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history of the genus. Our observations suggest that FWU ability is independent of geographical distribution and its associated
environmental conditions, as FWU is possible in species occurring within the fog belt of western southern Africa but also in those
from the rather humid eastern side. We did not find a strong apparent link between FWU ability and leaf surface wettability.
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Abstract

Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU)
through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly
diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that
unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the
arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air
humidity leads to fog and/or dew formation. To investigate if FWU is operational in different Crassula species
we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques.
Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and
that it is probably widespread across the genus. Hydathodes in Crassulahave been repurposed as moisture-
harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played
an important role in the evolutionary history of the genus. Our observations suggest that FWU ability is
independent of geographical distribution and its associated environmental conditions, as FWU is possible
in species occurring within the fog belt of western southern Africa but also in those from the rather humid
eastern side. We did not find a strong apparent link between FWU ability and leaf surface wettability.
Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to
hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm
the ecophysiological relevance of FWU inCrassula and reassert the importance of atmospheric humidity for
some arid-adapted plant groups.

Abbreviations

C Hydraulic capacitance
ESEM Environmental scanning electron microscopy
FWU Foliar water uptake
GCFR Greater Cape Floristic Region
LYCH Lucifer Yellow carbohydrazide
Yc Contact angle
v Water potential

1 INTRODUCTION

Uptake of atmospheric water by plant organs other than roots has been a long-standing debate, yet it is
currently believed to be more widespread than previously thought. Foliar water uptake (FWU; Rundel 1982;
Dawson and Goldsmith 2018; Berry et al. 2019) and stem water uptake (Oliveira et al. 2005; Earles et al.
2016) have been reported in many plant families and across most biomes. A decreasing water potential (¥)
gradient from water on the leaf surface into the mesophyll is presumed to be a basic requirement for FWU
(Goldsmith 2013; Oliveira et al. 2014), so it is a presumably common phenomenon in habitats with generally
high atmospheric humidity (Binks et al. 2019; Boanares et al. 2019; Regalado and Ritter 2021; Chin et al.
2022). However, steep ¥ gradients leading to efficient FWU are more likely to occur in (semi-)arid and saline
habitats that experience seasonal rainfall or periodically high air humidity (Rundel 1982; von Willert et al.
1992; Reef and Lovelock 2015), in which FWU is expected to be a highly favourable strategy. Accordingly,



FWU has been reported in mangrove species (Fuenzalida et al. 2019; Hayes et al. 2020; Coopman et al.
2021), in several drought-tolerant shrubs and trees (Breshears et al. 2008; Yan et al. 2015; Hill et al. 2021),
and in epiphytes growing in xeric microhabitats (Reyes-Garcia et al. 2012; Gotsch et al. 2015; Pan et al.
2021).

Deposition of liquid water on leaf surfaces is governed by their wettability, which in turn is determined by
features such as trichomes, hygroscopic salts and epicuticular waxes (Konrad et al. 2015; Barthlott et al.
2017), and water entering the leaves through FWU must overcome a series of hydraulic resistances until it
reaches the cells or the vasculature (Buckley 2015; Boanares et al. 2020). Several entry points into the leaf
have been proposed, such as the cuticle and stomata (Ferndndez et al. 2021; Guzmén-Delgado et al. 2021;
Chin et al. 2023), but also specialized trichomes and scales (Ferndndez et al. 2014; Eller et al. 2016; Pina et
al. 2016; Raux et al. 2020; Prats and Brodersen 2021), which may facilitate FWU by relaxing some of the
hydraulic resistances. Even more specialized leaf surface structures, usually found in arid- and saline-adapted
plants, can be coupled with structures within the mesophyll which may enhance FWU even further and aid
in water distribution. Notable examples include the peltate hairs associated with thick-walled idioblasts in
the xerophyte Capparis odoratissima(Capparaceae; Losada et al. 2021) and the cork warts associated with
sclerified idioblasts in species of the mangrove Sonneratia(Lythraceae; Bryant et al. 2021). However, linking
leaf morpho-anatomical traits to FWU remains challenging, given that different and apparently opposite
trait syndromes that support FWU have been reported among different plant groups (dos Santos Garcia et
al. 2022; Chin et al. 2023).

Many drought-avoiding succulent plants (for review see Ogburn and Edwards 2010 and Males 2017) occur
in habitats with extremely low soil moisture yet with periodically high air humidity due to a strong oceanic
influence resulting in fog and/or dew formation, such as the Atacama desert and the Baja California desert
(part of the Sonoran Desert) in the Americas (Rundel et al. 1991; Webb and Turner 2015), and the Succulent
Karoo in southern Africa (Desmet and Cowling 1999; Matimati et al. 2010). Indeed, fog-harvesting strategies
and fog drip have been widely reported among succulents (Mooney et al. 1977; Martorell and Ezcurra 2002;
Schulz et al. 2011; Matimati et al. 2013; Kundanati et al. 2022), and water uptake by aerial parts has often
been suggested. In the Americas, stem water uptake through the areoles has been long suspected in many
Cactaceae (Schill and Barthlott 1973; Barthlott and Capesius 1974; Porembski 1994), likely facilitated by
fog-harvesting properties of spines and trichomes (Ju et al. 2012; Liu et al. 2015; Kim et al. 2017). In southern
Africa, FWU has been suggested for succulent species of Anacampserotaceae and Aizoaceae, most of which
possess specialized trichomes or scales (Marloth 1910; Barthlott and Capesius 1974; Seely et al. 1977; Niesler
1997). However, many of these cases lack solid experimental evidence and thus remain speculative.

