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Abstract

Point cloud registration is a vital task in 3D perception, with several different applications in robotics. Recent advancements have

introduced neural-based techniques that promise enhanced accuracy and robustness. In this paper, we thoroughly evaluate well-

known neural-based point cloud registration methods using the Point Clouds Registration Benchmark, which was developed

to cover a large variety of use cases. Our evaluation focuses on the performance of these techniques when applied to real-

complex data, which presents a more challenging and realistic scenario than the simpler experiments typically conducted by

the original authors. With few exceptions, the results reveal a significant performance gap, with most neural-based methods

performing poorly on real-complex data. However, amidst the underwhelming results, 3DSmoothNet stands out as an exception,

demonstrating excellent performance across the majority of benchmark sequences. Remarkably, it outperforms a state-of-the-art

feature extractor, namely FPFH, showcasing its effectiveness in capturing informative and discriminative features from point

clouds. Given these results, we assert that while neural-based techniques could have advantages over conventional methods,

further research is necessary to fully unlock their practical utility. We advocate for more extensive studies employing unbiased

and realistic testing procedures, akin to the rigorous evaluation framework employed in this work. This paper represents a

crucial step towards establishing a more robust literature in the field of point cloud registration. By exposing the limitations

and advantages of existing neural-based methods, we aim to inspire future research and drive the development of more effective

techniques for real-world applications.

1



Assessing the Practical Applicability of Neural-Based
Point Clouds Registration Algorithms: A Comparative

Analysis∗

Simone Fontana
School of Law

Università degli Studi di Milano - Bicocca
Piazza dell’Ateneo Nuovo 1, Milano, Italy

simone.fontana@unimib.it

Domenico G. Sorrenti
Department of Informatics, Systems and Communication

Viale Sarca 336, Milano, Italy
domenico.sorrenti@unimib.it

Federica Di Lauro
Department of Informatics, Systems and Communication

Viale Sarca 336, Milano, Italy
federica.dilauro@unimib.it

Abstract

Point cloud registration is a vital task in 3D perception, with several different applications
in robotics. Recent advancements have introduced neural-based techniques that promise
enhanced accuracy and robustness. In this paper, we thoroughly evaluate well-known neural-
based point cloud registration methods using the Point Clouds Registration Benchmark,
which was developed to cover a large variety of use cases.

Our evaluation focuses on the performance of these techniques when applied to real-complex
data, which presents a more challenging and realistic scenario than the simpler experiments
typically conducted by the original authors. With few exceptions, the results reveal a
significant performance gap, with most neural-based methods performing poorly on real-
complex data.

However, amidst the underwhelming results, 3DSmoothNet stands out as an exception,
demonstrating excellent performance across the majority of benchmark sequences. Re-
markably, it outperforms a state-of-the-art feature extractor, namely FPFH, showcasing
its effectiveness in capturing informative and discriminative features from point clouds.

Given these results, we assert that while neural-based techniques could have advantages over
conventional methods, further research is necessary to fully unlock their practical utility. We
advocate for more extensive studies employing unbiased and realistic testing procedures, akin
to the rigorous evaluation framework employed in this work.

This paper represents a crucial step towards establishing a more robust literature in the
field of point cloud registration. By exposing the limitations and advantages of existing
neural-based methods, we aim to inspire future research and drive the development of more
effective techniques for real-world applications.
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1 Introduction

Point clouds registration is the problem of finding the rototranslation that best aligns two point clouds, i.e.
two sets of points with 3D coordinates.

Point clouds registration algorithms can be used in many different applications. For example, robots typically
require maps to accurately locate themselves in an environment; point cloud registration techniques are often
used to create these maps. Remote sensing of natural environments is another application, as most 3D sensors
produce point clouds that are partial views of the environment and need to be aligned. However, point cloud
registration does not necessarily have to be applied to complex scenes, as in the previous applications: it
can also be applied to single objects or small scenes.

The requirements of the different types of applications are very different. Therefore, in this work we focus
on robotics applications solely, which usually involve large, complex scenes. For the same reason, we focus
on rigid point clouds registration, which is most commonly used and most effective when dealing with large
and complex scenes, rather than individual objects.

The main difficulty in aligning two point clouds is finding correspondences between the two sets of points.
With the exception of point clouds created with RGB-D sensors, point clouds are usually sparse. For this
reason, it is much more difficult to describe the neighborhood of a point than it is, for example, with images.
Therefore, 3D features are usually less effective than the 2D counterpart.

The first approach to registering point clouds was Iterative Closest Point (ICP), independently developed
by Zhang et al . (Zhang, 1994), Besl and McKay (Besl and McKay, 1992), and Chen and Medioni (Chen and
Medioni, 1992). ICP attempts to solve the correspondence problem by approximating the true unknown
correspondences with a closest neighbor policy. This means that for each point in the first point cloud,
called “source”, the match is the closest one (using a Euclidean distance) in the second point cloud, the
“target”. The generated set of correspondences is used to create an optimization problem that is solved using
Singular Value Decomposition (SVD). The whole process is repeated until the convergence criteria are met.
ICP, despite its simplicity, works reasonably well. However, two conditions must be met: the two point
clouds must already be roughly aligned, and there should be a large overlap between the two point clouds.
Nevertheless, even if these two conditions are met, ICP can lead to incorrect solutions, mainly because it
tends to fall into local minima and because its data association strategy can lead to a large number of
incorrect correspondences.

For this reason, several variants of ICP have been proposed in recent years. These variants may aim, for
example, to improve the quality of the result, to speed up the algorithm, or to relax the constraint of overlap
or initial misplacement between point clouds. A comprehensive comparison of ICP variants was performed
by Pomerleau et al . (Pomerleau et al., 2013). Important variations of the original ICP algorithm are those
involving the error function to be optimized. For example, the Generalized ICP algorithm uses not only
the distances between two points, but also the covariances computed in a neighborhood of the points (Segal
et al., 2009). In this way, it can better represent the underlying geometry of the clouds and produce much
better results than the original version (Fontana et al., 2021). Instead of using a point-to-point association
strategy, another option is to associate points to planes, planes to planes, or even one point with many points
and weight them probabilistically (Agamennoni et al., 2016).

One of the main problems with the basic version of ICP is that if the overlap between the two point clouds
is not complete, which is almost always the case, a large number of false associations are inserted into the
optimization problem. To mitigate this issue, a number of outlier rejection strategies have been developed
(Babin et al., 2019). There are also registration algorithms which do not use a closest-point based data
association. For example, NDT aligns two point clouds by representing them as a set of Gaussians and
searching for the most likely alignment (Biber and Straßer, 2003).



