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Abstract

Wildlife populations can be unmarked, meaning individuals lack visually distinguishing features for identification; populations

may also exhibit non-independent movements, meaning individuals move together. For either unmarked or non-independent

individuals, models based on spatial capture-recapture (SCR) approaches estimate abundance, density, and other population

parameters critical for monitoring, management, and conservation. However, when individuals are both unmarked and non-

independent, few model options exist. One approach has been to apply unmarked models and not address the non-independence

despite unquantified impacts of overdispersion on bias, precision, and the ability to make robust ecological inferences. We

conducted a simulation study to quantify the impact of non-independence on the performance of spatial count (SC) and spatial

partial identity models (SPIM), two SCR-based unmarked modeling approaches, and used the performance of fully marked and

independent SCR as a reference. We varied the levels of non-independence (aggregation and cohesion), detection probability,

and the number of partial identity covariates used to resolve identities in SPIM estimation. We expected estimates of abundance

and sigma (the spatial scale of individual movement) to be increasingly biased and less precise as aggregation and cohesion

increased. Results showed that models indeed became less robust to increasing non-independence, especially for abundance,

but importantly suggested that only SPIM could be reliably applied under low levels of cohesion when sufficient partial identity

covariates are available. SC yielded consistently biased estimates with inflated precision that could not be corrected to nominal

levels of coverage. SCR was the most robust across all combinations of aggregation and cohesion, as expected. We therefore

advise against the use of SC models for estimating population parameters when individuals are known to be non-independent,

caution that SPIM may be used under narrow ecological conditions, and encourage continued investigations into sampling

design and methods development for populations of unmarked and non-independent individuals.

Introduction

Density estimation is a cornerstone of wildlife research and conservation. Spatially explicit capture-recapture
methods (SCR), or capture-mark-recapture more broadly, are a well-established approach to estimating abun-
dance and density (Efford, 2004; Royle & Young, 2008; Tourani, 2021). Traditionally in SCR, individuals are
assumed to be identifiable and independent, but many species may not meet or adhere to these assumptions.
Individuals may be unidentifiable (i.e., ‘unmarked’) for reasons including uninformative visual appearances
from non-invasive sampling techniques such as camera traps, or the high costs of genetic approaches for
obtaining identity (Cheng et al., 2017; Gilbert et al., 2021). The independence assumption may also be
unmet because many species exhibit some degree of territoriality or sociality for at least some period of
their lives (Prox & Farine, 2020). Accommodating common realities such as unmarked and non-independent
individuals can be important for avoiding biases in density estimates. Approaches using the SCR frame-
work have been developed that handle unidentifiability and non-independence separately (e.g., Augustine
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et al., 2018; Chandler & Royle, 2013; Emmet et al., 2021; Royle, 2004), but there are as yet no SCR-based
approaches that simultaneously accommodate both. Instead, models for unmarked populations are applied
and the non-independence is acknowledged as a potential source of bias of unknown magnitude (e.g., Sun et
al., 2022). However, the consequence of violating independence in SCR-based unmarked models should be
quantified because precise and accurate density estimates are critical for determining population status and
monitoring for conservation and management.

Identities enable the assignment of detections to individuals and the creation of individual-specific detection
histories. These detection histories are informative about detection probability, and therefore help quantify
the number of undetected individuals remaining in the population. When some detections cannot be assigned
to individuals, they may be discarded (Tourani et al., 2020), incorporated along with detections of marked
individuals (Sollmann et al. 2013), or modeled as having lost their identity with some probability (Jiménez
et al., 2020). Occasional misidentifications may also be accounted for (McClintock et al., 2014; Morrison et
al., 2011; Petersma et al., 2023; Rakhimberdiev et al., 2022; Yoshizaki et al., 2009). However, if all individuals
are entirely unmarked or have few identifying marks such that their full identities are unknown, then spatial
count (SC) and spatial partial identity models (SPIM) are two SCR-based modelling alternatives that can
be used for density estimation. For wholly unmarked populations, SC models use the spatially correlated
pattern of counts of detections across the sampling array, based on expectations of how single, independent
individuals move on the landscape (Chandler & Royle, 2013). When partial identity marks are available, such
as the spot or stripe pattern on one or both flanks of an animal, SPIM can probabilistically match detections
to individuals and deterministically exclude non-matching detections from being from the same individual
(Augustine et al., 2018, 2019). Precision with SPIM generally increases with more partial marks. SC and
SPIM can be promising options for estimating populations with low density, but become less robust as
density and individual movement increase space-use overlap among individuals and uncertainty in identities
(Augustine et al., 2019; Chandler & Royle, 2013; Ruprecht et al., 2021).