A particular case that has attracted more attention is that of the genusCrassula (Crassulaceae) in southern
Africa, in which FWU has long been suspected. Southern Africa comprises several biomes with contrasting
environmental conditions, including differences in aridity, rainfall seasonality and fog influence (Fig. 1 ).
Along the (semi-)arid western coast of southern Africa, ocean moisture and topographical features give rise
to a coastal fog belt extending up to 100 km inland (Fig. 1C ) (Olivier 1995, 2002; Atlas of Namibia Team
2022), which strongly influences the coastal areas of the floristically megadiverse Succulent Karoo biome, part
of the Greater Cape Floristic Region (GCFR; see Fig. 1A ) (Cowling et al. 1998; Mucina and Rutherford
2006; Snijman 2013). Within this belt, nighttime and early morning fog and dew are more predictable and
even more abundant water sources than rainfall, particularly on rock outcrops, ridges and inselbergs (i.e.
isolated mountains) that efficiently intercept moisture (Williamson 1997; Cowling et al. 1999; Desmet and
Cowling 1999). In contrast, the eastern side of southern Africa exhibits a dry sub-humid to humid climate,
with significantly more abundant rainfall (Fig. 1B ).

The leaf-succulent genus Crassula is a characteristic element of the southern African flora and occurs across all
southern African biomes, but its centre of diversity is in the Succulent Karoo and the rest of the predominantly
winter-rainfall GCFR, where it has undergone a recent radiation (Manning and Goldblatt 2012; Snijman,
2013; Lu et al. 2022). According to Télken (1977), the genus can be divided in two subgenera: the paraphyletic
subgenus Disporocarpa Fisch. & C.A.Mey., which encompasses the two most early-diverging clades, and the



highly diverse monophyletic subgenus Crassula , which corresponds to the most speciose clade. The genus
displays a high degree of morphological diversity (Dortort 2009a, 2009b), as well as striking variation of
leaf surface sculpturing (Jiirgens 1985; Whittaker 2015; Fradera-Soler et al. 2021). One of the most defining
features of Crassula is the presence of marginal and/or laminar hydathodes on the leaves of nearly all species
(van Jaarsveld 2003; Thiede and Eggli 2007). Hydathodes are often overlooked foliar structures that are
relatively common among vascular plants (for review see Cerutti et al. 2019), being responsible for the process
of guttation (i.e. the exudation of apoplastic fluid; Bellenot et al. 2022). Marginal and apical hydathodes are
the most prevalent (Cerutti et al. 2019; Jauneau et al. 2020; Rios et al. 2020), while laminar hydathodes,
which are found over the entire leaf surface, are restricted to Crassulaceae and three other eudicot families,
which have very few or no succulent representatives: Moraceae, Urticaceae and Myrothamnaceae (Lersten and
Peterson 1974; Lersten and Curtis 1991; Chen and Chen 2005; Drennan et al. 2009). The noteworthy anatomy
of hydathodes in Crassula and their contrasting foliar distribution among different species have led to several
exquisitely illustrated publications through the years (de Bary 1884; Sporer 1915; Rost 1969; Smirnova
1973; Voronin et al. 1976). However, the fact that structures usually associated with excess water and
guttation occur so abundantly in arid-adapted Crassulaspecies constitutes an ecophysiological enigma. Farly
studies already speculated that FWU may occur in Crassula through trichomes and/or hydathodes (Marloth
1910; Schonland 1910; Sporer 1915), an idea that was revisited and linked more robustly to hydathodes
(Barthlott and Capesius 1974; Télken 1974, 1977; Voronin et al. 1976). The highly variable foliar distribution
of hydathodes among Crassulaspecies, often occurring on the surfaces most exposed to the atmosphere and
thus most likely to experience water deposition, is a compelling indication that FWU may be a widespread
adaptation in the genus (Voronin et al. 1976; von Willert et al. 1992). Informal observations by Télken (1974,
1977) of uptake of a crystal violet solution suggested that nearly all Crassula species examined were able
to absorb water through the hydathodes if dehydrated enough. This culminated in the most comprehensive
work on hydathode ecophysiology in Crassula by Martin and von Willert (2000), who demonstrated that
FWU is possible in many species by measuring changes in leaf thickness after surface wetting. However, their
results did not show a clear distinction between the direct effects of wetting through FWU and the possible
indirect effects through transpiration reduction, nor did they empirically link FWU to hydathodes.

Hydathode-mediated FWU in Crassula has become a widely assumed phenomenon that often appears in
the literature, yet, to our knowledge, no visual proof has been available until now to unequivocally link
hydathodes to FWU in this genus. The goal of this study was to corroborate that hydathode-mediated FWU
does indeed occur in Crassula by using a fluorescent tracer and different imaging techniques. We hypothesized
that FWU would occur mostly, if not exclusively, in Crassula species occurring in or near the fog belt of
western southern Africa. Furthermore, we hypothesized that FWU ability in Crassula would be strongly
influenced by leaf surface sculpturing and wettability. Finally, we aimed to interpret the results from an
evolutionary perspective and assess their ecophysiological relevance.

2 MATERIALS AND METHODS
2.1 Crassula species

Nine species of Crassula native to southern Africa were used in this study (Table 1 ), spanning the breadth of
the most recent phylogeny of the genus (Lu et al. 2022) and different growth forms and habitat preferences in
southern Africa (Figs. 1, 2 ). The six species with compact growth forms (C. ausensis subsp.titanopsis , C.
deceptor , C. fragarioides , C. plegmatoides , C. sericea var. sericea , C. tecta ) occur along the southwestern
and western coasts of southern Africa, mainly within the predominantly winter-rainfall Succulent Karoo
biome, whereas the three non-compact species (C. multicava subsp.multicava , C. ovata and C. perforata
subsp.perforata ) occur along the southeastern and eastern coasts.

2.2 Plant material

Plants were obtained from specialist nurseries and from the living collections of the Royal Botanic Gardens,
Kew (UK) (Table 1 ). All species were potted in a mix of 1:1 pumice:sand, except C. multicava , C. ovata
, C. perforata which were potted in a mix of 1:3:3 potting mix:pumice:sand. All plants were grown in a



greenhouse with 12-hour days and 20/17°C day/night temperatures. The methods described below were
applied, for each species, to the part of the leaf where water uptake was more likely, due to the presence
and/or higher abundance of hydathodes (see Table 2 ).

2.3 Characterization of leaf surfaces and hydathode anatomy
2.3.1 Sampling and processing of leaf material

Leaves were carefully excised from the plants and transported in zip-lock bags. The first batch of leaf
material was used fresh for a general characterization of leaf surfaces. Additional batches of leaves were
collected, and areas of interest (see Table 2 ) isolated using a scalpel, which were then immersed in 4%
(w/v) paraformaldehyde in phosphate-buffered saline (PBS) for 1 h under vacuum, and then overnight at
4°C. This fixed leaf material was used for vibratome and ultramicrotome sectioning.

