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Abstract

Inflammation is a physiological response composed by well-defined and overlapping events that can eliminate pathogens and
reestablish homeostasis of tissues. Physiological systems have an elastic capacity to deal with numerous perturbations. Infection
may lead to inflammation, tissue damage and disease as consequence of breakdown of tissue resilience. The resolutive phase is
a sine qua non condition to achieve homeostasis after acute inflammation. Exuberant or chronic inflammation occurs in diverse
infectious diseases. Pro-resolving molecules may be useful for the treatment of certain infections, as these molecules modulate
the immune response and avoid the exacerbated/misplaced inflammation unleashed by microbes. Some pro-resolving molecules
may also favour pathogen clearance, in addition to decreasing tissue damage. In this review, we discuss the endogenous role
and the therapeutic potential of the most relevant pro-resolving molecules in the context of bacterial and viral infections.
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Abstract:

Inflammation is a physiological response composed by well-defined and overlapping events that can eliminate
pathogens and reestablish homeostasis of tissues. Physiological systems have an elastic capacity to deal with
numerous perturbations. Infection may lead to inflammation, tissue damage and disease as consequence of
breakdown of tissue resilience. The resolutive phase is a sine qua non condition to achieve homeostasis after
acute inflammation. Exuberant or chronic inflammation occurs in diverse infectious diseases. Pro-resolving
molecules may be useful for the treatment of certain infections, as these molecules modulate the immune
response and avoid the exacerbated/misplaced inflammation unleashed by microbes. Some pro-resolving
molecules may also favour pathogen clearance, in addition to decreasing tissue damage. In this review, we
discuss the endogenous role and the therapeutic potential of the most relevant pro-resolving molecules in the
context of bacterial and viral infections.

Keywords: Inflammation, resolution pharmacology, pathogen-host interactions, infection, virus, bacteria.

Inflammation and host-microbial interactions

Inflammation is elicited by the host in response to microbes and is believed to be essential for protection
against infection. This process starts through the activation of innate immune cells expressing pattern recogni-
tion receptors (PRR) which recognize molecular patterns expressed by microorganisms (pathogen-associated
molecular patterns (PAMPs) or damage associated molecular pattern (DAMPs) released in response to them.
An appropriate inflammatory response involves the coordinated production and release of molecules at the
site of infection. This response restrains pathogen proliferation and is necessary for the ensuing adaptive
immune response. In general, as the infection is controlled, the inflammatory response is followed by a reso-
lution phase and return to homeostasis. However, excessive, or misplaced inflammation can be detrimental
to the host, leading to further tissue damage and eventually death (Garcia et al, 2010; Sousa et al., 2020).

Many endogenous mediators have been described whose major function is to drive the resolution of inflam-
mation. The various classes of mediators of resolution and major representatives in each class is given in
Table 1. A review of the data that has led to their classification as pro-resolving molecules is beyond the
scope of the current review but can be found at other recent reviews on the subject (see Sugimoto et al.,
2019, Panigrahy et al, 2021, Feehan and Gilroy, 2019). As it will be discussed here, these so-called mediators
of resolution tend to reduce inflammatory responses and to ameliorate the ability of the host to deal with
bacterial and viral infections. As a corollary of the latter findings, we argue that the use of pro-resolving
molecules or the activation of endogenous pro-resolving pathways during viral and bacterial infections may
hold great promise as therapeutic strategies to avoid excessive inflammation without altering the ability of
the host to deal infection.

Resolution pharmacology and its potential as a therapy for infection

We have previously hypothesized that inflammation was a major contributor to tissue dysfunction and death
associated with viral and bacterial infections (Garcia et al., 2010; Fagundes et al, 2012; Costa et al., 2022;
Araujo et al., 2022; Machado et al., 2020; Melo et al., 2021, Tavares et al., 2022a, Boff et al., 2020). Formal
demonstration of this hypothesis in humans was brought about by the COVID-19 (Coronavirus Disease 19)
pandemic in which studies clearly showed the central contribution of excessive inflammation to end-organ
damage and death associated with infection. SARS-CoV-2 infection caused a profound negative impact
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worldwide, leading to overwhelmed healthcare systems and numerous human losses. There are now good
vaccines that prevent severe disease and a few antiviral treatments, such as Paxlovid®, that clearly impact
disease development if started early in the course of infection (Najjar-Debbiny et al, 2022). For COVID-19,
anti-inflammatory strategies, such as use of glucocorticoids and anti-IL-6, may provide additional benefit in
severely ill patients (Maskin et al, 2022; Du et al, 2021). We have hypothesized that the use of pro-resolving
strategies may be beneficial in the context of COVID-19 (Sousa et al, 2020).

For many other severe infections, such as Influenza, Ebola, and dengue, there are few therapeutic options and
effective vaccines. Clearly, in addition to microbial-directed strategies (anti-microbials or vaccines), strategies
targeting the host may be beneficial as they potentially have the capacity to treat various infections with
similar pathogenic mechanisms. It is possible that targeting inflammation resolution may be beneficial for
the host during bacterial and viral infections. In the next sections, we summarize the evidence demonstrating
the expression, roles and effects of the best described pro-resolving molecules (see Sugimoto et al. 2019 for a
comprehensive review of existing pro-resolving molecules) in the context of bacterial and viral infections. We
focus on mediators and infections for which there is more significant data or analysis. We discuss the relevance
of mediators of resolution in the context of bacterial and viral infections below and in Supplementary Tables
1 and 2. The latter tables also provide references on the role or effects of mediators of resolution beyond
viral and bacterial infections.

Lipid Mediators

- Lipoxin A4 (LXA4)

Lipoxin A4 (LXA4) is an endogenous lipid mediator that has been demonstrated to possess anti-inflammatory
and pro-resolutive properties in both sterile inflammation (Zhang et al., 2008; Vachier et al., 2005) and
infection (Wu et al., 2015) models. In order to exert its effects, LXA4 binds to the Formyl peptide receptor 2
(FPR2), which is expressed on the membranes of various leukocytes, including macrophages and neutrophils.
LXA4 is produced by lipoxygenases (LOs) from arachidonic acid, which also produces pro-inflammatory
lipids, such as leukotrienes. Several pre-clinical studies have evaluated the impact of LXA4 during infection
using 5-LO, 15-LO, and 12-LO genetically ablated mice. However, it is important to note that these enzymes
are associated with the induction of various lipid mediators with both pro- and anti-inflammatory properties.
Therefore, these genetically ablated mice will also lack pro-inflammatory lipids, which may certainly impact
the final outcomes of the findings.

1.2 - LXA4 and viral infections

Shirey and colleagues found that during Respiratory Syncytial Virus (RSV) infection, macrophages from
5-LO or 15-LO knockout mice failed to develop an alternatively activated phenotypic profile (AA-M ) bothin
vitro and in vivo . Furthermore, 5-LO and 15-LO mice showed increased perivasculitis in the lungs when
compared to their wild-type counterparts. Pharmacological inhibition of lipoxygenases in peritoneal-derived
macrophages also inhibited AA-M differentiation (Shirey et al., 2014). In addition, infant patients co-
infected with RSV and Mycoplasma pneumoniae showed lower LXA4/LTB4 ratios, indicating that LXA4
production may be affected during co-infection (Wu et al., 2016). Taken together, these studies suggest
that LXA4 plays a role in the alternative activation of macrophages during RSV infection and subsequent
resolution of lung pathology.

The role of LXA4 during Influenza infection is somewhat controversial. Morita and colleagues demonstrated
that LXA4 treatment during H1N1 infection in mice did not affect survival or alter levels of chemokines
(Morita et al., 2013). In contrast, the inhibition of lipoxin production was associated with increased lethality
rates in H5N1-infected mice (Cilloniz et al., 2010). These studies suggest that the role of LXA4 may vary
depending on the viral strain.

Since the beginning of the COVID-19 pandemic, a wide range of review articles have suggested the potential
therapeutic use of bioactive lipids and SPMs in the context of COVID-19 (see, for example, Batiha et
al., 2022; Lee, 2021). However, there is currently limited available data on the topic. One study found a
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marked increase in LXA4 levels in the BAL fluid of COVID-19 patients when compared to healthy volunteers
(Archambault et al., 2021). However, we have not found any studies that evaluated the effect of these lipids
in experimental SARS-CoV-2 infection or COVID-19. Therefore, the role of LXA4 during SARS-CoV-2
infection remains unclear.