In SCR-based models, individuals and their activity centers are modelled as outcomes of a spatial point
process (Royle et al., 2013). Individuals may be distributed non-homogenously due to habitat associations,
but are usually assumed to not interact with each other. However, in nature, non-independence among indi-
viduals arises from interactions ranging from avoidance and territoriality to varying degrees of temporary or
permanent grouping. We focus on grouping because it can also contribute to difficulty in determining iden-
tities. Grouping can provide safety from predators (Lehtonen & Jaatinen, 2016), increase foraging efficiency
(McInnes et al., 2017), and improve chances of mating (Røed et al., 2002). Non-independence from grouping
can be described with two components: aggregation and cohesion (Bischof et al., 2020). Aggregation des-
cribes the group size, so more individuals share the same activity center as aggregation increases. Cohesion
is the degree to which group individuals move together, so detections of individuals become increasingly
coordinated as members become more cohesive. Developing sampling designs that meet the independence
assumption for group-living species such as wolves (Canis lupis ), lions (Panthera leo ), and some ungulates
can be difficult, so there is growing interest in models that account for non-independence (e.g., see Emmet et
al., 2021; Hickey & Sollmann, 2018; Reich & Gardner, 2014). Notably, Emmet et al. (2021) developed a SCR
model using a cluster point process to estimate the size of cohesive groups as well as population abundance,
while accounting for detection heterogeneity due to group size. By modeling non-independence among indi-
viduals, the cluster SCR model increases the understanding of a species’ and population ecology, but still
leaves a gap in the toolkit for density estimation because it cannot be used with unmarked individuals.

Due to the lack of SCR-based models for individuals that are both unmarked and non-independent, unmarked
models are applied and non-independence is left unaddressed. Unmodeled correlation among detections can
compromise model inferences, but so far has only been investigated for fully marked SCR models (Bischof
et al., 2020; López-Bao et al., 2018; Moqanaki et al., 2021). Simulations show SCR to be relatively robust to
low-to-moderate levels of aggregation and cohesion, but the overdispersion from correlated detections and
resulting inflated precision and poor coverage of the confidence intervals around the true value may still
lead to false inferences about population parameters. In unmarked density models, non-independence may
contribute to the issues that SC and SPIM already face: higher local densities that increase overlap between
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individual space-use and uncertainty about which detections originate from which individuals (Sun et al.
2022). Aggregation and especially cohesion may result in fewer apparent individuals with inflated detection
probability and therefore underestimate density, while moderate levels of cohesion could inflate estimates
of the spatial scale of individual movement (fewer individuals being detected over a larger spatial extent
than otherwise expected). Thus, grouping would be expected to increase bias while reducing precision and
coverage. Such biased estimates could be misleading about population density, insensitive to changes in
population trajectory, and ultimately misinform conservation and management action.

