
P
os
te
d
on

2
J
u
n
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
56
67
96
.6
53
39
18
7/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

SCARS: Suturing Wounds due to Conflicts between Non-Functional

Requirements in Robotic Systems

Mandira Roy1, Raunak Bag2, Novarun Deb3, Agostino Cortesi2, Rituparna Chaki1, and
Nabendu Chaki 1

1University of Calcutta
2Universita Ca’ Foscari Dipartimento di Scienze Ambientali Informatica e Statistica
3Indian Institute of Information Technology Vadodara

June 2, 2023

Abstract

Conflicts among non-functional requirements for robotic systems heavily depend on features of actual execution contexts. The

main objective of this work is to design and experimentally evaluate a framework, called SCARS, providing: (a) a domain-

specific language extending the ROS2 Domain Specific Language (DSL) concepts by considering the different environmental

contexts in which the system has to operate, (b) support to analyze their impact on non-functional requirements, and (c)

the computation of the optimal degree of non-functional requirement satisfaction that can be achieved within different system

configurations. The effectiveness of SCARS has been validated on the Gazebo simulation for iRobot ® Create ®3 robot.

1

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE1

SCARS: Suturing Wounds due to Conflicts between2

Non-Functional Requirements in Robotic Systems3

Mandira Roy*1 | Raunak Bag2 | Novarun Deb3 | Agostino Cortesi2 | Rituparna Chaki4 | Nabendu4

Chaki1
5

1Dept. of Computer Science &
Engineering,University of Calcutta, West
Bengal, India

2Dept. of Environmental Sciences,
Informatics and Statistics, Ca’ Foscari
University, Venice, Italy

3Indian Institute of Information Technology,
Vadodara (IIIT-V), Gujarat, India

4A.K.C School of Information
Technology,University of Calcutta, West
Bengal, India

Correspondence
*Mandira Roy, Dept. of Computer Science
& Engineering, University of Calcutta,
Bidhannagar Kolkata, West Bengal, 700106,
India Email: mrcomp_rs@caluniv.ac.in
Present Address
Dept. of Computer Science & Engineering,
University of Calcutta, Bidhannagar
Kolkata, West Bengal, 700106, India

Abstract

Conflicts among non-functional requirements for robotic systems heavily depend on
features of actual execution contexts. The main objective of this work is to design
and experimentally evaluate a framework, called SCARS, providing: (a) a domain-
specific language extending the ROS2 Domain Specific Language (DSL) concepts
by considering the different environmental contexts in which the system has to oper-
ate, (b) support to analyze their impact on non-functional requirements, and (c) the
computation of the optimal degree of non-functional requirement satisfaction that
can be achieved within different system configurations. The effectiveness of SCARS
has been validated on the Gazebo simulation for iRobot® Create®3 robot.
KEYWORDS:
Non-functional requirements, conflicts, contexts, optimization

6

1 INTRODUCTION7

Conflicts among functional and non-functional requirements for robotic systems may leave open wounds (or scars) which may8

have disastrous effects when the system is put into operation. This work is intended to help developers handle such conflicts by9

providing appropriate relations specific to different contexts.10

Modern-day autonomous systems (like self-driving cars, industrial robots, etc.) are so designed that they cater to the needs11

of multiple stakeholders and can self-adapt to changing environments (or contexts). The architecture of these systems is inher-12

ently complex due to the existence of multiple interacting hardware (like sensors, actuators, and microcontrollers) and software13

components (like data processing and route planning) [1]. Each component has a set of associated functional goals that it can14

perform and a set of non-functional properties that it can strive to achieve (like response time, availability, and security). These15

components synchronize with each other to achieve higher-level goals or tasks in different environmental contexts.16

The involvement of multiple (heterogeneous) components requires a careful analysis of their functional and non-functional17

properties in order to determine their compatibilities toward higher-level system goals. An additional level of complexity results18

from the need for autonomous systems to adopt different operational configurations under different environmental contexts [2,3].19

This switching to different configurations requires an understanding of how contexts affect different non-functional require-20

ments (NFRs) (like low illumination may require high robustness), conflicts among non-functional requirements, (like between21

robustness and efficiency), and their priorities in different scenarios [4].22

2 M. Roy ET AL

Formal specifications are well-known for providing non-ambiguous and consistent representations of hardware and software23

systems [5,6]. It is observed that autonomous systems consist of several concepts that can be represented via formal specification24

languages, such as (i) simple atomic components and their aggregation to form complex composite components; (ii) communica-25

tion among the components (internal or external); (iii) QoS (Quality of Service) parameters associated with the communication26

among the components; (iv) operational goals of each component; (v) non-functional properties of different components; and (vi)27

environmental context in which system is likely to operate (vii) correlations among environmental contexts and non-functional28

properties. Unlike generic software applications, autonomous systems are extremely safety critical. Negligence of NFRs and29

their interactions with environmental contexts may cause system failures resulting in the loss of human lives [7].30

As observed from the existing state of the art, most of the meta-models proposed for autonomous systems are limited to31

capturing only some of the above-mentioned concepts. There are works [8,9] that have tried to capture the non-functional prop-32

erties of autonomous systems. However, these are often not quite generic and are applicable to specific NFRs only. The existing33

meta-models, devised for the purpose, hardly consider any analysis of important issues including conflicts among the NFRs, the34

impact of environmental contexts on system performance, etc. This highlights the following two important research objectives-35

Q-1 How conflicts among non-functional requirements associated with different usage contexts can be properly represented36

for autonomous systems?37

Q-2 How the requirements for an autonomous system can be analyzed in the specification phase to tune the parameters so that38

the system design can optimally match the actual environmental context?39

We address these research questions by introducing an operational framework supporting the specification of robotic systems40

that takes into account the different environmental contexts in which the system has to operate and analyzes their impact on41

concerned NFRs. Eventually, an optimal degree of NFR satisfaction for different system configurations is computed.42

The operational framework, named SCARS (Specification Framework for Non-Functional Requirements Conflict Analysis in43

Robotic Systems), operates in three stages:44

1. System and Scenario Specification: A domain-specific language (DSL) is introduced to support a context-aware specifi-45

cation of ROS2a-based robotic autonomous systems. The requirement analysts, in conjunction with the system designers,46

specify all components and concepts associated with their robotic autonomous system using the proposed DSL. The47

proposed DSL metamodel has been developed on the MPSb framework.48

2. Requirement Analysis: The domain-specific requirements specified using the proposed DSL are then subjected to different49

analyses that can identify inconsistencies, incompatibilities and conflicts among the requirements. The requirements are50

analyzed in different contexts, by identifying the risks associated with conflicting NFRs. We have used the in-built model51

checker in MPS𝑏 to implement the different types of analyses. The MPS model checker consists of different modules52

to perform the following tasks: (i) identification of conflicts among NFRs; (ii) assessing the severity of each conflict;53

(iii) handling incompatibility issues among QoS profiles associated with communication components; and (iv) resolving54

inconsistency among NFR properties of different components operating together.55

3. NFR Optimization: In the final stage, our framework derives the optimum satisfaction values of each NFR in different56

contexts, given their conflicts and association with different FRs. These values help the system designers in choosing the57

appropriate software operationalizations to fulfill those NFRs while minimizing the risk of system refactoring and failures58

in the future.59

The model checker generates a multi-objective optimization problem for different components of the system. The conflict60

relationships among NFRs are used as the constraints of the multi-objective optimization function. The optimization61

problem is solved using pymooc library in Python to obtain the optimal satisfaction values of the conflicting NFRs.62

Stage 1 is intended to address the first research objective (Q-1) and stages 2 and 3 are intended to address the second research63

objective (Q-2).64

ahttps://www.ros.org
bhttps://www.jetbrains.com/mps/
chttps://pymoo.org/

M. Roy ET AL 3

As a proof of concept, we have used the Create®3 robotd simulator for conducting experiments. The objective of these65

experiments is to assess the whole procedure and to validate the optimal satisfaction values generated by SCARS.66

The main contribution of this research work is the proposed SCARS framework that not only provides a generic structure67

for specification but also conflict analysis of NFRs. The proposed DSL metamodel is built on top of the ROS2𝑎 DSL concepts68

already proposed in the literature. Reusing concepts ensures backward compatibility. The proposed DSL metamodel can be69

adapted for other types of autonomous systems in general with minimal changes, as the classes defined in the metamodel are70

also applicable to other autonomous systems.71

The rest of the paper is structured as follows. Section 2 elaborates on the existing state-of-the-art. Section 3 recalls some72

preliminary notions that will help the reader to better understand the work. Section 4 explains the proposed SCARS framework.73

Section 5 discusses the experiments. Section 6 highlights the different threats to the validity of this work. Section 7 concludes74

and discusses possible future work.75

2 RELATED WORK76

To frame our contribution in the current research context, we first discuss the different metamodels and domain-specific lan-77

guages for robotic systems; we then discuss the different formal analysis approaches in the literature, and finally, we discuss the78

different NFR conflict analysis approaches that have been proposed so far.79

2.1 Metamodels and DSL80

Researchers in [10] have proposed a Domain-specific modeling language known as RoBMEX for the specification of drone81

missions. RoBMEX consists of 3 metamodels- one metamodel for ROS systems (ROSProML), another for general-purpose82

operations using ROS variables (RosModL), and the third one for drone missions (ROSMiLan). Authors in [11] have presented83

RoboChart, a domain-specific modeling language based on UML for robotic applications. RoboChart is supported by RoboTool84

which enables modeling, performs type checking and analysis of well-formedness, and automatically calculates CSP models. It85

helps to capture robotic platforms, parallel controllers and machines’ synchronous and asynchronous communications. In [12], a86

domain-specific language called RobotML suitable to specify missions, environments and robot behaviors has been proposed.87

The DSL aims to ease the definition of specific robotic architecture (reactive, deliberative, hybrid) and specific components88

that form the architecture (sensors, actuators, planners, mapping, etc.). The communication mechanisms between components89

(sending/receiving of event notifications and data) are also captured in this framework.90

In [8] authors have proposed a formal specification framework known as Self Adaptive Framework for Robotic Systems91

(SafeRobots). It proposes two models- 1) a functional model capturing behavioral or functional requirements that specify the92

inputs (stimuli) to the system, the outputs (response) from the system, and the behavioral relationships between them, 2) a93

non-functional model for specifying non-functional aspects or quality claims of the system. In [9] authors have proposed an94

Eclipse-based metamodel known as RoQME. RoQME defines two meta-models: (1) the RoQME meta-model, responsible for the95

definition of Non-Functional Properties, contexts and Observations; and (2) the RoQME-to-RobMoSys mapping meta-model,96

responsible for binding each context defined in a RoQME model with the RobMoSys Service Definition acting as the correspond-97

ing context provider. Researchers in [13] have proposed a domain-specific language (DSL) that allows domain experts to specify98

(i) quality of service (QoS) requirements of the communication channels; and (ii) QoS capabilities of the software components99

in robotic systems. They have developed ROS 2 based DSl and also allow to verify the QoS specification for any incompatibility.100

Authors in [14] have argued that most languages for human-machine systems provide support for functional behavior, while non-101

functional properties are specified through informal comments. They have proposed a metamodel for modeling non-functional102

aspects of both human and machine models. In [15] authors have provided an extension of the UML MARTE profile for mod-103

eling and quantitative analysis of robotic-specific non-functional requirements. The extended UML MARTE profile is used for104

modeling safety properties for a robot navigation system.105

Most of the DSL or metamodels proposed in the literature are aimed toward representing the robot behaviors (functional106

behaviors). There are limited works that have tried to capture different components (different categories of hardware components)107

of these systems. Existing literature does not explore how the functional and non-functional properties of components are related108

dhttps://iroboteducation.github.io/create3_docs/

4 M. Roy ET AL

Table I Qualitative Comparison with Existing Works
Research work ROS-based Metamodel concepts Requirements Analysis

Components
(atomic and
composite)