1.3 - LXA4 and bacterial infections

Various studies suggest that LXA4 plays a protective role in models of pulmonary infection by Pseudomonas
aeruginosa (P. aureoginosa ). Treatment with LXA4 was found to decrease bacterial proliferation and
increase the efficacy of antibiotics against P. aeruginosa biofilms (Wu et al, 2016; Thornton et al, 2021).
LXA4 also prevented P. aeruginosa invasion by preventing tight junction disruption and stimulating the
protein levels of ZO-1 in cultured airway epithelial cells obtained from patients with cystic fibrosis (Higgins
et al, 2016). The significance of LXA4 for these bacteria can be highlighted by the ability of P. aeruginosa to
develop mechanisms to sabotage the lipoxin system. These bacteria may secrete an epoxide hydrolase called
conductance regulator inhibitor (Cif), which disrupts the synthesis of 15-Epi-LXA4 by host cells. In the
BAL fluid of cystic fibrosis patients, increased levels of Cif were associated with decreased levels of LXA4,
augmented concentration of IL-8, and impaired lung function (Flitter et al, 2017). The epoxide hydrolase
secreted by these bacteria also decreased mucociliary transport and hindered bacterial clearance from the
lung (Hvorecny et al, 2018). These findings provide compelling evidence that LXA4 contributes to bacterial
clearance and host protection during P. aeruginosa infection, both in pre-clinical models and in humans.

LXA4 has also been found to have beneficial effects duringPorphyromonas gingivalis (P. gingivalis ) infection.
LXA4 was shown to decrease the activation of integrin CD11b/CD18, reduce ROS generation in whole
blood, inhibit cell activation, and prevent P. gingivalis aggregation. In a model of periodontitis induced by
P. gingivalis , treatment with a stable analog of LXA4 limited neutrophil recruitment and tissue injury in
the oral cavity (Börgeson et al, 2011). Additionally, both human neutrophils exposed to P. gingivalis and
a mouse model showed increased COX-2 levels, which were decreased with LXA4 treatment (Pouliot et al,
2000). Furthermore, LXA4 was found to promote autophagy and inhibit the inflammasome in RAW264.7
cells exposed to P. gingivalis lipopolysaccharide (PgLPS) (Zhao et al, 2021).

Treatment of mice with 15-Epi-LXA4 during peak lung inflammation led to the clearance of Escherichia coli
(E. coli ) and promoted neutrophil apoptosis and efferocytosis (Sekheri et al, 2020). Treatment was effective
in reducing the levels of IL-6 and TNF when administered in combination with antibiotics (Ueda et al, 2014).
Other studies have also shown the potential therapeutic benefits of LXA4 during lung inflammation (Wu
et al, 2014). During UV-killed E. coli exposure in human skin, LXA4 and other SPMs were synthesized in
a time-dependent manner, which coincided with the expression of the FPR2 receptor and the start of the
resolution phase (Motwani et al, 2018). Additionally, stable analogs of LXA4 demonstrated beneficial effects
in treatingSalmonella typhimurium (S. typhimurium) infection, pneumococcal pneumonia, LPS-induced lung
injury, and cecal ligation and puncture (CLP) in a rat model (see Supplementary Table 1) (Gewirtz et al,
1998; Siegel et al, 2021; Qi et al, 2015; Walker et al, 2011; Wu et al, 2014).

However, in the case of Klebsiella pneumoniae (K. pneumoniae) pneumosepsis in mice, levels of LXA4
were increased in the early stage of sepsis and were associated with local and systemic infection, leading to
high mortality rates. Treatment with LXA4 during early sepsis worsened the infection, while late treatment
improved survival by reducing excessive inflammation (Sordi et al, 2013). Moreover, our research group
showed that LXA4 treatment hindered the migration of dendritic cells in the joint during Staphylococcus
aureus (S. aureus ) infection, which was crucial in reducing bacterial burden (Boff et al, 2020). Overall,
these findings suggest that the development of lipoxin-based therapies may not be straightforward, as the
type of bacteria and the timing of therapy initiation may significantly impact the effectiveness of LXA4 or
its analogues.

2.1 - Resolvin D (RvD), E (RvE) and T (RvT) series

Resolvins are potent mediators that promote resolution of inflammation and are synthesized from the lipids
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 docosapentaenoic acid (n-3DPA) (Serhan
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and Levy, 2018). These pro-resolution molecules are synthesized in a coordinated manner by macrophages
and neutrophils to counteract inflammation and promote resolution in the affected tissue. Resolvins exert
their actions by binding to different membrane receptors, such as FPR2, ERV1, DRV1, and DRV2, expressed
by diverse types of cells (Chiang and Serhan, 2017).

2.2 - Resolvins and viral infections

Most studies on resolvins and viruses have focused on respiratory viruses, including SARS-CoV-2 infection.
One study found no difference in serum or plasma levels of Resolvins D1 to D5 between healthy volunteers
and COVID-19 patients (Regidor et al, 2021). Meanwhile, another study found downregulated levels of RvD1
and RvD3 in the plasma of critically ill COVID-19 patients (Palmas et al, 2021). However, a small sample size
may have contributed to the inconsistency between these findings. Decreased systemic levels of RvD1 and
RvE4 were linked to poor prognosis and reduced survival of patients with COVID-19 (Palmas et al, 2021).
In contrast, levels of all RvD1 to D5 (except RvD3) were higher in the BAL fluid of COVID-19 patients
compared to control individuals (Archambault et al, 2021), potentially reflecting an attempt by the host to
dampen inflammation in the lungs. Additionally, a RvD6 isomer decreased the expression of ACE2 receptor
and pro-inflammatory cytokine levels in vitro (Pham et al, 2021). Finally, treatment of macrophages with
RvD1 and RvD2 upon SARS-CoV-2 infection reduced levels of TNF, IL-6, IL-8, CCL2, and CCL3 cytokines
(Recchiuti et al, 2021). Although data on endogenous levels of these molecules during COVID-19 are still
elusive, their exogenous administration may hold great promise against the disease.

During coinfection with Streptococcus pneumoniae (S. pneumoniae ) and influenza A virus (H3N2), treat-
ment with AT-RvD1 during the acute phase of infection ameliorated lung inflammation in mice, reducing
neutrophil elastase activity, parenchymal inflammation, infiltrated neutrophils, and monocytes. In vitro ,
RvD1 treatment decreased TNF and IL-8 mRNA during H3N2 infection (Wang et al, 2017). Additionally,
BALB/C mice infected with H3N2 and treated with RvD1 had reduced airway inflammation and phospho-
rylation of NF-κB p65 and IkBα (Guo et al, 2020). Importantly, in both studies, RvD1 did not affect viral
titers of H3N2. In line with this findings, Morita and colleagues showed that treatment with RvD1 or RvD2
in A549 cells did not decrease viral titers during H1N1 infection (Morita et al, 2013). Similarly, topical
treatment with RvD1 in rats infected with herpes simplex virus (HSV) did not decrease viral titers at dif-
ferent time points analyzed, although it decreased parameters of inflammation in the cornea of infected rats
(Rajasagi et al, 2017). This suggests that RvD1 modulates the host response without altering its capacity
to deal with pathogen replication.

In the context of RSV infection, different subtypes of resolvins may have varying effects on the host. For
instance, treatment with RvD1 was found to be associated with increased viral loads in the lungs and a
lower antibody response upon reinfection in mice (de Freitas et al., 2021). Conversely, RvE1 was shown to
be beneficial against RSV: RvE1 treatment restored the M2 phenotype of macrophages that were infected
with RSV (Shirey et al., 2014). Furthermore, RvE1 was found to have beneficial effects against HSV-1.
RvE1 treatment decreased inflammation caused by HSV-1 infection in the cornea, reduced the levels of IL-6,
IFN-γ, and CXCL-1, and increased the levels of IL-10 (Rajasagi et al., 2011). Taken together, these studies
demonstrate that resolvins can alleviate inflammation caused by viruses, in addition to stimulating markers
of resolution, such as M2 macrophage polarization. Overall, these molecules show great promise in the fight
against viral infections.

2.3 - Resolvins and bacterial infections

A wide range of studies have demonstrated the effects of resolvins in various model of bacterial infections. For
example, treatment with RvD1 reduced inflammation and neutrophil infiltrates during P. aureoginosa infec-
tion in mice (Lee et al., 2022). In the case ofCitrobacter rodentium (C. rodentium ) infection, post-infection
treatment with RvD1 plus RvD5 decreased bacterial loads, reduced inflammation, and rescued mice from
lethality (Diaz et al., 2017). Accordingly, administration of RvD2 limited neutrophil infiltration, enhanced
phagocytosis and bacteria clearance, and expedited inflammation resolution in Escherichia coli (E. coli ) and
S. aureus infections (Chiang et al., 2015). RvD3 treatment improved bacterial clearance, efferocytosis, and
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accelerated resolution during peritonitis induced by E. coli infection, making it a promising agent against E.
coli (Norris et al., 2018). Additionally, treatment with approximately 0.1nM concentrations of RvD4 proved
effective against S. aureus infection in mice (Winkler et al., 2016). In vitro studies also demonstrated the
immune modulation of RvD1, RvD2, and RvD5 during E. coli infection in human macrophages, resulting in
a decrease in the production of pro-inflammatory cytokines (Palmer et al., 2011; Werz et al., 2018).