We conducted a simulation study to assess the impacts of non-independence on SC and SPIM estimation and
to identify any levels of tolerable aggregation and cohesion in order to inform further application of unmarked
density models for ecological inference on species and populations with non-independent movements. For a
template species, we considered boreal caribou (Rangifer tarandus ) because it is an unmarked and grouping
species of conservation concern in Canada (Festa-Bianchet et al., 2011; Hervieux et al., 2013). Many caribou
populations are threatened and declining due to a combination of factors including habitat loss from natural
resource exploration (Nagy-Reis et al., 2021), climate change (Barber et al., 2018; Bradley & Neufeld, 2012),
and altered predator-prey dynamics (Burgar et al., 2019; Dickie et al., 2017; Hervieux et al., 2014). Tracking
population responses to conservation interventions is critical to assessing populations across landscapes and
reversing the fate of the species, but their wide distribution across remote areas makes it difficult to collect
individual detection histories for SCR (McFarlane et al., 2020). As such, there has been interest using camera
trapping and unmarked density models to estimate caribou density (Fisher et al., 2021; Sun et al., 2022).

A key challenge in monitoring caribou density with camera traps is that caribou violate requirements of
independence and identifiability for traditional SCR approaches. Caribou form temporary multi-age herds or
associations throughout the year (Body et al., 2015) and present challenges to visual identification, although
they can be partially identified based on visible sex attributes and the number of antler points on both sexes.
We conducted simulations using SCR, SC, and SPIM to estimate populations under varying levels of aggre-
gation and cohesion. We also varied the number of partial identity marks to assess how non-independence
interacts with the amount of available identity information in SPIM. Using SCR with known identities as a
reference for comparison, we expected SCR to perform best and SPIM to outperform SC as aggregation and
cohesion increase due to the availability of partial identities for assigning individuals to detections (Figure
1). Ultimately, the objective was to assess the reliability of SC and SPIM approaches for estimating densities
of populations that are simultaneously unmarked and non-independent.

Materials and Methods

We simulated populations with varying degrees of grouping behavior, while setting N = 140 and movement
scale of σ = 3 over a rectangular state-space of 60 x 30 = 1800 units2 to mirror previous inferences and
camera-trap sampling of the Algar herd of boreal woodland caribou in northern Alberta, Canada (part of the
East Side Athabasca River population, Hervieux et al. 2013; for further details see (Beirne et al., 2021; Sun
et al., 2022; Tattersall et al., 2020). We generated different population scenarios by varying individual- level
aggregation and cohesion, the number of available partial marks, and detection probability. Aggregation
values included 1, 4, and 10 in order to range from single individuals (1) to the largest group size (10)
observed in the Algar herd; cohesion values included 0, 0.3, 0.67, and 1 to range from none (0) to complete
(1). This resulted in 9 grouping scenarios in which individuals could group together and move, ranging from
a baseline independence scenario in which individuals are solitary and move independently (aggregation
= 1; cohesion = 0) to a maximal non-independence scenario in which large groups of individuals always
move together (aggregation = 10, cohesion=1) (Figure 1). When aggregation is 1, within-group cohesion is
irrelevant.

For partial marks, we created 4 categorical independent marks or covariates: coat color (e.g., black, white,
gray, brown, piebald; each with 0.20 population-level proportions), sex (equal 1:1 sex ratio), presence of GPS
collar (4% yes / 96% no), and total number of points on left and right antlers (sequential integers from 0

3
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to 17, each with a mean proportion of 0.049 and range from 0.004 – 0.180; Sun et al. 2022). Covariate
values were randomly assigned to individuals according to these proportions. We considered 6 combinations
in which identity covariates could be available, thereby spanning a range of expected probabilities of identity
from 8% to 99% (Figure 2). We defined probability of identity as the probability that two randomly drawn
individuals from the population would have the same set of partial identity covariate values. Finally, we
considered populations to have either a low baseline detection probability (p0 = 0.05) or higher (p0 =
0.20). In total, we assessed 108 different population combinations of grouping scenarios, available identity
information, and detection probability.

