

Arguments:

1. C,ypmp A set of composite components.

Output:
1. A set of higher-level NFRs incompatible with lower-level associated NFRs.

1: function NFR CONSISTENCY CHECK(C,
for each comp € C,,,,, do
for each nfr € comp do
cvalue < COMPUTE(nfr.parameters, nfr.operation)
result <« COMPARE(cvalue, nfr.mostlikely)

2
3
4
5
6: Print result.
7
8
9

comp)

end for
end for
. end function

We have implemented an NFR category check before comparing their values. This consistency check method is executed
for different requirement sets that exist for different scenarios. This NFR Consistency Check module addresses the issue I-2
mentioned in Section [3.4]

In Example 7 in Table[[V]we observed that NFR N601 is related to NFRs N101 and N301 and the Operation is Max. NFRs
N101 and N301 are associated with the sub-components of the ROBOTI (H 1 and H 103 respectively). In this case, the maximum

386

387

395

396

397

398

399

400

4

o
R

402

403

405

406

407

408

409

410

16| M. Roy ET AL

of their most likely values are not consistent with the most likely value of NFR N601. This is analyzed by the model checker in
MPS and shown as an error in Figure[5]

Model Checker. m Demo.a_model

2

35 issues found
@ Errors (20 issues)
s Demo 20 usages
Demo.a_model
HH 2.
() HH 5 S
W Path Pla 10 usages

]
o

W Error: The Profiles OT102 and IN105 are incompatible due to Deadline policy.

I W Error: Robot ROBOTT -- > Parameter values are inconistent for N601. Max most likely value for the parameters is 80.0. Required value is 85.0. I

A € > ol ol % X A
=

Figure 5 NFR Inconsistency Result

4.2.3 | NFR Conflict Check

NFR Conflict check is performed at the intra-component level and it is the most important function of Requirement Analysis.
The NFR Conflict Check module addresses the issue I-1 mentioned in Section[3:4] This module consists of two major activities-
(1) Conflict Identification and (2) Conflict Impact Analysis.

Conflict Identification: The Conflict Identification procedure is performed on the NFRs of each component (atomic and
composite) defined in the specification. As mentioned earlier in Section[#.1.2]for each n scenarios in which the system is likely
to operate the framework creates a different specification. Hence conflict identification is performed for each component in n
scenarios. A pre-defined conflict catalog is used for detecting conflicts among NFRs (refer td). Algorithm2]illustrates the steps
for conflict identification. It takes a set of n requirement specifications as input. Then for each specification, it checks for the
NFR conflicts in each of the components separately. The CHECK function checks whether a pair of NFRs are in conflict by
referring to the conflict catalog and returns 1 or O respectively.

Conflict Impact Analysis: The objective of this activity is to analyze the risk (or severity) associated with different conflicting
pairs of NFRs and how a change in the weight of one NFR impacts its conflicting NFR. It involves the following steps-

(i) Expected Value Computation- We have used PERT 3 for computing an initial expected value of each NFR. Each NFR is
associated with three values- minimum value, maximum value and most likely value (refer to Section m) The PERT
determines the expected value using the following formula-

O,y + Py +4M,,

Expected,,;,, = Ua61 (H

where, O, refers to the optimistic value, P, refers to the pessimistic value and M,

va1 Tefers to the most likely value.

val
In the case of NFR of the category C-1 (refer to Section [3.I)) optimistic value is the minimum value and the pessimistic
value is the maximum value. Similarly, for NFRs of category C-2 (refer to Section [3.1)) optimistic value is the maximum
value and the pessimistic value is the minimum value. The expected values are computed for each NFR pair that is in
conflict. The same NFR can have different expected values in different scenarios.

(i) Normalization of Values- The metrics of different NFRs have their minimum and maximum values in different ranges. The
initial computed expected values of different NFRs lie in different ranges. These initial expected values are normalized in
the range [0-1] using the following formula-

X _ X-X min 2)
normalizedval —
X max — X min
where X is any value that has to be normalized, X, is the minimum value X can have and X, is the maximum value

X can have.

C-1 category NFRs are optimistic towards minimum value and C-2 category NFRs are optimistic towards maximum
value. To make the computation simpler we complement the normalized expected values of C-1 category NFRs (refer to

413

414

415

416

417

M. Roy ET AL 17

Algorithm 2 NFR Conflict Identification

Arguments:

1.

2.

Spec[n]: An array of requirement specifications for n scenarios.

k: Let k be the total number of components in the specification.

Output:

1.

1:
2
3
4
S:
6
7
8
9

19:

Conflict,[k][col,,], i € [1,n]: A set of 2-D arrays storing the conflicts for each component in » scenarios. The col
set to (';) where m is the maximum total number of NFRs of all components.

size 18

function CONFLICT IDENTIFICATION(Spec, k)

Setindex « 1
while index < n do
Fetch Specification .Spec[index].
Set count « 1
while count < k do
Fetch specification for component confy;,; in Speclindex]
Set confooyunt < 0.
for each (nfr;, nfr;) € confioyns do
result « CHECK(nfr;, nfr;)
if result = 1 then
Increment confepyns-
Add (nfr;, nfr;) to Conflict;y, go.[count][confcoynt]
end if
end for
Increment count.
end while
Increment index.
end while

20: end function

(iii)

equation [3).
Xcamplement =1- Xnormalizedval (3)
This step makes all NFRs optimistic toward maximum value. This normalization and complementation help in comparing

the NFRs on a uniform manner.

Let us consider the NFR N602 in Example 7 in Table [IV] that belongs to category C-1. Using PERT (equation [I)) the
expected value is 5.33. The normalized value for N602 is 0.41625. Now complementing the normalized value using
equation [3]we get the value 0.58. It is to be noted that here we have not considered the impact of the scenario on the NFR
N602.

Estimating Risk of Conflict- For every pair of NFR conflicts we classify them into one of the three following classes. This
classification of conflict is done for each of the n requirement specifications. Suppose the NFR pair (nfr;, nfr,) in scenario
m are in conflict with normalized (and maybe complemented) expected values E; and E, respectively. The expected values
computed reflect the desired user expectation from the system. We consider these expected values and conflict information
to determine the risk imposed by the NFR conflicts. If the computed expected values lie between 0-0.5 then it is assumed
to be in the pessimistic range and that between 0.5-1 is to be in the optimistic range.

e Low Risk- If the values of E,; and E| lies in the range [0.5, 1] then the NFR pair (nfr;, nfr,) are said to be at low-risk
conflict. Now increasing the expected value of nfr; will negatively influence (decrease) the value of nfr, as they are
in conflict. However, since the value of nfr, is in the optimistic range the impact may not be too severe.

18| M. Roy ET AL

426 e Moderate Risk- The NFR pair (nfr;, nfr,) are said to be at moderate-risk conflict when one NFR have their expected
427 value in the pessimistic range and another in the optimistic range. nfr; negatively influences nfr,. Suppose E; lies in
428 the range [0.5, 1] but E, lies in the range [0, 0.5]. Now increasing the expected value of nfr; will negatively influence
420 (decrease) the value of nfr,. If the value of nfr, goes below a minimum threshold, it implies that the NFR cannot
430 be satisfied.