Resolvins have shown efficacy in both sepsis and sepsis-like models. For instance, in a murine model of sepsis
induced by cecal ligation and puncture (CLP), delayed systemic treatment with RvD1 increased bacterial
clearance, improved mouse survival, and decreased neutrophil influx and cytokine production, such as TNF
(Chen et al., 2014). In a model of sepsis induced by D-galactosamine (GalN), mice treated with RvD1
concurrently with D-GalN injection exhibited a lower number of neutrophil accumulations and decreased
levels of HMGB1 and CCL2 in serum (Murakami et al., 2011). Other studies have demonstrated the
potential of RvD1, RvD2, RvE1, and AT-RvD1 treatment, as well as the protective effect of endogenous
levels of these lipids, in various sepsis models. These treatments increased mouse survival, reduced bacterial
load, and suppressed pro-inflammatory cytokine production (Chiang et al., 2012; Chen et al., 2020; Silva et
al., 2021; Svahn et al., 2016, see Table 1 and Supplementary Table 1). Importantly, administration of RvD1
in conjunction with antibiotics expedited the resolution of peritonitis, indicating the potential of resolvins to
be used as adjutants in traditional bacterial infection and septic condition treatments (Chiang et al., 2012).

RvD1 has garnered significant attention in pre-clinical models of lung infection due to its ability to ame-
liorate lung damage, reduce inflammation, and decrease bacterial loads. Studies conducted in mice have
demonstrated the positive effects of RvD1 or AT-RvD1 treatment in response to various pathogens such as
E. coli , P. aeruginosa , and Nontypeable Haemophilus influenzae (NTHi) (Codagnone et al., 2018; Croasdell
et al., 2016; Abdulnour et al., 2016; Wang et al., 2017; Sekheri et al., 2020; Isopi et al., 2020; Bhat et al.,
2021). These effects of RvD1 were primarily attributed to a significant decrease in neutrophil accumulation.
Additionally, RvD1 could accelerate the resolution phase in the lungs, either alone or in combination with
antibiotics against P. aureoginosa (Gao et al., 2020). Other classes of resolvins, such as RvE1 and RvD2,
also demonstrated beneficial effects. RvD2 decreased bacterial load in the lungs duringP. aeruginosa infec-
tion (Walker et al., 2022; Sundarasivarao et al., 2022). Treatment with RvE1 in mice decreased neutrophil
accumulation, improved E. coli clearance, and dampened cytokine production (Seki et al., 2010).

In summary, these results demonstrate that resolvins, especially RvD1, show promise as therapeutic candi-
dates against a range of bacterial infections, either alone or in combination with antibiotic treatments.

3.1 - Maresins

Maresins are lipid metabolites derived from DHA (docosahexaenoic acid) and are produced by macrophages
and neutrophils. They possess potent anti-inflammatory and pro-resolving properties (Serhan et al., 2009).
Furthermore, recent research has revealed the existence of different conjugates of maresins that are generated
through enzymatic hydrolysis in the tissue. These conjugates are known as maresin conjugates in tissue
regeneration (MCTRs) (Levy et al., 2020).

3.2 - Maresins and viral infections

Limited data is currently available regarding the role of maresins during viral infections. In the context of
SARS-CoV-2 infection, it has been observed that the levels of maresin-1 and maresin-2 were significantly
higher in the serum of severe COVID-19 patients compared to healthy volunteers (Regidor et al., 2021).
However, these lipids were not detected in the bronchoalveolar lavage (BAL) fluid of COVID-19 patients,
although an increase in other specialized pro-resolving mediators (SPMs) was observed (Archabault et al.,
2021). Additionally, in the case of respiratory syncytial virus (RSV) infection, maresin-1 has shown promising
effects. It was found that maresin-1 reduced inflammation, viral transcripts, and increased the production
of IFN-β during RSV infection by binding to the LGR6 receptor (Krishnamoorthy et al., 2023). However,
more comprehensive studies are needed to further investigate the potential of maresins in experimental viral
infections and to understand better their role in viral pathogenesis.
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3.3 - Maresins and bacterial infections

A study conducted by Jiang et al. (2022) revealed that daily supplementation of Lactobacillus casei (L.
casei ) during the intensive phase of tuberculosis led to an upregulation of various bioactive lipids, in-
cluding Maresin 1. Plasma levels of these lipids showed a strong correlation with the downregulation of
pro-inflammatory cytokines. Additionally, supplementation with enriched marine oil increased the levels of
different lipids, particularly MaRn-3 DPA, in the plasma of healthy volunteers. Notably, individuals re-
ceiving the supplementation exhibited higher phagocytic capacity of S. aureusby neutrophils compared to
the placebo group, indicating the effectiveness of specialized pro-resolving mediators (SPMs) in modulating
peripheral blood cells (Souza et al., 2020). In vitrostudies have demonstrated that maresin-1 production
by M2 macrophages is stimulated during E. coli infection. Moreover, maresin-1 has been shown to limit
the infection of human macrophages by M. tuberculosis , thereby reducing inflammation (Werz et al., 2018;
Ruiz et al., 2019). In vivo experiments involving coinfection with influenza A virus (IAV) and Streptococ-
cus pneumoniae demonstrated that administration of MCTR1 plus MCTR3 or MCTR3 alone resulted in
reduced lung inflammation and bacterial load at different time points post-infection (Tavares et al., 2022b).
These findings, like those observed with lipoxin A4 (LXA4), indicate a potential beneficial role for maresins
in the treatment of bacterial infections. However, further research is needed to fully understand and explore
their therapeutic potential in this context. Additional studies are necessary to investigate the mechanisms
of action, optimal dosing, and potential synergistic effects of maresins with other treatments.

4.1 - Protectins

Protectins, like other specialized pro-resolving mediators (SPMs), are derived from docosahexaenoic acid
(DHA) and are produced by hydrolases. These bioactive lipids exhibit potent pro-resolving actions, even at
nanomolar and picomolar concentrations (Hansen et al., 2019; Schwab et al., 2007). They exert their effects
on various cell types, including macrophages, neutrophils, and glial cells (Marcheselli et al., 2003; Schwab et
al., 2007; Hong et al., 2003). Notably, recently discovered conjugated lipids with similarities to protectins
have also been found to possess pro-resolving properties. One example is protectin conjugates in tissue
regeneration 1 (PCTR1) (Dalli et al., 2015). These conjugated lipids expand the repertoire of pro-resolving
molecules and contribute to the resolution of inflammation and tissue regeneration.

4.2 - Protectins and viral infections

Although there is limited data available, the existing studies suggest a promising role for protectins in viral
infections. For instance, during HSV-1 infection, treatment with protectin D1 (PD1) reduced inflammation in
stromal keratitis lesions by decreasing pro-inflammatory cytokine levels and increasing IL-10 levels (Rajasagi
et al, 2013). In murine models, intranasal therapeutical administration of PD1 or protein conjugates in
tissue regeneration 1 (PCTR1), which is also derived from docosahexaenoic acid (DHA), decreased viral
load, tissue lesions, and prevented the decrease of IFN-λ caused by RSV in the lungs. Moreover, these lipids
increased IFN-λ levels in human bronchial epithelial cells infected with RSV (Walker et al, 2021). PD1 also
demonstrated antiviral effects against H1N1 and H5N1 in vitro in A549 cells and improved survival in mice
infected with the PR8 strain of H1N1 (Morita et al, 2013). Notably, the levels of PD1 were downregulated in
the lungs of mice infected with the pathogenic H5N1 strain of influenza (Morita et al, 2013). These findings
collectively indicate that PD1 may modulate a common host antiviral pathway, making it an intriguing
molecule for further investigation in the context of viral infections.

4.3 - Protectins and bacterial infections

Bacterial infections have been found to influence PD1 levels. For instance, infection with Borrelia sp. was
shown to increase PD1 levels in the joints of mice (Blaho et al., 2009). Similarly, in a model of antibiotic-
induced dysbiosis in mice, Clostridium butyricum(C. butyricum ) infection led to elevated levels of PD1,
resulting in increased concentrations of IL-10, TGF-β1, and IL-4 produced by CD4+ T cells in the intestinal
tract (Ariyoshi et al., 2021). These findings suggest that PD1 plays an important endogenous role in these
specific contexts. Moreover, PD1 treatment has demonstrated positive effects on bacterial infections. In
vitro studies have shown that PD1 treatment improves the uptake of E. coli by human macrophages and
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neutrophils (Hamidzadeh et al., 2022; Chiang et al., 2012). In a mouse model of peritonitis, activation of
the G-protein coupled receptor 37 (GPR37) by PD1 during Listeria monocytogenes (L. monocytogenes )
infection prevented mouse mortality, and PD1 treatment resulted in decreased bacterial load in peritoneal
fluids (Bang et al., 2021). Although these studies are preliminary, they suggest a promising role for PD1
and its potential therapeutic effects against bacterial infections.