We simulated 100 datasets per population combination, each time subjecting individuals to 4 sampling
occasions. Sampling occurred with a 5 x 15 grid of 75 sampling locations centered within the state-space to
approximate camera trapping of the Algar caribou herd (Tattersall et al. 2020), with 3-unit spacing and a
9-unit buffer to the state-space edge (Figure 3). We adapted custom code from Bischof et al. 2020, which
uses the sim.pop function in the ‘secr’ R package (Efford 2022) (Appendix 1). We summarized data by
reporting the mean numbers of unique individuals detected, total detections, and traps with detections. To
describe the potential consequence of non-independence, we used the counts of unique animals detected per
sampling location to calculate Fletcher’s ĉ, a measure of over-dispersion that describes the degree to which
the observed variance is greater than predicted by homogeneous density (Fletcher, 2012). The statistic is
also a variance inflation factor as corrected variances may be obtained under low levels of overdispersion
(ĉ / 4) multiplying variance byĉ (Anderson et al. 1994).

Simulated detections were manipulated for density estimation in three ways. For SCR analysis, unique
individual identities were retained and fit to a frequentist null SCR model using the ‘secr.fit’ function in
the R package ‘secr’. For SC, identity information was removed to derive trap-and-occasion-specific counts
of total detections that were fit to a Bayesian-formulated null SC model using the ‘nimble’ (de Valpine et
al. 2022) package in R. For SPIM analyses, partial identity covariates were retained and associated with
individual detections and then data were fit using the ‘SPIM’ package (Augustine et al. 2019) in R. For
the Bayesian SC and SPIM, we used a slightly informative prior of gamma(24,8) on σ (Burgar et al., 2019),
resulting in a mean (± 1 standard deviation, SD) σ = 3 ± 0.6 units. Data augmentation was set to either
M = 400 or M = 600 as necessary to prevent truncation of the posterior distribution inN as determined
with visual inspection. We used an initial burn-in of 5,000 iterations and a subsequent 45,000 iterations split
into 3 chains each with 15,000 iterations. Model results were assessed for convergence with the r-hat statistic
and removed if r-hat > 1.1 (Gelman & Rubin, 1992). SC and SPIM were run using Microsoft Azure virtual
machines [Standard D64s v4 (64 vcpus, 256 GiB memory)] to reduce computation time.

Parameters of interest were abundance (N) and the spatial scale parameter for individual movement (σ) .
We report the mean (for SCR) and median (for SC and SPIM) estimates of N and σ , and similar metrics as
used in Bischof et al. (2020) to summarize model performance across the iterations of each scenario: relative
bias, coefficient of variation, and coverage. Relative bias describes the extent of over-or under-estimation
and is calculated as

RB = θ̂− θ
θ

where θ is the true value of the parameter of interest (in this case the value of N or σ used in simulations)

andθ̂ is the point estimate. Coefficient of variation is a measure of precision and is calculated as

CV = SD(θ̂)

θ̂
.

where SD is the standard deviation. For conservation and management purposes, CV < 20% is preferred
(Morin et al., 2022). Coverage was calculated as the proportion of simulations that includeθ within its 95%
credible intervals.

Coverage =
∑100

i=1 I(95CIιλοωερ ≤ θ ≤ 95CIιυππερ)

english100
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Results

Aggregation and cohesion influenced the numbers of individuals detected, total detections, and traps with
detections. The mean number of individuals detected and total detections changed little with aggregation
and cohesion: when p0 = 0.05, approximately one-third of the population was consistently detected (min –
max: 43 – 47, of N = 140) a total of 65 – 71 times. However, the variance in these measures increased as
aggregation and cohesion increased (Figure 4, Appendix 2 Table 1). For example, the standard deviation (SD)
in individuals detected increased three-fold from SD = 5 to SD = 18 when changing from the independence
(aggregation = 1, cohesion= 0) to maximal non-independence (aggregation = 10, cohesion = 1); SD in total
detections similarly increased 3.5-fold from SD = 9 to SD = 32. In contrast, the number of traps with
detections decreased with increasing aggregation and cohesion, from a maximum of 43 ± 5 (mean ± 1 SD)
under the independence scenario to a mean of only 7 ± 3 traps under maximal non-independence when p0

= 0.05. The patterns of fewer traps with detections and greater variance in unique individuals and total
detections with increasing non-independence also occurred with p0 = 0.20. (Appendix 2 Table 1, Appendix
2 Figure 1).