31 e High Risk- If the values of E,; and E, lie in the range [0, 0.5] then the NFR pair (nfr,, nfr,) are said to be at high-
432 risk conflict. Since both lie in the pessimistic range whenever we try to improve the value of one NFR towards the
433 optimistic range, it severely affects the other.

a3a In Figure[6]the blue bar represents the initial expected value of E, and green bar represents the initial expected value
435 of E, for low-risk, moderate risk and high-risk case respectively. A represents any constant value by which expected
436 value of nfr; is increased. Then expected value of nfr, decreases by a value that is a function of A - (f(A)). The f(A)

depends on the risk category and it is discussed in the next step.

4
Ek -fia)
A. Low Risk
0 0.5 1
Ei +A
Ek -flA)
E'. Mﬂderate Risk %
0 0.5 1
Ei +A
—_—
Ek -f(a)
C. High Risk
0 0.5 1
Ei+A
_}

Figure 6 Risk associated with NFR conflicts

437

s (iv) Impact Analysis- We have defined an Affection function that is a mathematical function for analyzing the risk profiles of
430 different NFR conflicts and determining how a change in the expected value of one NFR negatively impacts the weight

4.

[

440 of another NFR. The impact value is computed based on the risk category as follows-

449

450

451

452

453

454

455

456

457

458

459

460

461

463

464

465

466

467

468

469

470

M. Roy ET AL | 19

e When the NFR pair (nfr;, nfr,) have low risk, increasing the value of NFR nfr, will have a linear impact on the
value of nfr, and vice-versa. That is we increase the value of nfr; by a constant A then the value of nfr, decreases
by A x diff, where, diff= E, - 0.5.

e When the NFR pair (nfr;, nfr,) have moderate risk, increasing the value of NFR nfr;, decreases the value of nfr,
polynomially and vice-versa. That is we increase the value of nfr; by A then value of nfr; decreases by Ak*dlﬁ, where
k is any constant of power of 10. The value of diff is determined using the same formula as above. The value of A
and diff both lies in the range [0, 1]. A to the power of diff will give a very small value. Hence, we are multiplying
diff with k.

e When the NFR pair {nfr;, nfr,) have high risk, increasing the value of NFR nfr;, decreases the value of nfr, expo-
nentially and vice-versa. That is we increase the value of nfr; by A then value of nfr; decreases by e/ f The value
of diff is determined using the same formula as above.

The value of A lies in the range of [0.1, 1-E;]. We assume the minimum value of A to be 0.1 and the maximum value
as 1-E;, as the value of NFRs lies in [0,1] range.

Hence, the Affection function is defined as follows-

A =« diff if risk is low
£(5) =4 Al if risk is moderate
i if risk is high

Algorithm 3] demonstrates the above-mentioned steps of conflict impact analysis activity.

Let us consider the NFRs N601 and N602 (refer to Example 7 in Table [[V). Their initial expected values are found to be 0.59
and 0.61 respectively in scenario S2 (refer to Example 11 in Table [[V). When trying to improve the value of N601, the value
of N602 degrades linearly as they have low risks. If we increase the value of N601 by A then the value of N602 decreases by
A xdiff. The value of A will lie in the range of 0.1 to 1 — 0.59 i.e., 0.41 and diff value is abs(0.5 — 0.61) i.e., 0.11.

All these algorithms have been implemented within the model checker in MPS.

4.3 | NFR OPTIMIZATION

In this module, we apply a multi-objective optimization approach to compute the optimal satisfaction values of NFRs in different
scenarios for the various components in a robotic system. This optimization module provides feasible satisfiability values of each
NFR given their conflicts and association with various FRs. Based on the output of the optimization module, system designers
can build appropriate configurations of the system in different scenarios. This reduces the cost and risk of system refactoring.

We have used the pymod@ library in python to solve our optimization problem. Each component has one or more functional
goals that it must perform. These functional goals have different degrees of association with one or more NFRs (refer to Example
8 in Table [[V). These NFRs may also have a negative impact on each other. The AFFECTION function (refer to Algorithm
[B) provides the degree of conflict among different pairs of NFRs. Considering the FR-NFR dependency and NFR conflict
relationship we create a multi-objective optimization problem for each component considering their NFR values in different
scenarios. If the system has to operate in n scenarios, then each component will have a different optimization problem for n
scenarios.

Let us again consider the NFR pair N601 and N602. The robot ROBOT] (refer to Example 1 in Table([[I) has two functional
goals Fetch and Deliver. The goal Fetch is also associated with NFR N601 and N602 with dependency values 8 and 6
respectively. The goal Deliver is associated with NFRs N601 and N602 having dependency values 8 and 9 respectively. Let w1
and w?2 be the decision variables for NFRs N601 and N602 respectively. The objective functions are formed by multiplying the
decision variables w1 and w2 with the dependency values corresponding to each FR. Two objective functions will be created
with respect to each functional goal (Fetch and Deliver). The constraints are formed by the conflict impact relationship derived
by Algorithm 3] The constraints show how an increase in the weight of one NFR affects another NFR. In this case, we know that
if we increase the value of N601 by A then the value of N602 decreases by A*di f f. The optimization problem is as follows:

maximize
wl,w2

8wl + 6w?2
8wl +9w?2

481

482

483

484

485

4.

[

6

20

M. Roy ET AL

stwl+w2+86—-6*diff >0,
wl+w2+6—-6«diff <2,
diff=011,6=0.1...,0.41

Algorithm 3 NFR Conflict Impact Analysis

Arguments:

1. Conflict,[k][col

Qutput:
1. Risk;[k][col

2. Impact;[k][col

function AFFECTION(Conflict,[k][col

1:

2: for spec = 1tondo

3 for row =1to k do

4 for col =1 to col;,, do

5: if Conﬂictspec[row][col] # @ then

6 Fetch NFR pair (nfr;, nfr,) from Conflict,,,.
7 E; < EXPECTEDVALUE(nfr;)

8 E, < EXPECTEDVALUE(nfr;)

9: Let A be any value between [0.1, (1-E,)].
10: Letdif f < abs(0.5 — E}).
11: if 0.5 < E;, E;, <1 then
12: Riskspec [row][col] « "Low-Linear"

13: Impactspec[row][col] — A*Xdif f

14: elseif 0.5 < E; <1and 0 < E, <0.5 then
15: Riskgp, [row][col] « "Moderate-Polynomial"
16: Impact ,, [row][col] « AF41/T,

17: elseif 0 < E;, E, <0.5 then

18: Riskspec [row][col] < "High-Exponential"
19: Impact,, [row][col] « ehxdiff
20: end if
21: end if
22: end for
23: end for
24: end for

25: end function

size

size

size

Conflict, [k][col;..])

sl

], i €[1, n]: An array storing risk of each NFR conflict.

1, i €[1,n]: An array storing impact of each NFR conflict.

[row][col]

1. i € [1,n]: A set of n number of 2-D arrays storing the conflicts generated by Algorithm 2}

> where k= 10mndom(1,10)

The values of diff and A are explained in the previous section.
By solving this optimization problem using NSGA 2 algorithm with a population size 100 and number of generations 50,
we obtain the weights of w1 and w?2, respectively. These weights may vary in different scenarios. Based on these weights
system designer can know apriori the optimal satisfaction values of the concerned NFRs in different scenarios. This aids in the
explainability of the system behavior.