2.3.2 Visual characterization of leaf surfaces

Fresh leaves were imaged with a stereo microscope (M205FA, Leica Microsystems) fitted with a digital
camera.

2.3.3 Vibratome sectioning

Fixed leaf samples were washed twice in PBS and embedded in 8% agarose. The agarose blocks were sectioned
using a vibratome (VT1000 S, Leica) to obtain 150 um-thick sections. These specimens were mounted in 8:2
glycerol:PBS on a microscope slide and imaged with a wide-field microscope (ECLIPSE Ni-U, Nikon) fitted
with a digital camera.

2.3.4 Ultramicrotome sectioning

Fixed leaf samples were washed twice in PBS and dehydrated through an ethanol graded series (30, 50, 70,
90, 100% EtOH). They were then embedded in medium-grade LR white resin (Agar Scientific), using a 3-step
graded series (1:3, 1:1, 3:1 resin:EtOH, 2 h each) and overnight immersion in 100% resin twice. The resin
was polymerized at 60°C for 24 h, semi-thin 2 ym-thick sections were obtained using an ultramicrotome
(EM-UCY, Leica) fitted with a glass blade, and sections were adhered to glass slides. The sections were
stained with 0.5% toluidine blue on a hotplate for 2 min, washed three times in dH50O, and mounted in 8:2
glycerol:PBS on a microscope slide. Stained specimens were imaged with a wide-field microscope (ECLIPSE
Ni-U, Nikon) fitted with a digital camera.

2.3.5 Environmental scanning electron microscope

Surface characterization with light microscopy was complemented by environmental scanning electron mi-
croscopy (ESEM). ESEM differs from conventional SEM in that only a low vacuum is applied to the chamber,
which allows for rather high humidity, while a high vacuum can be maintained in the column (McGregor
and Donald 2010; Stabentheiner et al. 2010). Therefore, fully hydrated specimens can be imaged under
near-native conditions without the need for sample preparation, which often results in technical artefacts
and morphological alterations (Yuan et al. 2020). Fresh leaf samples were imaged using the environmental
mode in a SEM (Quanta FEG 3D, FEI) at room temperature, 0.4-0.7 mbar, high voltage of 20 kV, and a
working distance of 3-7.5 mm.

2.4 Leaf surface wettability

Three fresh leaves per species were carefully excised from the plants and used as replicates. For each species,
the area of interest (seeTable 2 ) was isolated using a scalpel so that it would lie as flat as possible on
the stage. Leaf surface wettability was assessed by measuring the contact angle (9¢) in a tensiometer fitted
with a high-speed camera (Attension Theta optical tensiometer, Biolin Scientific AB), using the sessile drop
method. A 5 yl droplet of dH2O (as suggested by Matos and Rosado 2016) was placed on the leaf surface
by the tensiometer and the $¢ was recorded for 10 seconds (14 FPS). The resulting static 4¢ was measured
using the Young-Laplace fit.



2.5 Foliar water uptake experiment

Plants were grown in the greenhouse for a year and a half before being transferred to a climate chamber.
Conditions in the climate chamber were 12-hour days, with 250 umol m™? slof light, 25/20°C day/night
temperatures, and 20-35% relative humidity. Plants were acclimated to these conditions for three months
before the start of the experiment. Drought was simulated by withholding water for six weeks in at least two
plants per species, while at least two other plants per species were kept under a well-watered regime (i.e.
thorough watering every 10 days).

For the FWU experiment, we used Lucifer Yellow carbohydrazide (LYCH), a fluorescent tracer often used
to study water transport in vivo in plants (Oparka and Prior 1988; Oparka et al. 1988; Farrar et al. 1992;
Bederska et al. 2012), including studies focusing on FWU (Burrows et al. 2013; Eller et al. 2013, 2016; Pina
et al. 2016; Holanda et al. 2019; Losada et al. 2021). LYCH was used as an apoplastic tracer, as it is unable
to cross plasma membranes. A 50mM stock solution of LYCH as dilithium salt (Sigma) was prepared in
dH50 and stored at -18degC. Before use, the stock solution was thawed and diluted in dH2O to a working
solution of 0.5 mM.

The evening before the experiment, leaves from both treatments (i.e. drought and well-watered) were
carefully excised from the plants and the cut end was sealed with an ethyl cyanoacrylate-based glue (Super
Glue, Loctite) to prevent both water loss and tracer uptake during the experiment. Rudimental humidity
chambers were assembled by laying out wet paper towels inside plant propagators with transparent covers.
The excised leaves were balanced on inverted Petri dishes, so that they would not touch the wet towels. On
the day of the experiment, 10-100 pl droplets (depending on the species) of LYCH solution were applied to
the area of interest of each leaf (see Table 2 ) at 8:00 a.m. (local time), two hours into the light period
(250 umol m2s7!, 25°C), to simulate morning fog and dew. Three hours after the application of the tracer,
the lamina of the leaves was rinsed thoroughly three times by immersion in dH2O to remove the residual
surface dye and carefully dried with paper towel. Free-hand sections were made of the treated leaf areas and
mounted in 9:1 glycerol:PBS to minimize efflux and redistribution of the dyes (Mastroberti and de Araujo
Mariath 2008). We made additional free-hand sections of untreated leaves (i.e. controls) to observe the
natural autofluorescence of leaf tissues. All leaves were imaged immediately after sectioning and mounting
in a fluorescence stereo microscope fitted with a digital camera (M205FA, Leica Microsystems), using both
the GFP2 (ex. 480/40 nm; em. 510 nm LP) and the ET GFP (ex. 470/40 nm; em. 525/50 nm) filter sets.