Aggregation and cohesion increased over-dispersion in the number of unique individuals detected per samp-
ling location (Figure 5). The overdispersion factor ĉranged from a minimum of 1.8 ± 0.2 to a maximum
of 10.4 ± 0.8 when p0 = 0.05. Generally, ĉ < 4 when cohesion was 0 and at low to intermediate values of
cohesion and aggregation. Over-dispersion further increased with p0 = 0.20 (Appendix 2 Figure 2).

Abundance

SCR estimates of abundance (N̂) were consistently the least biased across all grouping scenarios compared
to SC and SPIM (Figure 6, Appendix 2 Figure 3). Mean bias was negligible (|RB|<6%) under low cohesion
(0, 0.3) and increased to a maximum of RB = 16 – 22% when animals exhibited maximal aggregation (10)
and high cohesion (0.67, 1) with p0 = 0.05 (Appendix 2 Table 2). Estimates were relatively precise with
mean CV [?][?] 20% but suffered when both aggregation and cohesion were high, whereby the variance in
CV increased to 23% (Appendix 2 Table 3). Coverage was nominal under the independence scenario (97%)
and averaged 80 +- 19% across all grouping scenarios, but decreased to a minimum of 38% at maximal
aggregation and cohesion when p0 = 0.05 (Figure 7, Appendix 2 Table 4). After correcting the variance
for overdispersion, coverage averaged 97 +- 5% and decreased to 82% only under maximal aggregation and
cohesion (Appendix 2 Figure 4). Patterns with p0 = 0.20 were similar but with less bias, more precision,
and greater coverage (Appendix 2 Tables 2, 3, 4 and Appendix 2 Figure 4).

In comparison, SC consistently produced biased N̂ , as expected (Figure 6). Mean bias was negative, underes-
timating N with inflated precision when there was any aggregation or cohesion (mean RB ranged -34 +- 20%
to -88 +- 6%; Appendix 2 Table 2). The amount of bias (|RB|) increased with both aggregation and cohesion,
although bias was less affected by increasing cohesion at greater levels of aggregations (i.e., 10). Precision
increased with detection probability and with aggregation under intermediate cohesion (0.3, 0.67), with the
greatest mean precision (CV = 29 +- 12%) under maximal non-independence when p0 = 0.20 (Appendix 2
Table 3). Coverage with SC averaged 29 +- 32% across all grouping scenarios and detection probabilities
(Figure 7). Coverage reached nominal levels only under the independence scenario, and decreased quickly
with aggregation and cohesion to a minimum of 0 (Appendix 2 Table 4). Even after correction with ĉ, mean
coverage improved to 44 +- 33% (Appendix 2 Figure 4).

SPIM estimation of N performed differently depending on the levels of aggregation and cohesion, and number
of partial identity covariates. Estimates were generally overestimated, with the exception of high aggregation
(10) and low cohesion (0, 0.3) in which medianN was underestimated (Figure 6). Otherwise, as with SC,
bias increased with aggregation and cohesion, reaching a maximum of RB = 185 +- 96% under maximal non-
independence with only the collar covariate when p0 = 0.20 (Appendix 2 Table 2). Precision also increased
with aggregation and cohesion; mean CV with only the collar covariate when p0 = 0.05 decreased from
CV = 59 +- 13% under the independence scenario by 30% to 29 +- 12% under maximal non-independence

5



P
os

te
d

on
3

J
u
l

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
68

83
82

19
.9

47
12

61
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

(Appendix 2 Table 3). Having more partial identity covariates, or more specifically a greater probability of
identity, helped to moderate bias and inflated precision from aggregation and cohesion; estimates became
less biased and more stable in precision with more partial identity covariates, such that use of all 4 partial
ID covariates when p0 = 0.20 consistently resulting in negligible mean bias (RB: 2 - 6%) and stable mean
precision of CV = 9 - 10% across all combinations of aggregation and cohesion (Appendix 2 Tables 2, 3).
Average coverage across all grouping scenarios was 62 +- 23% (Figure 7), with a minimum of 45% under
maximal non-independence even when all 4 spatial identity covariates. Coverage only reached nominal or
near-nominal levels when cohesion was low and probability of identity was greater than 54% (i.e., at least 2
partial identity covariates if collar was not one of the 2 covariates; Appendix 2 Table 4). Coverage improved
when variance was corrected with ĉ, averaging 89 +- 11% across all scenarios (Appendix 2 Figure 4).