487

489

490

491

501

502

503

504

505

515

516

517

518

519

M. Roy ET AL 21

S | EXPERIMENTAL EVALUATION

In this section, we demonstrate the experiments performed to validate the proposed SCARS framework. Through these experi-
ments, we show how the optimal values produced by the framework can be used in real scenarios. The experiments are executed
on a workstation with AMD Ryzen 9 processor, GPU AMD Radeon RX, 32GB DDR5 RAM and Ubuntu 20.04 operating system.
The experimental scripts and results are available at our github repositor}ﬂ The experimental steps are as follows:

Step 1: Selection of a Simulator

We have selected the ROS 2 Gazebo simulation stack for the iRobot® Create®3 Educational Robot for performing our exper-
iments. iRobot® Create®3 Simulator can be used to quickly develop new applications and eventually run them on a real robot
without having to change anything. We have used two different environments in the Gazebo simulation for conducting the ex-
periments. Figure and are the two simulation environments. Figure [7(a)|shows a home environment consisting of two
rooms and a single robot. Figure [/(b)|shows a hospital environment with multiple rooms and a single robot.

Step 2: Defining the Functional Goals

The Create®3 robot can be navigated to a specified odometry position and orientation. In our experiments, we used middleware
APIs for navigating the robot to different positions. We define a simple functional task for the robot-

e T-1: Robot begins at an initial position A, picks up an object from position B and delivers it as position C.

The Create®3 robot design does not provide the provision for the actual picking up of an object from a place. Thus, in our
experiments, we simply move the robot to a location B and introduce a latency time for object picking. The position A, B and
C were determined randomly. The same task is executed by the robot in both simulation environments (refer to Figure[7(a) and

[7(®)

Step 3: Determining the NFRs associated with the Functional Goals

The non-functional parameters that can be manipulated within this simulator are- (i) safety and (ii) speed. The non-functional
parameters like response time and battery discharge can be observed from the logs generated by the simulator. The NFRs that
need to be satisfied for task 7-7 are as follows-

o N-1 Response Time- The response time associated with task 7-1 is a category C-1 NFR.

o N-2 Battery State or Battery Discharge rate- The battery state of the robot is also category C-/ NFR.
e N-3 Speed- The speed of the robot is a category C-2 NFR.

o N-4 Safety- The safety of the robot is a category C-2 NFR.

These qualitative definitions of NFRs have been quantified while creating the DSL specification within the SCARS framework.

Step 4: Determining the scenarios that may occur for task T-1

We have instantiated the task 7-7 for 100 different settings in both environments. Thus we have 100 settings for the home
environment (Figure[7(a)) and 100 settings for the hospital environment (Figure [7(b)). In each of these settings the positions A,
B and C (defined in Step-2) are unique. The positions A, B and C are randomly generated within the room and hospital map and
the details are discussed in the Annexure section. In Figure [§(a)] the objects marked in red as ObI - Ob22 in the home are the
obstacles that the robot has encountered in its path while executing the task 7-1. Similarly, in Figure[8(b)| the objects marked in
red as ObI - Ob31 in the hospital are the obstacles that the robot has encountered in its path while executing the task 7-/. The
positions of the obstacles are fixed within the room and hospital map. Now for performing task 7-1 by the robot along the path
A-B-C in these 100 different settings (in both environments) different situations can arise as follows-

ihttps://github.com/RESSA-ROB/SCARS/tree/main/Experiments

524

525

526

527

528

529

530

531

532

533

22 M. Roy ET AL

el L u—.—] M1

= ~ e T
-

‘ o]
=% @ l]

L o e

(b) Hospital Environment

Figure 7 Simulation Environments

e The path A-B-C does not include obstacle.
e The path A-B-C has only one obstacle.

e The path A-B-C has multiple obstacles.

These different situations form different scenarios. Table [V illustrates the different scenarios that we have obtained based on
the obstacles in the home and hospital environment and randomly generated positions for A, B and C for both environments. In
the home environment (Figure[7(a)) we have encountered all seven scenarios in Table [VI] In the hospital environment (Figure
[7()) we have encountered only the first six scenarios.

Step 5: Creating DSL Specification

In this step, we elaborate on the DSL specification created for this experiment. DSL specification in this case includes the
following-

M. Roy ET AL

23

omz oh,s

Bl
oblza&@*ﬁb]zs

e B

B -

‘ "“uwm ‘ ‘ “!'_‘4 obj21 o m’ .
s gy

2

(b) Hospital Environment

Figure 8 Simulation Environments with Obstacles

Table VI Experimental Scenario

Scenario Contexts
Obstacle | Obstacle Before Pickup | Obstacle After Pickup

S1 0 0 0

S2 1 1 0

S3 1 0 1

S4 2 2 0

Ss 2 0 2

Sé6 2 1 1

S7 3 1 2
534 e Component Specification- In our experiments, only a single robot exists. Create®3 robot consists of different hardware
535 (like mechanical and electrical) and software (sensing and navigation) parts. Figure[T2]shows a portion of the component

536 specification created for the Create®3 robot.

551

552

553

554

561

562

563

564

565

566

567

| M. Roy ET AL

¢ Functional Goal Specification- The task 7-/ defined in Step 2 is captured within the DSL specification in Figure[13] In

the DSL specification, we have divided the task 7-1 into two parts that are- (i) picking up an object that involves moving
from point A to B (RGI01) (ii) delivering the object from point B to C (RG102). This is because in table we can
observe that robot may collide with an obstacle either before picking up an object or after picking up an object. Hence
the NFR parameter values (like speed) of the robot differ before and after picking up an object in different scenarios. The
functional goal specification in both environments is the same since the same task is executed.

NFR Specification- Figure[T4(a)|and[I4(b)|shows the NFRs specified corresponding to FRs RG101 and RG102. The FRs
can have the same NFR metric values or different ones. Figure[T4(c)|shows the corresponding FR-NFR dependencies. We
have defined three NFR parameters in the DSL specification - Speed, Response Time and Energy efficiency (for Battery
State). We have not captured the safety parameter in the DSL specification as in the simulator it takes only fixed quali-
tative values (none, back_up_only, full). The SCARS framework only supports quantitative metric values of NFRs. The
specification in Figure [T4(a)} [T4(b)] and [T4(c)| are for the home environment. The specification for the hospital environ-
ment is different as the NFR priorities vary in different environments. Table [VII| illustrates how the maximum, minimum
and most likely values of NFRs are set within the DSL specification.