Communication
among components

Communication
QoS parameters FRs NFRs FR-NFR

Dependency
Context-NFR
Correlation

Intra-NFR
conflict
(component wise)

Inter-NFR
conflict
(among components)

Communication
QoS compatability

Ramaswamy et al. [8] Yes Yes Yes No Yes Yes Yes No No No No
Parra et al. [13] Yes Yes Yes Yes No No No No No No Yes
Ladeira et al. [10] Yes Yes Yes No Yes No No No No No No
Miyazawa et al. [11] Yes Yes No No Yes Temporal NFRs

only No No No No No
Cristina et al. [9] Not mentioned No No No No Yes No Yes No No No
Dhouib et al. [12] Not mentioned Yes Yes No Yes No No No No No No

especially when they operate together to achieve a higher-level goal or task. Also, we find that there is a lack of a generic109

framework that can model NFR concerns specific to robotic systems and their inter-relationships in particular.110

2.2 Requirements Analysis111

Researchers in [16] used behavior trees to describe a particular task scenario (or functional goals) for robots. The behavior tree112

is further mapped to HFSM (Hierarchical Finite State Machine) and the temporal properties are verified using NuSMV. This113

framework also automates code generation and does runtime monitoring of those properties as well. ForSAMARAe is another114

project where authors have specified robot skills using behavior trees. These are then converted to a model that can be verified.115

It uses Octomap to simulate environments in which the robots may operate. The model and the map are then fed into the model116

checker along with safety properties (specified using LTL) to be verified. Authors in [17] have proposed a tool named LTLMoP117

which includes a parser that automatically translates English sentences belonging to a defined grammar into LTL formulas.118

This grammar can capture robot behavior and the environment in which it can operate. A task that is captured using an LTL119

formula, is synthesized into an automaton. It builds an automaton from the specification as long as the assumptions regarding120

the environment hold true. In [18] a new specification language (LTL based) for reactive systems has been proposed. It comes121

with the Spectra Tools [18], to perform analyses, including a synthesizer to obtain a correct-by-construction implementation, and122

also additional analyses aimed at helping engineers write higher-quality specifications. Starting with the formal specifications,123

it analyses if it is realizable and generates the state machine. If the state machine is not realizable then there may be conflicting124

safety and liveness properties.125

In [19] the author has reviewed different NFRs specific to robotic systems: how they are modeled and analyzed in the run-126

time environment? The author has highlighted that existing state-of-the-art focuses only on some specific NFRs in specific127

environments. The challenge lies in combining heterogeneous models that analyze different non-functional properties. The128

author has also highlighted how conflicts among NFRs are not addressed in these works. Authors in [6] have surveyed the state129

of the art in formal specification and verification for autonomous robotics and the challenges posed. In [4] authors have discussed130

the need for system reconfiguration arising out of the relationship between NFRs and the environmental context for autonomous131

systems. HAROSf framework is another category of work where quality assurance of robotic software is done using static132

analysis. It performs design checks for robotic software from a middleware perspective.133

2.3 NFR Conflict Analysis134

NFRs impact the satisfaction (or denial) of other NFRs very frequently. An NFR conflict is identified as a situation where the135

fulfillment of two NFRs contradicts each other [20] i.e., realizing one NFR has a negative impact on the fulfillment of another136

NFR. Most of the proposed NFR conflict identification approaches in the literature are based on either heuristics or ontology.137

Heuristic conflict identification approaches are mostly explored in literature and has resulted in creating a knowledge base (con-138

flict catalog [21,22]) that can be used by industry experts in system design. Ontology-based approaches are focussed on creating139

different categories of ontologies and provide different conflict detection rules [23]. Catalog-based approaches for NFR analysis140

are found to be more useful [24,25]. In [18] authors have tried to address the issue of conflicts among NFRs in robotic systems.141

They have provided a conflict resolution approach based on a weighted sum. However, their conflict resolution is not generic142

eForSAMARA – Formal safety analysis in modular robotic applications is cascaded funded by European Horizon2020 project RobMoSys (grant agreement No.
732410).

fhttps://github.com/git-afsantos/haros

M. Roy ET AL 5

and limited to resolving between time and other non-functional properties only. There are limited works [18,19] in the existing143

state of the art that have tried to analyze conflicts among the NFRs specific to robotic autonomous systems.144

Table I provides a detailed comparison of some of the formal approaches for robotic autonomous systems. The table includes145

only those works that have at least provided a metamodel or DSL in their proposal.146

3 PRELIMINARIES147

This section explains some of the preliminary concepts that may be helpful for the readers to better understand the proposed148

framework.149

3.1 Non-functional Requirements of Robotic Systems150

Robotic autonomous systems consist of certain specific NFRs of concern like safety, transparency and fairness. Several studies151

have been conducted in the literature that have listed out the NFRs concerned with these systems [19,26].152

Typically, NFRs are classified into two broad categories [27]: (1) Architectural NFRs and (2) Run-time NFRs. Architectural153

NFRs are those that are not directly measurable from the system’s operational environment. They are more of a design issue.154

Run-time NFRs are those that can be directly measured from the system’s operational environment by observing the performance155

characteristics. In this research work, we have limited our focus only to run-time NFRs, as they are measurable both qualitatively156

and quantitatively. The document provided at g shows the NFR categorization as architectural and run-time NFRs. Each of these157

run-time NFRs is expressed in terms of one or more metrics [20]. However, there are some run-time NFRs for which no specific158

metrics have been defined in the literature. Keeping this in mind, we have further refined our run-time NFR list to contain only159

those NFRs that have a well-defined metric associated with them (refer to𝑔).160

The run-time NFRs being considered can be further classified into the following two categories-161

1. Optimistic Low (C-1): We assign those NFRs to this category for which a lower value of the associated metric implies162

better satisfaction of the NFR. For example, NFRs like response time and cost, are optimistic toward minimum value i.e,163

lower the response time of the system better is the system performance.164

2. Optimistic High (C-2): We assign those NFRs to this category for which a higher value of the associated metric implies165

better satisfaction of the NFR. For example, NFRs like accuracy and availability, is optimistic toward maximum value i.e,166

higher the availability of the system more reliable it becomes.167

3.2 NFR Conflict Identification168

As NFR conflict knowledge base for robotic autonomous systems we rely on data collected from the existing literature169

(namely, [21,22,26,28–32]) and by collating knowledge from domain experts. The document provided at𝑔 contains the NFR conflict170

catalog that we have built and used in this research work.171

3.3 QoS Policies172

Quality of service policies allows us to tune communication between nodes. ROS2𝑎 has defined several QoS policiesh for the173

communicating nodes. In the definitions, of the QoS policies a publisher refers to the node sending a message or data and a174

subscriber refers to the node receiving a message or data. The QoS policiesℎ can be captured in the proposed DSL metamodel.175

3.4 Challenges in the design of Robotic Autonomous System176

Robotic autonomous systems consist of various nodes deployed internally or externally that coordinate and exchange data to177

execute some tasks. The components of these systems belong to two categories (i) operational components (hardware and178

ghttps://github.com/RESSA-ROB/SCARS/blob/main/NFR_Catalog.pdf
hhttps://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html

6 M. Roy ET AL

software) and (ii) communication components. These components are associated with several constraints like NFRs, dependency179

(between FR and NFR), compliance with standards, scenario constraints and others. Such a component-based system that has180

a variety of operational tasks, non-functional properties and communication channels gives rise to the following concerns or181

issues -182

I-1 Intra NFR Conflict- Whether the non-functional properties of a component are in conflict? If they are in conflict how183

they can be operationalized so that all required priorities are met?184

I-2 Inter NFR Conflict- Whether there exist conflicts among the non-functional properties of a group of components (like a185

swarm of robots or a group of heterogeneous components) when they are deployed in a particular environment?186

I-3 NFR Compliance- How compliance of NFRs with standards can be ensured at design time?187

I-4 Context-NFR Correlation- How the satisfiability of non-functional properties of the system are affected in different188

contexts?189

I-5 QoS Compatibility- Whether communicating nodes have a compatible set of QoS policies?190

These issues are related to the research objective (Q-2). Each of these issues involves different analyses of the system191

specification. The SCARS framework addresses in particular the issues I-1, I-2, I-4 and I-5 above.192

4 THE SCARS FRAMEWORK193

This section illustrates the overall workflow and different modules of SCARS (refer to Figure 1). We assume that the following194

conditions are satisfied:195

1. The availability of conflict catalogs (based on state-of-the-art literature). These catalogs must include conflicts between196

NFRs specific to the robotic autonomous system (refer to𝑔).197

2. The availability of a QoS policy listℎ for the system under consideration.198

Figure 1 The SCARS architecture

M. Roy ET AL 7

3. Relevant data on the environmental contexts under which the system shall operate.199

The architecture of SCARS is shown in Figure1. The end-to-end flow of activities is shown using solid arrows. The dotted arrows200

represent some of the optional activities that can be performed by the system designer. The architecture is partitioned into three201

modules, namely: (A) SYSTEM AND SCENARIO SPECIFICATION (B) REQUIREMENTS ANALYSIS and (C) NFR OPTIMIZATION.202

The following subsections illustrate each module in detail.203

4.1 SYSTEM AND SCENARIO SPECIFICATION204

This module consists of: (1) Requirement Specification using the DSL metamodel; and (2) Integration of scenario constraints205

in the requirement specification. They are described in the following subsections.206

4.1.1 Requirement Specification using the DSL metamodel207

The proposed DSL metamodel is depicted in Figure 2, consisting of three categories of artifacts: (i) Operational Artifacts (ii)208

Communication Artifacts and (iii) Constraints. It is to be noted that operational and communication artifacts have already been209

proposed in the literature in different forms. However, a single DSL metamodel in the literature does not consist of all the210

artifacts together. We introduce the constraints as the new artifact for making NFR conflicts and inconsistencies in different211

environmental contexts explicit. Each of these artifacts consists of one or more classes. The concepts (or class) of the DSL212

metamodel are further illustrated using examples created on the MPS platform.213

• Operational Artifacts- The classes representing the operational artifacts are as follows (marked in blue in Figure 2)-214

– AutonomousSystem is the root class of the metamodel. Its instances are characterized by a systemName that can be215

used to refer to the domain where robots are deployed. For example the class AutonomousSystem can represent a216

Hospital where a swarm of robots are deployed.217

– Components class represents the different components of robotic autonomous systems. Each instance of218

Components class has a Name. The Components class can represent composite components of the system.219

Hence each artifact that is defined using Components class, consists of one or more sub-components. These sub-220

components can again be composite (defined using Components class) or atomic (defined using Hardware or221

Software class). The AutonomousSystem class is composed of one or more Components.222

Example 1 in Table II captures the specification of a robot that is a composite component defined in MPS platform.223

The Sub Components class in this example contains other composite components that make up the robot.224

– The Components class is composed of two subclasses Hardware and Software. The Hardware and Software225

classes are used to represent atomic components.226

– The instances of Hardware class are characterized by its HID (a unique identifier), Type (represent the type of the227

device which may be sensors or actuators), and Category (captures the class of devices mechanical or electrical part).228

– The instances of Software class are characterized by its SID (a unique identifier), ModuleType (that may be229

connectivity, power management) and Category (captures the class of software like operating system or user230

interface).231

Devices like cameras and actuators can be defined as atomic components (using Hardware class) or as composite232

components (using Components class). This depends upon the level of detail the system engineers need to capture.233

Example 2 in Table II, a camera is defined as a composite component. Example 3 in Table II, a wheel (actuator)234

is defined as an atomic component. CAM2 and Robot Wheel are the components referred in the specification of235

ROBOT1 in Example 1.236

– The FunctionalObjective class captures the FRs. The instances of FunctionalObjective are characterized by237

their FRName (identifier for a functional objective) and Description. The Hardware, Software and Components238

classes are composed of class FunctionalObjective. The functional goals of each atomic and composite com-239

ponent can be captured in the DSL metamodel. Example 1 and Example 3 in Table II show some sample FRs of a240

robot and a wheel, respectively.241

8 M. Roy ET AL

Figure 2 DSL Metamodel

• Communication Artifacts- The classes representing the communication artifacts are as follows (marked in green in Figure242