5.1 - Annexin A1 (AnxA1)

Annexin A1 (AnxA1) is a protein consisting of 346 amino acids that is synthesized by various cell types
including macrophages, neutrophils, lung fibroblasts, and epithelial cells. AnxA1 expression is increased upon
administration of glucocorticoids. It was initially discovered as an inhibitor of Phospholipase A2. Several
pre-clinical studies have provided evidence for both the endogenous pro-resolving role and the therapeutic
potential of AnxA1 (Flower et al., 1979; Ernst et al., 1990; Hannon et al., 2002).

5.2 - AnxA1 and viral infections

Annexin-A1 (AnxA1) exhibits a complex relationship with various viruses. In addition to its involvement
in resolving inflammation, recent studies have demonstrated its interaction with several processes crucial for
the replication of specific viruses and antiviral host responses. For instance, AnxA1 was found to enhance the
expression of the cytoplasmic sensor retinoic acid-inducible gene I (RIG-1) both before and after infection
with influenza A virus (IAV) in A549 cells (Yap et al., 2020). Furthermore, the overexpression of AnxA1
resulted in an increase in IFN-β levels, while silencing AnxA1 impaired IFN-β and IFN-stimulated responsive
element activation. This stimulation of IFN-β expression occurs through a physical interaction between
AnxA1 and a cytoplasmic protein known as tank binding kinase 1 (TBK-1) (Bist et al., 2013). Interestingly,
Ma et al. demonstrated that the 3A protein of foot and mouth disease virus (FMDV) hinders the formation
of the AnxA1-TBK-1 complex, thereby inhibiting the AnxA1-mediated increase in IFN-β (Ma et al., 2022).
The inhibitory effect of AnxA1 has also been observed in hepatitis C virus (HCV) infection. In vitro studies
using human hepatoma cell line Li23-derived D7 cells, which express exogenous AnxA1, showed a significant
inhibition of viral RNA replication compared to wild-type cells, demonstrating the inhibitory effect of AnxA1
against HCV (Hiramoto et al., 2015).

Significantly, it has been shown that AnxA1 can facilitate viral binding and/or replication in several viral
infections. In the case of reovirus and measles virus infections in vitro , AnxA1 promotes the formation
of syncytia both within the cytoplasm and in the extracellular space (Ciechonska et al., 2014). Regarding
HIV, solid evidence suggests that the FPR2 receptor serves as a co-receptor for viral entry, independent of
AnxA1 (Shimizu et al., 2008; Nedellec et al., 2009; Jiang et al., 2011; Cashin et al., 2013). Furthermore,
herpes virus and IAV exploit the AnxA1 pathway by utilizing the FPR2 receptor to enhance virus uptake
by host cells. Both the glycoprotein E (gE) of herpes virus and the envelope protein of IAV bind to AnxA1
and utilize FPR2 for cell entry (Wang et al., 2022; Arora et al., 2016; Tcherniuk et al., 2016).

In the case of IAV infection, the AnxA1/FPR2 axis triggers specific signaling pathways that favor various
steps of viral replication, including endosomal export of the virus, endosomal trafficking to the nucleus, and
enhanced autophagy and apoptosis (Rahman et al., 2018; Arora et al., 2016; Cui et al., 2020). Consequently,
FPR2 inhibitors have shown antiviral effects against H1N1, H3N2, H6N2, and Influenza B viruses (Courtin et
al., 2017). Recent findings indicate that IAV infection stimulates the release of exosomes that downregulate
several genes involved in the inflammatory response, including the AnxA1 gene (Zabrodskaya et al., 2022).
Additionally, in vitro studies have demonstrated that H1N1 infection upregulates the expression of FPR2
(Ampomah et al., 2018), likely as a strategy to promote disease progression. However, treatment with AnxA1
prior to IAV infection has been shown to expand the population of alveolar macrophages and increase the
survival of mice, considering the well-known protective role of these cells against IAV (Schloer et al., 2019).
Collectively, these results may appear contradictory, but they highlight that the effect of a particular protein
can depend on the timing of treatment initiation. In the latter study, the immunomodulatory role of AnxA1
proved to be beneficial in the context of the infection, despite its known involvement in pathways that
facilitate viral replication.
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The role of AnxA1 in the context of COVID-19 remains elusive. Canacik and co-workers have demonstrated
a decrease in systemic levels of AnxA1 in severe COVID-19 patients compared to healthy volunteers and
the moderate disease group. In contrast, Ural and colleagues have shown that patients with severe disease
exhibit increased levels of AnxA1 compared to mild COVID-19 individuals or healthy controls (Canacik
et al., 2021; Ural et al., 2022). An integrative analysis of multi-platform omics has revealed AnxA1 as
a potential therapeutic target against SARS-CoV-2 infection (Li et al., 2021). Indeed, this may reflect
the host response during COVID-19, as the levels of AnxA1 were found to be up-regulated in circulating
monocytes of convalescent patients (Wen et al., 2020). Future investigations will provide clarity on the
potential utilization of AnxA1 or its mimetic peptides as therapeutic agents to mitigate inflammation and
accelerate the resolution process in the context of COVID-19.

Recent studies conducted by our group have demonstrated that in murine models of Dengue virus (DENV)
and Chikungunya (CHIKV) virus infection, mice lacking AnxA1 (AnxA1KO) and mice lacking the FPR2
receptor (FPR2KO) exhibited increased inflammation without significant differences in viral loads compared
to wild-type (WT) mice. Importantly, treatment with Ac2-26 resulted in decreased production of pro-
inflammatory cytokines and reduced tissue damage in both DENV and CHIKV infections, while viral titers
remained unaffected (Costa et al., 2022; de Araújo et al., 2022). These findings suggest that AnxA1 may
hold promise as a therapeutic target against these viruses by suppressing excessive inflammation. Finally,
the combination of antiviral agents with AnxA1-based therapies holds great potential as an ideal synergistic
strategy for treating these conditions.

Overall, these results demonstrate that the effects of AnxA1 can be either beneficial or detrimental depending
on the specific viral type. The potential use of FPR2 inhibitors or AnxA1 monoclonal antibodies shows
great promise in the treatment of certain viral infections, such as HSV and IAV. However, it is crucial to
conduct clinical trials and human studies to determine whether the findings observed in mouse models can be
replicated in human diseases. Additionally, stimulating the AnxA1/FPR2 axis may offer improved prognostic
outcomes against certain infections, such as DENV and CHIKV infections.

5.3 - AnxA1 and bacterial infections

To date, most studies on AnxA1 during bacterial infections have focused on its endogenous role and the
importance of its receptor in containing inflammation and promoting resolution. Limited data is available
regarding the exogenous administration of AnxA1 as a potential therapy. For example, research has shown
that mice lacking the FPR2 receptor (FPR2KO) were more susceptible to meningitis induced byStreptococcus
suis (S. suis ), while treatment with AnxA1, which binds to FPR2, reduced bacterial burden in the brain,
lowered the production of IL-6 and CXCL1, and decreased neutrophil infiltration into the brain (Ni et al.,
2021). Beneficial effects of AnxA1 have also been observed in other bacterial infections. The absence of
AnxA1 impaired the host response against Mycobacterium tuberculosis and resulted in a transient increase
in bacterial burden in the spleen (Vanessa et al., 2015). Interestingly, the inhibition of Phosphodiesterase-4
(PDE-4) with Rolipram, combined with antibiotic treatment, reduced bacterial burden and inflammation
during pneumococcal pneumonia in mice, and was associated with increased AnxA1 expression levels (Tava-
res et al., 2016). In a murine model of S. pneumoniae infection, Ac2-26 treatment decreased lung lesions and
bacterial load in the lungs of wild-type (WT) mice, but this effect was not observed in FPR2KO mice, indi-
cating that the beneficial effects of the AnxA1 mimetic peptide occur through the FPR2 receptor (Machado
et al., 2020). AnxA1 has been found to bind to Vibrio cholerae (V. cholerae ) and Lactobacillaceae in the
gut, and V. cholerae can interfere with AnxA1 dynamics by secreting proteases that cleave AnxA1 into
different fragments, suggesting the importance of this molecule for the pathogen (Zoued et al., 2021). While
these findings are intriguing, they are not conclusive, and they demonstrate that bacteria can also affect
AnxA1 dynamics and modulate the capacity of the host to deal with pathogens through perturbations of
the AnxA1/FPR2 signaling pathway.

6. – Other potential pro-resolving molecules

6.1. α-ΜΣΗ
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α-MSH and its derived peptides have been extensively studied for over 30 years due to their potential
anti-inflammatory properties in various microbial infections, including fungal, bacterial, and viral infections
(Cutuli et al., 2000; Catania et al., 1998a; Catania et al., 2000). These peptides are part of the melanocortin
system, which includes adrenocorticotropic hormone (ACTH), α-, β-, and γ-melanocyte-stimulating hormones
(α-, β-, γ-MSHs) (Dinparastisaleh et al., 2021). Despite the presumed potential of α-MSH, only a few studies
have explored the role of this molecule during infections. There are different melanocortin receptors (MC1R-
MC5R), and most of the anti-inflammatory or pro-resolving effects are attributed to MC1R or MC3R.