3 RESULTS
3.1 General leaf morphology

Leaf morphology of the Crassula species examined ranged from planar and bifacial (e.g. C. multicava and C.
ovata ) to subterete and equifacial (e.g. C. tecta and C. ausensis ) (Figs. 2, 3 ). Furthermore, leaf orientation
varied: leaves were patent in C. multicava , C. ovata and C. perforata , erecto-patent in C. sericea , and
erecto-patent to erect inC. fragarioides , C. tecta and C. ausensis . In these three last species, only the
distal half of the leaves was exposed to the atmosphere, due to the tight arrangement of the leaves. In the
two columnar species, C. deceptor and C. plegmatoides , leaves were wide and short and tightly arranged,
so that the abaxial side of the leaves was predominantly exposed to the atmosphere.

3.2 Leaf surface anatomy

Leaf surface sculpturing was strikingly variable (Figs. 3—6 ;Table 2 ). In C. multicava and C. ovata , leaf
surfaces were glabrous, with white mineral crusts or salt deposits associated with the hydathodes, whereas
in C. perforata they were glabrous yet with large conical trichomes along the margins. C. deceptor , C.
fragarioides and C. plegmatoides had papillate leaf surfaces, while C. sericea had long, subulate trichomes.
The most spectacular indumenta were those of C. ausensis and C. tecta , with clavate trichomes and large
bladder-cell idioblasts respectively. In some species, the indumentum showed patterning, with clustering of
papillae/trichomes/idioblasts, as in C. fragarioides , C. ausensis and C. tecta . Besides the indumentum, in
some species the leaf surface was hierarchically sculptured: a series of tubercles (i.e. surface protuberances)



and depressions were present in C. ausensis ,C. deceptor and C. tecta . In C. ausensis andC. tecta , these
tubercles coincided with the sites of trichome/idioblast clustering. In the case of C. tecta , the tubercles were
in turn arranged in bands along the length of the leaf, thus forming regular ridges and grooves. Epicuticular
waxes (Fig. 5 ) were particularly prominent in C. ovata , in which they formed cracked crusts, in C.
plegmatoides , in which they formed tubules on top of the papillae, and in C. deceptor , in which they
formed a flaky cover over the papillae. It is worth noting that the tips of the tubercles in C. deceptor were
mostly free of these waxes (Figs. 4G, 5G ).

3.3 Hydathode anatomy and distribution

The anatomy of hydathodes in the Crassula species examined was rather conserved (Fig. 6 ). They all
displayed the anatomical arrangement typical of epithemal hydathodes, with three main components: water
pore(s), epithem and tracheids. The water pores consisted of more or less sunken pairs of guard cells, which
were partially concealed by subsidiary cells. The epithem appeared as a mass of small achlorophyllous cells
(Fig. 4 ) underneath the water pore(s), with cytoplasmic contents such as nuclei noticeably stained (Fig. 6
). A loosely arranged array of xylem tracheids irrigated the epithem and connected it to the leaf vasculature.
Cells containing tannins were observed in association with the hydathodes (Figs. 4, 6 ), forming a more or
less continuous sheath in some species (e.g.C. ovata ). Anthocyanin contents in hydathode sheath cells were
observed in C. perforata and C. ausensis (Fig. 4 ).

Two types of hydathodes (sensu Martin and von Willert 2000) were observed (Table 2 ). Type I hydathodes,
characterized by being larger and having numerous water pores within a more or less circular epidermal
area, were observed in C. multicava and C. ovata(Figs. 5, 6 ). These hydathodes were also associated
with a mineral crust, observed with both light and electron microscopes (Figs. 3—5 ). The remaining species
exhibited type II hydathodes, which tend to be smaller and with a single large water pore, often with bulging
subsidiary cells (Figs. 4—6 ). The water pores of these hydathodes were located, if present, within the
aforementioned papillary/trichomic/idioblastic clusters and/or surface tubercles. The foliar distribution of
hydathodes varied among species (Table 2 ), yet they always occurred more abundantly, or even exclusively,
on the surfaces most exposed to the atmosphere.

3.4 Leaf surface wettability

The results of surface wettability at the area of interest of each species (see Table 2 ) were summarized in
Fig. 7 (seeFig. S1 for representative images). Leaf surface wettability ranged from highly hydrophobic (90°
< ¥c< 150°) to superhydrophilic (3¢ < 10%). We observed extremely fast hemiwicking (i.e. capillarity-driven
spread of liquid on a rough hydrophilic surface) in C. tecta(Video S1 ) and, to a much lesser degree, in C.
ausensis(Video S2 ).

3.5 Hydathode-mediated foliar water uptake

The results of the experiment showed that FWU could be induced in drought-stressed plants of all but one
(i.e. C. perforata )Crassula species examined (Fig. 8 ). In all species in which FWU could be induced, well-
watered plants showed no or very little uptake of the tracer compared with drought-stressed plants. In all
species that absorbed the tracer, LYCH fluorescence could be detected in the hydathodes of the leaf surface
exposed to the tracer, in most vascular bundles within the leaf, and even in the hydathodes of surfaces that
were not exposed to the tracer, which indicates efficient redistribution of absorbed water. Varying degrees of
tracer fluorescence were also observed in the indumentum of several species. The redistribution of absorbed
water within the leaves was most noticeable in the two species with planar leaves, given that they were easier
to image (Fig. 9).

4 DISCUSSION

4.1 Hydathode-mediated foliar water uptake is probably a widespread phenomenon among
Crassula species

After decades of speculation, our results reaffirm hydathode-mediated FWU as a common phenomenon in



both subgenera of Crassula (i.e. Disporocarpa and Crassula ), regardless of growth form, habitat preference
and phylogenetic relationship. Our results unequivocally prove that FWU through hydathodes is possible in
all but one of the Crassula species examined. The fact that LYCH fluorescence was present throughout the
uptake path demonstrates that this is an entirely, or at least predominantly, apoplastic process (Fig. 8 ).
The foliar distribution of hydathodes, occurring on the most exposed leaf surfaces (Table 2 ; Voronin et al.
1976; Martin and von Willert 2000), and the highly developed 3D venation that interconnects them (Rost
1969; Melo-de-Pinna et al. 2016; Fradera-Soler et al. 2021) are anatomical features that further imply that
FWU and subsequent redistribution of absorbed water provide an ecophysiological advantage to Crassula
species. Since succulents experience very little water loss, even small amounts of water from fog and dew can
considerably improve their water balance (von Willert et al. 1992). Furthermore, Martin and von Willert
(2000) reported that CO2 uptake rates in Crassula increase in response to FWU and that absorbed water
can be transferred from wetted older leaves to younger ones, which highlights the far-reaching physiological
consequences of this phenomenon.