2):243

– The Ports class is used for representing communication ports. The Components class is also composed of one or244

more Ports. Each instance of Ports class is characterized by a Port_ID. The attribute Port_ID represents a unique245

identification number of each port.246

– The Ports class is a supertype for two subclasses InputPort and OutputPort.247

– The instances of InputPort are characterized by the attributes - Message (data/message component receives) and248

ReceiveTopicType (type of message received, for example traffic alert, object detection).249

– The instances of OutputPort are characterized by the attributes - Message (data/message component sends) and250

SendTopicType (type of message send).251

We have pre-defined some of the plausible topic types [13] while implementing the language model in MPS. The252

designer can select a topic from the list while creating a specification. This list can be extended as required. Example253

4 in Table III shows a component’s sample input and output port specification.254

– The Connections class defines how the information flow occurs between the ports of one device to another. The255

instances of this class are associated with attributes iport (refers to input ports), oport (refers to output ports) and256

TopicType (records the type of data exchanged). Each instance of Connections class defines data flow from an257

output port to an input port. The AutonomousSystem class is composed of one or more connections. For instance,258

M. Roy ET AL 9

Table II Examples of Operational Artifacts
Operational Artifacts

Example 1

Component Name: ROBOT1
Sub Components

CAM1
CAM2

Hardware Components
Actuator: Robot Wheel
Sensor: H1
Controller: H103

Software Components
Path Planner

Functional Objective
FR Name: Fetch
Description: Fetch
clothes from the racks.
FR Name: Deliver
Description: Deliver clothes
to the washer.

Example 2

Component Name: CAM2
Sub Components

<<.....>>
Hardware Components

Sensor: Lens 1.2
Software Components

Motion Detector

Example 3

Hardware component: Robot Wheel
Type: Actuator
Category: Mechanical HID: W101
Functional Objective

FR Name: Rotation
Description: Wheels should
rotate 360 degrees.

Example 5 in Table III shows connections defined between pairs of ports. Each connection also includes the type of259

data exchanged between the ports.260

– The QoSProfile class represents the different quality of service parameters associated with communicating nodes.261

Each instance of QoSProfile consists of - QoSprofileType (this profile type corresponds to the different topics262

of input and output ports) and policyList (list of QoS policies). The specification of QoSprofileType is significant263

as the exchange of different information may require different QoS parameters. The InputPort and OutputPort264

classes are associated with one or more QoSProfile classes. Example 6 in Table III shows how QoS policies265

are captured in the proposed DSL. Each QoS policy has a type associated with it. The type of InputPort and266

OutputPort i.e. attributes ReceiveTopicType and SendTopicType respectively, must match the type of QoS profile267

(attribute QoSprofileType) assigned to it (as shown in Example 4 in Table III).268

– The QoSCompatabilityCheck class captures the compatibility issues between different QoS profiles. The instances269

of this class are characterized by the attributes - QosProfilePair (QoS profiles whose policies are incompatible)270

and ProfileCompatability (records the compatibility issues). The QoSCompatabilityCheck class consists of the271

CompatabilityCheck() function that checks for the compatibility of QoS profiles associated with different ports272

10 M. Roy ET AL

Table III Examples of Communication Artifacts
Communication Artifacts

Example 4

(Input Port) ID → IN101
Receive Topic Type: Location
Message: Object Detected.
QoS Profile: Check3
QoS Profile Type: Location
(Output Port) ID → OT101
Send Topic Type: Warnings
Message: Failed to complete tasks.
QoS Profile: Check1
QoS Profile Type: Warnings

Example 5

Connections
Topic Type: Location

OT102 → IN105
Topic Type: Warnings

OT101 → IN108

Example 6

Policy List: Check1
QoS Profile Type: Warnings
Reliability == RELIABLE
Durability == TRANSIENT_LOCAL
Liveliness == MANUAL_BY_TOPIC
Deadline == 12
Lease Duration == 10
Policy List: Check2
QoS Profile Type: Traffic
Reliability == BEST_EFFORT
Durability == VOLATILE
Liveliness == AUTOMATIC
Deadline == 15
Lease Duration == 12
Policy List: Check3
QoS Profile Type: Location
Reliability == RELIABLE
Deadline == 7

that communicate to exchange data. The CompatabilityCheck() method refers to the QoS compatibility rules273

defined for ROS2ℎ.274

• Constraints- We have defined several constraints as classes in the metamodel.275

– The NonFunctionalObjective class captures the NFRs associated with operational artifacts. The instances of276

NonFunctionalObjective class are characterized by the following attributes:277

∗ NFRID: A unique identifier.278

∗ NFRName: It represents the NFR category, such as security.279

∗ MetricName: Captures different metrics that are associated with each NFR category, such as encryption level280

for security.281

∗ MinVal: Represents minimum value of an NFR.282

∗ MaxVal: Represents maximum value of an NFR.283

M. Roy ET AL 11

∗ MostLikelyVal: Represents the most likely value of an NFR.284

∗ Parameters: It captures other NFRs on which a particular NFR is dependent. This is applicable mostly in the case285

of composite components that are made up of several sub-components (atomic or composite). The satisfaction286

of the NFR of a high-level composite component may be dependent on the NFRs of its sub-components.287

∗ Operation: It specifies how the NFRs of lower-level sub-components are related to the NFR of the higher-level288

component.289

The minimum, maximum and most likely values are expected to be provided by the system analyst. The Hardware,290

Software and Components classes are composed of class NonFunctionalObjective. Example 7 in Table IV291

shows the NFRs defined for component ROBOT1 of Example 1 in Table II. The NFR N601 is related to two NFRs292

N101 and N301 and the operation is max. Then the maximum of the most likely values of these two NFRs must293

match with the most likely value of NFR N601.294

– The DependencyAssociation class is used to capture the associations between FunctionalObjective and295

NonFunctionalObjective. The instances of DependencyAssociation class are characterized by FRID,296

NFRID and DependencyValue. The attributes FRID and NFRID refers to the attributes FRName and NFRID of297

FunctionalObjective and NonFunctionalObjective class respectively. The DependencyValue represents the298

degree of dependency between FRs and NFRs. These associations are expected to be identified by the system engi-299

neers. Example 8 in Table IV shows an association among the NFRs of Example 7 with the FRs defined in Example300

1 for the component ROBOT1.301

Table IV Examples of Constraints
Constraints

Example 7

Non-Functional Objective
Non-functional Property:
ID: N601
NFR Category: Availability –>
Metric: Probability percentage of system uptime
Minimum value: 70 Maximum value: 90
Most Likely value: 85
Parameters: N101 NFR Category: Availability –>
Metric: Probability percentage of system uptime
N301 NFR Category: Availability –>
Metric: Probability percentage of system uptime
Operation
Max
Non-functional Property:
ID: N602
NFR Category: Performance –>
Metric: Response Time
Minimum value: 2 Maximum value: 10
Most Likely value: 5
Parameters
<<....>>
Operation
<<....>>

Continued on next page

12 M. Roy ET AL

Table IV – continued from previous page
Constraints

Example 8

Deliver ->N601 NFR Category
Availability –>Metric: Probability percentage of system uptime
Dependency Value: 8
Deliver ->N602 NFR Category
Performance –>Metric: Response Time
Dependency Value: 9
Fetch ->N601 NFR Category
Availability –>Metric: Probability percentage of system uptime
Dependency Value: 8
Fetch ->N602 NFR Category
Performance –>Metric: Response Time
Dependency Value: 6

Example 9

Contexts-NFR Association
ID: C1 Name: Lightning Values: Dim
Impacted NFR: N601 NFR Category:
Availability –>Metric: Probability
percentage of system uptime N602 NFR Category:
Performance –>Metric: Response Time
Contexts-NFR Association
ID: C2 Crowd: Low
Impacted NFR: N601 NFR Category:
Availability –>Metric: Probability percentage of system uptime
N602 NFR Category:
Performance –>Metric: Response Time
Contexts-NFR Association
ID: C3 Name: Crowd: Heavy
Impacted NFR: N601 NFR Category:
Availability –>Metric: Probability percentage of system uptime
N602 NFR Category:
Performance –>Metric: Response Time

Example 10

Scenario:
Scenario ID: S1
Contexts: C1 -Lightning: Dim , C2 - Crowd: Low
Scenario ID: S2
Contexts: C1 -Lightning: Dim , C3 - Crowd: Medium

Example 11

Scenario-NFR Impact
Scenario ID: S1 NFR: N601 NFR Category:
Availability –>Metric: Probability percentage of system uptime
Min Value: 60 Max Value: 80
Most likely Value: 70
Scenario ID: S2 NFR: N602 NFR Category:
Performance –>Metric: Response Time
Min Value: 5 Max Value: 10
Most likely Value: 7

– The ConflictAnalysis class captures the conflict relationship between different NonFunctionalObjective. The302

instances of this class consist of the following attributes:303

∗ NFRpairs: The pair of NFRs that are identified to be in conflict by the ConflictIdentification() function.304

∗ ConflictImpactvalue: The degree of conflict among NFRs.305

M. Roy ET AL 13

∗ RiskType: The risk imposed by each identified conflict.306

The ConflictAnalysis class also consists of three functions-307

∗ ConflictIdentification(): Identifies pair-wise conflict among NFRs.308

∗ AffectionFunction(): It derives the degree of conflict and risk involved.309

∗ NFROptimzation(): It derives an optimized satisfiability value of each NFR in conflict.310

– The class ContextNFRAssociation is used to represent the different environmental contexts and correlates these311

contexts with NFRs. The context represents environmental conditions in which system has to operate. The instance312

of this class is characterized by the ContextName, ContextValue and ImpactedNFRList. The attribute ContextName313

and ContextValue defines an environmental context and its label respectively. The attribute ImpactedNFRList lists314

the different non-functional properties that may get affected in a particular context. Example 9 in Table IV shows315

instances of sample contexts and impacted NFRs as defined in MPS platform.316

– The Scenario class in the metamodel is used to represent different scenarios in which the system has to operate.317

Its instances are characterized by the ScenarioID and ContextList (that is inherited from ContextNFRAssociation318

class). Each scenario is a combination of multiple environmental contexts. The attribute ContextList consists of the319

set of contexts that makes up a particular scenario. Example 10 in Table IV shows how the contexts of Example 9320

are combined to create different scenarios.321

– The class ScenarioNFRImpact captures how multiple contexts when occur together affects different non-functional322

properties of the system. Its instances are characterized by the following attributes: ScenarioID, NFRID (this NFRs323

must match with the one defined with the contexts for a particular scenario), MinValue, MaxValue and MostLikely-324

Value. The parameters MinValue, MaxValue and MostLikelyValue capture how the NFR values may undergo changes325

for a particular scenario. This class addresses the issue I-4 mentioned in Section 3.4.326

Example 11 in Table IV shows the correlation between NFRs and scenarios. The NFR N601 that was defined earlier327

in Example 7 in Table IV undergoes a change in its specification in scenario S1 in Example 11. These correlations328

are to be determined by system analysts manually.329

4.1.2 Integration of scenario constraints in the requirement specifications330

The requirement engineer will use the DSL metamodel to generate a general requirement specification for the target system. The331

specification must then include the different scenarios (Scenario constraints in Figure 1) in which the system has to operate332

and how in different scenarios the non-functional properties of the system are affected (refer to Example 11 in Table IV). The333