6.2 - α-ΜΣΗ ανδ vιραλ ινφεςτιονς

Limited data is currently available regarding the role of α-MSH in viral infections. Most studies have
primarily focused on conducting in vitro experiments and analyzing circulating levels of α-MSH in humans
during viral infections. However, to date, there have been no studies that definitively demonstrate the
pro-resolutive effect of α-MSH treatment in mouse models of viral infections or in human clinical studies.
Nevertheless, certain findings have indicated that systemic levels of α-MSH were higher in HIV patients
compared to controls. Notably, an association was observed between elevated levels of α-MSH and reduced
levels of IL-6, as well as a decrease in disease progression (Catania et al., 1993; Airaghi et al., 1999; Catania
et al., 1994). Furthermore, α-MSH-derived peptides were found to decrease HIV replication in monocytic cell
lineages (Barcellini et al., 2000). In addition, α-MSH demonstrated a reduction in the production of IL-1β
and TNF induced by the viral protein gp120 in whole blood samples obtained from HIV patients (Catania
et al., 1998b). However, the specific receptors through which α-MSH mediates these mechanisms remain
unknown, despite its promising in vitro effects against HIV.

6.3 - α-ΜΣΗ ανδ βαςτεριαλ ινφεςτιονς

Despite viral infections, the literature provides solid evidence demonstrating the antibacterial capacity of
α-MSH and its derived peptides. Several derived peptides and analog molecules of α-MSH have shown
effectiveness against E. coli, Methicillin-resistantStaphylococcus aureus (MRSA), and S. aureus (please refer
to Supplementary Table 2 for specific references). In terms of the molecule’s pro-resolutive effects, research
has found that α-MSH treatment leads to a decrease in the phagocytosis of unopsonizedE. coli and S. aureus
, inhibition of NO production by RAW 264.7 cells, downregulation of TLR2 expression induced by S. aureus
, and a reduction in IL-6 levels while mitigating fever induced by LPS in rats (Phan and Taylor, 2013; Star
et al., 1995; Ryu et al., 2015; Huang and et al, 1998). In a mouse peritonitis model, administration of the
agonist AP214 prior to zymosan injection inhibited cell infiltration via MC3R. In vitro experiments also
demonstrated that AP214 reduced the release of TNF, IL-6, and IL-1β by primary peritoneal macrophages
stimulated with zymosan via MC3R. However, it is important to note that AP214 stimulated the uptake of
zymosan particles and apoptotic neutrophils by macrophages (Montero-Melendez et al., 2011). These studies
strongly suggest that both α-MSH and its agonist exert pro-resolutive effects against bacterial infections,
and these effects may be mediated by MC3R.

7.1. Glucocorticoid-induced leucine zipper (GILZ)

Glucocorticoid-induced leucine zipper (GILZ) is a crucial component of the anti-inflammatory response. It
is a protein consisting of 137 amino acids and is rapidly induced by the administration of glucocorticoids
in various cell types. GILZ serves dual functions as a transcription factor, activating different genes, and
as a cytoplasmic protein, interfering with various signaling pathways (Ronchetti et al., 2015; Bruscoli et al.,
2021; Bereshchenko et al., 2019).

7.2 - GILZ and viral infections

To date, no studies have demonstrated the pro-resolutive effect of GILZ during viral infections. In fact,
research has shown that GILZ binds to STAT1 and hinders its translocation to the nucleus, thereby reducing
the expression of type I interferon-induced genes (Nataraja et al., 2022). This suggests that GILZ may
have a detrimental impact on the host during certain viral infections. Additionally, studies have revealed
that the infectious bursal disease virus (IBDV) thwarts the ubiquitination and degradation of GILZ in the
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cytoplasm through the viral protein VP4, leading to the inhibition of type I interferon production in vitro .
Knockdown of GILZ using siRNA significantly impeded IBDV replication (He et al., 2018; Li et al., 2013).
Further investigations are required to establish the precise role of GILZ during viral infections.

7.3 - GILZ and bacterial infections

Recent findings from our group have shed light on the role of GILZ during bacterial infections. Studies using
GILZ knockout (KO) mice have shown that these mice exhibit decreased bacterial clearance and enhanced
lung lesions when infected with Streptococcus pneumoniae . Conversely, the introduction of a cell-permeable
transactivator of transcription (TAT)-GILZ fusion protein increased macrophage phagocytosis and reduced
bacterial load in the lungs (Souza et al., 2022). TAT-GILZ treatment also enhanced macrophage influx
with a regulatory phenotype in a model of E. coli -induced peritonitis in mice, accompanied by increased
production of IL-10 and TGF-β levels, efferocytosis and bacterial clearance (Grossi et al, 2023). Intriguingly,
monocytes isolated from septic patients displayed lower expression of GILZ. However, when GILZ was
overexpressed specifically in macrophages and monocytes, bacterial clearance was enhanced in a cecal ligation
and puncture (CLP) mouse model (Ellouze et al., 2020). Supporting these findings, upregulation of GILZ
in immune cells was associated with reduced mortality induced by lipopolysaccharide (LPS) in mice (Ng et
al., 2020). Conversely, downregulation of GILZ in macrophages led to increased phagocytic activity during
S. typhimurium infection in vitro (Hoppstädter et al., 2019). Therefore, the role of GILZ during bacterial
infections appears to be dependent on the specific cell type and bacterial strain. These results suggest
the potential for developing targeted treatments tailored to specific bacterial strains in human infections.
Drug delivery systems that selectively upregulate GILZ levels in macrophages may be beneficial in certain
bacterial infections, rather than increasing its systemic levels across all cell types. Nonetheless, further studies
are needed to gain a better understanding of these complex dynamics.

8. Angiotensin-(1-7) - a proof of concept:

8.1 Angiotensin-(1-7) [Ang-(1-7)] and its first finds

Angiotensin-(1-7) (Ang-(1-7)) is an important component of the Renin-Angiotensin System (RAS), which
regulates blood pressure and electrolyte balance (Santos et al, 2018). It is a heptapeptide with therapeutic
potential demonstrated in the late 1980s by reducing blood pressure in an in vivo model (Campagnole-
Santos et al., 1989). Ang-(1-7) is generated by the catalysis of Angiotensin I (Ang I) or mostly Angiotensin
II (AngII) by the Angiotensin-Converting Enzyme (ACE) 2 anchored in the cytoplasmic membrane of the
cell. Ang-(1-7) and AngII usually have opposing effects and act by binding specifically to its Mas receptor
(MasR) which is a type of G protein-coupled receptor (GPCR). Activation of this receptor leads to a signaling
cascade that triggers the production of nitric oxide. This ACE2/Ang-(1-7)/MasR axis is then called the RAS
alternative pathway and is usually referred to as the protective counterpart of the RAS. Counter-regulation
of AngII signaling by Ang-(1-7) reduces reactive oxygen species (ROS) generation, cell proliferation, fibrosis,
and controls inflammation pathways by decreasing TGF-β/NF-kB signaling and proinflammatory molecules
(Sampaio et al, 2007; Gallagher and Tallant, 2004; Ni et al, 2012). As a result, the administration of Ang-
(1-7) or MasR agonists has emerged as a potential therapeutic strategy to counteract the negative effects
of Ang II in various diseases. Finally, the discovery of Ang-(1-7) and its role as a protective peptide in
the RAS alternative pathway has opened new avenues for research and therapeutic interventions. Further
studies are needed to fully elucidate the molecular mechanisms and clinical implications of Ang-(1-7), but
its therapeutic potential in modulating the RAS and mitigating the detrimental effects of Ang II holds great
promise.

In addition to its well-established effects on the cardiovascular and renal systems, numerous studies have now
demonstrated the anti-inflammatory and pro-resolving properties of (Ang-(1-7) in various models of chronic
and acute non-infectious inflammation. These models include asthma, arthritis, and ischemia. Studies have
shown that Ang-(1-7) exerts beneficial effects in these inflammatory conditions. For example, it has been
found to reduce airway inflammation and improve lung function in asthma models (El-Hashim et al., 2012;
da Silveira et al., 2010). In arthritis models, Ang-(1-7) has been shown to attenuate joint inflammation
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and cartilage destruction (Zeng et al., 2009). Additionally, in ischemia models, Ang-(1-7) has demonstrated
protective effects by reducing tissue damage and promoting tissue repair (Jiang et al., 2012; Santos et al.,
2014).