Despite the improvements, a major drawback of ICP-like approaches is their limitation to small initial
misalignments: they were designed to solve the so-called local registration problems. These are defined as
problems where the point clouds are already roughly aligned or for which there is an initial guess about their
alignment. In many real-world cases, an initial guess can be provided by other sensors such as inertial units,
odometry, or GPS. However, there is another class of problems: global registration problems. In this case,
the misalignment between the two point clouds is not bounded. Obviously, global registration is a much
more difficult problem, of which local registration is a subset. Traditionally, however, global registration
algorithms produce inferior results, which usually need to be refined with a local technique.

Many global registration algorithms are based on geometric features that aim to represent the geometric
structure in the neighborhood of a point by a vector. Of these, PFH (Rusu et al., 2008), its faster variant
FPFH (Rusu et al., 2009), and Angle Invariant Features (Jiang et al., 2009) are notable examples. In
addition, SIFT features extracted from a depth image generated from a point cloud have been used for the
same purpose (Sehgal et al., 2010).

Geometric descriptors allow to estimate a set of correspondences between the two point clouds. From
these correspondences, the rototranslation can be estimated using, for example, RANSAC (Fischler and
Bolles, 1981). However, the number of false correspondences that these descriptors entail usually makes the
rototranslation estimation step challenging. Approaches such as Fast Global Registration (Zhou et al., 2016)
or TEASER (Yang et al., 2020) address this step and allow the estimation of a rototranslation even in the
presence of a high number of outlier correspondences. TEASER is particularly able to produce very good
results in challenging scenarios (Fontana et al., 2021).

More recently, neural network-based solutions for point cloud registration have been proposed. Two different
types of approaches have been proposed. The first type aims to represent a point cloud with a single feature
vector. Two point clouds are then matched by finding the rototranslation that minimizes the distance
between the two feature vectors. Examples of the first category include PCRNet (Sarode et al., 2019) or
PointNetLK, which implements PointNet and the classical Lukas-Kanade algorithms in a single recurrent
deep neural network (Aoki et al., 2019). While representing a point cloud as a single feature vector is an
elegant and efficient solution, it is particularly problematic when aligning point clouds with partial overlap
or moving objects. This is because in these cases the two feature vectors differ greatly, even when properly
aligned. In our opinion, this type of technique is therefore suitable for applications other than robotics,
where partial overlap is the most common case.

The second type of technique is similar to traditional feature-based approaches in that multiple feature
vectors are extracted from a set of keypoints or even from each point of the point clouds. These features
allow to estimate a set of correspondences that are then used with algorithms such as TEASER or Fast
Global Registration. An example of such an approach is Fully Convolutional Geometric Features, which are
produced in a single pass by a fully convolutional neural network (Choy et al., 2019).

Another example is 3D Match, a 3D convolutional neural network that uses a 3D patch around a point and
computes a feature descriptor (Zeng et al., 2017). A smaller distance between two descriptors means a higher
probability of matching. The descriptor was trained in an unsupervised manner using correspondences from
existing RGB-D reconstructions.

3DFeat-Net, on the other hand, is a deep-learning approach based on a Siamese architecture (Chicco,
2021)that learns to recognize whether two given point clouds are from the same location (Yew and Lee,
2018). It is trained in a weekly supervised manner using pairs of point clouds with a GPS and inertial-based
localization. It uses PointNet (Qi et al., 2017) to represent point clouds and, unlike 3DMatch, combines
both a feature detector and a descriptor extractor. PPFNet is another approach based on PointNet. It uses
points, normals, and Point Pair Features (PPF) to compute feature descriptors that are highly rotationally
invariant (Deng et al., 2018).

A particular end-to-end approach is Feature Metric Registration. Despite being based on features, it solves



the registration problem by minimizing the projection error onto a feature space without requiring an explicit
search for correspondences (Huang et al., 2020).

Deep ICP (DCP) revises the classical ICP algorithm from a deep learning perspective (Wang and Solomon,
2019). The result is a neural network that maps source and target point clouds to transformation invariant
embeddings. These are used by an attention module that predicts the match. Finally, a differentiable
singular value decomposition layer estimates the transformation.

3DSmoothNet is a neural-based descriptor built using a voxelized smoothed density value representation
with a Siamese deep learning architecture and fully convolutional layers (Gojcic et al., 2019). It achieves
excellent results in the 3DMatch benchmark dataset. It also enables the registration of laser scans of outdoor
vegetation, even when trained only on indoor RGB-D data.

GenReg uses a completely different approach (Huang et al., 2021). Instead of estimating a set of correspon-
dences, it directly generates an aligned point cloud using a deep generative neural network. Other examples
of neural-based approaches to point cloud registration include RGM (Fu et al., 2021), RPM-Net (Yew and
Lee, 2020), PointGMM (Hertz et al., 2020), and Corsnet (Kurobe et al., 2020). However, these were only
tested on registration problems involving single objects, not complex scenes, which are a much more difficult
problem.

While many different approaches have been proposed, their field of application, such as large scenes or single
objects, and their advantages are not always clear. Most approaches are tested on very limited datasets
or on datasets that are too simple to represent the real-world scenarios of robotics applications. There is
usually no indication of how much the parameters of an approach have been tuned to a particular dataset.
This is especially important given how many parameters most techniques have and that it is often impossible
to tune them except by trial and error. We believe that the ability to produce good results even when the
parameters have not been fine tuned to a specific scenario is critical to a truly useful point cloud registration
technique. In addition, most works do not compare different techniques to each other, or compare only to
very old techniques, such as ICP.

We believe that testing point cloud registration approaches against a common benchmark is critical. In
particular, we want to test whether recent advances in registration techniques offer real benefits through the
use of neural networks. That is, we want to test the actual applicability of neural-based techniques. This
means that we do not just want to know whether a technique performs well in a few controlled experiments.
Instead, we want to answer the following questions:

• How does it perform on a variety of real complex scenes with partial overlap?

• How well do the pre-trained models provided by the authors perform?

• Is the technique very sensitive to parameter settings?

• Is there an increase in performance compared to traditional and well consolidated techniques?

All these questions can be summarized in one very important but often neglected question: “Are neural-based
techniques for point cloud registration applicable in practice?”

For these reasons, we selected the most remarkable neural-based point cloud registration techniques presented
in the literature and compared them on the Point Clouds Registration Benchmark (Fontana et al., 2021).
The results are then compared to a known traditional technique. Since we believe that the reproducibility of
the experiments is an essential requirement for a sound comparison, we provide all the details to reproduce
the tests: the version of the software used, the model and the values of the parameters. We also provide
the raw results of the experiments and instructions to reproduce them in a GitHub repository: https:
//github.com/iralabdisco/neural_registration_comparison.



