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Abstract

Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass

spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional

scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity.

Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites

of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open ques-

tions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of

acquisition workflows and best practices for managing ambiguity in phosphosite determination.
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Abstract:
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can

present challenges in bottom-up mass spectrometry-based workflows as search engine scores
alone are often not enough to confidently distinguish them. Additional scoring algorithms can
remedy this by providing confidence metrics in addition to these search results, reducing
ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review
several different approaches to determine sites of phosphorylation for both data-dependent and
data-independent acquisition-based workflows. Finally, we discuss open questions regarding
neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by
both types of acquisition workflows and best practices for managing ambiguity in phosphosite
determination.

Introduction:
Post-translational modifications (PTMs) are a significant regulatory mechanism of protein

activity in cells and can operate on a much faster time scale than gene regulation. The addition
of phosphates,1 glycans,2 methyls,3 acetyls,4 and even other proteins5,6 can act as signals,
activate or change the function of specific proteins, or mark proteins for degradation.
Phosphorylation is a common form of cell signaling PTM, where cascades of kinases
phosphorylating other kinases amplify signals from the cell surface to the nucleus. There are
estimated to be over 500 unique kinases in the human genome, which phosphorylate over
200,000 unique phosphosites.7 While phosphorylation has been observed naturally on many
residues including aspartic acid,8 arginine,9 cysteine,10 histidine,11,12 the most commonly
observed phosphorylation sites in proteomics experiments are serine (S), threonine (T), and
tyrosine (Y).

Given the physiological significance of PTMs, it is important to reliably determine which
proteins within a sample are modified. While PTMs change a protein’s overall mass and charge,
allowing for analysis with techniques like gel electrophoresis,13 liquid chromatography (LC)
coupled tandem mass spectrometry (MS/MS) is the preferred technique for monitoring most
PTMs.14. There are two general approaches to analyzing PTMs with LC-MS/MS: top-down,
which measures PTMs on intact proteins, and bottom-up (sometimes referred to as shotgun
proteomics), which uses enzymatic digestion to process proteins into peptides before
measurement. Top-down proteomics can identify the number of occupied phosphosites on a
protein molecule, but it can sometimes be a challenge to determine the exact sites of
phosphorylation without additional experiments.15 In contrast, bottom-up proteomics simplifies
identifying sites of phosphorylation by analyzing shorter peptide sequences at the cost of
context in multiply-phosphorylated proteins.16 In some experiments17 these techniques are used
in conjunction to take advantage of both methods.
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Bottom-up proteomics methods for measuring phosphopeptides:
Figure 1 outlines a basic workflow of bottom-up proteomics for PTM analysis. As

proteomics samples are processed, proteins are typically denatured and digested with an
enzyme such as trypsin, which cuts each protein at regular sites. Due to the relatively low
abundance of naturally occurring phosphopeptides, samples must first be enriched using
techniques such as metal-affinity chromatography,18,19 titanium dioxide,20 strong cation
exchange,21 or antibodies.22,23 to produce quantifiable amounts of phosphopeptides from the
sample. Phosphopeptides are then separated using an LC, ionized using electrospray, and
taken into the MS where both precursor and sequence-specific fragment ions are measured.
From those measurements, data analysis helps identify peptides and assign specific sites of
modification.

Figure 1: Outline of a standard bottom-up LC-MS/MS phosphoproteomics workflow. (a) Peptide
samples are prepared by lysis, reduction, alkylation, and enzymatic digestion. (b) After digestion,
phosphopeptides are enriched and prepared for LC-MS/MS measurement. (c) Peptides are
chromatographically separated to reduce interference from competing signals and improve mass
spectrum interpretation. (d) Eluting peptides are ionized and fragmented to produce
sequence-level data. (e) Pattern recognition algorithms are used to identify phosphopeptides and
fragmentation data is interpreted to identify the most likely site of phosphorylation in each peptide.

