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Abstract

We review some known bounds for eigenvalues of matrices and use similar techniques to derive bounds for nonlinear eigen

problems and the eigenvalues for LTI systems with delays as a special case. There are two classes of results. The first are

based on Hermitian decompositions, the second on Gershgorin’s theorem. The bounds are easily computable. We reflect on

implications for stability theory, which may be contrasted with bounds that have been obtained via Riccati stability based on

Lyapunov-Krasovskii theory.
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We review some known bounds for eigenvalues of matrices and use similar tech-
niques to derive bounds for nonlinear eigen problems and the eigenvalues for LTI
systems with delays as a special case. There are two classes of results. The first
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1 INTRODUCTION

Determining the eigenvalues of a single 𝑛 by 𝑛 matrix has a complexity of order 𝑛3. The basic approach is the QR algorithm. This
basic algorithm is made computationally feasible by introducing the Hessenberg decomposition and accelerating its convergence
by using shifts. See Golub ad Loan13 for details. In many applications (e.g. stability) the availability of bounds on the eigenvalues
(as domains in he complex plane) suffices. Bounds on the eigenvalues of a matrix can be specified in two simple ways: One way
is based on the decomposition of a real matrix in its symmetric and anti-symmetric components, or for a complex matrix in its
Hermitian and skew-Hermitian components17. The upshot is that the computation of the eigenvalues of a symmetric matrix is
considerably simpler. Moreover, the problem of finding eigenvalues for normal matrices (thus also symmetric ones) is always
well-conditioned3. A second method is a classical result due to Gershgorin12, also referred to as the circle theorem13. Although
the proofs are relative simple16, these results are not widely exploited4. For some applications see Brualdi6 and for networked
systems Garren11 and Huang et al18. The goal is to apply these methods to obtains various bounds for more general nonlinear
eigen problems of the form

𝐹 (𝜆; {𝐴𝑖}𝑁𝑖=1) = 0. (1)
These include solutions for polynomial eigenvalue problems of the form

det(𝜆𝑛𝐼 + 𝜆𝑛−1𝐴1 + 𝜆𝑛−2𝐴2 +…+ 𝜆𝐴𝑛−1 + 𝐴𝑛) = 0, (2)

a problem that has seen some interest (See15). In the scalar case, this is simply a polynomial root problem. It is readily shown
that these nonlinear eigenvalues are the (linear) eigenvalues of a block-companion matrix

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝐴1 −𝐴2 ⋯ ⋯ −𝐴𝑛
𝐼 0 0
0 𝐼 ⋱ 0

⋱ ⋱ ⋮
0 0 ⋯ 𝐼 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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The special case of quadratic eigen problems is motivated by problems in the dynamic analysis of structural mechanical, and
acoustic systems, in electrical circuit simulation, in fluid mechanics, and, more recently, in modeling microelectronic mechanical
systems (MEMS). It is also what has motivated Olga Taussky to become a torchbearer for matrix theory22. A thorough discussion
of the problem is given in9, and23. Discrete-time linear systems with a fixed delay of the form

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑥𝑘−𝑚

are inherently finite dimensional if 𝑚 < ∞. Hence their stability is related to the poles of an augmented finite dimensional linear
system of dimension dim𝜒 = 𝑚 dim 𝑥:

𝜒𝑘+1 = 𝜒𝑘

This characteristic equation is equivalent (using block-determinant identities) to

det(𝜆𝑚+1𝐼 − 𝜆𝑚𝐴 − 𝐵) = 0,

which is a nonlinear eigen problem of the polynomial form (2). Of more interest in this special issue are the eigen problems
related to systems with delay in continuous time. For a single delay system, �̇�(𝑡) = 𝐴𝑥(𝑡)+𝐵𝑥(𝑡−1), the characteristic equation
is given by