2 Material and Methods

2.1 Algorithms selection

The choice of techniques for point cloud registration is huge, even if we restrict ourselves only to neural-based
approaches. Therefore, it is impossible to compare them all. Moreover, point cloud registration can be used
in many different applications. In our opinion, it is not useful to compare techniques developed with different
objectives, such as a technique for aligning small objects, with a technique for reconstructing a large outdoor
scene.

Since our goal is to compare point cloud registration techniques for robotics applications, we defined the
following requirements to decide which techniques to test:

Req1 It must be able to align not only individual objects but also large, complex scenes.

Req2 It must work with partial overlap problems. That is, part of the scene represented in one point cloud
might not be represented in the other.

Req3 It must also work in presence of moving objects. That is, even if the two point clouds represent the
same scene, some objects may have moved between the acquisition of the two point clouds. This
and the previous requirements may also occur together.

Req4 There must be a public open source implementation of the technique.

Req5 There must be a pre-trained model available for the technique.

Req6 The technique should be neural based. That is, it should use a neural network for at least one step
of the registration pipeline.

The first three requirements have led us to discard techniques that align two point clouds by minimizing
the distance between two vectors, each of which represents an entire point cloud, such as PCRNet (Sarode
et al., 2019) or PointnetLK (Aoki et al., 2019). The embedding vectors of two point clouds with only partial
overlap will indeed be very different, even if they are correctly aligned, since they actually represent two
very different sets of data. The same is true for moving objects. Another problem is the dimension of the
embedding vector, which might be too small to represent a large, complex outdoor scene. To support our
conclusions, we observe that these approaches are often tested only on single objects, almost always from
the ModelNet40 dataset, which consists of 3D CAD models of objects (Wu et al., 2015). Therefore, this is
a use case very different from that of this work, namely robotics.

Requirement 4 is due in part to the need to test the techniques and adapt them to our chosen benchmark.
Although this is not strictly necessary, open source software definitely facilitates this step. Also, and most
importantly, we would like to encourage research in point cloud registration and advocate for the use and
development of open software in academic research.

Requirement 5 arises from several considerations. First, we want the comparison to be useful to the potential
users of these techniques. Successful training of a neural network depends heavily on a good choice of
parameters, which usually requires a lot of trial and error and, most importantly, a lot of computational
resources. To choose the right parameters, one needs to know how the network works. Therefore, we think
it is highly impractical and unlikely that a user will retrain the network. Furthermore, if we retrain the
networks, the poor performance of an approach could be due to our poor training rather than the technique,
and we consider this unacceptable. Most importantly, we believe that testing the ability of a network to
generalize to environments other than those used in training is fundamental to the practical utility of a
network. Because the applications for point cloud registration are so large and training is so impractical, we
believe this capability is essential. At a minimum, a network should be able to generalize to environments



that are similar, but not identical, to those used in training. For example, an office environment that is
different from the one used to train the network. Finally, finding training data for point cloud registration
with high quality ground truth is not an easy task. This is confirmed by the fact that most of the works
were trained on few real datasets, such as Kitti (Geiger et al., 2012) or 3DMatch (Zeng et al., 2017), or on
synthetic datasets, such as ModelNet40. Obviously, we cannot use the Point Clouds Registration Benchmark,
since it is used in the testing phase.

Regarding Requirement 6, some of the techniques we considered are end-to-end. That is, they implement the
entire registration pipeline. Others, however, generate feature descriptors that must be used in conjunction
with other techniques to estimate a rototranslation. We have treated all the different types as “neural-based”
regardless of whether the entire pipeline is implemented as a neural network.

The algorithms we selected for comparison, together with their implementation are:

• 3DFeat-Net - https://github.com/yewzijian/3DFeatNet

• DCP - https://github.com/WangYueFt/dcp

• 3DSmoothNet - https://github.com/zgojcic/3DSmoothNet

• FCGF - https://github.com/chrischoy/FCGF

• Feature Metric Registration - https://github.com/XiaoshuiHuang/fmr

Initially, we also selected other algorithms that we believe are noteworthy, but that we still had to discard.
DeepVCP, for example, is an end-to-end registration algorithm that achieves comparable results to con-
ventional non-neural methods but has higher robustness against initial alignment errors (Lu et al., 2019).
However, according to the authors’ experiments, which involved a random uniform initial misalignment in
the interval [0, 1] meters for translation and [0°, 1°] for rotation, it still appears to be a local registration
algorithm. We believe that it would be unfair to compare local and global algorithms. On the one hand, it
is well known that local algorithms perform much better than global algorithms on problems with smaller
initial alignment errors (Fontana et al., 2021); on the other hand, local algorithms are not able to solve global
problems. Since all other approaches we selected are global, we therefore had to discard DeepVCP.

We also discarded PPFNet, GenReg, and CorsNet because we could not find an official implementation.

Eventually we did not test RGM, RPM-Net, and PointGMM because, according to the experimental activity
reported in the corresponding papers, they are focused on the alignment of single objects rather than complex
scenes.

We believe that neural-based approaches should also be compared with traditional techniques. Since the two
categories aim at solving the same problem, there is no reason not to compare one with the other. Therefore,
we have also added a state-of-the-art geometric descriptor to the comparison, namely FPFH.

2.2 Data and methods

Choosing the right dataset is an essential step for a comparison. We chose the Point Clouds Registration
Benchmark (Fontana et al., 2021), which is very suitable for testing algorithms for robotics applications. It
consists of 15 sequences of data collected with different sensors and representing different types of environ-
ments. Specifically, the represented outdoor environments are:

• a forest, both summer and fall, a garden with a gazebo in summer and winter, and a plain, from the
ETH datasets (Pomerleau et al., 2012);



• a reproduction of a planetary exploration environment, from the Planetary datasets (Tong et al.,
2013);

• an urban road environment, from the Kaist datasets (Jeong et al., 2019).

The indoor environments, on the other hand, are:

• an indoor house environment and a college building, from the ETH datasets (Pomerleau et al., 2012);

• office environments, from the TUM datasets (Sturm et al., 2012).

The methodology used for the experimental activity is that proposed for the Point Clouds Registration
Benchmark. This provides, in addition to the data, sets of registration problems, i.e., pair of point clouds
to be aligned and initial misalignments to apply to the source point cloud. The overlap between the source
and target point clouds, i.e., the area of the scene they have in common, strongly affects the difficulty
of a registration problem. For this reason, the Point Clouds Registration Benchmark provides problems
consisting of pairs of point clouds sampled to cover a range of overlap between 90% and 60%. The same
is true for the initial misalignment associated with a problem: it is randomly generated to cover the entire
range of possible misalignments.