Sigma

SCR estimates of sigma (σ̂) exhibited similar but less pronounced patterns of bias, precision, and coverage
compared toN̂ (Figures 6, 7). SCR σ̂ was generally unbiased (mean |RB|[?] 8%) and precise (mean CV
[?] 15%) across all levels of aggregation and cohesion (Appendix 2 Tables 5, 6), although the variance in
bias and precision increased with aggregation and cohesion. Coverage was nominal under the independence
scenario and less than 90% only when cohesion was high (0.67, 1) (Figure 7, Appendix 2 Table 7). After
correcting variance for overdispersion, coverage was an average 96 +- 7% and only decreased below 90% (to
82%) with maximal non-independence when p0 = 0.05 (Appendix 2 Figure 4).

For SC, σ̂ was less biased (range of mean |RB|: 0 +- 5% - 70 +- 4%) and more precise (CV < 20%)
compared to N̂ , but followed similar patterns of more bias and inflated precision with increasing cohesion
and aggregation (Figure 6, Appendix 2 Tables 5, 6). Coverage of SCσ̂ was nominal or near-nominal when
cohesion = 0 and decreased dramatically when cohesion and aggregation increased (Figure 7, Appendix 2
Table 7). Patterns in coverage did not improve with variance correction and reached an average of 62 +-
40% (Appendix 2 Figure 4).

Finally, SPIM σ̂ had low bias (|RB|: 1-12%) and accordingly acceptable precision (CV [?] 20%) across all
levels of aggregation, cohesion, and detection probabilities (Figure 6, Appendix 2 Tables 5, 6). As expected,
estimates exhibited greater bias (or variance in bias), more precision, and less coverage with increasing
cohesion and aggregation. However, as with SPIM N̂ , more partial identity covariates helped to moderate
these effects. Notably, at high levels of cohesion (0.67, 1), SPIM σ̂ had greater coverage than SCR σ̂ (Figure
7). Once corrected for overdispersion, coverage for SPIM σ̂ improved from an average of 83 +- 12% across
grouping scenarios and detection probabilities to a mean of 93 +- 7% (Figure 7, Appendix 2 Figure 2, Table
7).

Discussion

Unmarked density estimation is a challenging but worthy endeavor due to the many species and populations
that are unmarked and require information about population status for informed conservation. However,
when individuals are both unmarked and non-independent, our simulations showed that two primary SCR-
based unmarked approaches, SC and SPIM, perform poorly. Population abundance (N ), and the spatial scale
parameter (σ ) to a lesser extent, were often estimated with increasing bias and imprecision as aggregation
and cohesion increased. The reference SCR model remained the least biased and most precise despite non-
independence (Bischof et al., 2020; López-Bao et al., 2018), while aggregation and cohesion affected SC
and SPIM differently. In particular, we identified no conditions of non-independence under which SC could
reliably estimate parameters. In contrast, SPIM was more robust to violating the independence assumption
and could estimate N andσ under some conditions with low cohesion. Unmarked density models should be
applied selectively and carefully to populations exhibiting non-independence among individuals.