There are several different ways that a precursor ion can be ionized and fragmented,
which have additional considerations when analyzing PTMs. While most current experiments
use positive ion mode for ionizing phosphopeptides, negative ion mode has historically been a
powerful technique for identifying phosphopeptides24 and the combination of both positive and
negative ion modes can improve phosphopeptide detection confidence.25 Phosphopeptides are
commonly analyzed using resonance collision-induced dissociation (CID)26 or beam-type CID27

(commonly referred to on Thermo instruments by the branded name, HCD28). CID methods
produce b- and y-type ions, where beam-type CID undergoes multiple fragmentation events and
typically produces long runs of y-ions while resonance CID results in the most energetically
favored fragmentation pathways producing both b- and y-type ions with similar efficiency. For
PTMs, both approaches of ion generation have advantages and disadvantages for assigning
phosphopeptides.29 Additionally, CID methods impart energy into peptides directly through
collision,30,31 which can cause the loss of PTMs during fragmentation as neutral losses,32 and
complicate their interpretation. An alternative fragmentation approach uses electron transfer
dissociation (ETD)33,34 or electron capture dissociation (ECD).35 ETD and ECD use free radicals
to make peptides unstable, fragmenting them along the backbone while typically leaving PTMs
intact.36 Tradeoffs between all fragmentation techniques suggest utilizing a combinational
approach to fragmentation, which can help to better assign phosphopeptides.37,38
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Once ions are fragmented, they can be analyzed in a variety of ways. Data-dependent
acquisition (DDA)39 uses precursor MS1 measurements to trigger selected (data-dependent)
MS2s preferentially on the most abundant peptide signals. Instruments configured to collect
DDA measurements typically use a top-N configuration, where the top-N most abundant
precursor ions are selected for MS2 acquisition from the most recently collected MS1 spectrum.
In general, this cycle is repeated every one to five seconds so that a new MS1 spectrum can
indicate peptides that are newly eluting from the HPLC column into the mass spectrometer. In
most DDA configurations, peptides elute over many cycles and a process called dynamic
exclusion40,41 is employed where recently measured precursor m/zs are put on an exclusion list
for a specified duration such that precursors are not repeatedly re-measured in each cycle. As
such, most peptides are identified by only a single MS2, allowing for more data acquisition time
spent measuring low-abundance peptides. No matter what fragmentation technique is used,
database search engines42–47 such as Mascot48 assign numerical scores to each potential
peptide-spectrum match (PSM).49 Search engines can be configured to search for variable
PTMs,50 which add the mass of modifications to user-specified residues.

Data-independent acquisition (DIA)51,52 is an alternate acquisition method where MS2s
are collected in a systematic manner regardless of precursor intensities. Systematic
measurements from extracted fragment ion chromatograms can improve overall confidence in
detecting specific phosphopeptides because each ion is measured multiple times over the
elution profile of the peptide. However, precursor masses can be critical to assigning PTMs and
peptide-centric DIA search engines53 have to infer the specific precursor mass of a peptide from
a wider precursor isolation window. As a result, care must be taken to either associate those
fragment ions with precursors using tools like DIA-Umpire54 or search for ions that are specific to
the modified peptide. Targeted measurements, such as Parallel reaction monitoring (PRM),55
can be thought of as a subtype of DIA where specific precursors are selected for fragmentation
in targeted retention time windows. This approach marries the benefits of DIA with specific
precursor information at the cost of measuring only a limited number of peptides per acquisition.

Challenges in interpreting phosphopeptide positional isomers:
The sheer number of kinases56 and prevalence of serines, threonines, and tyrosines

means that many proteins can be phosphorylated in multiple locations, where those sites are
frequently at neighboring residues.57 Modified peptides that differ only in which acceptor residue
is phosphorylated are isomers because they have the same molecular formula, yet have
different structures. As such, knowing the specific site of phosphorylation can be extremely
informative, but these positional isomers can be very difficult to differentiate. For example,
Figure 2 shows major phosphosites of Human CDK1 (cyclin-dependent kinase 1), an important
regulator of the cell cycle by controlling cell division.58 The three most commonly-cited
phosphosites (T14, Y15, and Y19) all fall within the same tryptic peptide: IGEGTYGVVYK,
which has exact conservation across human, mouse, rat, chicken, and fruit flies, with nearly
identical homology in yeast (VGEGTYGVVYK). Each of these residues serves the same
inhibitory function but differs in what upstream kinases phosphorylate them. T14 and Y15 can
both be phosphorylated by MYT1,59 while Y15 can also be phosphorylated by PKC60 and
WEE1.61 Little is understood about kinases that target Y19, but it has been observed that the
SWE1 ortholog of WEE1 phosphorylates Y19 in S. cerevisiae.62 Phosphorylation at each site
produces the same CDK1 inhibition, yet observing each site indicates different upstream
biology.