There are two versions of the benchmark: for local algorithms and for global algorithms. Since all of our
chosen methods appear independent of the initial misalignment, they should be able to solve the global
version of the benchmark, which includes random rotations between 45° and 180° for rotation and a large
dataset-specific range of translations.

Further details on the data and the methodology used to generate the registration problems can be found
on the work of Fontana et al . (Fontana et al., 2021) and on the original papers of the datasets (Sturm et al.,
2012; Tong et al., 2013; Jeong et al., 2019; Pomerleau et al., 2012).

The algorithms we selected are of different types. Some are end-to-end approaches to point clouds registra-
tion, others are neural networks used for keypoint detection and descriptor extraction, still others are for
descriptor extraction only. Thus, although they serve the same purpose, they need to be tested in differ-
ent ways. Nevertheless, we have ensured the greatest degree of uniformity of testing conditions and thus
comparability of results.

In the case of techniques that extract keypoints and generate feature descriptors, we used three different
algorithms to estimate the rototranslation from a set of correspondences: RANSAC, FastGlobalRegistra-
tion, and TEASER. The latter two algorithms are state-of-the-art and have proven to be very effective in
estimating a trasformation even when there are a large number of outliers. RANSAC, on the other hand,
is still one of the most popular algorithms and we therefore think that its results can be valuable to the
community. Regardless of the network used to generate the descriptors, we used the same parameters for
the transformation estimation algorithms. These are:

• To search for the most similar descriptors in the other point cloud, i.e., to estimate correspondences,
we used the L2 distance. That is, each descriptor in one point cloud is associated to the one in the
other cloud that has the smallest Euclidean distance. To speed up the calculation, we used a KDtree
data structure.

• correspondences were filtered out based on a “mutual distance” filter. That is, a pair (descriptorS,
descriptorT) is considered a true correspondence and used for the transformation estimation step
only if descriptorT is closest to descriptorS and vice versa.

• For RANSAC, we used as “max_correspondence_distance” a value equal to V OXEL_SIZE · 1.5



• For Fast Global Registration, we used as “max_correspondence_distance” a value equal to
V OXEL_SIZE · 0.5

• For TEASER we used as “noise_bound” a value equal to V OXEL_SIZE

V OXEL_SIZE is the leaf size of the voxel grid filter we used to downsample the point clouds. This
parameter is specific to each approach and specified below.

The values of these parameters have been chosen according to suggestions of the Open3D framework we used
for the experiments (Zhou et al., 2018).

For approaches that generate feature descriptors but do not extract keypoints, we used 5000 uniformly
sampled points as keypoints.

Other parameters are algorithm specific and are described below.

2.2.1 3DSmoothNet

Before extracting features using 3DSmoothNet, we applied a voxel grid filter with a leaf size of 0.05m.
Moreover, we applied an outlier removal step to the point clouds. Specifically, we used a Statistical Outlier
Removal from the PCL library (Rusu and Cousins, 2011): For each point P , we search for the K closed
neighbors Ni and calculate the mean distance

K∑
i

∥P −Ni∥2
K

and the standard deviation. Any neighbor whose distance is greater than J times the standard deviation is
considered an outlier and removed. The parameters we use are K = 10 and J = 3.

3DSmoothNet uses a voxelized smoothed density value representation. Therefore, we generated it for 5000
randomly selected points. The voxel grid has a size of 16x16x16, with a radius of 0.5 and a smoothing kernel
width of 1.75. It should be noted that these are mostly default values provided by the developers. As we
will see in the experimental section, they work quite well for a variety of data. We only changed the voxel
radius because most of the point clouds we used were too sparse to use the default value. Still, we used the
same value for each point cloud, regardless of density.

The feature extraction network does not require any special parameters except the feature size, which we
set to 64.

2.2.2 Feature Metric Registration

For Feature Metric Registration (FMR), we downsampled the point clouds using a voxel grid with a leaf size
of 0.1 meters rather than 0.05, because otherwise we kept running out of memory on our GPU (a NVidia
GeForce GTX 1080 Ti with 11 GByte of memory). The iteration number used is 10, as suggested by the
authors. We performed experiments with two different pre-trained models, trained with the ModelNet40
and 7Scenes datasets.

2.2.3 FPFH

FPFH is a non-neural feature. We changed only one parameter compared to the default settings, namely
the voxel size (we used 0.2 meters).



2.2.4 3DFeatNet

For 3DFeatNet, we downsampled the original point clouds with a voxel grid with leaf size of 0.1 The pameters
of the feature extraction method we used are:

• Radius for sampling clusters = 2.0

• Maximum number of points to consider per cluster= 64

• Feature dimension size = 32

• Radius for non-maximal suppression = 0.5

• Minumum response ratio= 1e-3

• Maximum number of keypoints = 1024

2.2.5 Fully Convolutional Geometric Feature

There are various pre-trained models for Fully Convolutional Geometric Feature. We used the two models
that gave the best results according to the original work. These are the models trained on 3DMatch and
Kitti.

The parameters used with the model pre-trained on 3DMatch are summarized below:

• model = 3dmatch_normalized_5cm_32

• voxel size = 0.05

• output features = 32

• normalized = true

• conv 1 kernel size = 7

• D = 3

Those used with the Kitti pre-trained model, instead, are:

• model = kitti_notnormalized_20cm_32

• voxel size = 0.2

• output features = 32

• normalize = False

• conv 1 kernel size = 7

• D = 3



Table 1: Statistics on the number of points composing the point clouds in the various sequences. The point
clouds have been downsampled using a voxel grid filter with leaf size of 0.1m.

Mean number of points Max Min
sequence

plain 10961 12656 8884
stairs 12685 20243 6873
apartment 8355 12275 3966
hauptgebaude 32111 36767 28622
wood_autumn 34660 38786 31601
wood_summer 36352 46369 31436
gazebo_summer 23626 34458 15221
gazebo_winter 26397 33054 21270
box_met 41452 56521 23909
p2at_met 18113 32751 6369
pioneer_slam 3802 7834 261
pioneer_slam3 3379 7467 1286
long_office_household 1834 5596 147
urban05 12170 20126 5581

2.2.6 DCP

Although we wanted to test the benchmark with DCP as well, we could not use it with the larger point
clouds because we kept running out of memory. This also happened with a very aggressive down-sampling
step. Therefore, we unfortunately had to discard this approach.

For the experiments, we used an NVidia GeForce GTX 1080 Ti GPU with 11Gbytes of memory. DCP
stores point clouds as PyTorch tensors with float32 elements. Therefore, with our hardware we can use
point clouds with a maximum of 5350 points, that is, 64200 bytes. In table 1 we show the mean number
of points which composes the point clouds of the sequences of the benchmark. As can be seen, even if we
doubled the available memory, we could not apply DCP to most sequences (take as an example the sequence
wood_autumn with an average size of 36352 points or the sequence box_met with an average size of 41452
points).