Table VII NFR Parameter Values

maximum speed

NFR Minimum Value Maximum Value Most Likely Vale
Battery Discharge Battery discharged for rr'loving the Battery discharged for rr.loving the Based on NER
. robot at two extreme points at robot at two extreme points at
(Energy Efficiency) category C-1

minimum speed

Response Time Time taken for moving the robot at Time taken for moving the robot at Based on NFR
(Performance) two extreme points at minimum speed | two extreme points at minimum speed | category C-1

. . Based on NFR
Speed Create®3 robot documentation Create®3 robot documentation

category C-2

e Scenario Specification- Figure[I5|shows the different contexts and how these contexts can be combined to create scenarios

in table Here we have only shown for scenario S3 in home environment. In Context-NFR Association section in
Figure[T5] it can be observed that with each context we associate different NFRs that might get affected. In Scenario-NFR
Impact section we define how the values of NFRs N105, N106 and N107 are affected based on the scenario. These values
are determined considering robot safety (lower the speed, lesser the impact of the collision with the obstacle) and the
priority of different NFRs. We are not manipulating the values of NFRs N101, N102 and N103 as they are associated with
RG101 and here obstacle is encountered while achieving RG102. Hence in the scenario-specific requirements specification
generated by MPS for scenario S3 the values of NFRs N101, N102 and N103 will remain the same as in Figure but
the values of NFRs N105, N106 and N107 will be replaced with the one in Figure[I5] The other scenario specifications

are available within the language model aIﬂ

Step 6: Generating optimal values of NFRs

The model checker in MPS identifies the conflicts (refer to Figure[TI6) among NFRs in the specification. It then uses this conflict
information and FR-NFR dependencies (refer to Figure to generate a multi-objective optimization problem. There are a
total of seven different optimization problems generated for each of the seven scenarios in table [VI for the home environment.
In the case of the hospital environment, six different optimization problems were generated for the first six scenarios in table[V1]
Figure [T7] shows the multiobjective optimization problem created for the requirement specification of scenario S3 in the home
environment. This multi-objective optimization problem is solved using the Pymoo library in python. We have used the NSGA-
2 algorithm for solving this optimization problem. NSGA-2 algorithm is proven to be computationally efficient for two objective
optimization problems 4. Table shows the parameters set for solving the optimization problem. The population size and

Ihttps://github.com/RESSA-ROB/SCARS/blob/main/DSL_v1.zip

570

571

572

573

574

579

580

583

584

585

586

587

588

M. Roy ET AL | 2

the number of generations are subject to vary depending upon the problem size. Each constraint in Figure [17|is transformed
into two constraints one satisfying the lower bound and another the upper bound. Hence the total number of constraints in table
[VIII)is 8. The decision variables w,, and w, is for speed values for FRs RG101 and RG102 respectively. The decision variables
wp, and wpg, is for battery discharge values for FRs RG101 and RG102 respectively. The decision variables wpy; and wpg, is for
response time values for FRs RG101 and RG102 respectively. The values of variables [w,,, Wg,, Wg;, Wy, Wy, Wg,] are found
to be [0.83, 0.71, 0.75, 0.76, 0.75, 0.8]. These values imply the maximum values each of the NFRs can have in that particular
scenario (.53). The multi-objective optimization problems for other scenarios can be visualized by running the language model
available all

Table VIII Parameters of optimization problem

Parameters Value
Number of Variables 6
Number of Objectives 2

Number of Constraints | 8
Method NSGA-2
Population Size 100
Number of Generations | 50

Step 7: Setting the NFR parameter values within the simulator

The values obtained in the previous step are normalized in the O — 1 scale and have to be mapped to their respective ranges. As
mentioned earlier, the simulator takes as input speed values and generates response time and battery discharge values as output.
So for goal RG'101 the value of the speed metric is 0.45 and for goal RG'102 the value of the speed metric is 0.3. These values
are obtained by mapping the optimal speed values (value of w; and w,,)) in their respective ranges using the formula 4 The
value of wy, is mapped in the range of NFR N 101 in Figure[T4(a)] The value of w, is mapped in the range of NFR N'105 in
Figure[T5] After setting the values the simulator is executed to record run-time NFR values.

Val,,,K =(Val,; —old,,) * newmnge)/oldmnge @

min
where, old, .= old,,,, - old,,, and new,,,,,= new,,,, - new

The code for running the different scenarios within the simulator is made available afl.

min min*

Step 8: Obtaining the NFR values from the simulator

This is the final step of the experiment. We record the response time and battery discharge values for the different scenarios.
Table [[X]provides a summary of the NFR parameter values recorded in different scenarios for the home environment. Similarly,
table [X]provides a summary of the NFR parameter values recorded in different scenarios for the hospital environment. Table [[X]
and [X]record the number of times each scenario has occurred in the 100 different settings. The velocity or speed metric value
for FR RG101 and RG102 is determined by Step 5-7 for each scenario independently. Table [[X]and [X]also record the average
response time and battery discharge in each scenario. The distribution of the number of times each scenario occurred depends
on the random coordinates generated for executing task 7-7 in the two environments.

5.1 | Discussion

Analysis of results

The experimental Step 6 generates the optimal values of different NFR parameters (speed, response time and battery discharge).
The optimal speed values are fed to the simulator for executing the tasks in different scenarios. The simulator generates the
response time and battery discharge as log records. This generated response time and battery discharge are compared with the

26

M. Roy ET AL

Table IX Experimental Results for Home

) Velocity for | Velocity for | Average Response | Average Battery
Scenario | Number of Cases | by pG101 | FR RG102 Time Discharge
S1 42 0.46 0.46 48.12 0.59
S2 14 0.4 0.46 76.60613571 0.7535714286
S3 33 0.45 0.3 81.53432424 0.7615151515
S4 0.33 0.46 109.65545 0.895
S5 10 0.46 0.24 122.73635 0.87
S6 0.4 0.3 91.33313333 0.7666666667
S7 0.4 0.24 153.1283667 0.9733333333
Table X Experimental Results for Hospital
. Velocity for | Velocity for | Average Response | Average Battery
Scenario | Number of Cases | pp pG101 | FR RG102 Time Discharge
S1 52 0.46 0.46 160.2063904 1.430192308
S2 23 0.44 0.46 175.3486217 1.558695652
S3 17 0.46 0.32 192.9473765 1.462941176
S4 0.4 0.46 138.9066 1.15
S5 8 0.4 0.313 212.534925 1.34
S6 0.4 0.32 182.617 1.685

optimal values (of response time and battery discharge) generated by the optimization algorithm to validate. It is to be noted
that we have run the result in the simulator in each setting three times and taken an average of them. Now, we analyze the NFR
parameter values obtained from the simulator w.r.t each scenario.

e Scenario S/: In this scenario, the robot encounters no obstacles in its path. Table[XI|shows the optimal values (maximal)
of NFR parameters generated by the optimization algorithm for home and hospital environment. Figure 0(a)| shows the
distribution of total response time and total battery discharge in home for the 100 settings as obtained from the log records
of the simulator. Figure [0(b)| shows the distribution of total response time and total battery discharge in hospital for the
100 settings as obtained from the log records of the simulator. In both home and hospital environment we observe that the
NFR parameter value from the simulator lies within the maximum optimal value (refer to table [XI) except for very few
cases where a deviation is observed.

Table XI Optimal Values for NFR Parameters in S1

NFR FR RG101 FR RG102
Parameters | Home | Hospital | Home | Hospital
Speed 046 | 046 046 | 046
Response 50 100 70 150
Time units | units units | units
Battery 16 400 | 1% 0.6% | 1.5%
Discharge

604

605

606

607

608

609

610

611

612

613

614

M. Roy ET AL

27

S1: Response Time

Response Time
Py
3
ad
L]
L]
L]

Battery Discharge

S1: Battery Discharge

(a) Home Environment

Response Time

250 [. ol ¥ . 25
@ M ° &
£ 200 . * . 5 2
f= L] L] . L] =
L 3
&]] 2
@ 150 | @ . o . 815
3 e LI L TR z
E L) =
L b= 1
3 100 . s . - 2
3

05

Battery Discharge

10 20 30 a0
Cases

(b) Hospital Environment

Figure 9 NFR parameter values in S1

e Scenario S2: In this scenario, the robot encounters a single obstacle before picking up the object. Table [XII| shows the

optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environment.
Figure [T0(a)] shows the distribution of total response time and total battery discharge in home for the 100 settings as
obtained from the log records of the simulator. Figure[T0O(b)|shows the distribution of total response time and total battery
discharge in hospital for the 100 settings as obtained from the log records of the simulator. In both home and hospital
environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer to table [XII)
for all the cases.