Integration and Duplication process in the framework takes the general requirement specification of the target system and334

augments them with scenario information. That is for each scenario a scenario-specific requirement specification is created and335

fed into the subsequent processes of the framework. Suppose, if there are n scenarios in which the system has to operate, our336

framework creates n separate requirement set (one for each scenario) for further analysis (refer to Figure 1). The objective of337

doing this is to separately check the risk factors (conflicts, inconsistencies) associated with different scenarios. This will assist338

the system designer to build various configurations of the system with minimum risk. In Example 11 there are two different339

scenarios. Each scenario has some effect on the non-functional properties that were specified in Example 7. Hence the Integration340

and Duplication process creates two separate scenario-specific requirement specifications (say 𝑅1 and 𝑅2). In requirement341

specification, 𝑅1 the specification of NFR N601 will be replaced with the one mentioned for scenario S1 in Example 11. In 𝑅1342

specification of NFR N602 will remain the same as in Example 7. In requirement specification, 𝑅2 the specification of NFR343

N602 will be replaced with the one mentioned for scenario S2 in Example 11. In 𝑅2 specification of NFR N601 will remain the344

same as in Example 7.345

It is to be noted that each scenario can impact multiple NFRs. In our examples, we have shown only a single instance for346

simplicity. In requirement sets 𝑅1 and 𝑅2 only NFR specification of different components is changed. Figure 3 shows the FRs347

and NFRs description for ROBOT1 in scenarios S1 and S2.348

4.2 REQUIREMENT ANALYSIS349

In this module, each of the scenario-specific requirement specifications is subjected to analyses. It includes three different350

processes that check for incompatibilities, inconsistencies and conflicts in the requirement sets respectively. These processes351

can be executed in parallel and are explained in the following subsections.352

14 M. Roy ET AL

Figure 3 Scenario-specific requirement set

4.2.1 QoS Compatibility Check353

The management of QoS policies is an important aspect of an autonomous system as different devices communicate among354

themselves to publish and subscribe to information. The quality parameters associated with the communication ports of the355

devices define the characteristic of communication. The QoS Compatibility Check module of the framework takes as input the356

system specification (in different scenarios), which includes the devices that are communicating among themselves to share357

information. The module generates incompatible QoS profiles for different communicating devices. The ROS2 community has358

already defined the set of QoS profiles that are incompatible. We have implemented those rulesℎ in the model checker in MPS.359

This QoS Compatibility Check module addresses the issue I-5 mentioned in Section 3.4.360

Let us consider two QoS profiles profile1 and profile2 shown in Example 12 in Table V that are associated with ports OT102361

and IN105 respectively (refer to Example 5 in Table III). The port OT102 is publishing location information that is subscribed by362

port IN105. In Figure 4, we can see that the QoS profiles associated with these two ports are incompatible due to their Reliability363

and Deadline policy.364

Table V Example of Qos Profile
QoS Profile

Example 12

Policy List: Profile1
QoS Profile Type: Location
Reliability == BEST_EFFORT
Durability == VOLATILE
Deadline == 5
Policy List: Profile2
QoS Profile Type: Location
Reliability == RELIABLE
Durability == VOLATILE
Deadline == 3

4.2.2 NFR Consistency Check365

An autonomous system is built from an aggregation of several atomic and composite components. These heterogeneous366

components coordinate among themselves to achieve particular tasks.367

M. Roy ET AL 15

Figure 4 QoS Profile Compatability Check Result

Consider the situation where a robot is expected to deliver some goods in the hospital from point A to point B and the expected368

response time for the task is t𝑟 sec. Now in performing this task the sensing device of the robot (response time t𝑠 sec) will locate369

the goods, the task and motion planning software modules (response time t𝑚 sec) compute a route for the robot and the wheels370

(time required to move from point A to B is t𝑤 sec based on wheel velocity) help in the movement. Each of these components371

has its own individual response times. Hence it is necessary to compare whether these individual response times (t𝑠, t𝑚, t𝑤) of372

the components are sufficient to obtain the response time required for the task (t𝑟).373

In our DSL metamodel, we have the provision for specifying NFRs for each individual component, and how the NFRs of differ-374

ent components are related. Algorithm 1 checks whether NFRs associated with high-level composite components are consistent375

with the non-functional properties of its constituting components. This consistency check is performed at the inter-component376

level that is among different components (both atomic and composite). The COMPUTE function applies the specified operation377

on the most likely values of the NFRs in the parameters field and stores it in variable cvalue. The function COMPARE com-378

pares the cvalue with the most likely value of the NFR in concern. This comparison also depends on the NFR category (refer to379

Section-3.1).380

Algorithm 1 NFR Consistency Check
Arguments:

1. C𝑐𝑜𝑚𝑝: A set of composite components.
Output:

1. A set of higher-level NFRs incompatible with lower-level associated NFRs.
1: function NFR CONSISTENCY CHECK(C𝑐𝑜𝑚𝑝)
2: for each 𝑐𝑜𝑚𝑝 ∈ C𝑐𝑜𝑚𝑝 do
3: for each 𝑛𝑓𝑟 ∈ 𝑐𝑜𝑚𝑝 do
4: 𝑐𝑣𝑎𝑙𝑢𝑒 ← COMPUTE(𝑛𝑓𝑟.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑛𝑓𝑟.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛)
5: 𝑟𝑒𝑠𝑢𝑙𝑡 ← COMPARE(𝑐𝑣𝑎𝑙𝑢𝑒, 𝑛𝑓𝑟.𝑚𝑜𝑠𝑡𝑙𝑖𝑘𝑒𝑙𝑦)
6: Print 𝑟𝑒𝑠𝑢𝑙𝑡.
7: end for
8: end for
9: end function

We have implemented an NFR category check before comparing their values. This consistency check method is executed381

for different requirement sets that exist for different scenarios. This NFR Consistency Check module addresses the issue I-2382

mentioned in Section 3.4383

In Example 7 in Table IV we observed that NFR N601 is related to NFRs N101 and N301 and the Operation is Max. NFRs384

N101 and N301 are associated with the sub-components of the ROBOT1 (𝐻1 and 𝐻103 respectively). In this case, the maximum385

16 M. Roy ET AL

of their most likely values are not consistent with the most likely value of NFR 𝑁601. This is analyzed by the model checker in386

MPS and shown as an error in Figure 5.

Figure 5 NFR Inconsistency Result

387

4.2.3 NFR Conflict Check388

NFR Conflict check is performed at the intra-component level and it is the most important function of Requirement Analysis.389

The NFR Conflict Check module addresses the issue I-1 mentioned in Section 3.4. This module consists of two major activities-390

(1) Conflict Identification and (2) Conflict Impact Analysis.391

Conflict Identification: The Conflict Identification procedure is performed on the NFRs of each component (atomic and392

composite) defined in the specification. As mentioned earlier in Section 4.1.2 for each 𝑛 scenarios in which the system is likely393

to operate the framework creates a different specification. Hence conflict identification is performed for each component in 𝑛394

scenarios. A pre-defined conflict catalog is used for detecting conflicts among NFRs (refer to𝑔). Algorithm 2 illustrates the steps395

for conflict identification. It takes a set of 𝑛 requirement specifications as input. Then for each specification, it checks for the396

NFR conflicts in each of the components separately. The CHECK function checks whether a pair of NFRs are in conflict by397

referring to the conflict catalog and returns 1 or 0 respectively.398

Conflict Impact Analysis: The objective of this activity is to analyze the risk (or severity) associated with different conflicting399

pairs of NFRs and how a change in the weight of one NFR impacts its conflicting NFR. It involves the following steps-400

(i) Expected Value Computation- We have used PERT [33] for computing an initial expected value of each NFR. Each NFR is401

associated with three values- minimum value, maximum value and most likely value (refer to Section 4.1.1). The PERT402

determines the expected value using the following formula-403

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑂𝑣𝑎𝑙 + 𝑃𝑣𝑎𝑙 + 4𝑀𝑣𝑎𝑙

6
(1)

where, 𝑂𝑣𝑎𝑙 refers to the optimistic value, 𝑃𝑣𝑎𝑙 refers to the pessimistic value and 𝑀𝑣𝑎𝑙 refers to the most likely value.404

In the case of NFR of the category C-1 (refer to Section 3.1) optimistic value is the minimum value and the pessimistic405

value is the maximum value. Similarly, for NFRs of category C-2 (refer to Section 3.1) optimistic value is the maximum406

value and the pessimistic value is the minimum value. The expected values are computed for each NFR pair that is in407

conflict. The same NFR can have different expected values in different scenarios.408

(ii) Normalization of Values- The metrics of different NFRs have their minimum and maximum values in different ranges. The
initial computed expected values of different NFRs lie in different ranges. These initial expected values are normalized in
the range [0-1] using the following formula-

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
(2)

where 𝑋 is any value that has to be normalized, 𝑋𝑚𝑖𝑛 is the minimum value 𝑋 can have and 𝑋𝑚𝑎𝑥 is the maximum value409

𝑋 can have.410

C-1 category NFRs are optimistic towards minimum value and C-2 category NFRs are optimistic towards maximum
value. To make the computation simpler we complement the normalized expected values of C-1 category NFRs (refer to

M. Roy ET AL 17

Algorithm 2 NFR Conflict Identification
Arguments:

1. 𝑆𝑝𝑒𝑐[𝑛]: An array of requirement specifications for 𝑛 scenarios.
2. k: Let k be the total number of components in the specification.

Output:

1. Conflict𝑖[𝑘][𝑐𝑜𝑙𝑠𝑖𝑧𝑒], 𝑖 ∈ [1, 𝑛]: A set of 2-D arrays storing the conflicts for each component in 𝑛 scenarios. The 𝑐𝑜𝑙𝑠𝑖𝑧𝑒 is
set to (𝑚

2

), where m is the maximum total number of NFRs of all components.
1: function CONFLICT IDENTIFICATION(Spec, 𝑘)
2: Set 𝑖𝑛𝑑𝑒𝑥← 1
3: while 𝑖𝑛𝑑𝑒𝑥 ≤ 𝑛 do
4: Fetch Specification 𝑆𝑝𝑒𝑐[𝑖𝑛𝑑𝑒𝑥].
5: Set 𝑐𝑜𝑢𝑛𝑡← 1
6: while 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑘 do
7: Fetch specification for component confcount in 𝑆𝑝𝑒𝑐[𝑖𝑛𝑑𝑒𝑥]
8: Set confcount ← 0.
9: for each ⟨nfr𝑖, nfr𝑗⟩ ∈ confcount do

10: 𝑟𝑒𝑠𝑢𝑙𝑡← CHECK(nfr𝑖, nfr𝑗)
11: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 1 then
12: Increment confcount.
13: Add ⟨nfr𝑖, nfr𝑗⟩ to Conflictindex[count][confcount]
14: end if
15: end for
16: Increment count.
17: end while
18: Increment index.
19: end while
20: end function

equation 3).
𝑋𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 = 1 −𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙 (3)

This step makes all NFRs optimistic toward maximum value. This normalization and complementation help in comparing411

the NFRs on a uniform manner.412

Let us consider the NFR N602 in Example 7 in Table IV, that belongs to category C-1. Using PERT (equation 1) the413

expected value is 5.33. The normalized value for N602 is 0.41625. Now complementing the normalized value using414

equation 3 we get the value 0.58. It is to be noted that here we have not considered the impact of the scenario on the NFR415

N602.416

(iii) Estimating Risk of Conflict- For every pair of NFR conflicts we classify them into one of the three following classes. This417

classification of conflict is done for each of the 𝑛 requirement specifications. Suppose the NFR pair ⟨nfr𝑖, nfr𝑘⟩ in scenario418

𝑚 are in conflict with normalized (and maybe complemented) expected values 𝐸𝑖 and 𝐸𝑘 respectively. The expected values419

computed reflect the desired user expectation from the system. We consider these expected values and conflict information420

to determine the risk imposed by the NFR conflicts. If the computed expected values lie between 0-0.5 then it is assumed421

to be in the pessimistic range and that between 0.5-1 is to be in the optimistic range.422

• Low Risk- If the values of 𝐸𝑖 and 𝐸𝑘 lies in the range [0.5, 1] then the NFR pair ⟨nfr𝑖, nfr𝑘⟩ are said to be at low-risk423

conflict. Now increasing the expected value of nfr𝑖 will negatively influence (decrease) the value of nfr𝑘 as they are424

in conflict. However, since the value of nfr𝑘 is in the optimistic range the impact may not be too severe.425

18 M. Roy ET AL

• Moderate Risk- The NFR pair ⟨nfr𝑖, nfr𝑘⟩ are said to be at moderate-risk conflict when one NFR have their expected426

value in the pessimistic range and another in the optimistic range. nfr𝑖 negatively influences nfr𝑘. Suppose 𝐸𝑖 lies in427

the range [0.5, 1] but 𝐸𝑘 lies in the range [0, 0.5]. Now increasing the expected value of nfr𝑖 will negatively influence428

(decrease) the value of nfr𝑘. If the value of 𝑛𝑓𝑟𝑘 goes below a minimum threshold, it implies that the NFR cannot429

be satisfied.430

• High Risk- If the values of 𝐸𝑖 and 𝐸𝑘 lie in the range [0, 0.5] then the NFR pair ⟨nfr𝑖, nfr𝑘⟩ are said to be at high-431

risk conflict. Since both lie in the pessimistic range whenever we try to improve the value of one NFR towards the432

optimistic range, it severely affects the other.433

In Figure 6 the blue bar represents the initial expected value of 𝐸𝑘 and green bar represents the initial expected value434

of 𝐸𝑖 for low-risk, moderate risk and high-risk case respectively. Δ represents any constant value by which expected435

value of nfr𝑖 is increased. Then expected value of nfr𝑘 decreases by a value that is a function of Δ - (f(Δ)). The f(Δ)436

depends on the risk category and it is discussed in the next step.