3 Results

We measure the quality of the results using the normalized distance defined by the Point Clouds Registra-
tion Benchmark (Fontana et al., 2021). That is, given a source point cloud S, composed of n points Si,
the rototranslation T estimated by a registration technique, and the ground truth rototranslation G, the
quality of the results is measured by the distance between the source point cloud aligned with the estimated
rototranslation and the source point cloud aligned with the ground truth rototranslation. The distance is
defined as follows:

D(G · S, T · S) =

∑
i
∥G·Si−T ·Si∥

∥Si−S∥

n

where S is the centroid of S, T · S is the application of the rototranslation T to S, and ∥x∥ is the L2 norm
of the vector x.

The distance D represents the average distance between the ground truth and the estimated positions of a



point, normalized by the average distance to the centroid of the point cloud. We chose this distance firstly
to allow comparison with other experiments on the same benchmark, as described in the work of Fontana
et al .. Second, because normalization using the distance to the centroid allows meaningful calculation of
aggregate statistics such as the median. The details and complete rationale for this distance can be found
on the original paper (Fontana et al., 2021).

Tables 2, 4, 6, 8, 9, 12 and 14 report the median and the 0.75 and 0.95 quantiles of the experiments performed
with the different algorithms. The statistics were computed both for the results of the registration problem
in each sequence and for all sequences together (the row named Total”). Feature extractors require other
approaches to match the extracted features and estimate a rototranslation from them. For this step, we
used RANSAC, FastGlobal Registration, and TEASER, all of whose results are shown in the tables. Feature
Metric Registration, on the other hand, is an end-to-end approach; for this reason it has only a single set of
results.

The metric proposed by the Point Clouds Registration Benchmark is a dimensionless quantity, since each
error is scaled by the average distance from the centroid of the point cloud. Therefore, it is not always easy
to identify how large an error is. For this reason, we also give the residual errors, with respect to the initials.
These are shown in tables 3, 5, 7, 13 and 15. Columns “Median of Final Errors” have the same meaning as
columns Medians” in the previous tables. Columns Median of Initial Errors” is the median of the distances
between the misaligned source point clouds and the source point clouds aligned with the ground truth. Thus,
it represents the error that an algorithm must correct. Column Residual” represents the residual error in
percent with respect to the initial error. Given an initial error erri and a final error errf , the residual res
is defined as:

res =
errf
erri

· 100

Similar to the other columns, this shows the median of the residuals in each sequence and among the entire
benchmark. Therefore, a residual of X% means that for half of the problems, the final error was X% of the
initial error or better. We believe that these tables can help to better identify how effective an algorithm is.

Figure 1 compares the results obtained with 3DSmoothNet and FPFH features with TEASER. We chose
to show only the results of these features because they are the best among those compared. Moreover, the
difference in the magnitude of errors between the best and the worst algorithm is so large that it would be
problematic to show all algorithms in one plot.

We set the parameters of the different approaches to obtain the best results within the limits of the available
hardware. Although most parameters depend on the particular method and are therefore not comparable,
we always applied a voxel grid filter as a preprocessing step. The leaf size was adjusted to obtain the
best results, resulting in different values being used for different approaches. We are aware that using a
different subsampling could be considered unfair. Therefore, we also performed experiments using the same
granularity of subsampling for each approach. That is, a voxel grid filter with a leaf size of 0.1 meters.
However, the results of this second set of experiments are virtually identical to those of the others and do
not change the discussion. Therefore, we do not report them here, but provide them as supplementary
material.

4 Discussion

Before discussing the results, we need to make some considerations. First, the Point Clouds Registration
Benchmark is very challenging, especially in its global version that we used. In particular, the datasets in the
planetary section, the box_met, p2at_met, and planetary_map sequences, are very challenging due to the
high repetitiveness of the environment. The urban05 sequence is also very challenging in the global version
of the benchmark because the point clouds are very small (they contain only a few points) and sparse.

The second consideration is that most of the approaches we have considered were originally tested on much



Table 2: Results obtained by employing 3DFeatNet features in conjunction with RANSAC, FastGlobal, and
TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

RANSAC FastGlobal TEASER
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

sequence

plain 8.40 12.24 18.73 4.99 6.17 7.61 9.57 13.26 22.57
stairs 2.17 3.09 7.07 2.31 3.36 5.26 2.30 3.78 7.39
apartment 1.92 2.78 4.81 2.03 2.53 3.73 2.22 3.27 5.10
hauptgebaude 2.72 6.47 9.28 2.79 4.91 6.31 2.44 5.57 8.72
wood_autumn 3.20 4.42 5.92 2.53 3.62 5.10 2.87 4.10 5.95
wood_summer 2.79 3.73 5.34 2.21 3.52 4.17 2.49 3.83 5.06
gazebo_summer 3.51 4.81 8.41 2.33 3.30 4.17 3.13 4.98 7.15
gazebo_winter 3.72 5.47 9.10 2.15 3.34 4.51 3.14 4.92 8.09
box_met 10.14 12.76 19.82 8.30 10.53 13.98 13.01 28.65 81.78
p2at_met 10.43 17.48 32.84 6.27 10.27 15.89 10.22 18.40 89.83
planetary_map 41.00 60.25 100.93 27.08 42.20 61.59 40.76 62.61 103.20
pioneer_slam 10.25 17.67 35.64 6.74 8.91 10.64 13.87 27.94 43.60
pioneer_slam3 4.73 9.13 13.84 5.86 7.98 9.47 7.47 12.44 21.51
long_office_household 14.93 27.53 41.75 4.13 7.77 11.24 9.68 28.31 72.94
urban05 2.27 3.54 6.79 1.33 2.03 3.47 2.17 3.71 7.09
Total 4.21 9.96 37.31 3.53 6.53 21.15 4.17 10.55 50.44

Table 3: 3DFeatNet median of residual errors. Transformation estimated using TEASER
Median of Final Errors Median of Initial Errors Residual (%)

sequence

plain 9.57 7.05 127.27
stairs 2.30 4.58 55.48
apartment 2.22 5.35 42.03
hauptgebaude 2.44 2.60 90.14
wood_autumn 2.87 3.09 91.15
wood_summer 2.49 2.99 87.81
gazebo_summer 3.13 2.76 111.50
gazebo_winter 3.14 3.54 97.81
box_met 13.01 7.61 156.58
p2at_met 10.22 9.98 114.94
planetary_map 40.76 10.80 343.98
pioneer_slam 13.87 13.22 100.00
pioneer_slam3 7.47 8.97 85.41
long_office_household 9.68 17.40 87.23
urban05 2.17 2.51 87.11
Total 4.17 4.98 97.47