Due to the prevalence of positional isomers within the proteome, the use of standard
search engine scores is often not enough to confidently identify isoforms.63 That said, simply
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considering the difference between the top two highest-scoring peptides can be an effective
approach to localization. This concept was first considered in 1995 when Yates et al50 used
deltaCn, or the normalized difference between the best and second-best cross-correlation
scores to identify phosphopeptides. The Mascot delta score (MD-score) approach64 similarly
considers the top two highest scores of a Mascot search, where the difference in Ions Scores
relates to the separation between the quality of ions assigned to the first and second best
peptides considered for that PSM. Since positional isomers have the same precursor mass and
many of the same fragment ions, generally both the first and second-best peptides considered
for a PSM are different positional isomers of the same peptide. As such, the MD-score
frequently becomes a measure of how much better the top positional isomer scores above the
other isomeric forms. Similarly, the SLIP score65 for Protein Prospector66,67 computes the
difference between expectation values, analogous to probability values adjusted for the number
of precursors considered within a given mass tolerance.

Figure 2: CDK phosphosites with at least 10 literature references. Highlighted phosphosites
represent well-documented positional isomers. These positional isomers may serve similar
functions and be located adjacent to one another, such as inhibition (T14, Y14, Y19), but can
differ in what kinases can phosphorylate them. Phosphosite reference counts were derived from
PhosphoSitePlus.68

While search engine scores consider the presence or absence of every potential
sequence-specific fragment ion, only some ions change between positional isomers. Figure 3
shows a spectrum from the Phosphopedia database69 associated with each
singly-phosphorylated form of the IGEGTYGVVYK peptide from CDK1 discussed previously in
Figure 2. Notably, each positional isomer has the same precursor mass, but different
fragmentation patterns. For example, y2 to y5 (as well as b6 to b10) fragment ions are mass
shifted between the pY15 and pY19 isomers. These peaks are called site-determining ions and
can be used to differentiate the isoforms of a specific peptide. In some cases, only a few
site-determining ions are produced, such as only y6 and b5 differentiating between pT14 and
pY15. Notably, the overall relative intensities of the fragmentation patterns,30 as well as the LC
retention times,69 can differ between serine/threonine and tyrosine phosphorylated peptides,
which can be used as an additional source of localization information. However, serine and
threonine phosphorylated peptides generally have more similar relative fragmentation patterns
and retention times due to the closeness of the chemistries of those amino acids.
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Figure 3: Resonance CID MS2 spectra from the CDK1 peptide IGEGTYGVVYK from the
Phosphopedia library.69 Each spectrum corresponds to one of three positional isomers. Peaks are
highlighted according to their type (b-ions are colored purple while y-ions are colored orange) and
what isomer they can be used to identify (lighter peaks identify pT14 while darker peaks identify
pY19. (a) The pT14 isomer; b5 shows a -80 m/z downshift while y6 shows a +80 m/z upshift. (b)
The pY15 isomer; note that this particular species does possess any unique site-determining ions
and can only be identified in comparison to pT14 or pY19. (c) The pY19 isomer; b6 through b9
show -80 m/z downshifts while y2 through y6 show +80 m/z upshifts.

When a phosphopeptide has only two acceptor sites then each positional isomer has an
equal number of unique ions that could distinguish that isomer. In peptides with more than two
acceptor sites, the internal acceptor sites will not have any unique site-determining ions that can
be used to definitively identify it. For instance, in the peptide IGEGTYGVVYK, the pT14 isomer
can be distinguished from both pY15 and pY19 via the unique b5 and y6 fragment ions.
Similarly, pY19 can be distinguished from both pT14 and pY15 by the isomer-specific b6-b9 and
y2-y5 fragment ions. However, the pY15 isomer shares all of its ions with both pT14 and pY19,
making it impossible to identify pY15 using site-determining ions alone. As such, most
approaches to identifying the site of phosphorylation consider the delta between the best and
second-best matches. In this case, the pY15 isomer can be localized compared to pT14 or
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pY19, but not both simultaneously. If the delta between the top and second-best match is
sufficiently large, that result would imply that any further result (third-best species and so forth)
would not score better than the second-best match, allowing them to be discounted from
consideration.