The underlying mechanisms by which Ang-(1-7) exerts its anti-inflammatory and pro-resolving effects are
multifaceted. Figure 1 provides a comprehensive overview of the documented effects of therapeutic admin-
istration of Ang-(1-7) in various models of viral and bacterial infections. In mouse models and in vitro
experiments, Ang-(1-7) has been found to induce apoptosis of neutrophils and eosinophils, promote the
clearance of apoptotic cells (efferocytosis), facilitate the migration of macrophages, and induce the polariza-
tion of macrophages towards an M2 anti-inflammatory phenotype (de Carvalho Santuchi et al., 2019; Melo
et al., 2021; Barroso et al., 2017; Magalhaes et al., 2018; Pan et al., 2021). Cellular and molecular actions
contribute to the resolution of inflammation, tissue repair, and the restoration of homeostasis. Findings from
these studies highlight the potential therapeutic implications of Ang-(1-7) in the management of various in-
flammatory conditions. However, further research is still needed to fully understand the precise mechanisms
underlying its effects and to explore its therapeutic potential in clinical settings.

8.2 Ang-(1-7) and viral infections

Recent studies have shed light on the involvement of the Renin-Angiotensin System (RAS) in the patho-
genesis of various viral infections. Specifically, in models of Influenza A infection caused by strains such
as H7N9 and H5N1, the deficiency of angiotensin-converting enzyme 2 (ACE2), which is responsible for
converting Angiotensin II (AngII) into Ang-(1-7), has been shown to intensify the pathogenesis and lead
to acute lung injury (ALI) associated with increased morbidity. Absence of ACE2 results in an increase in
inflammation, primarily due to the activation of the Type 1 receptor (AT1R) by AngII. This dysregulation
of the ACE2/Ang-(1-7)/AT1R axis contributes to the exacerbation of lung inflammation and injury in re-
sponse to Influenza A infection (Zou et al., 2014). Interestingly, administration of ACE2 has been found
to improve acute inflammation caused by Influenza A (H5N1) infection, suggesting a potential therapeutic
approach (Zou et al., 2014). In patients with severe influenza A (H7N9) infection, an elevation in plasma
levels of AngII has been observed and strongly associated with disease progression (Yang et al., 2014). This
further supports the notion that dysregulation of the RAS system, specifically an imbalance between AngII
and Ang-(1-7), contributes to the severity of viral infections and their associated inflammatory responses.
These findings highlight the importance of the RAS system in viral infection pathogenesis and suggest that
modulation of this system, such as restoring the balance between AngII and Ang-(1-7), may have thera-
peutic potential in mitigating the inflammatory response and improving outcomes in severe viral infections.
However, further research is needed to fully understand the complex interactions between the RAS system
and viral infections and to explore the potential of targeting this system for therapeutic interventions.

In addition to AngII, studies have evaluated the relevance of Ang-(1-7) and its Mas receptor. Our observations
revealed that oral administration of Ang-(1-7) reduced mortality and attenuated excessive inflammation by
promoting resolution effects such as apoptosis and efferocytosis of neutrophils following Influenza A (H1N1)
infection. These effects were associated with a decrease in viral load and lung injury. Importantly, the
success of Ang-(1-7) treatment was directly linked to the presence of the Mas receptor, as the absence of
this receptor worsened the infection, leading to 100% mortality (Melo et al., 2021).

8.3 Ang-(1-7) and bacterial infections

In the context of bacterial infection, treatment with Ang-(1-7) has shown promising benefits in reducing
lung bacterial load, sepsis, and mortality associated with pneumococcal infection following Influenza A virus
infection (Melo et al., 2021). Another significant finding of Ang-(1-7) is its ability to restore the phagocytic
capacity of neutrophils in mice with experimental Type 2 Diabetes Mellitus, enabling them to effectively
phagocytize bacteria such as Staphylococcus aureus , which is known to cause lung infections (Soto et al.,
2019). In the context of bacterial infection, Ang-(1-7) has also been found to suppress macrophage polariza-
tion towards the M1 phenotype and promote a shift towards the M2 phenotype in a model of polymicrobial
sepsis induced by cecal ligation and puncture (CLP). This modulation of macrophage phenotype reduces
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excessive inflammation (Pan et al., 2021). Additionally, in the same CLP model, Ang-(1-7) has been shown
to attenuate mortality by mitigating the exaggerated inflammatory response, oxidative stress, and apoptosis
(Tsai et al., 2018). These results highlight the protective effects of Ang-(1-7) against infections and empha-
size that modulation of the RAS can be beneficial in promoting the resolution of inflammation associated
with infections.

Conclusion

Pro-resolving molecules modulate a range of pathways associated with tissue inflammation and damage
during viral and bacterial infections and provide overall beneficial effects and earlier control of infection and
restoration of tissue homeostasis. These beneficial effects in inflammation without altering the ability of the
host to deal with infection are the basis for the development of pro-resolving molecules or their mimetics
as co-adjuvant treatment of infection. In addition, these molecules appear to provide anti-inflammatory,
pro-resolving and, at times, anti-infective benefit, without the known undesirable and immunosuppressive
effects of glucocorticoids.
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T. F. F., Gonçalves, R. C., & Castro, I. A. (2020). Potential benefits and risks of omega-3 fatty
acids supplementation to patients with COVID-19. Free radical biology & medicine, 156, 190–199.
https://doi.org/10.1016/j.freeradbiomed.2020.07.005

142. Ronchetti, S., Migliorati, G., & Riccardi, C. (2015). GILZ as a Mediator of the Anti-Inflammatory
Effects of Glucocorticoids. Frontiers in endocrinology, 6, 170. https://doi.org/10.3389/fendo.2015.00170
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207. Zou, Z., Yan, Y., Shu, Y., Gao, R., Sun, Y., Li, X., Ju, X., Liang, Z., Liu, Q., Zhao, Y., Guo, F., Bai, T.,
Han, Z., Zhu, J., Zhou, H., Huang, F., Li, C., Lu, H., Li, N., Li, D., . . . Jiang, C. (2014). Angiotensin-
converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nature communications,
5, 3594. https://doi.org/10.1038/ncomms4594

208. Zoued, A., Zhang, H., Zhang, T., Giorgio, R. T., Kuehl, C. J., Fakoya, B., Sit, B., & Waldor, M. K.
(2021). Proteomic analysis of the host-pathogen interface in experimental cholera. Nature chemical
biology, 17(11), 1199–1208. https://doi.org/10.1038/s41589-021-00894-4

Table 1 - Overall effects for the best studied pro-resolving molecules in the context of bacterial
and viral infections.

Mediator Pathogen class Overall effects

LXA4 Bacteria In general, beneficial effects against different types of bacteria. Administration of LXA4 is associated with diminished production of pro-inflammatory mediators and enhanced efficacy of bacterial clearance when administered with antibiotics.
Resolvins Virus Overall, Resolvins display anti-inflammatory and protection from tissue damage without affecting viral load.

Bacteria Robust evidence demonstrates that different types of resolvins decrease inflammation, enhance bacterial clearance and increase efferocytosis.
Maresins Bacteria Despite little data, evidence suggests pro-resolutive effects, such as decreased inflammation and bacterial burden.
Protectins Bacteria Overall, administration of PD1 is associated with decreased bacterial burden and increased production of anti-inflammatory mediators.

Virus PD1 administration decreased both inflammation and viral loads against different viruses, such as RSV, HSV, H1N1 and H5N1.
GILZ Bacteria Evidence points towards to pro-resolutive effects depending on the host cell and bacteria type.
AnxA1 Bacteria In most of the studies, AnxA1 and Ac2-26 were associated with diminished inflammation and enhanced bacterial clearance.

Virus Accelerated resolution and decreased inflammation of endogenous AnxA1 and Ac2-26 treatment against arbovirus infections.
Angio (1-7) Virus Ang-(1-7) reduces exacerbated inflammatory response, increases apoptosis and efferocytosis of neutrophils in the lung, reduces lung damage and reduces Influenza A virus in the lung.

Bacteria Ang-(1-7) prevents sepsis, bacterial burden in the lung, recovers ability of neutrophils to phagocytize, decreases macrophage polarization towards the M1 and promoted it to the M2 and controls exacerbated inflammatory response.

Supplementary Table 1 - Studies showing the effects of the administration of pro-resolving
mediators or their role as assessed by inhibition of their synthesis or results in gene deficient
mice or cells.