Table 4: Results obtained by employing FCGF features with the model trained on 3dMatch in conjunction
with RANSAC, FastGlobal, and TEASER. Results are reported as the median, 0.75 quantile, and 0.95
quantile of the residual error

RANSAC FastGlobal TEASER
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

sequence

plain 7.05 8.90 13.55 7.22 9.19 13.95 7.22 9.34 13.82
stairs 5.77 7.45 9.15 5.85 7.43 9.28 5.85 7.50 9.28
apartment 5.93 7.38 10.94 6.15 7.62 10.33 6.15 7.63 10.33
hauptgebaude 2.53 3.08 3.71 2.59 3.22 3.78 2.62 3.18 3.78
wood_autumn 3.19 4.21 5.64 3.92 5.12 5.79 3.84 5.12 5.79
wood_summer 2.96 3.73 4.98 2.60 3.44 4.55 2.54 3.51 4.63
gazebo_summer 2.84 4.07 5.06 3.11 4.35 5.20 3.14 4.36 5.44
gazebo_winter 3.50 4.79 5.85 3.60 4.77 5.85 3.61 4.78 5.68
box_met 7.61 10.84 13.79 8.40 12.07 17.89 8.92 11.43 17.93
p2at_met 9.82 12.75 17.48 8.43 13.13 21.25 8.69 12.97 19.59
planetary_map 11.33 15.52 21.16 31.09 46.49 67.82 31.92 47.25 67.94
pioneer_slam 11.74 18.76 30.26 11.77 18.76 30.29 11.77 18.76 30.30
pioneer_slam3 7.07 12.86 16.62 7.07 12.86 16.64 7.06 12.85 16.63
long_office_household 9.21 20.70 41.05 9.41 20.66 41.05 9.68 20.65 41.05
urban05 2.51 3.76 5.30 1.41 1.93 3.16 2.27 3.68 11.04
Total 4.85 8.73 18.11 4.92 9.53 30.27 5.08 9.71 30.35

Table 5: FCGF median of residual errors using the model trained on 3dmatch. Transformation estimated
using TEASER.

Median of Final Errors Median of Initial Errors Residual (%)
sequence

plain 7.22 7.05 100.00
stairs 5.85 4.58 100.00
apartment 6.15 5.35 100.00
hauptgebaude 2.62 2.60 100.00
wood_autumn 3.84 3.09 100.00
wood_summer 2.54 2.99 100.00
gazebo_summer 3.14 2.76 100.00
gazebo_winter 3.61 3.54 100.00
box_met 8.92 7.61 100.00
p2at_met 8.69 9.98 100.00
planetary_map 31.92 10.80 290.64
pioneer_slam 11.77 13.22 96.91
pioneer_slam3 7.06 8.97 100.00
long_office_household 9.68 17.40 74.19
urban05 2.27 2.51 89.55
Total 5.08 4.98 100.00



Table 6: Results obtained by employing FCGF features with the model trained on Kitti in conjunction with
RANSAC, FastGlobal, and TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile
of the residual error

RANSAC FastGlobal TEASER
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

sequence

plain 10.21 12.56 19.85 7.78 10.10 14.51 11.63 16.89 32.94
stairs 6.04 7.56 10.13 6.02 7.92 10.38 6.17 7.83 11.73
apartment 5.94 7.35 10.88 6.07 7.65 11.77 6.06 7.69 12.04
hauptgebaude 2.79 3.51 7.78 3.02 3.93 6.82 3.51 5.38 8.63
wood_autumn 3.88 5.09 6.76 3.89 5.29 7.85 4.15 5.43 8.67
wood_summer 3.30 4.16 6.03 3.31 4.21 6.36 3.42 4.90 6.75
gazebo_summer 3.73 4.93 7.34 3.45 4.35 5.75 4.43 6.10 9.47
gazebo_winter 4.03 5.43 8.85 4.06 4.85 6.34 4.67 5.85 10.72
box_met 10.46 14.21 22.49 9.00 12.32 18.95 12.12 16.54 29.09
p2at_met 12.73 18.62 30.77 8.98 13.79 21.26 14.22 23.06 38.71
planetary_map 32.19 47.00 66.02 31.18 46.69 64.70 33.58 49.06 71.22
pioneer_slam 10.84 19.36 30.27 10.62 18.48 29.57 11.09 21.03 33.51
pioneer_slam3 9.08 13.85 17.85 9.51 13.39 19.63 11.97 15.67 22.10
long_office_household 12.96 24.14 41.05 11.56 21.19 42.18 12.65 23.06 41.05
urban05 2.78 4.01 8.11 1.61 2.92 6.08 3.93 7.69 12.94
Total 5.91 11.73 30.85 5.55 10.29 29.74 6.71 13.29 35.32

Table 7: FCGF median of residual errors using the model trained on 3dmatch. Transformation estimated
using TEASER.

Median of Final Errors Median of Initial Errors Residual (%)
sequence

plain 11.63 7.05 158.19
stairs 6.17 4.58 101.03
apartment 6.06 5.35 100.00
hauptgebaude 3.51 2.60 110.41
wood_autumn 4.15 3.09 111.79
wood_summer 3.42 2.99 105.34
gazebo_summer 4.43 2.76 137.91
gazebo_winter 4.67 3.54 120.31
box_met 12.12 7.61 137.43
p2at_met 14.22 9.98 123.53
planetary_map 33.58 10.80 327.53
pioneer_slam 11.09 13.22 100.00
pioneer_slam3 11.97 8.97 100.19
long_office_household 12.65 17.40 85.93
urban05 3.93 2.51 159.84
Total 6.71 4.98 114.00



Table 8: Results obtained by employing FMR with the model trained on 7Scene. Results are reported as
the median, 0.75 quantile, and 0.95 quantile of the residual error.

.
Median 0.75 Q 0.95 Q

sequence

plain 6.91 9.54 14.18
stairs 5.91 9.88 30.64
apartment 2.48 3.82 5.78
hauptgebaude 5.45 7.94 10.18
wood_autumn 4.15 5.53 7.84
wood_summer 3.23 4.95 6.99
gazebo_summer 3.04 4.15 5.63
gazebo_winter 6.20 10.62 17.56
box_met 8.00 9.82 14.07
p2at_met 8.82 13.23 21.07
planetary_map 54.23 82.47 131.94
pioneer_slam 4.50 6.66 10.52
pioneer_slam3 5.96 9.36 10.59
long_office_household 5.66 12.60 20.02
urban05 6.59 12.04 20.23
Total 5.33 9.33 36.02

Table 9: Results obtained by employing FMR with the model trained on ModelNet40. Results are reported
as the median, 0.75 quantile, and 0.95 quantile of the residual error.