Figure 4: Positional isomers observed in a human phosphopeptide-enriched sample. (a) A
three-dimensional precursor intensity landscape, where highlighted precursors are suggestive of
positional isomers producing multiple peaks with the same m/z value and isotopic distribution, but
at different retention times. The yellow peak corresponds to the singly phosphorylated IRS1
peptide SRTESITATSPASMVGGKPGSFR while the red and purple peaks are unassigned. If the
retention time between these peaks is not sufficiently different enough, dynamic exclusion in DDA
may cause only one isoform to be analyzed. (b) Extracted chromatograms of the peptide
SRTESITAPASMVGGKPGSFR, where site-determining ions specific to the ambiguous
SRTE(pSIT)ATSPASMVGGKPGSFR (e.g., either pS307 or pT309) are highlighted in red and
site-determining ions belonging to SRTESITA(TpS)PASMVGGKPGSFR (e.g., either pT311 or
pS312) are highlighted in blue. Ions belonging to both peptides are dashed gray lines. (c) A
zoomed-in view of (b) showing lower-intensity peak shapes in greater detail.

The variety and scope of positional isomers in phosphopeptide-enriched datasets are
most easily visualized by considering precursor-extracted ion chromatograms across retention
time. Figure 4a presents a three-dimensional landscape of precursor intensities in a human
phosphopeptide-enriched sample downloaded from the MassIVE repository (ProteomeXchange
dataset PXD042974). By focusing on a narrow 800.5 to 803 m/z range from 15 to 26 minutes,
this plot shows the isotopic structure of peptides in this range, indicating charge, as well as
peptides with the same precursor mass and isotopic pattern, suggesting the same molecular
formula. Three peptides have precursor mass patterns suggesting positional isomers, where the
yellow peptide was identified as singly phosphorylated SRTESITATSPASMVGGKPGSFR from
IRS1. Based on the precursor data, this peptide has two positional isomers. In Figure 4b and
the corresponding blowup 4c, the ambiguous isomer (pS307|pT309) is identified by the blue
ions while the ambiguous isomer (pT311|pS312) is identified by the red ions, but pS307 and
pT309 as well as pT311 and pS312 cannot be uniquely distinguished from each other due to



missing ions. In situations with localization ambiguity, existing literature can be a powerful tool70
where pS307 and pS312 have been measured in 64 and 87 studies, respectively, from data in
PhosphositePlus. Meanwhile, the other acceptor sites in SRTESITATSPASMVGGKPGSFR
have only been observed in a handful of high-throughput studies. This result suggests the
presence of IRS1 phosphorylation at S307 and S312, which are both phosphorylated by p70-S6
kinase.71 The purple peptide (m/z=801.733, z=3) and red peptide (m/z=800.867, z=2) are
unassigned but show similar precursor patterns.

While dynamic exclusion is a key tool for measuring low-abundance peptides with DDA,
the approach can create complications when analyzing phosphopeptide positional isomers.
Because positional isomers have the same molecular formula, they also have the same
precursor mass. As such, if those positional isomers elute in close proximity to each other, the
precursor mass from analyzing the first eluting positional isomer may still be on the instrument
exclusion list during the time the second isomer elutes. In this case, the second positional
isomer may never trigger an MS2 spectrum, even if its overall signal is higher than the first
isomer.72 Similarly, inherent stochasticity caused by the data-dependent nature of DDA may
cause the first isomer to be missed if it is low in abundance, leaving room to collect an MS2
spectrum of the second isomer. Left unchecked, these characteristics of DDA cause a dramatic
drop in the reproducibility of DDA-based phosphoproteomics experiments relative to DDA
experiments of unmodified peptides.73 Furthermore, positional isomers with the same precursors
and nearby elution times can complicate precursor-based quantification and quantification
approaches that use “match-between-runs”74 where MS2-based detections in one injection can
be transferred to other injections based on retention time and precursor mass matching alone.
These factors underline the need for using isomer-specific fragment ions for detecting positional
isomers.