Mediator Evidence Pathogen Reference

Lipids
LXA4

Virus
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Mediator Evidence Pathogen Reference

In vitro and in vivo
(macrophages), 5-LO
deficient cells fail to
develop M2
macrophage
polarization, leading to
exuberant pneumonitis
and peri bronchiolitis

Respiratory sincicial
virus (RSV)

Shirei et al., 2014

Inhibition of lipoxins
production and
increased lethality of
mice infected with the
H5N1 VN/1203 strain

IAV Cilloniz et al., 2010

Bacteria
Decreased bacterial
burden of 5-LO KO
mice

Mycobacterium
tuberculosis

Bafica et al. 2005

Increased lung
bacterial burden and
lethality of infected
mice associated with
inhibition of LXA4
production

Mycobacterium
tuberculosis

Peres et al., 2007

LXA4 diminished P.
gingivalis aggregation
via integrins activation

Porphyromonas
gingivalis

Börgeson et al., 2011

LXA4 diminished
tissue injury and
COX-2 levels

Porphyromonas
gingivalis

Pouliot et al., 2000

Inhibition of
inflamasome and
autophagy inR
AW264.7 exposed to P.
gingivalis
lipopolysaccharide
(PgLPS)

Porphyromonas
gingivalis

Zhao et al., 2021

15-Epi-LXA4
treatment enhanced
bacterial clearance

Escherichia coli Sekheri et al., 2020

Decrease of IL-6 and
TNF when combined
with antibiotic
treatment

Escherichia coli Ueda et al., 2014

Inhibition of
pro-inflammatory
mediators

Salmonella
typhimurium

Gewirtz et al., 1998
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Mediator Evidence Pathogen Reference

Pharmacological
inhibition of LXA4
receptor resulted in
more pulmonary edema
and increased bacterial
loads in the lungs and
systemically

Pneumococcal
pneumonia

Siegel et al., 2021

Anti-inflammatory
effects during cecal
ligation and puncture
(CLP) in a rat model

Cecal ligation and
puncture (CLP)

Walker et al., 2011; Wu
et al., 2014

Resolvins (D, E,
and T series)

Virus
Decreased levels of
pro-inflammatory
cytokines and ACE2
expression with RvD6
treatment in vitro

SARS-CoV-2 Pham et al., 2021

in vitro, diminished
levels of TNF, IL-6,
IL-8, CCL2, CCL3 and
CCL4 with RvD1 and
RvD2 treatment

SARS-CoV-2 Recchiuti e tal, 2021

AT-RvD1 ameliorates
lung inflammation,
without altering viral
loads

H3N2 and
Streptococcus
pneumoniae
co-infection

Wang et al., 2017

Decreased mRNA
levels of TNF and IL-8
in pNHBE cells with
RvD1 treatment
without affecting viral
load

H3N2 Guo et al., 2020

RvD1 treatment
decreased inflammation
parameters, although
failed to decrease viral
laods in vivo

Herpes Simplex Virus
(HSV)

Rajasagi et al., 2017

RvE1 decreased
inflammation and IL-6,
IFN-γ and CXCL-1
levels in the cornea

HSV-1 Rajasagi et al., 2011

RvE1 restored M2
phenotype of 5-LO
macrophages in vitro

RSV Shirey et al., 2014

Bacteria
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Mediator Evidence Pathogen Reference

RvD1 promotes
resolution of
inflammation in a
mouse model of
bacterial keratitis

Pseudomonas
aureoginosa

Lee et al., 2022; Carion
et al., 2019

RvD1 and D5
treatment reduced
bacterial loads,
inflammation and
rescued mice from
death

Citrobacter rodentium Diaz et al., 2017

RvD2 promotes the
resolution of
inflammation and
bacterial clearance

Staphylococcus aureus Chiang et al., 2015

RvD2 promotes the
resolution of
inflammation and
bacterial clearance

Escherichia coli Chiang et al., 2015

RvD4 enhanced
efferocytosis in vivo

Staphylococcus aureus Winkler et al., 2016

Decrease in the
production of pro
inflammatory cytokines
via RvD1 treatment in
human macrophages

LPS and Escherichia
coli

Palmer et al., 2011

RvD1 and D5
decreased production
of inflammatory
cytokines and increased
phagocytosis of
bacteria by human
machrophages

Escherichia coli Chiang et al., 2012

RvD3 decreased
pro-inflammatory
cytokines production
and accelerates
resolution

Escherichia coli Norris et al., 2018

RvD1 treatment
decreased
inflammation,
increased bacterial
clearance and survival
of mice

CLP Chen et al., 2014

RvD1 treatment
decreased inflammation
in a model of sepsis
induced by
D-galactosamine
(GalN)

of sepsis induced by
D-galactosamine
(GalN)

Murakami et al., 2011
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Mediator Evidence Pathogen Reference

RvD1 and D5
decreased production
of inflammatory
cytokines and increased
phagocytosis of
bacteria by human
macrophages and
neutrophils

Escherichia coli Chiang et al., 2012

RvD1 treatment
reduced bacterial
burden and lung
inflammation during
infection in mice

Pseudomonas
aureoginosa

Codagnone et al., 2018

AT-RvD1 treatment
decreased leukocyte
influx and production
of pro inflammatory
cytokines and increased
bacterial clearance
during Nontypeable
Haemophilus influenzae
(NTHi) in mice

Nontypeable
Haemophilus influenzae
(NTHi)

Croasdell et al., 2016

Treatment with
AT-RvD1 1h post
infection enhanced the
clearance of E. coli and
Pseudomonas
aeruginosa in a murine
model of pneumonia

Escherichia coli and
Pseudomonas
aeruginosa

Abdulnour et al., 2016

AT-RvD1 treatment
decreased lung
inflammation and lung
pneumoccocal load in
the lungs

Streptococcus
pneumoniae

Wang etal, 2017

17-epi-RvD1 restored
human neutrophils
apoptosis in vitro and
decreased bacterial
load during E. coli
infection in the lungs

Escherichia coli Sekheri et al., 2020

RvD1 treatment
decreased lung
inflammation and
decreased bacterial
burden in cystic
fibrosis infected mice

Pseudomonas
aeruginosa

Isopi et al., 2020
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Mediator Evidence Pathogen Reference

RvD1 treatment alone
or in combination with
ceftazidime accelerate
the resolution of
inflammation in the
lungs

Pseudomonas
aeruginosa

Gao et al., 2020

AT-RvD1 treatment
attenuated renal
inflammation in a
model of CLP in
BALB/C mice

CLP model Silva et al., 2021

RvD1 and RvD2
(individually)
treatment diminished
bacterial load in the
kidneys in a model of
S. aureus infection

Staphylococcus aureus Svahn et al., 2016

RvD2 treatment
decreased bacterial
loads in the lungs
during P. aureoginosa
infection

Pseudomonas
aeruginosa

Walker et al., 2022;
Sundarasivarao et al.,
2022

RvE1 treatment
decreased inflammation
and increased bacterial
loads during E. coli
infection

Escherichia coli Seki et al., 2010

RvE1 treatment
increased antimicrobial
activity and decreased
bacterial load against
Aggregatibacter actino-
mycetemcomitans

Aggregatibacter actino-
mycetemcomitans

Abdullatif et al., 2022

decreased inflammation
during P. gingivalis
infection in mice and in
rabbit treated with
RvE1

Porphyromonas
gingivalis

Hasturk et al., 2007

RvE1 attenuated
inflammation and
reduced bacterial load
in a CLP model and
diminished the levels of
IL-1B, IL-6 and CCL-2
in LPS stimulated bone
marrow-derived
macrophages
(BMDMs)

CLP model Chen et al., 2020
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Mediator Evidence Pathogen Reference

Resolvins of T series
prevented NET
formation in vitro and
decreased bacterial
load and neutrophil
influx during S. aureus
infection in vivo

Staphylococcus aureus Chiang et al., 2022

Maresins
Bacteria

Mar-1 decreased
bacterial intracellular
growth

Mycobacterium
tuberculosis

Ruiz et al., 2019

MCTR3 alone or in
combination with
MCTR1 decreased lung
inflammation and
bacterial burden during
Streptococcus
pneumoniae

Streptococcus
pneumoniae

Tavares et al., 2022

Virus
Mar-1 decreased
inflammation and viral
transcripts during RSV
infection

RSV Krishnamoorthy et al.,
2023

Protectin
Bacteria

Improved levels of
IL-10, TGF-β and IL-4
in the intestinal tract
via PD1 in a model of
gut dysbiosis

Gut dysbiosis Ariyoshi et al., 2021

PD1 treatment
increased uptake of E.
coli by human
macrophage and
neutrophil

Escherichia coli Hamidzadeh et al.,
2022; Chiang et al.,
2012

PD1 treatment
decreased bacterial
burden in mice infecte
with L. monocytogenes

Listeria monocytogenes Bang et al., 2021

Virus
Topic treatment with
PD1 during HSV
decreased inflammation
in rodent model

RSV Rajasagi et al., 2013

Intranasal treatment
with PD1 and PCTR1
decreased inflammation
and genomic viral load
during RSV infection

RSV Walker et al., 2021
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Mediator Evidence Pathogen Reference

Decreased viral
replication of H1N1
and H5N1 in A549 cells

IAV Morita et al., 2013

Improved survival rates
of mice infected with
H1N1

IAV Morita et al., 2013

α-ΜΣΗ

Bacteria
Decrease in the
phagocytosis of
unopsonized E. coli
and S. aureus by RAW
264.7