.
Median 0.75 Q 0.95 Q

sequence

plain 6.37 8.03 10.81
stairs 3.63 6.95 19.36
apartment 2.44 3.47 5.33
hauptgebaude 4.59 7.16 8.49
wood_autumn 4.07 4.98 6.51
wood_summer 2.68 4.11 5.32
gazebo_summer 2.67 3.89 5.28
gazebo_winter 5.51 8.78 14.51
box_met 7.80 9.63 12.74
p2at_met 7.66 10.29 16.97
planetary_map 30.33 43.25 59.60
pioneer_slam 6.13 8.45 12.87
pioneer_slam3 4.62 9.82 10.60
long_office_household 3.36 9.48 14.40
urban05 3.78 8.63 19.69
Total 4.84 8.50 23.85



Table 10: Feature Metric Registration median of residual errors with 7scene pre-trained model residual.
.
Median of Final Errors Median of Initial Errors Residual (%)

sequence

plain 6.91 7.05 94.85
stairs 5.91 4.58 109.02
apartment 2.48 5.35 46.62
hauptgebaude 5.45 2.60 221.21
wood_autumn 4.15 3.09 127.04
wood_summer 3.23 2.99 108.58
gazebo_summer 3.04 2.76 106.52
gazebo_winter 6.20 3.54 186.24
box_met 8.00 7.61 99.10
p2at_met 8.82 9.98 79.21
planetary_map 54.23 10.80 487.49
pioneer_slam 4.50 13.22 30.20
pioneer_slam3 5.96 8.97 59.76
long_office_household 5.66 17.40 39.98
urban05 6.59 2.51 256.98
Total 5.33 4.98 100.91

Table 11: Feature Metric Registration median of residual errors with 7scene pre-trained model residual.
.
Median of Final Errors Median of Initial Errors Residual (%)

sequence

plain 6.37 7.05 83.06
stairs 3.63 4.58 73.68
apartment 2.44 5.35 41.58
hauptgebaude 4.59 2.60 164.49
wood_autumn 4.07 3.09 114.36
wood_summer 2.68 2.99 104.69
gazebo_summer 2.67 2.76 100.16
gazebo_winter 5.51 3.54 169.84
box_met 7.80 7.61 99.20
p2at_met 7.66 9.98 75.91
planetary_map 30.33 10.80 291.77
pioneer_slam 6.13 13.22 44.97
pioneer_slam3 4.62 8.97 49.06
long_office_household 3.36 17.40 24.65
urban05 3.78 2.51 171.84
Total 4.84 4.98 89.95



Table 12: Results obtained by employing FPFH features in conjunction with RANSAC, FastGlobal, and
TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error

RANSAC FastGlobal TEASER
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

sequence

plain 0.41 3.74 6.87 0.49 1.11 1.89 0.12 0.31 1.83
stairs 0.21 2.37 4.45 0.28 1.95 3.89 0.08 0.58 3.57
apartment 0.21 1.33 3.57 0.21 1.15 2.67 0.13 1.46 3.47
hauptgebaude 0.19 1.61 3.34 0.36 1.05 1.86 0.02 0.97 2.04
wood_autumn 2.90 3.75 5.43 0.32 0.51 0.89 0.05 0.08 0.24
wood_summer 2.39 3.69 5.23 0.30 0.47 1.11 0.04 0.07 0.17
gazebo_summer 1.90 2.77 4.38 0.20 0.43 1.21 0.04 0.06 0.27
gazebo_winter 1.52 2.97 5.60 0.18 0.37 1.25 0.04 0.08 0.40
box_met 7.44 10.46 13.23 7.16 9.87 14.12 0.31 7.62 12.10
p2at_met 8.04 12.35 17.48 1.90 6.01 10.05 0.16 0.66 9.92
planetary_map 10.80 15.11 20.78 29.82 43.52 69.25 46.45 62.77 95.28
pioneer_slam 0.36 1.57 12.30 3.24 7.46 10.79 0.46 1.92 7.24
pioneer_slam3 0.13 0.19 0.43 0.13 0.23 0.64 0.14 0.21 0.90
long_office_household 0.48 1.69 18.07 1.47 6.91 12.22 0.66 1.67 15.04
urban05 2.93 3.89 5.53 1.53 2.13 3.44 2.77 4.07 6.40
Total 1.82 4.48 13.12 0.48 2.44 19.90 0.15 1.56 33.49

Table 13: FPFH final median of residual errors. Transformation estimated using TEASER.
Median of Final Errors Median of Initial Errors Residual (%)

sequence

plain 0.12 7.05 1.89
stairs 0.08 4.58 2.69
apartment 0.13 5.35 2.53
hauptgebaude 0.02 2.60 1.28
wood_autumn 0.05 3.09 1.65
wood_summer 0.04 2.99 1.44
gazebo_summer 0.04 2.76 1.19
gazebo_winter 0.04 3.54 1.14
box_met 0.31 7.61 4.40
p2at_met 0.16 9.98 2.04
planetary_map 46.45 10.80 448.93
pioneer_slam 0.46 13.22 5.02
pioneer_slam3 0.14 8.97 1.51
long_office_household 0.66 17.40 3.94
urban05 2.77 2.51 94.63
Total 0.15 4.98 2.58



Table 14: Results obtained by employing 3DSmoothNet features in conjunction with RANSAC, FastGlobal,
and TEASER. Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error

RANSAC FastGlobal TEASER
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

sequence

plain 0.04 0.09 10.33 1.40 2.22 3.18 0.03 1.30 2.83
stairs 0.01 0.03 5.16 1.08 2.55 4.95 0.01 0.03 4.54
apartment 0.01 0.01 0.06 0.59 1.67 3.63 0.01 0.02 0.04
hauptgebaude 0.79 0.85 2.35 0.76 1.34 2.00 0.80 1.58 2.37
wood_autumn 0.02 0.02 0.05 0.65 1.46 1.82 0.01 0.02 0.02
wood_summer 0.01 0.02 0.03 0.47 0.95 1.66 0.01 0.01 0.02
gazebo_summer 0.01 0.02 0.08 0.57 1.47 3.94 0.01 0.01 0.02
gazebo_winter 0.01 0.01 0.03 0.39 0.78 2.26 0.01 0.01 0.02
box_met 7.44 10.75 13.79 8.69 10.49 13.89 7.05 9.90 13.24
p2at_met 4.93 10.61 15.92 6.37 8.00 11.89 0.16 6.54 11.84
planetary_map 11.08 15.22 20.95 29.89 41.09 66.74 41.08 64.64 101.85
pioneer_slam 0.07 0.10 0.72 0.08 0.16 0.80 0.03 0.07 0.12
pioneer_slam3 0.03 0.05 0.09 0.26 0.66 3.14 0.01 0.02 0.03
long_office_household 0.08 0.14 0.27 0.06 0.13 0.35 0.04 0.08 0.20
urban05 2.51 3.62 5.29 1.66 2.07 3.10 1.32 1.93 3.37
Total 0.04 1.83 12.28 0.89 2.60 18.92 0.02 0.80 27.31