Computational approaches to localize phosphates to specific sites in phosphopeptides:
Ascore63 is the earliest method that utilizes site-determining ions to localize phosphate

groups. The Ascore algorithm consists of three major steps. First, a set of fragment ions are
generated for all known positional isomers from a given sequence. Second, these peaks are
allocated into a series of 100 m/z wide bins and a binomial probability scorer is used to generate
a Peptide Score for each isoform based on the number of matching peaks. The peak depth, or
the ‘n’ most intense peaks within each 100 m/z window where n is an integer from 1 to 10 is
determined by the largest delta Peptide Score for a given value of n. The last step is to
recalculate the Peptide Score for the two highest scoring isomers, but considering only
site-determining ions. In this scorer, the probability P(x) for PSM x is calculated as:

(Eq. 1)𝑃(𝑥) =
𝑘=𝑛

𝑁

∑ 𝑁
𝑘( ) 𝑝𝑘 1 − 𝑝( )𝑁−𝑘

where N is the number of possible ions that could differentiate between the two isomers and n is
the number of those ions present in the spectrum. Assuming unit resolution, p is set to the peak
depth divided by 100 (as the windows are 100 m/z wide). This formulation can be interpreted as
the integration of the binomial distribution for the probability that the same or higher number of
ions observed could be observed by random chance. Finally, the Peptide Score is set to
-10*log10(P(x)) to ensure increasing numbers for more significant matches. The Ascore is the
difference between these two site-specific Peptide Scores. This approach for scoring only
site-determining ions for localization is demonstrably better than calculating the delta score
between first and best-scoring peptides when considering all possible fragment ions, as
demonstrated by Ascore’s precision and sensitivity improvements over both the MD-score and
deltaCn.63
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The fundamental Ascore algorithm using the binomial distribution for calculating
localization probabilities has been implemented in several other contexts and tools.75 For
example, the Phosphate Localization score (PLscore)76 simplifies the algorithm by utilizing a
single peak density and extending the principles of Ascore to InsPecT77 results. PhosphoRS78

expands the idea of peak depth to allow for variable amounts of peaks within each window, thus
accounting for an unequal distribution of peaks across m/z windows in a single spectrum.
SLoMo (site localization of modifications)79 is designed to allow for ETD/ECD data to be
analyzed, while the Cscore (complementary score)37 allows for both ETD/ECD and CID data to
be utilized concurrently, increasing the confidence of peptide site localization. PhosCalc80 can be
used to analyze MS3 spectra81 in addition to MS2 spectra, which can help assist in CID-based
experiments where backbone fragmentation may be poor. Another method for utilizing MS3 in
conjunction with MS2 spectra is PTM score used in MSQuant,82 where localization is performed
using the same approach as Ascore but limiting peak depth to four.

Other algorithms have been developed to score site-determining ions without assuming
peaks are measured at random in a binomial distribution. For example, LuciPHOr83 considers
the likelihood odds ratio that a fragment peak would be assigned correctly or randomly and
computes the cumulative sum of the log odds to assess each considered positional isomer,
where the confidence of the reported isomer is the delta of the top two permutations.
PTMProphet84 uses a Bayesian approach to assess the confidence at each possible site using
mixture models. This approach allows for ambiguous results to be returned when the exact site
cannot be determined, but it can be limited to specific amino acids. PTMiner85 is an approach for
open-searching, where a database search engine is allowed to detect unanticipated
modifications considering large mass tolerances. This strategy uses an empirical
Bayesian-based approach to iteratively learn the prior probabilities for observing each type of
modification on any given amino acid. Similar to the open-searching approach, pSite86 uses a
support vector machine to consider the confidence of each individual amino acid in de
novo-derived sequences that have been assigned to proteins using sequence alignment.87,88

While Ascore and related algorithms primarily utilize database searching, the use of
spectral libraries allows for incorporating sequence-specific features such as intensity values,
neutral losses, and unusual fragments into a localization analysis process.89 Recent methods
allowed for the development of computationally predicted spectral libraries, where
non-phosphorylated spectra are shifted by +80 Da to simulate phosphorylation.90,91 First
developed for Orbitraps, this method was expanded upon by Suni et al,89,92 using a two-step
process of enzymatic dephosphorylation followed by in silico rephosphorylation and has been
extended to ToF platforms.93 Dephosphorylated peptides share many of the same peaks as
phosphorylated peptides, but are dramatically easier to detect. As such, library searching for
“re-phosphorylated” forms of dephosphorylated peptides greatly improves phosphopeptide
detection using SpectraST.94 In this approach, localization is performed by recalculating the
original deltaDot (delta score of the dot product) for the first and second-best matches that
correspond to the same peptide sequence. A summary of these algorithms can be found in
Table 1.