Table XII Optimal Values for NFR Parameters in S2

NFR FR RG101 FR RG102
Parameters | Home | Hospital | Home | Hospital
Speed 0.4 0.44 046 | 0.46
Response 50 199.91 70 100

Time units | units units | units
Battery | 5o | 1.99% 0.6% | 1.0%
Discharge

Scenario S3: In this scenario, the robot encounters a single obstacle after picking up the object. Table [XIII| shows the
optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environment.
Figure [TT(a)] shows the distribution of total response time and total battery discharge in home for the 100 settings as
obtained from the log records of the simulator. Figure[TT(b)|shows the distribution of total response time and total battery
discharge in hospital for the 100 settings as obtained from the log records of the simulator. In both home and hospital
environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer to table
[XTI) for all the cases.

28

M. Roy ET AL

S2: Response Time

Battery Discahrge

Battery Discharge
o
o

S2: Battery Discharge

(a) Home Environment

Response Time

Response Time

Battery Discharge

25 o

Battery Discharge

10 15 20
Cases

(b) Hospital Environment

Figure 10 NFR parameter values in S2

Table XIII Optimal Values for NFR Parameters in S3

NFR FR RG101 FR RG102
Parameters | Home | Hospital | Home | Hospital
Speed 045 | 046 0.3 0.32
Response 50 100 80 249
Time units | units units | units
Battery | 4o | 1.0% 15% | 1.99%
Discharge

e Scenario S4: In this scenario, the robot encounters two obstacles before picking up the object. Table [XIV] shows the
optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environment.
In home environment out of 100 settings this scenario occurred only twice and in hospital only once. In both home and
hospital environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer to

table [XIV]) for the three cases.

Table XIV Optimal Values for NFR Parameters in S4

NFR FR RG101 FR RG102
Parameters | Home | Hospital | Home | Hospital
Speed 045 | 04 0.3 0.46
Response 80 200 50 100
Time units | units units | units
Battery | 0 | 2.0% 04% | 1.0%
Discharge

628

629

630

631

632

633

634

635

M. Roy ET AL 29

S3: Response Time S3: Battery Discharge
140 18
L]

120 A . 16

L] L] L] 14
. @
100 | L4 &0

§ ° ° 512

o 8 oo - . . S 1
2 . ° ° e ° o . a

S 60 . 0%, ® o o > 08
2 3
3 £
=]

o o o
[N

o

Cases Cases

(a) Home Environment

Response Time Battery Discharge
3350 25
300 .
2
@ 250 . . . &
E . ® =
= 200 . . . S 15
] ') 2
2 ® e a
o 150 L) . =
a . g !
8 L] =1
100 ° g
05
50
0 o
0 2 4 6 8 10 12 14 16 18 0 2 4 6 Plot Area 12 14 16 18

Cases Cases

(b) Hospital Environment

Figure 11 NFR parameter values in S3

e Scenario S5: In this scenario, the robot encounters two obstacles after picking up the object. Table [XV]|shows the optimal

values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environments. In the
home environment out of 100 settings, this scenario occurred only twice and in the hospital only thrice. In both home and
hospital environments, we observe that the NFR parameter value from the simulator lies within the optimal value (refer
to table [XII)) for the five cases.

Table XV Optimal Values for NFR Parameters in S5

NFR FR RG101 FR RG102
Parameters | Home | Hospital | Home | Hospital
Speed 046 | 046 024 | 0.313

Response 50 100 100 | 299.17
Time units | units units | units
Battery | 1o | 1.0% 15% | 1.99%
Discharge

Scenario S6: In this scenario, the robot encounters two obstacles, one before picking up the object and another after
picking up the object. Table shows the optimal values (maximal) of NFR parameters generated by the optimization
algorithm for home and hospital environment. In home environment out of 100 settings this scenario occurred only thrice
and in hospital only four times. In both home and hospital environments, we observe that the NFR parameter value from
the simulator lies within the optimal value (refer to table for the seven cases.

Scenario S7: In this scenario, the robot encounters three obstacles, one before picking up the object and two after picking
up the object. This scenario was observed only in the home environment based on the randomly generated coordinates for
the task. The optimal values for speed or velocity are found to be 0.4 and 0.24 for FRs RG101 and RG102 respectively.
The optimal response times are 50 and 100 units for FR RG101 and RG102 respectively. That is total response time
should not be more than 150 units. The optimal values for battery discharge are 0.4 and 1.5 for FR for RG101 and RG102

643

644

645

646

647

648

649

650

651

653

654

655

656

657

658

659

660

661

662

667

668

669

670

671

30 M. Roy ET AL

Table XVI Optimal Values for NFR Parameters in S6

NFR FR RG101 FR RG102
Parameters | Home | Hospital | Home | Hospital
Speed 0.4 0.44 0.3 0.32
Response 50 199.91 80 249
Time units | units units | units
Battery | 5o | 199 | 15% | 1.99%
Discharge

respectively. That is total battery discharge should not be more than 1.9 unit. This scenario has occurred only in two
settings. Here in one case, we observe the response time recorded from the simulator to be slightly more than the derived
optimal value.

The total response time and battery discharge depends on the (i) speed (ii) distance covered (iii) number of obstacles encountered
in its path. When the robot collides with an obstacle it stops, moves back and detours to reach the destination. This detouring
requires some additional time and energy which may vary depending upon the size of the obstacle. This may account to the
deviation of NFR values from the optimal values in some cases. In some cases, the distance may be very small and hence
response time appear to be much lower than the maximum (optimal) value produced by our framework. Since the positions are
randomly determined for task 7-/. We have obtained only a small number of cases for scenarios S4-S7. In those small cases,
only a single violation of optimal values is observed. However, from this, we cannot conclude the optimal values derived are
perfect for those scenarios.

Through these experiments, we have tried to show how the derived optimal values can be used in building a smart system
that can adapt to various scenarios. We found that the NFR parameter values derived for most of the cases were satisfied. The
values of speed in different scenarios are obtained considering its conflict with other NFRs and different contexts occurring.
The complete set of experimental results are provided at our github repositoryt.

Comparison with existing works

In Table[l, we have provided a summary of different DSL proposed for robotic systems. Most of these works have considered
the specification of components, communication among components and FRs. Some of them allow the specification of NFRs
also, but they have not done any analysis regarding their conflicts. We find only a single work that tried to correlate NFRs with
context information. However, there are not enough research works that have tried to address the issues of NFRs and the impact
of contexts on them. There are few works that have only analyzed temporal NFRs for robotic systems. The proposed SCARS
framework is an integration of specification and analysis. It provides a specification portion that tries to cover all aspects of a
robotic system within a single DSL metamodel. The analysis portion checks for inconsistencies, incompatibilities and conflicts
among the non-functional parameters. Additionally, it provides optimal satisfaction values of different NFRs that are in conflict.