Other genera in the Crassulaceae, such as Kalanchoe ,Aichryson and Sedum , have only marginal hydathodes
or a single (sub)apical one (Caballero and Jiménez 1977; ‘t Hart and Bleij 2003; Thiede and Eggli 2007;
Moreira et al. 2012), and even though there are reports of laminar hydathodes in some Cotyledon species
(Weingart 1935), further anatomical investigations are needed to confirm this. This makes Crassula one of
the few, if not the only, plant group in which laminar hydathodes and leaf succulence converge. Succulent
organs are characterized by high values of hydraulic capacitance (C') (i.e. the change in water content relative
to the change in V), which reflects their ability to maintain relatively high ¥ values even during periods of
net water loss (Ogburn and Edwards 2010; Fradera-Soler et al. 2022; Leverett et al. 2023). As hypothesized
by Berry et al. (2019), high values of C should result in lower overall FWU rates that are sustained for
longer: an increase in ¥ resulting from FWU will be slower and will take longer to reach equilibrium, so
that the U gradients that underlie FWU can persist for longer. Indeed, a trade-off between C' and FWU has
been postulated, with species with high C' exhibiting lower FWU rates and/or capacity (Gotsch et al. 2015;
Boanares et al. 2018). Moreover, higher C' means that succulents capable of FWU such asCrassula will
be able to absorb greater amounts of atmospheric water, thus buffering declines in ¥ during drought. This
suggests that the ecophysiological implications of hydathode-mediated FWU have likely played an important
role in the diversification of Crassula , particularly in (semi-)arid habitats with periodically high air humidity
in western southern Africa, such as the Succulent Karoo.

However, not all Crassula species seem to be capable of hydathode-mediated FWU. In this study FWU could
not be induced inC. perforata (Fig. 8 ), which agrees with the observations by Martin and von Willert (2000).
Tolken (1974, 1977) did not observe signs of FWU in C. rupestris , C. macowanianaor C. brevifolia either.
In contrast with most Crassulaspecies, these four species share some commonalities: belonging to subgenus
Crassula , a mostly glabrous leaf surface with a hydrophobic waxy bloom, a relatively large shrubby growth
form, and the ability to dominate in exposed zonal habitats under considerable aridity (Jiirgens 1995; Bruyns
et al. 2019; Lu et al. 2022). It has been hypothesized that, since these larger species have more extensive root
systems, high leaf hydrophobicity may increase water throughfall during precipitation events and provide
more water to the roots (Rosado and Holder 2013; Fradera-Soler et al. 2021), which may render FWU less
essential for their survival. This may also explain the loss of hydathodes in C. brevifolia (von Willert et al.
1992; Martin and von Willert 2000).

4.2 Foliar water uptake ability in Crassula is independent of geographical distribution

Our observations suggest that FWU ability in Crassula is independent of geographical distribution and
the associated environmental conditions, thus challenging our initial assumptions. The coastal areas of the
(semi-)arid western and southwestern sides of southern Africa, which fall under the influence of the fog belt,
comprise most of the species diversity of Crassula (Jiirgens 1995), particularly in subgenus Crassula (Bruyns
et al. 2019; Lu et al. 2022). In the Succulent Karoo, nighttime and early morning fog and dew are more
reliable and even more abundant water sources than the overall low rainfall (Williamson 1997; Cowling et al.
1999; Desmet and Cowling 1999). There, shallow-rooted dwarf Crassula species usually grow in extremely



xeric microhabitats on rock outcrops, which makes them highly dependent on regular water supply (Esler
and Rundel 1999). Accordingly, most of these species grow on south- and west-facing slopes that face the
ocean, where interception of wind-driven advective fog is more efficient (T6lken 1974, 1977; Jiirgens 1995).
Previous studies of FWU in Crassula have focused on these species occurring within the fog belt, as the
combination of extremely low soil moisture and periodically high air humidity makes them an ideal case
study (von Willert et al. 1992; Martin and von Willert 2000). Even in the slightly less arid Little Karoo,
the southernmost region of the Succulent Karoo and habitat to C. tecta , dew can contribute to significant
water deposition despite less fog influence (Weiss and Yapp 1906; Desmet and Cowling 1999).

Overall, these are compelling arguments in support of hydathode-mediated FWU as an ecophysiological
strategy that allows dwarf Crassulaspecies to exploit even tiny amounts of atmospheric water during long
droughts. This may be even more crucial for species occurring within the hyper-arid Gariep centre (sensu van
Wyk and Smith 2001), the northernmost region of the Succulent Karoo biome and habitat to C. ausensis , C.
deceptor , C. plegmatoides and C. sericea (Fig. 1 ). Besides Crassula , other plants that occur sympatrically
in western southern Africa are also believed to benefit from frequent fog and dew through fog drip, self-
irrigation and maybe even FWU (Snow 1985; Andrews et al. 2011; Vogel and Miiller-Doblies 2011; Roth-
Nebelsick et al. 2012), including leaf succulents in the Aizoaceae (Niesler 1997; Matimati et al. 2013) and the
desiccation-tolerant resurrection plant Myrothamnus flabellifolius (Myrothamnaceae; Drennan et al. 2009).
Interestingly, Myrothamnus is also one of the rare cases in which laminar hydathodes occur, suggesting the
possibility of FWU.

