
P
os
te
d
on

1
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
08
69
97
.7
36
58
55
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A Novel Approach for SAR Target Detection Based on

Unsupervised Complex-Valued Extreme Learning Machine

Qinglong Hua1, Yun Zhang1, and Yicheng Jiang1

1Harbin Institute of Technology

August 1, 2023

Abstract

Strong clutter seriously affects target-of-interest detection in synthetic aperture radar (SAR) images. This letter proposes an

unsupervised target detection method (U-TDM) based on a complex-valued extreme learning machine (CV-ELM), the essence

of which is to transform the problem of target detection into a pixel binary classification problem. The SAR image is first

divided into several unlabeled patches, and fuzzy c-means (FCM) is used to construct the reference target patch set and the

clutter patch set. Based on these two patch sets, CV-ELM is used to classify the neighboring patch of the pixel to be detected.

Since the pixel intensity and distribution of target-of-interest and clutter are different, unsupervised pixel classification could

be realized without ground-truth through U-TDM. Experimental results on GF-3 data and Sentinel-1 data show the efficiency

of the proposed method in target detection with a heterogeneous clutter environment.
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Strong clutter seriously affects target-of-interest detection in synthetic
aperture radar (SAR) images. This letter proposes an unsupervised tar-
get detection method (U-TDM) based on a complex-valued extreme
learning machine (CV-ELM), the essence of which is to transform the
problem of target detection into a pixel binary classification problem.
The SAR image is first divided into several unlabeled patches, and fuzzy
c-means (FCM) is used to construct the reference target patch set and
the clutter patch set. Based on these two patch sets, CV-ELM is used to
classify the neighboring patch of the pixel to be detected. Since the pixel
intensity and distribution of target-of-interest and clutter are different,
unsupervised pixel classification could be realized without ground-truth
through U-TDM. Experimental results on GF-3 data and Sentinel-1 data
show the efficiency of the proposed method in target detection with a
heterogeneous clutter environment.

Introduction: Synthetic aperture radar (SAR) is an active microwave
sensor that can perform all-time and all-weather imaging without being
affected by light and climate [1]. SAR images are usually composed
of target-of-interest and clutter. The strong sea clutter or ground clutter
increases the difficulty of target detection. The quality of target detection
dramatically affects the performance of subsequent SAR image process-
ing. Accurate detection results are conducive to more accurately identi-
fying the target’s category and superstructure information.

After decades of development, many detection methods for SAR
images have been proposed. The classic constant false alarm rate
(CFAR) detector [2], [3] relies on contrast or brightness features to
search for targets, which may result in a large number of clutter false
alarms in the complex background of strong clutter. Moreover, since
moving targets and stationary clutter have different Doppler parame-
ter characteristics, spectral filter and time-frequency analysis could be
used to detect moving targets in a single-channel SAR system. Huang et
al. [4] proposed a time-Doppler chirp-varying (TDCV) filter for moving
target detection and parameter estimation with the airborne system. The
multi-channel SAR system could increase the spatial information of the
echo and improve the ability to observe moving targets [5]. These meth-
ods have higher requirements for the consistency of system channels.
The extended fractal (EF) method [6] is another representative research
that fully integrates the intensity information and the spatial distribu-
tion information. It uses the spatial difference between the target and
the clutter in reflected energy to detect the target. This EF-based method
provides a good compromise between performance and speed.

Deep learning has shown excellent performance in SAR detection
in recent years. Deep learning-based methods, such as ConvNets [7],
SSD [8], and Faster-RCNN [9], are accomplished by using the gradient
descent (GD) method to tune their large number of parameters, which
have the advantage of high accuracy. Nevertheless, deep network train-
ing depends heavily on sufficient labeled samples, and the SAR images
are time-consuming to annotate labels artificially. Some literature [10],
[11] develops semi-supervised or unsupervised learning approaches to
enhance the capacity of deep learning models. The extreme learning
machine (ELM) [12] provides a faster convergence training process
because the hidden layer parameters do not need to be tuned, and the
output weights are analytically determined. ELM’s low computational
complexity and better generalization in regression tasks provide a new
direction for our research.

Since SAR images belong to the complex domain, and ELM cannot
process complex information, it is necessary to extend ELM to form
complex-valued ELM (CV-ELM). This letter proposes an unsupervised
target detection method (U-TDM) based on CV-ELM and transforms
the target detection problem into a pixel binary classification problem.

In U-TDM, fuzzy c-means (FCM) [13] is first used to construct the refer-
ence target and clutter patch set. Then target patches and clutter patches
randomly selected from these two patch sets are classified by the CV-
ELM together with the neighborhood patch of the pixel to be detected.
Since the target and clutter are different in pixel intensity and distribu-
tion, unsupervised pixel classification could be achieved without actual
labels or ground-truth. Experiments on GF-3 and Sentinel-1 data verify
the effectiveness of the U-TDM.