Limitations

The limitations of this experimental evaluation are as follows-

e The experiments are performed considering static contexts only. There may be dynamic contexts as well (like people
moving in the room). In such scenarios, it will be more challenging to adjust the NFR parameters accordingly. We have
not considered this issue within the scope of this work.

e The experiments are conducted considering only formal specification and context-NFR impact values are provided de-
pending on the understanding of the system engineers. It will be interesting if machine learning-based methods are
integrated to study environments and their impact on various non-functional parameters in the system.

o The optimal values in the experiments are obtained using only one genetic algorithm. It is to be further evaluated against
other genetic algorithms as a part of our future works.

672

674

675

676

677

678

679

680

681

682

683

684

685

686

688

701

705

706

707

708

709

710

711

712

M. Roy ET AL 31

6 | THREATS TO VALIDITY

e The first issue is related to the specification of contexts or scenarios. The framework requires analysts or engineers to be
aware of different contexts and scenarios in which the system is likely to operate. However, there may be always certain
contextual parameters that remain unknown during the design of the system.

e The second threat to validity is related to the specification of scenario-NFR impact values. These values are often de-
pendent upon the understanding of the analyst. This may introduce ambiguity or inconsistency in the specification. This
can be resolved by the use of machine-learning-based methods to study scenarios and their impact NFRs. In an earlier
work 31 attempts have been made to provide a framework that qualitatively derives the correlations between contexts
and NFR conflicts. Such frameworks can be useful to predict scenario-NFR impact correlations rather than manually
providing them.

e Another issue concerns the optimal values produced, that depend upon the conflict relationship between NFRs and FR-
NFR dependency (specified in the objective function). The FR-NFR dependency values can again be subjective depending
upon the understanding of the analyst. Hence a change in these values can result in a variation of the optimal values.

o The last threat to validity is related to the use of a simulator for experimental evaluation. A simulation environment may
not be an exact representation of reality. Hence the validity of the results are still subjective. The evaluation needs to be
performed in real settings or in other similar simulation platforms.

7 | CONCLUSION

In general, most of the existing formal method based approaches for resolving conflicts in the requirements are concerned with
functional requirements only. In spite of being a major factor in deciding the user acceptance and eventual success of a system,
the NFRs are often considered something that someone will eventually take care of. The proposed SCARS framework provides a
requirement specification DSL and also analyzes the conflicts, inconsistencies, and incompatibilities among the NFRs. Further,
it provides an optimization module to generate optimum satisfaction values of different NFRs in various contexts. We have
experimentally evaluated our framework using Gazebo simulation and Create®3 robot. The experimental result shows that the
predicted optimum value satisfies the robot’s run-time behavior (non-functional). Thus, the SCARS framework can be deployed
to analyze robotic system behavior before the actual deployment. The optimum NFR values can help the system designer in
building appropriate software operationalizations and reduce the cost of changes.

The SCARS framework is limited to handling only static contexts. However, in real scenarios, many dynamic objects like
humans exist in the environment in which the robot operates. As a part of future work, we aim to extend our framework to model
and analyze dynamic contextual parameters.

References

1. Fiirst S. System/ Software Architecture for Autonomous Driving Systems. IEEE International Conference on Software
Architecture Companion (ICSA-C) 2019: 31-32. doi: 10.1109/ICSA-C.2019.00013

2. Hartsell C, Ramakrishna S, Dubey A, Stojcsics D, Mahadevan N, Karsai G. ReSonAte: A Runtime Risk Assessment Frame-
work for Autonomous Systems. International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS) 2021: 118-129. doi: 10.1109/SEAMS51251.2021.00025

3. Zager M, Sieber C, Fay A. Towards a context identification method for autonomous robots. IECON 2022 — 48th Annual
Conference of the IEEE Industrial Electronics Society: 1-6. doi: 10.1109/IECON49645.2022.9969063

4. Samin H. Priority-Awareness of Non-Functional Requirements under Uncertainty. I[EEE 28th International Requirements
Engineering Conference (RE) 2020: 416-421. doi: 10.1109/RE48521.2020.00061

5. Yoo, Jee E, Cha S. Formal Modeling and Verification of Safety-Critical Software. IEEE Software 2009; 26(3): 42-49. |doi:
10.1109/MS.2009.67

http://dx.doi.org/10.1109/ICSA-C.2019.00013
http://dx.doi.org/10.1109/SEAMS51251.2021.00025
http://dx.doi.org/10.1109/IECON49645.2022.9969063
http://dx.doi.org/10.1109/RE48521.2020.00061
http://dx.doi.org/10.1109/MS.2009.67
http://dx.doi.org/10.1109/MS.2009.67
http://dx.doi.org/10.1109/MS.2009.67

713

714

715

716

725

726

727

728

736

737

738

739

747

748

749

750

751

32

| M. Roy ET AL

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Luckcuck M, Farrell M, Dennis LA, Dixon C, Fisher M. Formal Specification and Verification of Autonomous Robotic
Systems: A Survey. ACM Comput. Surv. 2019; 52(5). doi: 10.1145/3342355

Cui J, Liew LS, Sabaliauskaite G, Zhou F. A review on safety failures, security attacks, and available countermeasures
for autonomous vehicles. Ad Hoc Networks 2019; 90: 101823. Recent advances on security and privacy in Intelligent
Transportation Systemsdoi: https://doi.org/10.1016/j.adhoc.2018.12.006

. Ramaswamy A, Monsuez B, Tapus A. Formal Specification of Robotic Architectures for Experimental Robotics. Metrics of

Sensory Motor Coordination and Integration in Robots and Animals: How to Measure the Success of Bioinspired Solutions
with Respect to their Natural Models, and Against More ‘Artificial’ Solutions? 2020: 15-37.|doi: 10.1007/978-3-030-14126-
4)

Vicente-Chicote C, Inglés-Romero J, Martinez J, et al. A Component-Based and Model-Driven Approach to Deal with
Non-Functional Properties through Global QoS Metrics. 5th International Workshop on Interplay of Model-Driven and
Component-Based Software Engineering (in conjunction with MODELS 2018) 2018.

Ladeira M, Ouhammou Y, Grolleau E. RoBMEX: ROS-based modelling framework for end-users and experts. Journal of
Systems Architecture 2021; 117: 102089. doi: https://doi.org/10.1016/j.sysarc.2021.102089

Miyazawa A, Ribeiro P, Li W, Cavalcanti A, Timmis J, Woodcock J. RoboChart: modelling and verification of the functional
behaviour of robotic applications. Software Systems Modeling 2019; 18: 1-53. doi: 10.1007/s10270-018-00710-z

Dhouib S, Kchir S, Stinckwich S, Ziadi T, Ziane M. RobotML, a Domain-Specific Language to Design, Simulate and Deploy
Robotic Applications. Simulation, Modeling, and Programming for Autonomous Robots 2012: 149-160.

Parra S, Schneider S, Hochgeschwender N. Specifying QoS Requirements and Capabilities for Component-Based Robot
Software. 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering (RoSE) 2021: 29-36. (doi:
10.1109/R0SE52553.2021.00012

Ramaswamy A, Monsuez B, Tapus A. Modeling non-functional properties for human-machine systems. AAAI Spring
Symposium - Technical Report 2014: 50-55.