Table 15: 3DSmoothNet median of residual errors. Transformation estimated using TEASER
Median of Final Errors Median of Initial Errors Residual (%)

sequence

plain 0.03 7.05 0.52
stairs 0.01 4.58 0.32
apartment 0.01 5.35 0.23
hauptgebaude 0.80 2.60 25.66
wood_autumn 0.01 3.09 0.37
wood_summer 0.01 2.99 0.33
gazebo_summer 0.01 2.76 0.32
gazebo_winter 0.01 3.54 0.21
box_met 7.05 7.61 78.46
p2at_met 0.16 9.98 1.84
planetary_map 41.08 10.80 389.31
pioneer_slam 0.03 13.22 0.31
pioneer_slam3 0.01 8.97 0.15
long_office_household 0.04 17.40 0.26
urban05 1.32 2.51 49.65
Total 0.02 4.98 0.44



Figure 1: Comparison of results using 3DSmoothNet and FPFH features with TEASER

simpler problems and sometimes on single objects rather than on complex scenes. Therefore, it is not
surprising that most of them performed very poorly on real complex datasets.

Nevertheless, we still consider very valuable a fair comparison on challenging datasets. The Point Clouds
Registration Benchmark was originally developed to represent problems encountered in real-world robotics
applications. This is in contrast to the tendency we analyzed to test algorithms on simple datasets, often
comparing them only to very old traditional algorithms such as ICP. On the other hand, we are interested
in finding out whether neural-based registration algorithms are really useful in practice and whether they
have any advantages over effective traditional techniques, especially considering the additional computational
resources required.

Of the approaches we tested, only 3DSmoothNet and FPFH (which is not based on a neural network)
produced satisfactory results. In our opinion, the differences between the other algorithms are negligible,
since none of them could achieve useful results. This seems obvious when looking at the residuals in tables 3,
5, 7, 10 and 11. As can be seen, the other approaches often actually worsened the misalignment, obtaining
a residual of more than 100% of the initial error. 3DFeatNet achieved useful results only for the stairs and
apartment sequences. FMR also produced useful results for some sequences, such as those from the TUM
dataset (pioneer_slam, pioneer_slam3, and long_office_household) or the sequence apartment. While these
results are not amazing, they can still be considered useful, considering that this is a global registration that
is usually refined with a local registration approach. On the other hand, FCGF never achieved useful results.

On the other hand, 3DSmoothNet and FPFH both obtained very good results. These algorithms are ac-
tually feature extractor. Therefore, we need another algorithm to align the extracted features. We tested
each approach with RANSAC, FastGlobal and TEASER. However, TEASER consistently obtained the best
results, hence, for the rest of the discussion we will consider only results obtained with either 3DSmoothNet
or FPFH and TEASER.

On the sequences from the ETH datasets, 3DSmoothNet obtained excellent results, often with a median
error of 0.01, corresponding to an alignment that is essentially consistent with ground truth. Of these, the
75th percentile for wood_summer, gazebo_winter, and gazebo_summer is also 0.01 and the 0.95th percentile
is only slightly worse, indicating that there is also very little variability in the quality of the results. The only
exception is the hauptgebaude sequence, for which the result is still usable but not great. The hauptgebaude



sequence has a stronger geometric structure than the woods or gazebos, a property that should theoretically
help feature-based algorithms. On the other hand, it is also repetitive, which could make global registration
task hard. However, it should be noted that the same behavior is not observed with the other algorithms,
which obtained comparable or even better results on the hauptgebaude sequence with respect to the others
from the ETH dataset. It is possible that the results are due to a non-optimal choice of parameters.

It should be noted that comparing approaches without fine-tuning parameters specifically to each sequence
is a goal of the Point Clouds Registration Benchmark and of this work. Indeed, in a real-world application,
it is often impossible to fine-tune parameters with exactly the same data that will be used once the system is
deployed. Therefore, we believe that this type of experimentation gives unrealistically good results that will
not match the practical experience of the end user. Nevertheless, the results on the hauptgebaude sequence
could still be considered useful as global registration, considering its median residual error of 25% of the
initial value.

The results on the planetary sequences are varied. On the p2at_met sequence, the results are excellent (albeit
with a high variability), while on the box_met sequence they are much worse. This is surprising given the
similarities between the two sequences. The results on the planetary_map sequence are not usable at all,
but this is to be expected considering that this sequence is very difficult for global registration algorithms.

On the TUM sequences, the results are excellent and comparable to those of the ETH sequences. It should
be noted that they use two different sensors: a laser scanner in the ETH sequences, an RGB-D camera in
the TUM sequences. The ability to use the same model and parameters for two completely different sensors
is remarkable.

On the urban05 sequence, the results are not as good as with other sequences, but still usable, with a median
residual error that is 50% of the original, which is not sufficient for a final alignment, but could be a good
starting point for a local refinement technique.

We also provide results using FPFH features, which although not based on a neural network, are a good
starting point for comparison since they are the most commonly used feature for global registration of point
clouds. From the results, we can see that they perform much better than most neural-based techniques.
This is notable because they do not require any training phase, have fewer parameters, and require much
less computational resources. The only exception is 3DSmoothNet, whose results are generally better and
can be considered the only real improvement over the baseline represented by FPFH.

5 Conclusions

We compared well-known neural-based point cloud registration techniques on the Point Clouds Registration
Benchmark. The results show that their performance is very poor when applied to real-complex data, in
contrast to the much simpler experiments usually performed by the original authors. The only exception
is 3DSmoothNet, which achieved excellent results on most sequences of the benchmark and outperformed
a conventional state-of-the-art feature extractor. In addition, our tests show whether the results depend
on fine-tuning the parameters for each sequence, which is often impossible in practice. Given the results,
we believe that while neural-based techniques may theoretically have many advantages over conventional
techniques, more research is needed to make them truly useful in practice. In addition, we encourage
further research using unbiased and realistic testing procedures such as we have used. We believe this is a
fundamental step toward a more sound literature.
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