det(𝜆𝐼 − 𝐴 − 𝐵e−𝜆) = 0,

which is of the general form (1). It is well-known that the associated infinitesimal generator is compact, from which we may
deduce that the spectrum is a pure point spectrum. Consequently, the stability of the delay system is characterized by all the
eigenvalues of the system being in the open left hand plane. Sufficient conditions for stability were easily obtained by Lyapunov-
Krasovskii methods, leading to the Riccati conditions for stability, as first established by Verriest and Ivanov28, and extended in
a series of papers28,29,10,25,30 These techniques were later rebranded also as Linear Matrix Inequalities (LMI), a term coined by
Jan Willems33, as they are equivalent. An overview of the LMI-technique is exposed in the book5 and lecture notes21. We note
that these Riccati-methods can be extended to analyze classes of nonlinear systems27, unlike the bounds to be described here.
To make this paper self-contained, we present the proofs for the basic Hermitian (symmetric) decomposition and Gershgorin’s
theorem respectively in Sections 2 and 5, as they will be the starting point for the main development in this paper. In Section 3,
we look at extensions of the Hermitian decomposition for the quadratic eigen problem. In particular conditions for the absence
of real eigenvalues and bounds for the imaginary parts in terms of the real parts are presented. This is repeated for the eigen
problem associated with (continuous-time) delay systems in Section 4. The remainder of Section 5 presents bounds on the real
part of the eigenvalues for the quadratic problem, and similar results are then obtained for delay systems in Section 6.

2 EIGENVALUE BOUNDS BASED ON HERMITIAN DECOMPOSITIONS.

To set the stage, we first review some classical bounds on the eigenvalues of a matrix 𝑀 ∈ ℝ𝑛×𝑛. For arbitrary 𝑥, 𝑦 ∈ ℝ𝑛,
consider the complex vector 𝑧 = 𝑥 + 𝑗𝑦. Let 𝑧∗ be its Hermitian conjugate, 𝑧∗ = 𝑥⊤ − 𝑗𝑦⊤. Let also 𝑀 = 𝑀𝑠 + 𝑀𝑎 be the
decomposition of 𝑀 in its symmetric and anti-symmetric parts

𝑀𝑠 =
1
2
(𝑀 +𝑀⊤), 𝑀𝑎 =

1
2
(𝑀 −𝑀⊤).

Since 𝑝⊤𝑀𝑎𝑝 = 0 for all 𝑝 ∈ ℝ𝑛, the quadratic form

𝑧∗𝑀𝑧 = 𝑧∗𝑀𝑠𝑧 + 𝑧∗𝑀𝑎𝑧.

can be expressed as

𝑧∗𝑀𝑧 = (𝑥⊤𝑀𝑠𝑥 + 𝑦⊤𝑀𝑠𝑦) + 2𝑗𝑥⊤𝑀𝑎𝑦. (3)

If 𝑧 = 𝑥 + 𝑗𝑦 is an eigenvector of the matrix 𝑀 , corresponding to the eigenvalue 𝜆 = 𝜎 + 𝑗𝜔, with 𝜎, 𝜔 ∈ ℝ,then by definition

𝑀𝑧 = 𝑀(𝑥 + 𝑗𝑦) = (𝜎 + 𝑗𝜔)(𝑥 + 𝑗𝑦) = 𝜆𝑧. (4)

We shall use these relations to obtain bounds of 𝜎 and 𝜔.
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2.1 Bounds on Re 𝜆(𝑀)
Pre-multiply (4) with 𝑧∗ to get

𝑧∗𝑀𝑧 = 𝜆𝑧∗𝑧. (5)
The right hand side of (5) is (𝜎 + 𝑗𝜔)(𝑥⊤𝑥 + 𝑦⊤𝑦). It follows from (3) that

𝜎(‖𝑥|2 + ‖𝑦‖2) + 2𝑗𝜔(𝑥⊤𝑦) = (𝑥⊤𝑀𝑠𝑥 + 𝑦⊤𝑀𝑠𝑦) + 2𝑗𝑥⊤𝑀𝑎𝑦,

and thus by identifying he real and imaginary parts

𝜎(‖𝑥|2 + ‖𝑦‖2) = 𝑥⊤𝑀𝑠𝑥 + 𝑦⊤𝑀𝑠𝑦 (6)
𝜔(‖𝑥|2 + ‖𝑦‖2) = 2𝑥⊤𝑀𝑎𝑦. (7)

Let now ‖𝑧‖ = 1, or equivalently, ‖𝑥‖2 + ‖𝑦‖2 = 1, then from (6) we get

min
‖𝑥‖2+‖𝑦‖2=1

(

𝑥⊤𝑀𝑠𝑥 + 𝑦⊤𝑀𝑠𝑦
)

≤ 𝜎 ≤ max
‖𝑥‖2+‖𝑦‖2=1

(

𝑥⊤𝑀𝑠𝑥 + 𝑦⊤𝑀𝑠𝑦
)