Far from the influence of the fog belt, Crassula species occurring on the southeastern and eastern sides of
southern Africa experience overall higher relative humidity and year-round to summer rainfall (Fig. 1B ; van
Wyk and Smith 2001; Mucina and Rutherford 2006). Most of the species in this geographical range belong
to subgenus Disporocarpa , which tends to extend beyond the GCFR (Bruyns et al. 2019). In C. multicava
and C. ovata , a white mineral crust forms on the hydathodes (Figs. 3—5 ), which has also been noted in
other species of subgenus Disporocarpa , such as C. lactea (Whittaker 2015). This crust has generally been
regarded as a sign of frequent guttation (T6lken 1974; Chen and Chen 2005; Michavila et al. 2021; Mehltreter
et al. 2022). Thus, under conditions of high soil moisture and low transpiration, these Crassula species most
likely experience guttation. Guttation through the hydathodes can promote water flux and xylem transport
of nutrients when transpiration is limited, while preventing excessive water accumulation and detrimental
mesophyll flooding (Feild et al. 2005; Cerutti et al. 2019; Bellenot et al. 2022). Nevertheless, our results show
that C. multicava and C. ovata are also as capable of FWU as the Crassula species from within the fog belt,
and they are able to quickly redistribute the absorbed water within the leaf (Fig. 9 ). Even though droughts
are less severe on the eastern side of southern Africa and fog has minimal, if any, influence, FWU may allow
them to utilize any available water from dew formation or brief rainfall events that can wet the leaves, even
if they do not lead to significant soil wetting.

4.3 Foliar water uptake in Crassula is likely facilitated by hierarchical leaf surface sculpturing

Leaf surfaces exhibit notoriously diverse wettability across the plant kingdom, governed by features such
as surface sculpturing and the chemical properties of epicuticular waxes (Priim et al. 2012; Barthlott et
al. 2017). In the Crassula species examined we observed a wide range of leaf wettability (Fig. 7 ) that
did not seem to be clearly linked to the leaf indumentum. The highly diverse hierarchical sculpturing of
the leaf surfaces (Barthlott et al. 2017; Riglet et al. 2021) among the studied Crassula species ranged from
glabrous to different types of indumentum (Figs. 3—5 ; Table 2 ). Besides its long-established functions in
reflecting excessive insolation and limiting transpirational water loss (Bickford 2016; Karabourniotis et al.
2021; Buckley et al. 2022), the indumentum has been implicated in initiating dew formation (von Willert et
al. 1992; Burkhardt and Hunsche 2013; Konrad et al. 2015) and collecting fog droplets (Andrews et al. 2011;
Ju et al. 2012). However, even among the Crassula species with indumentum, leaf wettability ranged widely,
from superhydrophilic to highly hydrophobic (Fig. 7 ). We observed hemiwicking (i.e. capillarity-driven
spread of liquid on a rough hydrophilic surface; Quéré 2008; Kim et al. 2016; Telecka et al. 2018) in the
two Crassula species with the most hydrophilic leaf surfaces. This phenomenon occurred very rapidly on the



asymmetrically sculptured leaf surface of C. tecta and led to efficient spread of the water film (Video S1 )
(Shin et al. 2016; Jiang et al. 2022), as previously reported (Tolken 1974, 1977; Fradera-Soler et al. 2021),
while it was rather slow and barely noticeable in C. ausensis (Video S2 ). At the other end of the spectrum,
we observed near superhydrophobicity in C. deceptor and C. plegmatoides , known as the ‘lotus effect’ (i.e.
high dcand low 9¢ hysteresis, see Bhushan and Nosonovsky 2010; Schneider et al. 2016; Okulova et al.
2018), which is likely caused by the highly hierarchical sculpturing of leaf surfaces, involving the epicuticular
waxes (Fig. 5 ) (Barthlott et al. 2017; Riglet et al. 2021).

The interplay of leaf surface wettability and FWU is not strictly relational. Although higher wettability
has often been linked to increased FWU capacity or rate (Pan et al. 2021; Tianshi and Chau 2022), and
species with hydrophobic leaves are assumed to be less likely to benefit from water deposition from fog
and dew, other studies have noted no significant relationship between FWU and leaf surface wettability
(Matos and Rosado 2016). This also reflects the diversity of strategies underlying FWU among different
plant groups (dos Santos Garcia et al. 2022; Chin et al. 2023). In Crassula , even species with seemingly
hydrophobic leaves are capable of FWU. Our experimental 3¢ measurements are based on a water droplet
size typical of large raindrops (i.e. 5 pl volume, ~ 2 mm diameter) (Glickman 2000), so wetting behaviours
that deviate from our observations are plausible under natural conditions with different droplet sizes, such
as those from fog deposition (< 200 ym droplet diameter) and rainfall (> 500 ym droplet diameter). As
seen in other plant groups (Pierce et al. 2001), Crassulaspecies with seemingly hydrophobic leaf surfaces
may still be able to induce condensation or collect fog droplets within hydrophilic leaf surface microdomains.
For instance, the wax-free epidermal tubercle tips and hydathode water pores in C. deceptor (Figs. 4G,
5G ) (Barthlott and Capesius 1974; Jiirgens 1985) may be able to experience condensation and droplet
coalescence (Narhe and Beysens 2006; Sharma et al. 2019; Xing et al. 2020). Abrasion of these waxes may
also explain why older leaves of some Crassula species, such as C. plegmatoides , can be more wettable than
young ones (pers. obs.) (Ensikat et al. 2011; Rosado and Holder 2013). Furthermore, higher hydrophobicity of
the indumentum compared to the surface underneath, coupled with relatively low trichome density (Brewer
et al. 1991; Brewer and Smith 1997; Bhushan and Jung 2008), can lead to changes in overall wettability if
water droplets exceed a critical size that allows them to sink between the trichomes and spread along the
surface, as in some hairy-leaved species of Echeveria (Crassulaceae) (Godeau et al. 2017). This may explain
similar observations in some Crassulaspecies, such as C. sericea , in which leaf surface wettability can range
from highly hydrophobic to nearly hydrophilic (Fig. 7 ). All things considered, the complex leaf surface
sculpturing inCrassula and the existence of leaf surface microdomains resulting in differential wettability
may facilitate water deposition and/or channelling towards hydathode water pores, thus facilitating FWU
even in seemingly hydrophobic species.

5 CONCLUSIONS

Although FWU has recently been recognized as a rather common phenomenon among plants (Berry et al.
2019), it remains largely unexplored and thus hampers a comprehensive understanding of plant hydraulic
functioning. In arid-adapted lineages such as Crassula , FWU is expected to be even more crucial for
their survival in severe drought. Our observations clarify previous findings (Martin and von Willert 2000),
confirming that hydathode-mediated FWU occurs in Crassula and that it is probably widespread across the
genus.