Phosphoproteomics analysis methods for data-independent acquisition:
While DDA typically attempts to fragment only a single peptide in each MS2 spectrum,

DIA actively generates highly multiplexed MS2 spectra where multiple peptides are
co-fragmented at the same time and extracted computationally.95 Specter96 is one approach to
deconvolve this data using a non-negative least squares approach to find the simplest linear
combination of library spectra that interpret a given window. Given complete data, this approach
is able to distinguish highly similar library spectra including phosphopeptide positional isomers.
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However, this approach uses intensity alone to identify positional isomers, with no consideration
for site-determining ions. Time alignment is another method of grouping fragment ion signals.
For example, PIQED97 leverages the DIA-Umpire54 tool to match time-extracted fragment ions
with specific precursor ions in MS1 spectra to create pseudo-DDA spectra that can be searched
using standard search engines. PIQED creates a pipeline that processes pseudo-DDA spectra
through search engines, such as Comet,98 using statistical analysis with the TPP,99 including
PTMProphet.84

Other approaches to analyzing phosphopeptides measured with DIA are built into
DIA-specific processing tools. Inference of peptidoforms (IPF)100 is a Bayesian hierarchical
model integrated into the OpenSWATH101 workflow that determines the most likely positional
isomer (peptidoform) at a given retention time based on the elution pattern of site-determining
ions. Thesaurus72 is built into EncyclopeDIA102 and uses an Ascore-like approach to model the
probability of observing site-determining ions by chance. DIA MS2s are typically far more
complex than DDA MS2s, and thus it is incorrect to assume the probability of observing an ion
by chance is related to the number of peaks considered per m/z window. As a result, Thesaurus
constructs a background distribution for each m/z window based on the frequency that any
given m/z value is observed. Finally, site localization has been built into Spectronaut through
directDIA103,104 using a deconvolution approach similar to DIA-Umpire. A summary of these
algorithms can be found in Table 2.

Estimating false localization rates across datasets:
Several experimental factors, such as data acquisition parameters, chromatography,

instrument resolution, peak selection, and even the localization approach used, can cause
results between algorithms to vary greatly.105 For normal proteomics experiments, false
discovery rate (FDR) estimation can control for false positives within a set of PSMs.106,107 The
target-decoy approach uses the score distribution of decoy peptides to model a null distribution
from which to evaluate target peptide matches.108 This principle works because the decoy-based
null distribution closely approximates incorrect target matches. A similar concept for analyzing
the accuracy of site localization algorithms is the false localization rate (FLR). However, unlike
with FDR, global decoy measurements do not accurately reflect incorrect localizations.109 One
key difference is that incorrect localizations still score similarly to correct peptides with only a
few site-determining ions mismatched. As a result, FLR estimations lack a standardized metric,
resulting in arbitrary cutoffs being used to evaluate the performance of localization algorithms.105

Chalkley et al.109 assert that the true FLR rate of a dataset can only be truly measured
with prior knowledge of correct localizations, which may be modeled with synthetic peptides or
singly-phosphorylated peptides. Most current methods of FLR estimation utilize biologically
improbable residues to represent decoys, such as with PhosphoFLR,110 which considers decoy
localizations to alanine and leucine. Another approach, DeepFLR,111 shuffles the phosphate
group randomly within the peptide sequence and predicts spectral libraries for both the target
and decoy datasets, bypassing the cost required to generate synthetic phosphopeptides. Other
methods for FLR estimation are integrated into localization algorithms themselves. SLIP
scoring65 takes advantage of amino acid distribution and constructs decoys from glutamine and
proline localizations, which are residues commonly observed near actual phosphosites.
LuciPHOr83 uses a Bayesian approach similar to PeptideProphet112 to consider score
distributions of S/T/Y localizations to other amino acids. PTMProphet84 computes probabilities
for each potential site of phosphorylation and calculates the localization mean best probability
as a reasonable estimate for FLR.