Brugali D. Modeling and Analysis of Safety Requirements in Robot Navigation with an Extension of UML MARTE. IEEE
International Conference on Real-time Computing and Robotics (RCAR)2018:439-444.doi: 10.1109/RCAR.2018.8621699

Colledanchise M, Natale L. On the Implementation of Behavior Trees in Robotics. IEEE Robotics and Automation Letters
2021; 6(3): 5929-5936. |doi: 10.1109/1ra.2021.3087442

Finucane C, Jing G, Kress-Gazit H. LTLMoP: Experimenting with language, Temporal Logic and robot control. IEEE/RSJ
International Conference on Intelligent Robots and Systems 2010: 1988-1993. doi: 10.1109/IROS.2010.5650371

Maoz S, Ringert J. Spectra: a specification language for reactive systems. Software and Systems Modeling 2021; 20. |doi:
10.1007/s10270-021-00868-z

Brugali D. Non-Functional Requirements in Robotic Systems: Challenges and State of the Art. IEEE International
Conference on Real-time Computing and Robotics (RCAR) 2019: 743-748. doi: 10.1109/RCAR47638.2019.9044033

Mairiza D, Zowghi D, Nurmuliani N. Towards a Catalogue of Conflicts Among Non-functional Requirements. In:
Loucopoulos P, Maciaszek LA., eds. ENASE - Proceedings of the Fifth International Conference on Evaluation of Novel
Approaches to Software Engineering, Athens, GreeceSciTePress; 2010: 20-29.

Mairiza D, Zowghi D. Constructing a Catalogue of Conflicts among Non-functional Requirements. Evaluation of Novel
Approaches to Software Engineering 2011: 31-44.

Mairiza D, Zowghi D, Gervasi V. Conflict characterization and Analysis of Non Functional Requirements: An experimental
approach. 2013 IEEE 12th International Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT)
2013: 83-91. [doi: 10.1109/SoMeT.2013.6645645

http://dx.doi.org/10.1145/3342355
http://dx.doi.org/https://doi.org/10.1016/j.adhoc.2018.12.006
http://dx.doi.org/10.1007/978-3-030-14126-4_2
http://dx.doi.org/10.1007/978-3-030-14126-4_2
http://dx.doi.org/10.1007/978-3-030-14126-4_2
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2021.102089
http://dx.doi.org/10.1007/s10270-018-00710-z
http://dx.doi.org/10.1109/RoSE52553.2021.00012
http://dx.doi.org/10.1109/RoSE52553.2021.00012
http://dx.doi.org/10.1109/RoSE52553.2021.00012
http://dx.doi.org/10.1109/RCAR.2018.8621699
http://dx.doi.org/10.1109/lra.2021.3087442
http://dx.doi.org/10.1109/IROS.2010.5650371
http://dx.doi.org/10.1007/s10270-021-00868-z
http://dx.doi.org/10.1007/s10270-021-00868-z
http://dx.doi.org/10.1007/s10270-021-00868-z
http://dx.doi.org/10.1109/RCAR47638.2019.9044033
http://dx.doi.org/10.1109/SoMeT.2013.6645645

754

755

756

757

763

764

765

766

767

775

776

777

778

779

M. Roy ET AL | 3

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Liu CL. CDNFRE: Conflict detector in non-functional requirement evolution based on ontologies. Computer Standards
Interfaces 2016; 47: 62-76. [doi: https://doi.org/10.1016/j.cs1.2016.03.002

Cysneiros LM. Evaluating the Effectiveness of Using Catalogues to Elicit Non-Functional Requirements. Workshop em
Engenharia de Requisitos 2007.

Lawrence C, Brian A. N, Eric Y, John M. Non-functional requirements in software engineering. Springer, Boston, MA 2012.
doi: 10.1007/978-1-4615-5269-7

Joseane VP, Rossana A, Rainara C. Evaluation of Non-Functional Requirements for IoT Applications. 23rd International
Conference on Enterprise Information Systems (ICEIS 2021); 2: 111-119. [doi: 10.5220/0010461901110119

Bass L, Clements P, Kazman R. Software Architecture in Practice. Addison-Wesley Professional. 3rd ed. 2012.

Carvalho RM, Andrade R, Lelli V, Silva EG, Oliveira dKM. What About Catalogs of Non-Functional Requirements?.
REFSQ Workshops 2020.

Carvalho RM, Andrade RMdC, Oliveira dKM. Catalog of Invisibility Correlations for UbiComp and IoT Applications.
Requir. Eng. 2022; 27(3): 317-350. |doi: 10.1007/s00766-021-00364-2

Carvalho RM, Andrade RMC, Oliveira dKM. Towards a catalog of conflicts for HCI quality characteristics in UbiComp and
IoT applications: Process and first results. 12th International Conference on Research Challenges in Information Science
(RCIS) 2018: 1-6. doi: 10.1109/RCIS.2018.8406651

Zinovatna O, Cysneiros LM. Reusing knowledge on delivering privacy and transparency together. IEEE Fifth International
Workshop on Requirements Patterns (RePa) 2015: 17-24. doi: 10.1109/RePa.2015.7407733

Carvalho RM. Dealing with Conflicts Between Non-functional Requirements of UbiComp and IoT Applications. IEEE 25th
International Requirements Engineering Conference (RE) 2017: 544-549. doi: 10.1109/RE.2017.51

Institute PM. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). Project Management Institute.
5Sth ed. 2013.

Chaudhari P, Thakur AK, Kumar R, Banerjee N, Kumar A. Comparison of NSGA-III with NSGA-II for multi objective opti-
mization of adiabatic styrene reactor. Materials Today: Proceedings 2022;57: 1509-1514./doi: 10.1016/j.matpr.2021.12.047

Roy M, Das S, Deb N, Cortesi A, Chaki R, Chaki N. Correlating contexts and NFR conflicts from event logs. Software and
Systems Modeling 2023. doi: 10.1007/s10270-023-01087-4

http://dx.doi.org/https://doi.org/10.1016/j.csi.2016.03.002
http://dx.doi.org/10.1007/978-1-4615-5269-7
http://dx.doi.org/10.5220/0010461901110119
http://dx.doi.org/10.1007/s00766-021-00364-2
http://dx.doi.org/10.1109/RCIS.2018.8406651
http://dx.doi.org/10.1109/RePa.2015.7407733
http://dx.doi.org/10.1109/RE.2017.51
http://dx.doi.org/10.1016/j.matpr.2021.12.047
http://dx.doi.org/10.1007/s10270-023-01087-4

780

787

788

789

791

792

4| M. Roy ET AL

ANNEX-I

8 | GENERATION OF CO-ORDINATE POINTS

First, the coordinates for the extremities of the simulation environment have to be determined. For the environments used in our
experiments, the extremity X and Y coordinates were:

e AWS Small House: (-9, 9) and (-5.5, 5.5)
e AWS Hospital: (-12, 10) and (-32, 10)

Next, a script to generate the desired number of coordinates has to be created. For our experiments, we generated a set of three
random coordinates per iteration, namely for the start, fetch, and deposit positions. These coordinates were generated using a
Python script that leveraged numpy.random.uniform random sampling method. A map of the three coordinates is generated per
iteration as a tuple of the coordinate list.

9 | DSL SPECIFICATION FOR EXPERIMENTS

Figure shows the DSL specifications optimization problem for our experiments.

[

M. Roy ET AL

35

Component Name: CreateR_3

Sub Components

<< .. 3>

Hardware Components

Sensor : Light Ring
Actuator : Caster Wheel

Software Components

Navigation

Harduare component: Light Ring

Type: Sensor

Category: Flectrical ID: H181

Functional Objective

¥R Name G101]
Description Expose internal state of robot.