From their primordial function of guttation, these hydathodes have been co-opted for water absorption, which
has likely had a strong influence in the evolution and diversification of the genus in (semi-)arid environments
with periodically high air humidity. However, we suggest that the ability for FWU in Crassula is independent
of geographical distribution and its associated environmental conditions, as well as phylogenetic relationship.
While FWU provides an ecophysiological advantage to Crassula species occurring on the (semi-)arid western
side of southern Africa, where frequent dew and fog can ameliorate the harsh droughts, FWU is also expected
to be beneficial to species occurring on the more humid eastern side, where plants may still be able to exploit
dew or brief rainfall events. Furthermore, we did not find a strong link between FWU ability and leaf surface
wettability. Instead, FWU in Crassula may be facilitated by hierarchically sculptured leaf surfaces and
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differential wettability. In highly hydrophilic leaves, such as those of C. tecta , hemiwicking spreads the
water film over the whole surface, thus leading to efficient FWU. However, even seemingly hydrophobic
species such as C. deceptor may be able to experience frequent leaf surface wetting and subsequent FWU
thanks to hydrophilic leaf surface microdomains.

Several questions remain unanswered regarding FWU in Crassula , such as the molecular mechanisms behind
it and the possible involvement of the epithem. Moreover, other phylogenetically diverse groups of succulent
plants may also be benefiting from this phenomenon for their survival, yet empirical proof is needed. Further
exploration of FWU in these plants can advance our understanding of adaptation and ecophysiology of
succulents and other arid-adapted plants. Surfaces of Crassula and other succulent plants benefiting from
atmospheric water could also provide inspiration to improve systems for atmospheric water harvesting,
which is becoming an increasingly valuable water resource in many parts of the world (Zhang and Guo 2020;
Wang et al. 2021).
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Supplementary _figures Figures S1-S3.

Video_S1 Droplet behaviour in C. tecta, observed in a tensiometer.
Video_S2 Droplet behaviour in C. ausensis, observed in a tensiometer; note slowly advancing contact line
TABLES

Table 1. Nine Crassula species examined in this study. Growth form, habitat and habit according to Tdélken
(1985), Pavelka (1999), van Jaarsveld (2003), van Jaarsveld et al. (2011) and Lu et al. (2022). Biogeography
according to van Wyk & Smith (2001), Mucina & Rutherford (2006) and Mucina et al. (2014). Origin of the
plant material: (N) specialist nurseries, (K) Royal Botanic Gardens, Kew (UK).

Crassula taxon

Subgenus

Growth form

Habit

Habitat

Biome

Bioregion / Domain / District (ecogeographic units)
Origin of plants

C. ausensis subsp. titanopsis Pavelka

Crassula

Compact Rosette

Sheltered crevices on quartzite outcrops

Succulent Karoo—Nama-Karoo transition Gariep centre + extrazonal exclaves inland
N

C. deceptor Schonland & Baker f.

Crassula

Compact Column

Gravel flats or rocky slopes, often in quartz gravel
Succulent Karoo Namaqualand Hardeveld, Namaqualand Sandveld and Richtersveld bioregions
N

C. fragarioides van Jaarsv. & Helme

Crassula
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Compact Rosette

Partly shaded sandy microhabitats on sandstone outcrops
Fynbos Bokkeveld plateau

N

C. multicava Lem. subsp. multicava

Disporocarpa Fisch. & C.A.Mey.

Non-compact Short shrub

Coastal areas in shaded wooded ravines and valleys

Indian Ocean Coastal Belt, Albany Thicket

K

C. ovata (Mill.) Druce

Disporocarpa Fisch. & C.A.Mey.

Non-compact Tall shrub

Rocky slopes and often associated with scrubland vegetation
Albany Thicket, Fynbos

N

C. perforata Thunb. subsp. perforata

Crassula

Non-compact Short shrub

Rock crevices in sheltered localities or associated with scrubland vegetation
Albany Thicket, Fynbos

N

C. plegmatoides Friedrich

Crassula

Compact Column

Sandy/quartz gravel flats and slopes, often on west-facing aspects
Succulent Karoo Namaqualand Sandveld bioregion

N

C. sericea Schonland var. sericea

Crassula

Compact Dwarf shrub, tending towards column

Rock crevices and often under overhanging rocks

Succulent Karoo Namaqualand Hardeveld and Richtersveld bioregions, Gariep centre

N
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C. tecta Thunb.

Crassula

Compact Rosette

Gentle lower slopes, often in quartz gravel on north-facing aspects
Succulent Karoo Rainshadow Valley Karoo bioregion (Little Karoo)
N

Table 2. Hydathode distribution in leaves of the nineCrassula species examined in this study. Hydathode
types according to Martin & von Willert (2000). Asterisks indicate, for each species, on which side the area
of interest was found, in which all methods were applied.

Crassula taxon Leaf indumentum Hydathode type Hyd:
Adax

C. ausensis subsp. titanopsis § Clavate trichomes Type II ++

C. deceptor Papillae Type II +

C. fragarioides Clavate trichomes Type II +

C. multicava subsp. multicava  Glabrous Type I ++

C. ovata Glabrous Type I +

C. perforata subsp. perforata Glabrous; conical marginal trichomes Type II -

C. plegmatoides Papillae Type 11 —

C. sericea var. sericea Subulate trichomes Type II +

C. tecta Bladder-cell idioblasts; marginal trichomes towards the base Type II +

Notes

Symbols: “~”, hydathodes absent; “+”, hydathodes present; “7”, submarginal hydathodes only; “4+7,

hydathodes more abundant than elsewhere.
§ Hydathodes only in the distal half of the leaf.
FIGURE LEGENDS