U-TDM: The implementation details of the proposed unsupervised tar-
get detection method are shown in Fig. 1. Next, we elaborate on the U-
TDM from three perspectives: reference patch sets, unsupervised strat-
egy, and CV-ELM.

Construction of Reference Patch Sets: Before target detection in a SAR
image S, two reference patch set, target patch set ℵT and clutter patch set
ℵC, are necessary to be constructed. First, S is uniformly cropped into a
series of patches of size (2d + 1)× (2d + 1), where d is the scale factor.
These unlabeled patches are classified into target and clutter by FCM.
The target patches with membership greater than the threshold Tco f

constitute the target patch set ℵT =
{
T1, T2, ..., TNt

}
and the clutter

patches with membership greater than the threshold Tco f form the clut-
ter patch set ℵC =

{
C1, C2, ..., CNc

}
. Nt and Nc are the number of the

target patch set and the clutter patch set, respectively. It should be noted
that only background clutter is included in the clutter patch. The target
patch contains both the target-of-interest and the background clutter. The
reference patch sets could be regarded as the assisted knowledge used in
U-TDM. Based on the reference patch sets, construct an unsupervised
strategy in the next.

Unsupervised Strategy: Consider a complex SAR image S ∈ CM×N .
M is the number of rows, and N is the number of columns. s (m, n)
represents the m-th row and n-th column of S. Define Q ∈ CM×N as
the ground-truth of S. Define q (m, n) as the m-th row and n-th column
of Q. q (m, n) also represents the category of s (m, n). If the category
is the target, then q (m, n) = 1 + 1 j , otherwise q (m, n) = 0.

For the pixel s (m, n) in the SAR image S, it is difficult to effec-
tively determine its category based on the information of a single pixel.
Generally, the neighborhood of the pixel s (m, n) has a high degree of
correlation with s (m, n), so it is feasible to use the neighborhood infor-
mation of s (m, n) to determine the category of s (m, n). Define the
neighborhood of s (m, n) as NH (m, n).

NH (m, n)

=
{
s (m − d, n − d) , ...s

(
x j, y j

)
, ..., s (m + d, n + d)

} (1)

where s
(
x j, y j

)
is the j-th pixel of NH (m, n), 1 < m < M ,

1 < n < N . The number of pixels in NH (m, n) is Ns = (2d + 1)2.
Define two complex-valued functions f k ( ·), k = 1, 2. When vec-

torized NH (m, n) is input, the output of f k ( ·) is q (m, n). When the
vectorized reference target patch is input, the output of f k ( ·) is 1 + 1 j .
When the vectorized reference clutter patch is input, the output of f k ( ·)
is 0. Then the function f k ( ·) could be expressed as

f km,n = min
f k (·)

Lk
i (m, n) − f k

(
vec

(
Pk
i (m, n)

))
2

F
(2)

where
{
P1
i ∈ C

(2d+1)×(2d+1)
}Nl+1

i=1
= {NH (m, n) , T1, ..., TNl

}
is the

input of f 1
m,n ( ·), and

{
L1
i ∈ C

1
}Nl+1

i=1
= {q (m, n) , 1 + 1 j, ..., 1 + 1 j }

is the output of f 1
m,n ( ·).

{
P2
i

}Nl+1

i=1
=

{
NH (m, n) , C1, ..., CNl

}
is the

input of f 2
m,n ( ·), and

{
L2
i

}Nl+1

i=1
= {q (m, n) , 0, ..., 0} is the output of

f 2
m,n ( ·). ‖ · ‖F denotes the Frobenius norm. Nl represents the number

of patches randomly selected from the reference patch sets. vec
(
Pk
i

)
represents vectorized Pk

i . Each row of data in Pk
i is connected end to

end to obtain a single row vector.
Based on the reference patches, the classification problem of SAR

image pixels is converted to solve a group of functions as formula (6).
The classification result of the SAR image S could be obtained by inte-
grating Q̂1 and Q̂2, that is, Q̂ = Q̂1 � Q̂2. � represents the Hadamard
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Fig 1 The framework of target detection based on U-TDM.

product.

Q̂k =



f k1,1

(
Pk
i (1, 1)

)
. . . f k1,N

(
Pk
i (1, N )

)
...