Figure 6 Risk associated with NFR conflicts

437

(iv) Impact Analysis- We have defined an Affection function that is a mathematical function for analyzing the risk profiles of438

different NFR conflicts and determining how a change in the expected value of one NFR negatively impacts the weight439

of another NFR. The impact value is computed based on the risk category as follows-440

M. Roy ET AL 19

• When the NFR pair ⟨nfr𝑖, nfr𝑘⟩ have low risk, increasing the value of NFR nfr𝑖 will have a linear impact on the441

value of nfr𝑘 and vice-versa. That is we increase the value of nfr𝑖 by a constant Δ then the value of nfr𝑘 decreases442

by Δ ∗ diff, where, diff= 𝐸𝑘 - 0.5.443

• When the NFR pair ⟨nfr𝑖, nfr𝑘⟩ have moderate risk, increasing the value of NFR nfr𝑖, decreases the value of nfr𝑘444

polynomially and vice-versa. That is we increase the value of nfr𝑖 by Δ then value of nfr𝑗 decreases by Δ𝑘∗diff, where445

k is any constant of power of 10. The value of diff is determined using the same formula as above. The value of Δ446

and diff both lies in the range [0, 1]. Δ to the power of diff will give a very small value. Hence, we are multiplying447

diff with 𝑘.448

• When the NFR pair ⟨nfr𝑖, nfr𝑘⟩ have high risk, increasing the value of NFR nfr𝑖, decreases the value of nfr𝑘 expo-449

nentially and vice-versa. That is we increase the value of nfr𝑖 by Δ then value of nfr𝑗 decreases by 𝑒Δ∗𝑑𝑖𝑓𝑓 . The value450

of diff is determined using the same formula as above.451

The value of Δ lies in the range of [0.1, 1-𝐸𝑖]. We assume the minimum value of Δ to be 0.1 and the maximum value452

as 1-𝐸𝑖, as the value of NFRs lies in [0,1] range.453

Hence, the Affection function is defined as follows-454

𝑓 (𝛿) =

⎧

⎪

⎨

⎪

⎩

Δ ∗ diff if risk is low
Δ𝑘∗diff if risk is moderate
𝑒Δ∗diff if risk is high

Algorithm 3 demonstrates the above-mentioned steps of conflict impact analysis activity.455

Let us consider the NFRs N601 and N602 (refer to Example 7 in Table IV). Their initial expected values are found to be 0.59456

and 0.61 respectively in scenario S2 (refer to Example 11 in Table IV). When trying to improve the value of N601, the value457

of N602 degrades linearly as they have low risks. If we increase the value of N601 by Δ then the value of N602 decreases by458

Δ ∗diff. The value of Δ will lie in the range of 0.1 to 1 − 0.59 i.e., 0.41 and diff value is 𝑎𝑏𝑠(0.5 − 0.61) i.e., 0.11.459

All these algorithms have been implemented within the model checker in MPS.460

4.3 NFR OPTIMIZATION461

In this module, we apply a multi-objective optimization approach to compute the optimal satisfaction values of NFRs in different462

scenarios for the various components in a robotic system. This optimization module provides feasible satisfiability values of each463

NFR given their conflicts and association with various FRs. Based on the output of the optimization module, system designers464

can build appropriate configurations of the system in different scenarios. This reduces the cost and risk of system refactoring.465

We have used the pymoo𝑐 library in python to solve our optimization problem. Each component has one or more functional466

goals that it must perform. These functional goals have different degrees of association with one or more NFRs (refer to Example467

8 in Table IV). These NFRs may also have a negative impact on each other. The AFFECTION function (refer to Algorithm468

3) provides the degree of conflict among different pairs of NFRs. Considering the FR-NFR dependency and NFR conflict469

relationship we create a multi-objective optimization problem for each component considering their NFR values in different470

scenarios. If the system has to operate in 𝑛 scenarios, then each component will have a different optimization problem for n471

scenarios.472

Let us again consider the NFR pair 𝑁601 and 𝑁602. The robot ROBOT1 (refer to Example 1 in Table II) has two functional473

goals Fetch and Deliver. The goal Fetch is also associated with NFR N601 and N602 with dependency values 8 and 6474

respectively. The goal Deliver is associated with NFRs N601 and N602 having dependency values 8 and 9 respectively. Let 𝑤1475

and 𝑤2 be the decision variables for NFRs N601 and N602 respectively. The objective functions are formed by multiplying the476

decision variables 𝑤1 and 𝑤2 with the dependency values corresponding to each FR. Two objective functions will be created477

with respect to each functional goal (Fetch and Deliver). The constraints are formed by the conflict impact relationship derived478

by Algorithm 3. The constraints show how an increase in the weight of one NFR affects another NFR. In this case, we know that479

if we increase the value of N601 by Δ then the value of N602 decreases by Δ*𝑑𝑖𝑓𝑓 . The optimization problem is as follows:480

maximize
𝑤1,𝑤2

{

8𝑤1 + 6𝑤2
8𝑤1 + 9𝑤2

20 M. Roy ET AL

𝑠.𝑡.𝑤1 +𝑤2 + 𝛿 − 𝛿 ∗ 𝑑𝑖𝑓𝑓 ≥ 0,
𝑤1 +𝑤2 + 𝛿 − 𝛿 ∗ 𝑑𝑖𝑓𝑓 ≤ 2,
𝑑𝑖𝑓𝑓 = 0.11, 𝛿 = 0.1… , 0.41

Algorithm 3 NFR Conflict Impact Analysis
Arguments:

1. Conflict𝑖[𝑘][𝑐𝑜𝑙𝑠𝑖𝑧𝑒], 𝑖 ∈ [1, 𝑛]: A set of n number of 2-D arrays storing the conflicts generated by Algorithm 2.
Output:

1. Risk𝑖[𝑘][𝑐𝑜𝑙𝑠𝑖𝑧𝑒], 𝑖 ∈ [1, 𝑛]: An array storing risk of each NFR conflict.
2. Impact𝑖[𝑘][𝑐𝑜𝑙𝑠𝑖𝑧𝑒], 𝑖 ∈ [1, 𝑛]: An array storing impact of each NFR conflict.

1: function AFFECTION(Conflict1[𝑘][𝑐𝑜𝑙𝑠𝑖𝑧𝑒].....Conflict𝑛[𝑘][𝑐𝑜𝑙𝑠𝑖𝑧𝑒])
2: for 𝑠𝑝𝑒𝑐 = 1 to 𝑛 do
3: for 𝑟𝑜𝑤 = 1 to 𝑘 do
4: for 𝑐𝑜𝑙 = 1 to 𝑐𝑜𝑙𝑠𝑖𝑧𝑒 do
5: if Conflict𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙] ≠ ∅ then
6: Fetch NFR pair ⟨𝑛𝑓𝑟𝑖, 𝑛𝑓𝑟𝑘⟩ from Conflict𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]
7: 𝐸𝑖 ← EXPECTEDVALUE(𝑛𝑓𝑟𝑖)
8: 𝐸𝑘 ← EXPECTEDVALUE(nfr𝑘)
9: Let Δ be any value between [0.1, (1-𝐸𝑖)].

10: Let 𝑑𝑖𝑓𝑓 ← 𝑎𝑏𝑠(0.5 − 𝐸𝑘).
11: if 0.5 < 𝐸𝑖, 𝐸𝑘 ≤ 1 then
12: 𝑅𝑖𝑠𝑘𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]← "Low-Linear"
13: 𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]← Δ*𝑑𝑖𝑓𝑓
14: else if 0.5 < 𝐸𝑖 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝐸𝑘 ≤ 0.5 then
15: 𝑅𝑖𝑠𝑘𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]← "Moderate-Polynomial"
16: 𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]← Δ𝑘∗𝑑𝑖𝑓𝑓 , ⊳ where 𝑘= 10𝑟𝑎𝑛𝑑𝑜𝑚(1,10)

17: else if 0 ≤ 𝐸𝑖, 𝐸𝑘 ≤ 0.5 then
18: 𝑅𝑖𝑠𝑘𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]← "High-Exponential"
19: 𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑝𝑒𝑐[𝑟𝑜𝑤][𝑐𝑜𝑙]← 𝑒Δ∗𝑑𝑖𝑓𝑓

20: end if
21: end if
22: end for
23: end for
24: end for
25: end function

481

The values of diff and Δ are explained in the previous section.482

By solving this optimization problem using NSGA 2 algorithm with a population size 100 and number of generations 50,483

we obtain the weights of 𝑤1 and 𝑤2, respectively. These weights may vary in different scenarios. Based on these weights484

system designer can know apriori the optimal satisfaction values of the concerned NFRs in different scenarios. This aids in the485

explainability of the system behavior.486

M. Roy ET AL 21

5 EXPERIMENTAL EVALUATION487

In this section, we demonstrate the experiments performed to validate the proposed SCARS framework. Through these experi-488

ments, we show how the optimal values produced by the framework can be used in real scenarios. The experiments are executed489

on a workstation with AMD Ryzen 9 processor, GPU AMD Radeon RX, 32GB DDR5 RAM and Ubuntu 20.04 operating system.490

The experimental scripts and results are available at our github repositoryi. The experimental steps are as follows:491

Step 1: Selection of a Simulator492

We have selected the ROS 2 Gazebo simulation stack for the iRobot® Create®3 Educational Robot for performing our exper-493

iments. iRobot® Create®3 Simulator can be used to quickly develop new applications and eventually run them on a real robot494

without having to change anything. We have used two different environments in the Gazebo simulation for conducting the ex-495

periments. Figure 7(a) and 7(b) are the two simulation environments. Figure 7(a) shows a home environment consisting of two496

rooms and a single robot. Figure 7(b) shows a hospital environment with multiple rooms and a single robot.497

Step 2: Defining the Functional Goals498

The Create®3 robot can be navigated to a specified odometry position and orientation. In our experiments, we used middleware499

APIs for navigating the robot to different positions. We define a simple functional task for the robot-500

• T-1: Robot begins at an initial position A, picks up an object from position B and delivers it as position C.501

The Create®3 robot design does not provide the provision for the actual picking up of an object from a place. Thus, in our502

experiments, we simply move the robot to a location B and introduce a latency time for object picking. The position A, B and503