Our simulations strongly suggest that SC models should not be used when individuals aggregate or co-
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here, and are likely only appropriate for independent species or periods when individuals are independent.
Abundance was severely underestimated with misleading precision at all levels of aggregation and cohesion,
consistent with our expectations but opposite to the overestimation found in previous work with independent
populations (Chandler & Royle, 2013; Ruprecht et al., 2021). Perhaps fortunately, the CV never reached
20% or lower to afford confident application of the biased estimates for informing conservation or manage-
ment action (Morin et al., 2022). Estimates of σ were slightly better but still biased, rendering SC unfit
for inferences about movement and space use when individuals exhibit grouping behaviors. These issues
could not be resolved by applying ĉ as a variance inflation factor, as it failed to recover sufficient cover-
age for parameter estimates. Indeed, ĉ was ineffective because the relative variance (variance for a given
grouping scenario divided by the variance for the independence scenario) far exceeded ĉ, in contrast to the
SCR simulations of Bischof et al. (2020). Furthermore, overdispersion when ĉ > 4 is ideally addressed
with additional model structure (Anderson et al., 1994; Fletcher, 2012). Realistically, other measures of
overdispersion would be more appropriate for SC models because empirical or non-simulated SC data do not
have the counts of unique individuals used for the formulation ofĉ in these simulations. We also recognize
the potential to consider other distributions to model the SC data, such as the negative binomial, to allow
for greater variance (Lindén & Mäntyniemi, 2011) rather than the standard Poisson distribution used here.

While SPIM estimation also suffered with increasing non-independence, SPIM may be acceptable when
cohesion is minimal provided there are sufficient partial identity covariates. Applying SPIM under larger
values of cohesion resulted in overestimated populations, which Sun et al. (2022) also found with empirical
and simulated SPIM modeling under independence. Indeed, the variance in RB and CV (across the iterations
for any single grouping scenario) were large even with high probability of identity (i.e., 99% from all 4
partial identity covariates) and p0 = 0.20, despite small mean RB and CV values across grouping scenarios.
The underestimated population observed with low cohesion and high aggregation was consistent with our
expectations, while the otherwise mostly positive bias observed with SPIM was consistent with Augustine
et al. (2019) – who also reported positive bias under independence due to high local densities that increased
identity uncertainty and ultimately assigned detections to more individuals than actually detected. The
change in pattern of bias with increasing cohesion, from under- to over-estimation, with few partial identity
covariates is unexplained and motivates further examination. Broadly, the increase in bias with increasing
non-independence is consistent with increasing uncertainty in individual identification due to overlapping
space use.

The decreased bias and greater precision from using more SPIM partial identity covariates highlight the
importance of maximizing identity resolution by increasing the numbers of partial identity covariates and
their categorical values. More combinations of partial identity covariates could have been considered because
probabilities of identity ranging 53 - 90% were not assessed. However, increasing the number partial identity
covariates is not a panacea because in practice the number of partial identity covariates for a species or
population will be limited (motivating the use of SPIM in the first place), and estimates were still biased under
high aggregation and cohesion even when identities were completely known (SCR). Additional investigation
of SPIM is nonetheless warranted to further explore the ecological and sampling conditions in which SPIM
models could still be reliably used. Future simulations should explore more probabilities of identity, values
of aggregation and cohesion, and different spacings of sampling locations. Density estimation for unmarked
populations expected to have low levels of aggregation and cohesion may benefit from sampling spaced closer
than generally recommended under independence in order to increase spatial variation among group members
(Augustine et al., 2019; Chandler & Royle, 2013).

In addition to SCR-based unmarked approaches, other approaches instead rely on information about mo-
vement speed (or its inverse: staying time within a viewshed). Two such unmarked models, the random
encounter model (Rowcliffe et al., 2008) and random encounter and staying time (Nakashima et al., 2018),
have demonstrated potential to be robust to non-independence but also poor model fit that would hamper
interpretation of spatial or temporal patterns (Hayashi & Iijima, 2022). Two other non-SCR approaches,
space to event (Moeller et al., 2018) and time in front of camera models (Becker et al., 2022), have shown
either bias or a lack of concordance with other approaches when non-independence is added (Fisher et al.,
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2021; Hayashi & Iijima, 2022). Hayashi and Iijima (2022) also showed that bias in the non-SCR approaches
is sensitive to the choice of statistical distribution for modeling count data, including Poisson, zero-inflated
Poisson, exponential, and negative binomial. Comparing SCR-based and non-SCR-based approaches under
identical simulating conditions would be informative for helping wildlife researchers and managers choose the
appropriate sampling and modeling approaches for obtaining unbiased population estimates. Indeed, we re-
commend researchers run a small simulation study using expected population conditions and the anticipated
sampling designs to confirm that robust density estimation is feasible before implementing in the field.