. . .
...

f k
M,1

(
Pk
i (M, 1)

)
· · · f kM,N

(
Pk
i (M, N )

)


(3)

In supervised learning algorithms, knowing the value of q (m, n)
in advance is necessary before learning and training to solve the for-
mula (6). But in the actual application, it isn’t easy to obtain the value
of q (m, n) directly. Therefore, this letter adopts a unsupervised train-
ing strategy. In this strategy, whether the central point pixel s (m, n)
of NH (m, n) belongs to the target or the clutter, q (m, n) in

{
L1
i

}
is

set to 0. q (m, n) in
{
L2
i

}
is set to 1 + 1 j . Next, the rationality of this

strategy is explained by taking f 2
m,n ( ·),

{
P2
i

}
, and

{
L2
i

}
as examples.

If the central point pixel s (m, n) of NH (m, n) belongs to the target-
of-interest, the actual value of q (m, n) in

{
L2
i

}
is 1 + 1 j . Since the

target and clutter have certain differences in pixel intensity and distri-
bution, f 2

m,n ( ·) could classify NH (m, n) and reference clutter patches
randomly selected from ℵC well. If the central point pixel s (m, n) of
NH (m, n) belongs to the clutter, the actual value of q (m, n) in

{
L2
i

}
is

0. Although q (m, n) is forcibly set to 1 + 1 j , When f 2
m,n ( ·) is limited

in fitting ability and there are enough clutter patches, f 2
m,n ( ·) has dif-

ficulty separating NH (m, n) from reference clutter patches and would
tend to classify NH (m, n) into the clutter category. Therefore, even if
the label q (m, n) is set to 1 + 1 j when s (m, n) belongs to the clut-
ter, the correct classification result could be obtained. Similarly, setting
q (m, n) to 0 in

{
L1
i

}
is also reasonable.

CV-ELM: For the above mapping function f km,n ( ·), CV-ELM proposed
in this letter is used to solve it, which is a complex-valued version of
ELM. ELM is one of the outstanding models in the field of pattern recog-
nition. Its network structure is similar to traditional neural networks, and
its learning efficiency is better. ELM provides a faster training conver-
gence and does not require repeated iterations to adjust weights. It has
the advantages of fast learning speed and good generalization perfor-
mance. However, ELM could only process real-valued data. For com-
plex SAR images with phase information, it is more appropriate to use
CV-ELM for processing. Next, take solving f 2

m,n ( ·) as an example to
introduce the principle of CV-ELM.

Given data
{
P2
i

}Nl+1

i=1
=

{
NH (m, n) , C1, ..., CNl

}
and label

{
L2
i

}Nl+1

i=1
= {1 + 1 j, 0, ..., 0}. Xi = vec

(
P2
i (m, n)

)
=[

x1, ..., xu, ..., xNs

]
is the input with dimension Ns . In CV-ELM,

weight
{
W ∈ CNs×L

}
= [W1, ..., Wv, ..., WL ] and bias

{
b ∈ CL

}
=

[b1, ..., bv, ...bL ]T are randomly generated, L is the node number of
the hidden layer, Wv = [w1, ..., wu, ...wNs

]T , then the output oi of
CV-ELM could be expressed as

oi =

L∑
v=1

βvσ (XiWv + bv ) (4)

where β =
[
β1, ..., βv, ...βL

]T denotes output weight of the hid-
den layer. σ ( ·) is the complex-valued activation function [14], which
adopts the tanh activation function for the amplitude and keeps the phase

unchanged. For the complex variable z, the activation process of σ ( ·)
is as follows.

σ (z) = tanh ( |z |) exp
(
j arg (z)

)
(5)

The loss function of CV-ELM is the quadratic norm of the difference
between the expectation and actual output, expressed as follows.

Nl+1∑
i=1

‖oi − ŷi ‖ = 0 (6)

where ŷi = vec
(
L2
i

)
is the expectation or label of dimension 1.

According to the theory of CV-ELM, there exists β that makes the above
formula (9) true. Use matrixes to express the formula (7) as

Hβ = L (7)

where L is the expectation or label set by unsupervised strategy. For{
L1
i

}
, L =

[
0, 1 + 1 j, ..., 1 + 1 j

]T . For
{
L2
i

}
, L =

[
1 + 1 j, 0, ..., 0

]T .
H ∈ C(Nl+1)×L represents the output matrix of the hidden layer. Let
NL = Nl + 1, then H could be expanded into the following form.

H =



σ (X1W1 + b1) . . . σ (X1WL + bL )
...

. . .
...

σ
(
XNL W1 + b1

)
· · · σ

(
XNL WL + bL

)


(8)

Then the output weight β is

β = H†L (9)

where H† is the Moore-Penrose generalized inverse.