C were determined randomly. The same task is executed by the robot in both simulation environments (refer to Figure 7(a) and504

7(b))505

Step 3: Determining the NFRs associated with the Functional Goals506

The non-functional parameters that can be manipulated within this simulator are- (i) safety and (ii) speed. The non-functional507

parameters like response time and battery discharge can be observed from the logs generated by the simulator. The NFRs that508

need to be satisfied for task T-1 are as follows-509

• N-1 Response Time- The response time associated with task T-1 is a category C-1 NFR.510

• N-2 Battery State or Battery Discharge rate- The battery state of the robot is also category C-1 NFR.511

• N-3 Speed- The speed of the robot is a category C-2 NFR.512

• N-4 Safety- The safety of the robot is a category C-2 NFR.513

These qualitative definitions of NFRs have been quantified while creating the DSL specification within the SCARS framework.514

Step 4: Determining the scenarios that may occur for task T-1515

We have instantiated the task T-1 for 100 different settings in both environments. Thus we have 100 settings for the home516

environment (Figure 7(a)) and 100 settings for the hospital environment (Figure 7(b)). In each of these settings the positions A,517

B and C (defined in Step-2) are unique. The positions A, B and C are randomly generated within the room and hospital map and518

the details are discussed in the Annexure section. In Figure 8(a) the objects marked in red as Ob1 - Ob22 in the home are the519

obstacles that the robot has encountered in its path while executing the task T-1. Similarly, in Figure 8(b) the objects marked in520

red as Ob1 - Ob31 in the hospital are the obstacles that the robot has encountered in its path while executing the task T-1. The521

positions of the obstacles are fixed within the room and hospital map. Now for performing task T-1 by the robot along the path522

A-B-C in these 100 different settings (in both environments) different situations can arise as follows-523

ihttps://github.com/RESSA-ROB/SCARS/tree/main/Experiments

22 M. Roy ET AL

(a) Home Environment

(b) Hospital Environment

Figure 7 Simulation Environments
.

• The path A-B-C does not include obstacle.524

• The path A-B-C has only one obstacle.525

• The path A-B-C has multiple obstacles.526

These different situations form different scenarios. Table VI illustrates the different scenarios that we have obtained based on527

the obstacles in the home and hospital environment and randomly generated positions for A, B and C for both environments. In528

the home environment (Figure 7(a)) we have encountered all seven scenarios in Table VI. In the hospital environment (Figure529

7(b)) we have encountered only the first six scenarios.530

Step 5: Creating DSL Specification531

In this step, we elaborate on the DSL specification created for this experiment. DSL specification in this case includes the532

following-533

M. Roy ET AL 23

(a) Home Environment

(b) Hospital Environment

Figure 8 Simulation Environments with Obstacles
.

Table VI Experimental Scenario

Scenario Contexts
Obstacle Obstacle Before Pickup Obstacle After Pickup

S1 0 0 0
S2 1 1 0
S3 1 0 1
S4 2 2 0
S5 2 0 2
S6 2 1 1
S7 3 1 2

• Component Specification- In our experiments, only a single robot exists. Create®3 robot consists of different hardware534

(like mechanical and electrical) and software (sensing and navigation) parts. Figure 12 shows a portion of the component535

specification created for the Create®3 robot.536

24 M. Roy ET AL

• Functional Goal Specification- The task T-1 defined in Step 2 is captured within the DSL specification in Figure 13. In537

the DSL specification, we have divided the task T-1 into two parts that are- (i) picking up an object that involves moving538

from point A to B (RG101) (ii) delivering the object from point B to C (RG102). This is because in table VI we can539

observe that robot may collide with an obstacle either before picking up an object or after picking up an object. Hence540

the NFR parameter values (like speed) of the robot differ before and after picking up an object in different scenarios. The541

functional goal specification in both environments is the same since the same task is executed.542

• NFR Specification- Figure 14(a) and 14(b) shows the NFRs specified corresponding to FRs RG101 and RG102. The FRs543

can have the same NFR metric values or different ones. Figure 14(c) shows the corresponding FR-NFR dependencies. We544

have defined three NFR parameters in the DSL specification - Speed, Response Time and Energy efficiency (for Battery545

State). We have not captured the safety parameter in the DSL specification as in the simulator it takes only fixed quali-546

tative values (none, back_up_only, full). The SCARS framework only supports quantitative metric values of NFRs. The547

specification in Figure 14(a), 14(b) and 14(c) are for the home environment. The specification for the hospital environ-548

ment is different as the NFR priorities vary in different environments. Table VII illustrates how the maximum, minimum549

and most likely values of NFRs are set within the DSL specification.550

Table VII NFR Parameter Values
NFR Minimum Value Maximum Value Most Likely Vale

Battery Discharge
(Energy Efficiency)

Battery discharged for moving the
robot at two extreme points at
maximum speed

Battery discharged for moving the
robot at two extreme points at
minimum speed

Based on NFR
category C-1

Response Time
(Performance)

Time taken for moving the robot at
two extreme points at minimum speed

Time taken for moving the robot at
two extreme points at minimum speed

Based on NFR
category C-1

Speed Create®3 robot documentation Create®3 robot documentation Based on NFR
category C-2

• Scenario Specification- Figure 15 shows the different contexts and how these contexts can be combined to create scenarios551

in table VI. Here we have only shown for scenario S3 in home environment. In Context-NFR Association section in552

Figure 15, it can be observed that with each context we associate different NFRs that might get affected. In Scenario-NFR553

Impact section we define how the values of NFRs N105, N106 and N107 are affected based on the scenario. These values554

are determined considering robot safety (lower the speed, lesser the impact of the collision with the obstacle) and the555

priority of different NFRs. We are not manipulating the values of NFRs N101, N102 and N103 as they are associated with556

RG101 and here obstacle is encountered while achieving RG102. Hence in the scenario-specific requirements specification557

generated by MPS for scenario S3 the values of NFRs N101, N102 and N103 will remain the same as in Figure 14(a), but558

the values of NFRs N105, N106 and N107 will be replaced with the one in Figure 15. The other scenario specifications559

are available within the language model atj.560

Step 6: Generating optimal values of NFRs561

The model checker in MPS identifies the conflicts (refer to Figure 16) among NFRs in the specification. It then uses this conflict562

information and FR-NFR dependencies (refer to Figure 14(c)) to generate a multi-objective optimization problem. There are a563

total of seven different optimization problems generated for each of the seven scenarios in table VI for the home environment.564

In the case of the hospital environment, six different optimization problems were generated for the first six scenarios in table VI.565

Figure 17 shows the multiobjective optimization problem created for the requirement specification of scenario S3 in the home566

environment. This multi-objective optimization problem is solved using the Pymoo library in python. We have used the NSGA-567

2 algorithm for solving this optimization problem. NSGA-2 algorithm is proven to be computationally efficient for two objective568

optimization problems [34]. Table VIII shows the parameters set for solving the optimization problem. The population size and569

jhttps://github.com/RESSA-ROB/SCARS/blob/main/DSL_v1.zip

M. Roy ET AL 25

the number of generations are subject to vary depending upon the problem size. Each constraint in Figure 17 is transformed570

into two constraints one satisfying the lower bound and another the upper bound. Hence the total number of constraints in table571

VIII is 8. The decision variables 𝑤𝑠1 and 𝑤𝑠2 is for speed values for FRs RG101 and RG102 respectively. The decision variables572

𝑤𝐵1 and 𝑤𝐵2 is for battery discharge values for FRs RG101 and RG102 respectively. The decision variables 𝑤𝑅1 and 𝑤𝑅2 is for573

response time values for FRs RG101 and RG102 respectively. The values of variables [𝑤𝑠1, 𝑤𝐵1, 𝑤𝑅1, 𝑤𝑠2, 𝑤𝐵2, 𝑤𝑅2] are found574

to be [0.83, 0.71, 0.75, 0.76, 0.75, 0.8]. These values imply the maximum values each of the NFRs can have in that particular575

scenario (𝑆3). The multi-objective optimization problems for other scenarios can be visualized by running the language model576

available at𝑗 .577

Table VIII Parameters of optimization problem
Parameters Value
Number of Variables 6
Number of Objectives 2
Number of Constraints 8
Method NSGA-2
Population Size 100
Number of Generations 50

Step 7: Setting the NFR parameter values within the simulator578

The values obtained in the previous step are normalized in the 0 − 1 scale and have to be mapped to their respective ranges. As
mentioned earlier, the simulator takes as input speed values and generates response time and battery discharge values as output.
So for goal 𝑅𝐺101 the value of the speed metric is 0.45 and for goal 𝑅𝐺102 the value of the speed metric is 0.3. These values
are obtained by mapping the optimal speed values (value of 𝑤𝑠1 and 𝑤𝑠2)) in their respective ranges using the formula 4. The
value of 𝑤𝑠1 is mapped in the range of NFR 𝑁101 in Figure 14(a). The value of 𝑤𝑠2 is mapped in the range of NFR 𝑁105 in
Figure 15. After setting the values the simulator is executed to record run-time NFR values.

𝑉 𝑎𝑙𝑛𝑒𝑤 = ((𝑉 𝑎𝑙𝑜𝑙𝑑 − 𝑜𝑙𝑑𝑚𝑖𝑛) ∗ 𝑛𝑒𝑤𝑟𝑎𝑛𝑔𝑒)∕𝑜𝑙𝑑𝑟𝑎𝑛𝑔𝑒 (4)
where, 𝑜𝑙𝑑𝑟𝑎𝑛𝑔𝑒= 𝑜𝑙𝑑𝑚𝑎𝑥 - 𝑜𝑙𝑑𝑚𝑖𝑛 and 𝑛𝑒𝑤𝑟𝑎𝑛𝑔𝑒= 𝑛𝑒𝑤𝑚𝑎𝑥 - 𝑛𝑒𝑤𝑚𝑖𝑛.579

The code for running the different scenarios within the simulator is made available at𝑖.580

Step 8: Obtaining the NFR values from the simulator581

This is the final step of the experiment. We record the response time and battery discharge values for the different scenarios.582

Table IX provides a summary of the NFR parameter values recorded in different scenarios for the home environment. Similarly,583

table X provides a summary of the NFR parameter values recorded in different scenarios for the hospital environment. Table IX584

and X record the number of times each scenario has occurred in the 100 different settings. The velocity or speed metric value585

for FR 𝑅𝐺101 and 𝑅𝐺102 is determined by Step 5-7 for each scenario independently. Table IX and X also record the average586

response time and battery discharge in each scenario. The distribution of the number of times each scenario occurred depends587

on the random coordinates generated for executing task T-1 in the two environments.588

5.1 Discussion589

Analysis of results590

The experimental Step 6 generates the optimal values of different NFR parameters (speed, response time and battery discharge).591

The optimal speed values are fed to the simulator for executing the tasks in different scenarios. The simulator generates the592

response time and battery discharge as log records. This generated response time and battery discharge are compared with the593

26 M. Roy ET AL

Table IX Experimental Results for Home

Scenario Number of Cases Velocity for
FR RG101

Velocity for
FR RG102

Average Response
Time

Average Battery
Discharge

S1 42 0.46 0.46 48.12 0.59
S2 14 0.4 0.46 76.60613571 0.7535714286
S3 33 0.45 0.3 81.53432424 0.7615151515
S4

10
0.33 0.46 109.65545 0.895

S5 0.46 0.24 122.73635 0.87
S6 0.4 0.3 91.33313333 0.7666666667
S7 0.4 0.24 153.1283667 0.9733333333

Table X Experimental Results for Hospital

Scenario Number of Cases Velocity for
FR RG101

Velocity for
FR RG102

Average Response
Time

Average Battery
Discharge

S1 52 0.46 0.46 160.2063904 1.430192308
S2 23 0.44 0.46 175.3486217 1.558695652
S3 17 0.46 0.32 192.9473765 1.462941176
S4