Escherichia coli and
Staphylococcus aureus

Phan and Taylor, 2013

Downregulation of
TLR2 expression
induced byS. aureus in
human keratinocytes

Staphylococcus aureus Ryu et al., 2015

α-MSH decreased levels
of IL-6 induced by LPS
in rats

LPS induced model Huang and Tatro, 1998

Virus
α-MSH reduced the
production of
pro-inflammatory
cytokines in the blood
of HIV patients

HIV Catania et al., 1998

GILZ
Bacteria

Increased lung lesion
and bacterial burden
during bacterial
infection in GILZ KO
mice

Streptococcus
pneumoniae

Souza et al., 2022

Enhanced bacterial
clearance in CLP
model associated with
increased expression of
GILZ restricted to
macrophages

CLP model Ellouze et al., 2020

Up-regulation of GILZ
associated with
reduced mortality
induced by LPS in mice

LPS-induced Ng et al., 2020

AnxA1
Bacteria
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Mediator Evidence Pathogen Reference

AnxA1 treatment
decreased bacterial
burden and
inflammation in a
model of meningitis
induced by bacteria

Streptococcus suis Ni et al., 2021

Ac2-26 treatment
decreased bacterial
load and inflammation
in the lungs of infected
mice via FPR2 receptor

Streptococcus
pneumoniae

Machado et al., 2020

Virus
Pro-resolutive effects of
Ac2-26 treatment
during DENV infection

DENV Costa et al., 2022

Pro-resolutive effects of
AC 2-26 treatment
during CHIKV
infection

CHIKV de Araújo et al., 2022

Ang-(1-7)
Virus

Ang-(1-7) oral
administration reduced
lethality, promoted
resolution and
decreased inflammation
associated with
Influenza infection

H1N1 Melo et al., 2021

Mas receptor genetic
ablated mice displayed
100% lethality when
infected

H1N1 Melo et al., 2021

Bacteria
Ang-(1-7) treatment
decreased bacterial
load in the lungs and
reduced mortality
associated with
pneumococcal infection
following Influenza A
virus infection

Streptococcus
pneumoniae

Melo et al., 2021

Improved phagocitic
capacity of neutrophils
from diabetic mice

Staphylococcus aureus Soto et al., 2019

Ang-(1-7) treatment
reduced inflammation
associated with
infection by promote
M2 phenotype
polarization in mice

CLP model Pan et al., 2021
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Mediator Evidence Pathogen Reference

Ang-(1-7) treatment
reduced inflammation
and lethality associated
with infection

CLP model Tsai et al., 2018

Supplementary Table 2 - The interference of pathogen on the expression of/endogenous role
of pro-resolutive molecules .

Mediators Evidence Pathogen Refs

Lipids
LXA4

Virus
Downregulation of LXA4 levels in vitro. Exogenous LXA4 reduced the activation of ERK, NF-κB, and AKT pathways Kaposi’s sarcoma-associated herpesvirus (KSHV) Chandrasekharan et al., 2016
Possible downregulation LXA4 levels to modulate chromatin dynamics and favours viral cycle Kaposi’s sarcoma-associated herpesvirus (KSHV) Asha et al., 2020

Respiratory sincicial virus (RSV) Shirei et al., 2014
Lower LXA4/LTB4 ratio during co-infection RSV and Micoplasma pneumoniae co-infection Wu et al., 2016
Increase in LXA4 levels in human monocytes Human immunodeficiency virus (HIV) Genis et al., 1992
Decreased levels of LXA4 in Gx KO infected mice Influenza A virus (IAV) Kelvin et al., 2014
Marked increase in LXA4 levels in the BAL fluid of COVID-19 patients SARS-CoV-2 Archambault et al., 2021

Bacteria
Elevated plasma levels of LXA4 in active tuberculosis patients compared with latently infected individuals and healthy volunteeers at diagnosis Mycobacterium tuberculosis Nore et al., 2020; Lee et al., 2015; Kumar e tal, 2019
Virulent strains of M. tuberculosis stimulate production of LXA4, playing a deleterious effect via consequent reduction of PGE2 Mycobacterium tuberculosis Chen et al., 2008; Divangahi et al., 2009
Increased LXA4 levels and decreased survival and host cell death Pseudomonas aureoginosa Dar et al., 2022
Bacterial epoxide hydrolase decreased the levels of 15-Epi-LXA4 synthesis and enhances inflammation in the BAL fluid of patients as well as in mice Pseudomonas aureoginosa Flitter et al., 2017 Hvorecny et al., 2018
Time-dependent production of LXA4 and FPR2 expression in the human skin Escherichia coli Motwani et al., 2018

Brucella abortus Fahel et al., 2015
Disturbed levels of LXA4 in the human placenta during infection Listeria monocytogenes Conner et al., 2022
Disturbed levels of LXA4 in nasal polyps Staphylococcus aureus Pérez-Novo et al., 2006

Resolvins (D, E, and T series)
Virus

Downregulation of RvD1 and RvD3 in the plasma of critically ill COVID-19 patients. Correlation between decreased levels and severity of disease SARS-CoV-2 Palmas et al., 2021
Higher levels of RvD1, D2, D4 and D5 in the BAL fluid COVID-19 patients when compared th healthy individuals SARS-CoV-2 Archambault et al., 2021
Diminished levels of RvD1 in the plasma in humans Clostridium difficile Dróżdż et al., 2020
Diminished levels of RvD1 in the serum of patients with Hansen’s disease Mycobacterium leprae Silva et al., 2017

Maresins Virus
Increased levels of Mar-1 and Mar-2 in the serum of COVID-19 patients when compared to control individuals SARS-CoV-2 Regidor et al., 2021

α-ΜΣΗ

Bacteria
Cleavage of α-MSH by toxins produced by S. aureus Staphylococcus aureus Rago et al., 2000
Higher levels of α-MSH in the blood of HIV patients correlated with reduced progression of disease HIV Catania et al., 1993; Airaghi et al., 1999; Catania et al., 1994

GILZ
Virus

IBDV prevented GILZ degradation Infectious bursal disease virus (IBDV) He et al., 2018; Li et al., 2013
NS1 protein of RSV decreased the levels of GILZ in A549 cells RSV Marketon et al., 2014

Bacteria
Up-regulation of GILZ levels by Yersinia enterocolitica and Clostridium difficile in vitro Yersinia enterocolitica and Clostridium difficile Köberle et al., 2012
Lower expression of GILZ in monocytes from septic patients Septic shock Ellouze et al., 2020
Increased expression of GILZ restricted to macrophages CLP model Ellouze et al., 2020

AnxA1 Parasite
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Mediators Evidence Pathogen Refs

Enhanced levels of AnxA1 in the spleen of infected mice Schistosoma japonicum Burke et al., 2010
Enhanced levels of AnxA1 in the cytoplasm of liver cells of golden hamsters Opisthorchis viverrini Hongsrichan et al., 2014
Increased levels of AnxA1 in human neutrophils and RPE cells Toxoplasma gondii Mimura et al., 2012

Bacteria
Up-regulated levels of AnxA1 in both skin and serum of patients Mycobacterium leprae Ribeiro et al., 2020
Perturbed levels of AnxA1 in MDSCs of infected patients Mycobacterium leprae da Silva et al., 2021
Increase of AnxA1 levels during Rolipram + antibiotics treatment Streptococcus pneumoniae Tavares et al., 2016

Virus
Decreased levels of AnxA1 in the plasma of COVID-19 patients SARS-CoV-2 Canacik et al., 2020
increased levels of severe COVID-19 patients compared to mild patients SARS-CoV-2 Ural et al., 2022
Increased expression levels of AnxA1 in circulating monocytes of COVID-19 convalescent patients SARS-CoV-2 Wen et al., 2020
H1N1 infection up-regulates FPR2 expression in vitro H1N1 Ampomah et al., 2018

Figure legends:

Figure 1: The double-edge role of inflammation in the context of infection. (1) Pathogens (viruses
or bacteria) infect host-cells. Inflammation is needed for pathogen control. (2) Mediators of inflammation
recruit and activate leukocytes and resident cells, (3) events that are associated with local containment of
infection and induction of protective immune response. (4) When inadequate, the inflammatory response
may cause (5) disease. Here, we discuss how mediators pro-resolving therapies contribute to the control of
disease during infection.

Figure 2: Therapeutic effects of Ang-(1-7) against infectious diseases . Ang-(1-7) exerts its effects
by binding to MasR receptors, leading to the amelioration of inflammation and disease signs. This has been
observed in various models of respiratory infection. In both (A) viral (e.g., H1N1) and (B) bacterial (e.g.
Staphylococcus aureus) infections, Ang-(1-7) induced pro-resolving effects and decreased viral and bacterial
loads. It has been shown to induce pro-resolving effects, meaning it helps resolve the inflammatory response
and promotes tissue repair.
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