Non-functional Requirements

Non-functional Property:
10: N161

NFR Category: Availability --> Hetric: Probability percentage of system uptim
Mininun value: 90 Maxinum value 99 Host Likely valve: 96

Paraneters

Operation
<no operation>

(a) Create®3 Robot

Hardware component: Caster Wheel

Type: Actuator

Category: Mechanical ID: H102

Functional Objective

FR Name GH102

Description Turn in tight places.

(b) Hardware Component

Softuare Module: Navigation

Type: Route Planner

ID: si1el

Functional Requirements

FR Name S6101
Description Generate navigation information

(c) Hardware Component

(d) Software Component

Figure 12 Component DSL

Functional Objective

FR Name RG101

Description Move from point A to B to pick up object.

FR Name RG102

Description Move from point B to C to deliver objects.

Figure 13 Functional Goals DSL

36

M. Roy ET AL

Non-Functional Objective

Non-functional Property:

ID: N1e1l

NFR Category: Movement_Efficiency --> Metric: Speed

Minimum value: 0.1 Maximum value 0.46 Most Likely value: 0.4

Parameters

<< .. o3>
Operation

<no operation>

Non-functional Property:

ID: N1e2

NFR Category: Energy Efficiency --> Metric: Battery Discharge
Minimum value: 1 Maximum value 3 Most Likely value: 0.4

Parameters
<< .. o>
Operation

<no operation>

Non-functional Property:

ID: N1e3

NFR Category: Performance --> Metric: Response Time
Minimum value: 25 Maximum value 108 Most Likely value: 40

Parameters
<< ... >>
Operation

<no _operation>

Non-functional Property:

ID: N1@5

NFR Category: Movement_Efficiency --> Metric: Speed

Minimum valuve: 6.1 Maximum value 0.4 Most Likely value: 0.4

Parameters

<< ... >>
Operation

<no operation>

Non-functional Property:

ID: N106

NFR Category: Energy Efficiency --> Metric: Battery Discharge
Minimum valve: 1 Maximum value 3 Most Likely value: 1.2

Parameters

<< ... o>>
Operation

<no operation>

Non-functional Property:

ID: N107

NFR Category: Performance --> Metric: Response Time
Minimum value: 30 Maximum value 100 Most Likely value: 50

Parameters

<< ... >>
Operation

<no operation>

(a

=

NEFR specification

(b) NFR specification

Dependency Association

RG102 -> N187 NF

=

RG161 -> N101 NFR Category: Movement_Efficiency --> Metric: Speed Dependency Value 9

RG161 -> N102 NFR Category: Energy Efficiency --> Metric: Battery Discharge Dependency Value 7

RG161 -> N103 NFR Category: Performance --> Metric: Response Time Dependency Value 9

R6162 -> N105 NFR Category: Movement_Efficiency --> Metric: Speed Dependency Value 8

RG102 -> N106 NFR Category: Energy Efficiency --> Metric: Battery Discharge Dependency Value 7

Category: Performance --> Metric: Response Time Dependency Valve 8

(c) FR-NFR Dependency specification

Figure 14 Non-functional parameter specification

M. Roy ET AL 37

Contexts:

Contexts-NFR Association

ID: C101 Name: Obstacle Count Values: 1

Impacted NFR: N101 NFR Category: Movement_Efficiency --> Metric: Speed
N1@2 NFR Category: Energy Efficiency --> Metric: Battery Discharge
N1@3 NFR Category: Performance --> Metric: Response Time N185 NFR Category: Movement_Efficiency --> Metric: §
N1@6 NFR Category: Energy Efficiency --> Metric: Battery Discharge
N107 NFR Category: Performance --> Metric: Response Time

Contexts-NFR Association

ID: C104 Name: Obstacle after pick up Values: 1

Impacted NFR: N105 NFR Category: Movement_Efficiency --> Metric: Speed
N1@6é NFR Category: Energy Efficiency --> Metric: Battery Discharge
N1@7 NFR Category: Performance --> Metric: Response Time

Scenario:
Scenario ID: S3 Contexts: C101 - Obstacle Count : 1 || C104 - Obstacle after pick up : 1 ||

Scenario-NFR Impact:

Scenario ID: 53 NFR: N105 NFR Category: Movement_Efficiency --> Metric: Speed Min Value: 0.1 Max Value: 0.306
Most Likely Value: 0.3

Scenario ID: S3 NFR: N10& NFR Category: Energy Efficiency --> Metric: Battery Discharge Min Value: 1 Max Value: 3
Most Likely Value: 1.5

—Scenario ID: S3 NFR: N107 NFR Category: Performance --> Metric: Response Time Min Value: 50 Max Value: 100

Figure 15 Context and Scenario DSL

N’ Warning: Scenario S3 The NFR pair EnergyEfficiency-N102-Performance-N103 are in conflict. They are at low risk. The impact relationship between them is linear. The initial expected values are : 0.97 and 0.7
N Warning: Scenario S3Performance-N103-Safety-N101 are in conflict. They are at low risk. The impact relationship between them is linear. The initial expected values are : 0.7and 0.72 respectively. For every in
N Warning: Scenario S3 The NFR pair EnergyEfficiency-N106-Performance-N107 are in conflict. They are at low risk. The impact relationship between them is linear. The initial expected values are : 0.77 and 0.65
N’ Warning: Scenario S3Performance-N107-5afety-N105 are in conflict. They are at low risk. The impact relationship between them is linear. The initial expected values are : 0.65and 0.83 respectively. For every ini|

Figure 16 NFR Conflicts

38

M. Roy ET AL

For Goal RG101 - Objective function is- 9w + 7Wg1 + 9Wgs

For Goal RG102 - Objective function is- 8w + 7Ws2 + 8Wr2

Range constraint is O<= Ws1, Wp1, Wr1, Ws2, Wp2, Wr2 <=1

Conflict constraint: 0 <= wg; + Wg1 + M -M*0.22 <=2 where M value lies in the range 0.1 - 0.22
0<=wg1+Wri+M-M *0,1999 <=2 where M value lies in the range 0.1 - 0.1999
0 <= W + Wrz + M -M*0.3299 <=2 where M value lies in the range 0.1 - 0.35

0 <=wsz2+ Wgz + M -M * 0.15 <=2 where M value lies in the range 0.1 - 0.15

Ws1: Value of NFR101, wg1: Value of NFR102, wgs: Value of NFR103

Wws: Value of NFR105, wez: Value of NFR106, wg,: Value of NFR107

Figure 17 Multiobjective Optimization Problem

	SCARS: Suturing Wounds due to Conflicts between Non-Functional Requirements in Robotic Systems
	Abstract
	Introduction
	Related Work
	Metamodels and DSL
	Requirements Analysis
	NFR Conflict Analysis

	Preliminaries
	Non-functional Requirements of Robotic Systems
	NFR Conflict Identification
	QoS Policies
	Challenges in the design of Robotic Autonomous System

	The SCARS Framework
	System and Scenario Specification
	Requirement Specification using the DSL metamodel
	Integration of scenario constraints in the requirement specifications

	Requirement Analysis
	QoS Compatibility Check
	NFR Consistency Check
	NFR Conflict Check

	NFR Optimization

	Experimental Evaluation
	Discussion

	Threats to validity
	Conclusion
	References
	=Annex-I!
	Generation of co-ordinate points
	DSL specification for experiments