8
0.4 0.46 138.9066 1.15

S5 0.4 0.313 212.534925 1.34
S6 0.4 0.32 182.617 1.685

optimal values (of response time and battery discharge) generated by the optimization algorithm to validate. It is to be noted594

that we have run the result in the simulator in each setting three times and taken an average of them. Now, we analyze the NFR595

parameter values obtained from the simulator w.r.t each scenario.596

• Scenario S1: In this scenario, the robot encounters no obstacles in its path. Table XI shows the optimal values (maximal)597

of NFR parameters generated by the optimization algorithm for home and hospital environment. Figure 9(a) shows the598

distribution of total response time and total battery discharge in home for the 100 settings as obtained from the log records599

of the simulator. Figure 9(b) shows the distribution of total response time and total battery discharge in hospital for the600

100 settings as obtained from the log records of the simulator. In both home and hospital environment we observe that the601

NFR parameter value from the simulator lies within the maximum optimal value (refer to table XI) except for very few602

cases where a deviation is observed.603

Table XI Optimal Values for NFR Parameters in S1
NFR

Parameters
FR RG101 FR RG102

Home Hospital Home Hospital
Speed 0.46 0.46 0.46 0.46

Response
Time

50
units

100
units

70
units

150
units

Battery
Discharge 0.4% 1% 0.6% 1.5%

M. Roy ET AL 27

(a) Home Environment

(b) Hospital Environment

Figure 9 NFR parameter values in S1

• Scenario S2: In this scenario, the robot encounters a single obstacle before picking up the object. Table XII shows the604

optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environment.605

Figure 10(a) shows the distribution of total response time and total battery discharge in home for the 100 settings as606

obtained from the log records of the simulator. Figure 10(b) shows the distribution of total response time and total battery607

discharge in hospital for the 100 settings as obtained from the log records of the simulator. In both home and hospital608

environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer to table XII)609

for all the cases.610

Table XII Optimal Values for NFR Parameters in S2
NFR

Parameters
FR RG101 FR RG102

Home Hospital Home Hospital
Speed 0.4 0.44 0.46 0.46

Response
Time

50
units

199.91
units

70
units

100
units

Battery
Discharge 0.5% 1.99% 0.6% 1.0%

• Scenario S3: In this scenario, the robot encounters a single obstacle after picking up the object. Table XIII shows the611

optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environment.612

Figure 11(a) shows the distribution of total response time and total battery discharge in home for the 100 settings as613

obtained from the log records of the simulator. Figure 11(b) shows the distribution of total response time and total battery614

discharge in hospital for the 100 settings as obtained from the log records of the simulator. In both home and hospital615

environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer to table616

XIII) for all the cases.617

28 M. Roy ET AL

(a) Home Environment

(b) Hospital Environment

Figure 10 NFR parameter values in S2

Table XIII Optimal Values for NFR Parameters in S3
NFR

Parameters
FR RG101 FR RG102

Home Hospital Home Hospital
Speed 0.45 0.46 0.3 0.32

Response
Time

50
units

100
units

80
units

249
units

Battery
Discharge 0.4% 1.0% 1.5% 1.99%

• Scenario S4: In this scenario, the robot encounters two obstacles before picking up the object. Table XIV shows the618

optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environment.619

In home environment out of 100 settings this scenario occurred only twice and in hospital only once. In both home and620

hospital environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer to621

table XIV) for the three cases.622

Table XIV Optimal Values for NFR Parameters in S4
NFR

Parameters
FR RG101 FR RG102

Home Hospital Home Hospital
Speed 0.45 0.4 0.3 0.46

Response
Time

80
units

200
units

50
units

100
units

Battery
Discharge 1.2% 2.0% 0.4% 1.0%

M. Roy ET AL 29

(a) Home Environment

(b) Hospital Environment

Figure 11 NFR parameter values in S3

• Scenario S5: In this scenario, the robot encounters two obstacles after picking up the object. Table XV shows the optimal623

values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environments. In the624

home environment out of 100 settings, this scenario occurred only twice and in the hospital only thrice. In both home and625

hospital environments, we observe that the NFR parameter value from the simulator lies within the optimal value (refer626

to table XIII) for the five cases.627

Table XV Optimal Values for NFR Parameters in S5
NFR

Parameters
FR RG101 FR RG102

Home Hospital Home Hospital
Speed 0.46 0.46 0.24 0.313

Response
Time

50
units

100
units

100
units

299.17
units

Battery
Discharge 0.4% 1.0% 1.5% 1.99%

• Scenario S6: In this scenario, the robot encounters two obstacles, one before picking up the object and another after628

picking up the object. Table XVI shows the optimal values (maximal) of NFR parameters generated by the optimization629

algorithm for home and hospital environment. In home environment out of 100 settings this scenario occurred only thrice630

and in hospital only four times. In both home and hospital environments, we observe that the NFR parameter value from631

the simulator lies within the optimal value (refer to table XVI) for the seven cases.632

• Scenario S7: In this scenario, the robot encounters three obstacles, one before picking up the object and two after picking633

up the object. This scenario was observed only in the home environment based on the randomly generated coordinates for634

the task. The optimal values for speed or velocity are found to be 0.4 and 0.24 for FRs 𝑅𝐺101 and 𝑅𝐺102 respectively.635

The optimal response times are 50 and 100 units for FR 𝑅𝐺101 and 𝑅𝐺102 respectively. That is total response time636

should not be more than 150 units. The optimal values for battery discharge are 0.4 and 1.5 for FR for 𝑅𝐺101 and 𝑅𝐺102637

30 M. Roy ET AL

Table XVI Optimal Values for NFR Parameters in S6
NFR

Parameters
FR RG101 FR RG102

Home Hospital Home Hospital
Speed 0.4 0.44 0.3 0.32

Response
Time

50
units

199.91
units

80
units

249
units

Battery
Discharge 0.5% 1.99% 1.5% 1.99%

respectively. That is total battery discharge should not be more than 1.9 unit. This scenario has occurred only in two638

settings. Here in one case, we observe the response time recorded from the simulator to be slightly more than the derived639

optimal value.640

The total response time and battery discharge depends on the (i) speed (ii) distance covered (iii) number of obstacles encountered641

in its path. When the robot collides with an obstacle it stops, moves back and detours to reach the destination. This detouring642

requires some additional time and energy which may vary depending upon the size of the obstacle. This may account to the643

deviation of NFR values from the optimal values in some cases. In some cases, the distance may be very small and hence644

response time appear to be much lower than the maximum (optimal) value produced by our framework. Since the positions are645

randomly determined for task T-1. We have obtained only a small number of cases for scenarios S4-S7. In those small cases,646

only a single violation of optimal values is observed. However, from this, we cannot conclude the optimal values derived are647

perfect for those scenarios.648

Through these experiments, we have tried to show how the derived optimal values can be used in building a smart system649

that can adapt to various scenarios. We found that the NFR parameter values derived for most of the cases were satisfied. The650

values of speed in different scenarios are obtained considering its conflict with other NFRs and different contexts occurring.651

The complete set of experimental results are provided at our github repository𝑖.652

Comparison with existing works653

In Table I, we have provided a summary of different DSL proposed for robotic systems. Most of these works have considered654

the specification of components, communication among components and FRs. Some of them allow the specification of NFRs655

also, but they have not done any analysis regarding their conflicts. We find only a single work that tried to correlate NFRs with656

context information. However, there are not enough research works that have tried to address the issues of NFRs and the impact657

of contexts on them. There are few works that have only analyzed temporal NFRs for robotic systems. The proposed SCARS658

framework is an integration of specification and analysis. It provides a specification portion that tries to cover all aspects of a659

robotic system within a single DSL metamodel. The analysis portion checks for inconsistencies, incompatibilities and conflicts660

among the non-functional parameters. Additionally, it provides optimal satisfaction values of different NFRs that are in conflict.661

Limitations662

The limitations of this experimental evaluation are as follows-663

• The experiments are performed considering static contexts only. There may be dynamic contexts as well (like people664

moving in the room). In such scenarios, it will be more challenging to adjust the NFR parameters accordingly. We have665

not considered this issue within the scope of this work.666

• The experiments are conducted considering only formal specification and context-NFR impact values are provided de-667

pending on the understanding of the system engineers. It will be interesting if machine learning-based methods are668

integrated to study environments and their impact on various non-functional parameters in the system.669

• The optimal values in the experiments are obtained using only one genetic algorithm. It is to be further evaluated against670

other genetic algorithms as a part of our future works.671

M. Roy ET AL 31

6 THREATS TO VALIDITY672

• The first issue is related to the specification of contexts or scenarios. The framework requires analysts or engineers to be673

aware of different contexts and scenarios in which the system is likely to operate. However, there may be always certain674

contextual parameters that remain unknown during the design of the system.675

• The second threat to validity is related to the specification of scenario-NFR impact values. These values are often de-676

pendent upon the understanding of the analyst. This may introduce ambiguity or inconsistency in the specification. This677

can be resolved by the use of machine-learning-based methods to study scenarios and their impact NFRs. In an earlier678

work [35], attempts have been made to provide a framework that qualitatively derives the correlations between contexts679

and NFR conflicts. Such frameworks can be useful to predict scenario-NFR impact correlations rather than manually680

providing them.681

• Another issue concerns the optimal values produced, that depend upon the conflict relationship between NFRs and FR-682

NFR dependency (specified in the objective function). The FR-NFR dependency values can again be subjective depending683

upon the understanding of the analyst. Hence a change in these values can result in a variation of the optimal values.684

• The last threat to validity is related to the use of a simulator for experimental evaluation. A simulation environment may685

not be an exact representation of reality. Hence the validity of the results are still subjective. The evaluation needs to be686

performed in real settings or in other similar simulation platforms.687

7 CONCLUSION688

In general, most of the existing formal method based approaches for resolving conflicts in the requirements are concerned with689

functional requirements only. In spite of being a major factor in deciding the user acceptance and eventual success of a system,690

the NFRs are often considered something that someone will eventually take care of. The proposed SCARS framework provides a691

requirement specification DSL and also analyzes the conflicts, inconsistencies, and incompatibilities among the NFRs. Further,692

it provides an optimization module to generate optimum satisfaction values of different NFRs in various contexts. We have693

experimentally evaluated our framework using Gazebo simulation and Create®3 robot. The experimental result shows that the694

predicted optimum value satisfies the robot’s run-time behavior (non-functional). Thus, the SCARS framework can be deployed695

to analyze robotic system behavior before the actual deployment. The optimum NFR values can help the system designer in696

building appropriate software operationalizations and reduce the cost of changes.697

The SCARS framework is limited to handling only static contexts. However, in real scenarios, many dynamic objects like698

humans exist in the environment in which the robot operates. As a part of future work, we aim to extend our framework to model699

and analyze dynamic contextual parameters.700

References701

1. Fürst S. System/ Software Architecture for Autonomous Driving Systems. IEEE International Conference on Software702

Architecture Companion (ICSA-C) 2019: 31-32. doi: 10.1109/ICSA-C.2019.00013703

2. Hartsell C, Ramakrishna S, Dubey A, Stojcsics D, Mahadevan N, Karsai G. ReSonAte: A Runtime Risk Assessment Frame-704

work for Autonomous Systems. International Symposium on Software Engineering for Adaptive and Self-Managing Systems705

(SEAMS) 2021: 118-129. doi: 10.1109/SEAMS51251.2021.00025706

3. Zager M, Sieber C, Fay A. Towards a context identification method for autonomous robots. IECON 2022 – 48th Annual707

Conference of the IEEE Industrial Electronics Society: 1-6. doi: 10.1109/IECON49645.2022.9969063708

4. Samin H. Priority-Awareness of Non-Functional Requirements under Uncertainty. IEEE 28th International Requirements709

Engineering Conference (RE) 2020: 416-421. doi: 10.1109/RE48521.2020.00061710

5. Yoo J, Jee E, Cha S. Formal Modeling and Verification of Safety-Critical Software. IEEE Software 2009; 26(3): 42-49. doi:711