Continued efforts to identify optimal sampling designs and estimation approaches are essential for robust
wildlife populations monitoring. If SCR-based unmarked approaches are to be tenable for non-independent
populations, models must have procedures to account for – and ideally attempt to incorporate – cohesion
and aggregation. In addition to using statistical distributions that account for overdispersion, some efforts
to estimate density of group-living species have corrected group densities with average group size (e.g.,
Mattioli et al., 2018). However, including a mechanism for how aggregation and cohesion impact the detection
process and lead to overdispersion would further advance the understanding of the focal species’ ecology. The
clustered SCR model of Emmett et al. (2021) begins this work and presents some potential for modification to
fit unmarked populations for ecological inference, but caution is necessary. The current formulation requires
knowledge about group membership for detected individuals, which is difficult to obtain when identities are
unknown unless groups are being monitored intensively, in which case detections with unknown identities are
usually the exception and can be dealt with in ways previously described. Group membership might instead
be estimated, informed by spatial patterns and supported with informative priors about range of movement
and group size. A model that uses the spatial pattern of detections and any available partial identities to
estimate the distribution of individuals and groups when identities and group membership remain unknown
would be of great appeal and value. However, attempting to develop a model that weaves a tapestry of gold
from relatively little information risks neglecting careful sampling design for statistical machismo (Gimenez
et al., 2014). As a result, we encourage the continued development of unmarked models but recommend that
applications of current SCR-based approaches to unmarked population estimation recognize that they are
generally unsuitable for most cases of non-independence.
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Figure captions

Figure 1. For spatial count (SC) and spatial partial identity models (SPIM), yellow cells show expecta-
tions of model performance across different values of individual-level aggregation and cohesion (i.e., non-
independence). Red crosses and green check marks indicate patterns identified in simuations. Values of
aggregation and cohesion considered in simulations are shown in parentheses.

Figure 2. Expected probabilities that two draws from a population with 4 partial identity covariates (coat
color, sex, GPS collar, antler points, in various population proportions) would be distinct from each other,
given an increasing number of those covariates used for SPIM estimation. Closed circles show all com-
binations, while open squares highlight those evaluated in simulations. Colored lines indicate the mean
probability of identity for a given partial identity covariate for each specified number of total covariates
used.

Figure 3. Example patterns of detections for N = 140 individuals (colored circles) for select combinations of
aggregation and cohesion with detection probabilities of p0 = 0.05 (top) and p0 = 0.20 (bottom), illustrat-
ing how non-independence affects the distribution of individuals and their detections across the statespace
(rectangle). Lines connect individuals to sampling locations (crosses) where detected. The sampling array
has 3-unit spacing with a 9-unit buffer to the statespace edge.

Figure . Numbers of unique individuals detected (top), total detections (middle), and traps with detections
(bottom) from simulating detection data for populations of N = 140 under 9 different non-independence
scenarios with detection probability p0 = 0.05, generated by varying aggregation (group size) and cohesion.

Figure . Calculated overdispersion factor (ĉ) of simulated detection data with detection probability p0 =
0.05 when individuals exhibit non-independence through varying levels of aggregation and cohesion.

Figure . Point estimates of abundance, N (top row), and spatial scale of individual movement, σ (bottom
row), with SCR, SC, and SPIM across a range of aggregation and cohesion values and combinations of partial
identity covariates, with detection probability p0 = 0.05. Dotted lines indicate truth: N = 140, and σ = 3.

Figure 7. Coverage of estimates of abundance, N (top row), and spatial scale of individual movement, σ
(bottom row), for SCR, SC, and SPIM, across a range of aggregation and cohesion values and combinations
of partial identity covariates, with detection probability p0 = 0.05. Dashed line indicates 95% coverage.
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