Experimental Results: The proposed method is compared with two rep-
resentative methods, CFAR and EF. A GF-3 SAR image containing sea
clutter and a SAR dataset containing 207 ship targets are used to test the
effectiveness of the proposed method in different scenes. Three indica-
tors of missed-detection probability Pm [15], recall Pr [16], and pre-
cision Pp [16] are used to measure the performance of the proposed
method. Pm represents the proportion of target pixels that are incor-
rectly classified as clutter pixels to all the target pixels. Pr is the propor-
tion of target pixels correctly classified to all target pixels. Pp represents
the proportion of target pixels that are correctly classified to all the pix-
els classified as target pixels. For the experimental parameters, the node
number of the hidden layer in CV-ELM is 51, the size of NH (m, n)
is 3×3, and Nl is 480, Tco f is 0.8. Conventionally, the degree of free-
dom (DoF) of CV-ELM is twice that of a counterpart ELM. In order to
make a fair comparison, an ELM is designed to have the same DoF as
the CV-ELM. The node number of the hidden layer in ELM is 102.

Performance Comparison on A GF-3 SAR Image: The processing
results of different methods for a GF-3 image are shown in Fig. 2. The
GF-3 image has one ship target and strong and heterogeneous sea clutter.
The Pm , Pr , and Pp performance comparisons are shown in Table 1.
According to the qualitative analysis in Fig. 2, the traditional method of
CFAR could detect most of the pixels in ship targets. Still, it also incor-
rectly detects some strong clutter as targets. By comparing the original
image in Fig. 2(a) and the detection result of the EF in Fig. 2(d), strong

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el



(a) (b) (c)

(e)(d) (f)

Fig 2 Results of target detection for GF-3 image. (a) Original image. (b)
Ground-truth. (c) CFAR processed image. (d) EF processed image. (e) U-
TDM with ELM processed image. (f) U-TDM with CV-ELM processed image.

Table 1. Performance Comparison on GF-3 SAR Image (%)

CFAR EF U-TDM (ELM) U-TDM (CV-ELM)

Pm 49.72 47.73 7.10 5.68

Pr 50.28 52.27 92.90 94.32

Pp 25.00 41.16 68.27 69.60

(a) (b)

Fig 3 Result of ship detection for Sentinel-1 SAR images. The correctly
detected targets, the false alarms, and the missed alarmsand are indicated
by the green, red, and blue rectangle boxes, respectively.

clutter does not affect the EF. Still, the detection result of the EF is not
very accurate due to the characteristics of the EF, and the detected target
area is larger than the actual target area. The U-TDM using ELM has a
better target detection effect, but a part of the clutter area is incorrectly
detected as the target. The U-TDM using CV-ELM is not affected by
strong clutter, and the detection result is relatively accurate.

From the quantitative analysis of Table 1, the missed-detection prob-
ability of the U-TDM using CV-ELM is the lowest, which is 5.68%, and
the missed-detection probability of the CFAR is the highest, which is
49.72%. The missed-detection probability of the U-TDM is about one-
tenth of that of CFAR. The U-TDM also achieved the highest recall of
94.32%. The precision of the CFAR is the lowest, which is 25.00%, and
the U-TDM using CV-ELM is the highest, reaching 69.60%. Based on
the three indicators, the performance of the U-TDM using CV-ELM is
the best, and the U-TDM using ELM is second, which fully demonstrates
the effectiveness of the proposed knowledge-assisted method. It should
be noted that for the nearshore area, sea-land segmentation should be
carried out before target detection to avoid the influence of strong land
clutter.

Performance on SAR Ship Dataset: A SAR ship dataset is used to test
the effect of the proposed method. This dataset contains 4 large-scene
Sentinel-1 SAR images with a total of 207 ship targets. The labels are
annotated manually by experts via the software named LabelImg. Fig. 3
shows the detection result of U-TDM using CV-ELM for one large-scene
Sentinel-1 SAR image. A detailed comparison is presented in Table 2.
The IoU threshold is 0.3. From Table 2, the proposed method achieves
the highest number of correctly detected targets and the lowest number
of false and missing alarms and achieves good detection results even for
small targets.

Table 2. Performance Comparison on the SAR Ship Dataset

Correctly detected target False alarm Missing alarm

CFAR 153 64 54

EF 120 84 87

U-TDM (ELM) 195 15 12

U-TDM (CV-ELM) 198 7 9

Conclusion: In this letter, we propose a U-TDM based on an unsuper-
vised strategy and CV-ELM for SAR target detection. CV-ELM converts
the target detection problem into a pixel binary classification problem,
which could fully exploit the characteristic differences in amplitude and
phase between the target and clutter. In U-TDM, the weights of CV-
ELM are solved by an unsupervised strategy based on reference patch
sets, which avoids the acquisition difficulty of ground-truth. Experi-
ments show that the proposed method could improve target detection
performance compared with traditional methods. In the future study, the
proposed method will be used to detect targets in a radio-frequency inter-
ference background.
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