https://paperpile.com/c/EvOkWn/V1dW
https://paperpile.com/c/EvOkWn/4X9N
https://paperpile.com/c/EvOkWn/D0o2
https://paperpile.com/c/EvOkWn/Ya9p
https://paperpile.com/c/EvOkWn/44Hw
https://paperpile.com/c/EvOkWn/r2sZ
https://paperpile.com/c/EvOkWn/3oRk
https://paperpile.com/c/EvOkWn/20u6
https://paperpile.com/c/EvOkWn/2rcd
https://paperpile.com/c/EvOkWn/k4ck+wUpB
https://paperpile.com/c/EvOkWn/RjKy
https://paperpile.com/c/EvOkWn/iIKw+N9tZ
https://paperpile.com/c/EvOkWn/OhRK
https://paperpile.com/c/EvOkWn/XbL1
https://paperpile.com/c/EvOkWn/RjKy
https://paperpile.com/c/EvOkWn/XbL1
https://paperpile.com/c/EvOkWn/k0HD
https://paperpile.com/c/EvOkWn/qcg2
https://paperpile.com/c/EvOkWn/eUkA
https://paperpile.com/c/EvOkWn/nCQa
https://paperpile.com/c/EvOkWn/txzp
https://paperpile.com/c/EvOkWn/44Hw


Benchmarking studies can also be helpful in validating FLR estimates between
algorithms. Locard-Paulet et al.113 exhaustively evaluated the performance of 22 different
proteomic pipelines using synthetic phosphopeptide data with known phosphosites. These
pipelines were composed of search engines, localization algorithms, and validation strategies
embedded within different phosphoproteomics software tools. The direct comparison of FLR
used in this study serves as a useful resource for adapting the score thresholds between
pipelines, helping to mitigate the variation in FLR between algorithms at the same threshold.

Open questions when analyzing phosphoproteomics datasets:
Regardless of the data acquisition method used, several key challenges still persist

within the site localization process. The use of resonance or beam-type CID-derived
fragmentation techniques produces b- and y-ions for site identification,105 however, this
technique creates additional dataset-complicating ions. These new ions include neutral losses
and gas-phase re-arrangements, which may result in failure to detect or correctly localize the
phosphosite.114 Efforts to incorporate and adjust for these complications within scoring
techniques likewise face similar challenges, particularly with regard to creating a standardized
method of reporting false localization rates (FLRs).109

In CID-based mass spectrometry, the phosphate group of a phosphopeptide can often
be lost in the form of phosphoric acid (H3PO4) in positive ion mode or metaphosphoric acid
(HPO3) in negative ion mode.115,116 Serine and threonine residues undergo these neutral losses
through beta elimination at a rapid rate due to the labile nature of the phosphate group,117 while
tyrosine is typically unable to undergo neutral losses. However, isobaric tag labeling with
tandem mass tags (TMT) has been observed to phosphotyrosine neutral losses.118 For example,
in Figure 3a, the CDK1-pT14 isomer has several neutral loss peaks (y7-98 = 811.435 m/z,
y8-98 = 868.456 m/z, y9-98 = 997.499 m/z, and y10-98 = 1054.520 m/z) that are absent in the
pY15 and pY19 spectra. These losses can undercut localization by shifting the mass of modified
residues since the beta elimination neutral loss of phosphoric acid from phosphorylated serine
and phosphorylated threonine produces the same fragment mass as beta elimination of water
from an unmodified serine or threonine.105 Some site-localization algorithms still attempt to use
phosphate neutral loss ions as site-determining ions, but this has been demonstrated to
increase localization error rates.89 Library searching may provide an avenue to consider
phosphoric acid neutral losses by leveraging differences in the observed intensity for each ion
type.

During the fragmentation process of CID-based experiments, the same gas phase
beta-elimination reactions that induce neutral losses can result in the translocation of the
phosphate group to a nearby acceptor site.114,119 These gas-phase rearrangements result in
peptides or ions that appear as alternate positional isomers but at the elution time of the original
isomer. While these gas-phase products are typically low in abundance, it has been estimated
that as many as 37% of positional isomers that appear to be identically co-eluting are actually
side-products formed in the gas-phase,72 matching estimates from Plaumbo and Reid114
showing that 36% of tested phosphopeptides underwent some degree of site rearrangement.
Plaumbo and Reid suggest that CID-based proteomic data should be re-evaluated before
making conclusions regarding biological significance, especially if localization software
considers the possibility of multiple positional isomers from the same MS2 spectrum. In these
cases, positional isomers can be validated by considering known kinase motifs, comparisons to
similar data produced using ETD or ECD fragmentation, or by comparison to CID-MS/MS
spectra of synthetic phosphopeptide standards.114 While gas-phase rearrangement is
reproducibly common across resonance and beam-type CID instruments, Aguiar et al120 argue
that from a practical perspective, it may have a limited impact on phosphopeptide localization.
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This study considered two combinatorial libraries of singly phosphorylated peptides with two
acceptor sites and found that rearrangement products were rarely observed to decrease
localization accuracy in +2H MS2 spectra. The authors further argue that using ETD, which
does not produce rearrangement products, did not dramatically affect localization confidence in
Ascore. While combinatorial libraries contain significantly more phosphopeptides than the pool
of phosphopeptides studied by Palumbo and Reid, the limited combinations of chemistry retrain
the practical conclusions that can be drawn from this result, leaving the real effects of gas-phase
rearrangement on proteomics studies still somewhat unresolved.