Figure 1. (A) Biomes of southern Africa (Mucina and Rutherford 2006; Atlas of Namibia Team 2022). The
Greater Cape Floristic Region (GCFR) can be divided into the Core Cape Subregion, which corresponds to
the Cape Floristic Region (CFR), and the Extra Cape Subregion (ECR), which encompasses the rest of the
GCFR (Manning and Goldblatt 2012; Snijman, 2013). (B) Contrasting climatic conditions across southern
Africa. Colours indicate the aridity index for the 1970-2000 period (Trabucco and Zomer 2019), with climate
classes according to the United Nations Environment Programme (1997). Rainfall seasonality results in a
winter-rainfall zone (WRZ), a year-round-rainfall zone (YRZ) and a summer-rainfall zone (SRZ) (Chase and
Meadows 2007; Chase et al. 2017). (C) Influence of fog in southern Africa, with shaded areas experiencing
[?] 30 days of fog annually (redrawn from Olivier & van Heerden 2003; Bradshaw & Cowling 2014; Atlas of
Namibia Team 2022); the Great Escarpment (dashed line) is a major topographical feature that represents
the verge of the southern African plateau, with steep slopes down to the coastal areas. Superimposed
is the geographical distribution of the nineCrassula species examined here; data from GBIF (2022), with
manual data cleaning for C. ovata and C. multicava to approximate it to their native distribution, based
on descriptions by Tolken (1985), van Jaarsveld (2003) and Smith, Crouch & Figueiredo (2017). Only one
locality is known for C. ausensis subsp.titanopsis , so all localities for C. ausensis were included in the map.

Figure 2. Habit in the wild of the Crassula species examined in this study. (A) C. multicava subsp.multicava
, (B) C. ovata , (C) C. perforata subsp. perforata , (D) C. tecta ,(E) C. fragarioides , (F) C. sericea
var.sericea , (G) C. deceptor , (H) C. plegmatoides , (I) C. ausensis subsp. titanopsis .
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Photo credits: (A) Craig Peter, iNat ID 33843433; (B) Craig Peter, iNat ID 59494774; (C) Luc Strydom,
iNat ID 75803984; (D) Di Turner, iNat ID 22557424; (E) Ismail Ebrahim, iNat ID 16279839; (F) Matt
Berger, iNat ID 96923577; (G) Andrew Hankey, iNat ID 11038117; (H) Nick Helme, iNat ID 93580736; (I)
Petr Pavelka.

Figure 3. Leaf morphology and macroscopic surface details of the Crassula species examined. (A) C.
multicavasubsp. multicava , (B) C. ovata , (C)C. perforata subsp. perforata , (D) C. tecta , (E) C.
fragarioides , (F) C. sericea var. sericea , (G) C. deceptor ,(H) C. plegmatoides , (I) C. ausensissubsp.
titanopsis .

Figure 4. Microscopic leaf details of the Crassulaspecies examined, showing for each species the leaf surface
(left) and a vibratome section (right). Hydathodes can be observed in all species.(A) C. multicava subsp.
multicava ; note the white mineral crust on the hydathodes. (B) C. ovata ; note the white mineral crust
on the hydathodes. (C) C. perforatasubsp. perforata , margin (top row) and lamina (bottom row); note
anthocyanin contents in hydathode sheath cells (top row), and partially removed waxy bloom and absence
of hydathodes in the lamina (bottom row).(D) C. tecta ; note clustering of bladder-cell idioblasts. (E)
C. fragarioides ; note clustering of papillae. (F) C. sericea var. sericea .(G) C. deceptor ; note eroded
epicuticular waxes at the tip of tubercles. (H) C. plegmatoides . (I)C. ausensis subsp. titanopsis ; note
clustering of clavate trichomes and anthocyanin contents in hydathode sheath cells. In all images the adaxial
side is towards the top.

Figure 5. Microscopic leaf surface details of Crassulaspecies examined with environmental scanning electron
microscopy (ESEM).(A) C. multicava subsp. multicava ; note the presence of a mineral crust on the
hydathodes (left), which can be removed revealing the water pores (right). (B) C. ovata ; note thick
waxy crust on the leaf, which tends to crack (left), and the presence of a mineral crust on and around the
hydathodes (right).(C) C. perforata subsp. perforata . (D)C. tecta . (E) C. fragarioides . (F)C. sericea
var. sericea . (G) C. deceptor .(H) C. plegmatoides . (I) C. ausensissubsp. titanopsis . Arrowheads
indicate hydathode water pores, dashed circles indicate water pore epidermal areas of type I hydathodes.

Figure 6. Anatomy of hydathodes of the Crassula species examined; semi-thin sections of resin-embedded
material, stained with toluidine blue. (A) C. multicava subsp.multicava , (B) C. ovata , (C) C. perforata
subsp. perforata , (D) C. tecta ,(E) C. fragarioides , (F) C. sericea var.sericea , (G) C. deceptor , (H) C.
plegmatoides , (I) C. ausensis subsp. titanopsis . Arrowheads indicate hydathode water pores, “E” indicates
epithem, “T” indicates tracheids. In all images the adaxial side is towards the top.

Figure 7. Measurements of contact angle (9¢) in the areas of interest for the Crassula species examined
(seeTable 2 ). Mean and =+ standard deviation are plotted for each species. Wettability classes according
to Barthlott et al.(2017).

Figure 8. Water uptake observed in free-hand sections of leaves from drought-stressed and well-watered
plants treated with LYCH.(A) C. multicavasubsp. multicava , (B) C. ovata , (C)C. perforata subsp. perfo-
rata , (D) C. tecta , (E) C. fragarioides , (F) C. sericea var. sericea , (G) C. deceptor ,(H) C. plegmatoides
, (I) C. ausensissubsp. titanopsis . Same leaf zones imaged with long-pass (ex. 480/40 nm; em. 510 nm LP)
and band-pass (ex. 470/40 nm; em. 525/50 nm) filter sets, showing LYCH (green). In all images the adaxial
side is orientated upwards. See Figs. S2, S3 for fluorescence in untreated samples (controls).

Figure 9. Water uptake in whole leaves of (A) C. multicava subsp. multicava and (B) C. ovata . Adaxial
side shown, leaf margin orientated towards the top of the image. Dashed circles indicate approximate area
where the droplet of LYCH was applied.
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Figure 9

Drought Well-watered
1

Reflected light 470/40, 525/50 Reflected light 470/40, 525/50
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