10.1109/MS.2009.67712

http://dx.doi.org/10.1109/ICSA-C.2019.00013
http://dx.doi.org/10.1109/SEAMS51251.2021.00025
http://dx.doi.org/10.1109/IECON49645.2022.9969063
http://dx.doi.org/10.1109/RE48521.2020.00061
http://dx.doi.org/10.1109/MS.2009.67
http://dx.doi.org/10.1109/MS.2009.67
http://dx.doi.org/10.1109/MS.2009.67

32 M. Roy ET AL

6. Luckcuck M, Farrell M, Dennis LA, Dixon C, Fisher M. Formal Specification and Verification of Autonomous Robotic713

Systems: A Survey. ACM Comput. Surv. 2019; 52(5). doi: 10.1145/3342355714

7. Cui J, Liew LS, Sabaliauskaite G, Zhou F. A review on safety failures, security attacks, and available countermeasures715

for autonomous vehicles. Ad Hoc Networks 2019; 90: 101823. Recent advances on security and privacy in Intelligent716

Transportation Systemsdoi: https://doi.org/10.1016/j.adhoc.2018.12.006717

8. Ramaswamy A, Monsuez B, Tapus A. Formal Specification of Robotic Architectures for Experimental Robotics. Metrics of718

Sensory Motor Coordination and Integration in Robots and Animals: How to Measure the Success of Bioinspired Solutions719

with Respect to their Natural Models, and Against More ‘Artificial’ Solutions? 2020: 15–37. doi: 10.1007/978-3-030-14126-720

42721

9. Vicente-Chicote C, Inglés-Romero J, Martínez J, et al. A Component-Based and Model-Driven Approach to Deal with722

Non-Functional Properties through Global QoS Metrics. 5th International Workshop on Interplay of Model-Driven and723

Component-Based Software Engineering (in conjunction with MODELS 2018) 2018.724

10. Ladeira M, Ouhammou Y, Grolleau E. RoBMEX: ROS-based modelling framework for end-users and experts. Journal of725

Systems Architecture 2021; 117: 102089. doi: https://doi.org/10.1016/j.sysarc.2021.102089726

11. Miyazawa A, Ribeiro P, Li W, Cavalcanti A, Timmis J, Woodcock J. RoboChart: modelling and verification of the functional727

behaviour of robotic applications. Software Systems Modeling 2019; 18: 1-53. doi: 10.1007/s10270-018-00710-z728

12. Dhouib S, Kchir S, Stinckwich S, Ziadi T, Ziane M. RobotML, a Domain-Specific Language to Design, Simulate and Deploy729

Robotic Applications. Simulation, Modeling, and Programming for Autonomous Robots 2012: 149–160.730

13. Parra S, Schneider S, Hochgeschwender N. Specifying QoS Requirements and Capabilities for Component-Based Robot731

Software. 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering (RoSE) 2021: 29-36. doi:732

10.1109/RoSE52553.2021.00012733

14. Ramaswamy A, Monsuez B, Tapus A. Modeling non-functional properties for human-machine systems. AAAI Spring734

Symposium - Technical Report 2014: 50-55.735

15. Brugali D. Modeling and Analysis of Safety Requirements in Robot Navigation with an Extension of UML MARTE. IEEE736

International Conference on Real-time Computing and Robotics (RCAR) 2018: 439-444. doi: 10.1109/RCAR.2018.8621699737

16. Colledanchise M, Natale L. On the Implementation of Behavior Trees in Robotics. IEEE Robotics and Automation Letters738

2021; 6(3): 5929–5936. doi: 10.1109/lra.2021.3087442739

17. Finucane C, Jing G, Kress-Gazit H. LTLMoP: Experimenting with language, Temporal Logic and robot control. IEEE/RSJ740

International Conference on Intelligent Robots and Systems 2010: 1988-1993. doi: 10.1109/IROS.2010.5650371741

18. Maoz S, Ringert J. Spectra: a specification language for reactive systems. Software and Systems Modeling 2021; 20. doi:742

10.1007/s10270-021-00868-z743

19. Brugali D. Non-Functional Requirements in Robotic Systems: Challenges and State of the Art. IEEE International744

Conference on Real-time Computing and Robotics (RCAR) 2019: 743-748. doi: 10.1109/RCAR47638.2019.9044033745

20. Mairiza D, Zowghi D, Nurmuliani N. Towards a Catalogue of Conflicts Among Non-functional Requirements. In:746

Loucopoulos P, Maciaszek LA., eds. ENASE - Proceedings of the Fifth International Conference on Evaluation of Novel747

Approaches to Software Engineering, Athens, GreeceSciTePress; 2010: 20–29.748

21. Mairiza D, Zowghi D. Constructing a Catalogue of Conflicts among Non-functional Requirements. Evaluation of Novel749

Approaches to Software Engineering 2011: 31–44.750

22. Mairiza D, Zowghi D, Gervasi V. Conflict characterization and Analysis of Non Functional Requirements: An experimental751

approach. 2013 IEEE 12th International Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT)752

2013: 83-91. doi: 10.1109/SoMeT.2013.6645645753

http://dx.doi.org/10.1145/3342355
http://dx.doi.org/https://doi.org/10.1016/j.adhoc.2018.12.006
http://dx.doi.org/10.1007/978-3-030-14126-4_2
http://dx.doi.org/10.1007/978-3-030-14126-4_2
http://dx.doi.org/10.1007/978-3-030-14126-4_2
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2021.102089
http://dx.doi.org/10.1007/s10270-018-00710-z
http://dx.doi.org/10.1109/RoSE52553.2021.00012
http://dx.doi.org/10.1109/RoSE52553.2021.00012
http://dx.doi.org/10.1109/RoSE52553.2021.00012
http://dx.doi.org/10.1109/RCAR.2018.8621699
http://dx.doi.org/10.1109/lra.2021.3087442
http://dx.doi.org/10.1109/IROS.2010.5650371
http://dx.doi.org/10.1007/s10270-021-00868-z
http://dx.doi.org/10.1007/s10270-021-00868-z
http://dx.doi.org/10.1007/s10270-021-00868-z
http://dx.doi.org/10.1109/RCAR47638.2019.9044033
http://dx.doi.org/10.1109/SoMeT.2013.6645645

M. Roy ET AL 33

23. Liu CL. CDNFRE: Conflict detector in non-functional requirement evolution based on ontologies. Computer Standards754

Interfaces 2016; 47: 62-76. doi: https://doi.org/10.1016/j.csi.2016.03.002755

24. Cysneiros LM. Evaluating the Effectiveness of Using Catalogues to Elicit Non-Functional Requirements. Workshop em756

Engenharia de Requisitos 2007.757

25. Lawrence C, Brian A. N, Eric Y, John M. Non-functional requirements in software engineering. Springer, Boston, MA 2012.758

doi: 10.1007/978-1-4615-5269-7759

26. Joseane VP, Rossana A, Rainara C. Evaluation of Non-Functional Requirements for IoT Applications. 23rd International760

Conference on Enterprise Information Systems (ICEIS 2021); 2: 111-119. doi: 10.5220/0010461901110119761

27. Bass L, Clements P, Kazman R. Software Architecture in Practice. Addison-Wesley Professional. 3rd ed. 2012.762

28. Carvalho RM, Andrade R, Lelli V, Silva EG, Oliveira dKM. What About Catalogs of Non-Functional Requirements?.763

REFSQ Workshops 2020.764

29. Carvalho RM, Andrade RMdC, Oliveira dKM. Catalog of Invisibility Correlations for UbiComp and IoT Applications.765

Requir. Eng. 2022; 27(3): 317–350. doi: 10.1007/s00766-021-00364-2766

30. Carvalho RM, Andrade RMC, Oliveira dKM. Towards a catalog of conflicts for HCI quality characteristics in UbiComp and767

IoT applications: Process and first results. 12th International Conference on Research Challenges in Information Science768

(RCIS) 2018: 1-6. doi: 10.1109/RCIS.2018.8406651769

31. Zinovatna O, Cysneiros LM. Reusing knowledge on delivering privacy and transparency together. IEEE Fifth International770

Workshop on Requirements Patterns (RePa) 2015: 17-24. doi: 10.1109/RePa.2015.7407733771

32. Carvalho RM. Dealing with Conflicts Between Non-functional Requirements of UbiComp and IoT Applications. IEEE 25th772

International Requirements Engineering Conference (RE) 2017: 544-549. doi: 10.1109/RE.2017.51773

33. Institute PM. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). Project Management Institute.774

5th ed. 2013.775

34. Chaudhari P, Thakur AK, Kumar R, Banerjee N, Kumar A. Comparison of NSGA-III with NSGA-II for multi objective opti-776

mization of adiabatic styrene reactor. Materials Today: Proceedings 2022; 57: 1509-1514. doi: 10.1016/j.matpr.2021.12.047777

35. Roy M, Das S, Deb N, Cortesi A, Chaki R, Chaki N. Correlating contexts and NFR conflicts from event logs. Software and778

Systems Modeling 2023. doi: 10.1007/s10270-023-01087-4779

http://dx.doi.org/https://doi.org/10.1016/j.csi.2016.03.002
http://dx.doi.org/10.1007/978-1-4615-5269-7
http://dx.doi.org/10.5220/0010461901110119
http://dx.doi.org/10.1007/s00766-021-00364-2
http://dx.doi.org/10.1109/RCIS.2018.8406651
http://dx.doi.org/10.1109/RePa.2015.7407733
http://dx.doi.org/10.1109/RE.2017.51
http://dx.doi.org/10.1016/j.matpr.2021.12.047
http://dx.doi.org/10.1007/s10270-023-01087-4

34 M. Roy ET AL

ANNEX-I780

8 GENERATION OF CO-ORDINATE POINTS781

First, the coordinates for the extremities of the simulation environment have to be determined. For the environments used in our782

experiments, the extremity X and Y coordinates were:783

• AWS Small House: (-9, 9) and (-5.5, 5.5)784

• AWS Hospital: (-12, 10) and (-32, 10)785

Next, a script to generate the desired number of coordinates has to be created. For our experiments, we generated a set of three786

random coordinates per iteration, namely for the start, fetch, and deposit positions. These coordinates were generated using a787

Python script that leveraged numpy.random.uniform random sampling method. A map of the three coordinates is generated per788

iteration as a tuple of the coordinate list.789

9 DSL SPECIFICATION FOR EXPERIMENTS790

Figure 12-17 shows the DSL specifications optimization problem for our experiments.791

792

M. Roy ET AL 35

(a) Create®3 Robot (b) Hardware Component

(c) Hardware Component (d) Software Component

Figure 12 Component DSL

Figure 13 Functional Goals DSL

36 M. Roy ET AL

(a) NFR specification (b) NFR specification

(c) FR-NFR Dependency specification

Figure 14 Non-functional parameter specification

M. Roy ET AL 37

Figure 15 Context and Scenario DSL

Figure 16 NFR Conflicts

38 M. Roy ET AL

Figure 17 Multiobjective Optimization Problem

	SCARS: Suturing Wounds due to Conflicts between Non-Functional Requirements in Robotic Systems
	Abstract
	Introduction
	Related Work
	Metamodels and DSL
	Requirements Analysis
	NFR Conflict Analysis

	Preliminaries
	Non-functional Requirements of Robotic Systems
	NFR Conflict Identification
	QoS Policies
	Challenges in the design of Robotic Autonomous System

	The SCARS Framework
	System and Scenario Specification
	Requirement Specification using the DSL metamodel
	Integration of scenario constraints in the requirement specifications

	Requirement Analysis
	QoS Compatibility Check
	NFR Consistency Check
	NFR Conflict Check

	NFR Optimization

	Experimental Evaluation
	Discussion

	Threats to validity
	Conclusion
	References
	=Annex-I!
	Generation of co-ordinate points
	DSL specification for experiments