Conclusion:
The field of phosphoproteomics has enjoyed rapid growth over the last twenty years as

proteomics instrumentation and methodologies have improved. While mass spectrometry is a
powerful method for detecting phosphopeptides, challenges remain regarding determining the
exact sites of phosphorylation, which are needed to improve our understanding of the biological
context surrounding these modifications. New approaches to making mass spectrometry
measurements with data-independent acquisition are improving our ability to detect and quantify
phosphosites. Despite these advances, neutral losses, gas-phase rearrangements, and lack of
standard FLR metrics remain open challenges in both DDA-based and DIA-based proteomic
workflows. Representing ambiguity in incomplete phosphosite localization, both in the literature
as well as in databases and data standard formats such as mzIdentML,121,122 will be critical to
our ability to interpret and reuse results from phosphoproteomics studies.
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Table 1: DDA-Based Localization Algorithms
Name Category Summary Description Reference

Ascore Binomial Uses sequence information to predict
fragmentation patterns; looks for the presence
or absence of site-determining ions.

63

Cscore Binomial Implementation of Ascore that utilizes both
ETD and CID data concurrently to increase
localization confidence.

37

MD-Score Delta Score Difference between the first and second best
results from the MASCOT search engine for
positional isomers.

64

LuciPHOr Probabilistic Computes the likelihood odds that a given
peak is matched at random before calculating
a cumulative sum of the log odds to represent
the entire peptide. The score itself is the delta
of the two most likely isoforms.

83

PhosCalc Binomial Implementation of Ascore that can be applied
to both MS2 and MS3 spectra.

80

PhosphoRS Binomial Implementation of Ascore that uses variable
peak densities per 100 m/z window to account
for unequal peak distribution in a spectrum.

78

Phosphorylation
Localization Score
(PLS)

Binomial Extends Ascore method to InsPecT; uses a
single peak density to simplify the scoring
process.

76

PTMiner Binomial Designed for high mass-tolerance open
searching; uses an empirical Bayesian-based
iterative learning strategy for site localization.

85

PTMProphet Bayesian Uses a Bayesian mixture model to evaluate
confidence at each possible site.

84

PTM score
(MSQuant)

Binomial Implementation of Ascore that allows for the
analysis of MS3 spectra along with MS2
spectra; only considers the top 4 most intense
peaks per 100 m/z window.

82

pSite Bayesian Site-based approach that first evaluates
individual site confidence using support vector
machines for de novo derived sequences
assigned through sequence alignment.

86

SLIP Delta Score Designed to work with Protein Prospector
using expectation values. The SLIP score is
the difference between the first and
second-best expectation values.

65
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SLoMo Binomial Implementation of Ascore that allows ETD
and ECD data to be used.

79

Suni et al. Library Matching Constructs a spectral library by applying mass
shifts to enzymatically dephosphorylated
peptide spectra; localization scores are
recalculated deltaDot scores from SpectraST
using these libraries.

89

Table 2: DIA-Based Methods
Name Category Summary Description Reference

Inference of
Peptidoforms (IPF)

Bayesian Applies a Bayesian hierarchical model to
spectral library data to determine the most
likely positional isomer or ‘peptidoform’ at a
given retention time based on elution pattern.

100

PIQED Workflow Sequences DIA-Umpire to deconvolve DIA
data through the creation of pseudo-DDA
spectra that can be localized through
TPP-compatible methods like PTMProphet.

97

Spectronaut Closed Source Allows for analysis of DIA without libraries
through directDIA using deconvolution
methods similar to DIA-Umpire.

104

Thesaurus Probabilistic Creates a background distribution using
differential frequencies of peptides in a
dataset and then calculates probabilities
based on whether site-determining ions can
be matched in that background distribution by
random chance.

72
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