,

from which

min
𝛼∈[0,1]

(

min
‖𝑥‖2=𝛼

𝑥⊤𝑀𝑠𝑥 + min
‖𝑦‖2=1−𝛼

𝑦⊤𝑀𝑠𝑦
)

≤ 𝜎 ≤ max
𝛼∈[0,1]

(

max
‖𝑥‖2=𝛼

𝑥⊤𝑀𝑠𝑥 + max
‖𝑦‖2=1−𝛼

𝑦⊤𝑀𝑠𝑦
)

,

or
min
𝛼∈[0,1]

𝜆min(𝑀𝑠)(𝛼 + 1 − 𝛼) ≤ 𝜎 ≤ max
𝛼∈[0,1]

𝜆max(𝑀𝑠)(𝛼 + 1 − 𝛼).

Since this is in fact independent of 𝛼, this relation establishes the following bounds on the real parts of the eigenvalues of 𝑀

𝜆min(𝑀𝑠) ≤ 𝜎 ≤ 𝜆max(𝑀𝑠) (8)

2.2 Bounds on Im 𝜆(𝑀)
By Hermitian conjugation of (5) we get for the real matrix 𝑀

𝑧∗𝑀⊤𝑧 = 𝜆𝑧∗𝑧.

Subtracting this from (5) gives
𝜔(‖𝑥‖2 + ‖𝑦‖2) = 2𝑥⊤𝑀𝑎𝑦.

Bounds for the imaginary part follow then by extremizing 2𝑥⊤𝑀𝑎𝑦 with the constraint ‖𝑥2‖ + ‖𝑦‖2 = 1. Introducing the
Lagrange multiplier 𝜇, we get the Lagrangian

𝐿 = 2𝑥⊤𝑀𝑎𝑦 + 𝜇(‖𝑥‖2 + ‖𝑦‖2).

Necessary conditions for stationarity follow by taking the gradient of 𝐿

𝑀𝑎𝑦 + 𝜇𝑥 = 0 (9)
𝑥⊤𝑀𝑎 + 𝜇𝑦⊤ = 0. (10)

These equations imply
𝑀⊤

𝑎 𝑀𝑎𝑦 = −𝜇𝑀⊤
𝑎 𝑥 = 𝜇2𝑦.

Hence, 𝑦 must be an eigenvector of the positive semi-definite symmetric matrix 𝑀⊤
𝑎 𝑀𝑎 with eigenvalue 𝜇2 ≥ 0. Likewise

𝑀𝑎𝑀
⊤
𝑎 𝑥 = 𝜇2𝑥.

Then (9) and (10) imply
𝑥⊤𝑀𝑎𝑦 = −𝜇‖𝑥‖2 = −𝜇‖𝑦‖2,

so that ‖𝑥‖ = ‖𝑦‖ and 𝜇 = −2𝑥⊤𝑀𝑎𝑦 = −𝜔. This establishes the following bound on the imaginary part of the eigenvalues of
𝑀

|𝜔| ≤
√

𝜆max(𝑀⊤
𝑎 𝑀𝑎). (11)

Note that this differs from the statement (without proof) given by Garren11.



4 Verriest, Erik

An alternative proof, based on inequalities, can be given for the bound on 2𝑥⊤𝑀𝑎𝑦 with the constraint ‖𝑥2‖ + ‖𝑦‖2 = 1. Set
again ‖𝑥‖2 = 𝛼 and ‖𝑦‖2 = 1 − 𝛼 for some 0 ≤ 𝛼 ≤ 1. Denoting 𝑥 = 𝑥

‖𝑥‖
, it follows that

𝑥⊤𝑀𝑎𝑦 =
√

𝛼(1 − 𝛼) 𝑥⊤𝑀𝑎𝑦.

This is maximal for 𝛼 = 1
2
, so that the problem reduces to finding the maximum of 𝑥⊤𝑀𝑎𝑦 for unit vectors 𝑥 and 𝑦. By Schwarz’s

inequality,
𝑥⊤𝑀𝑎𝑦 ≤ ‖𝑥‖‖𝑀𝑎𝑦‖ = ‖𝑀𝑎𝑦‖,

with equality if 𝑀𝑎𝑦 = 𝑘𝑦 for some 𝑘 > 0. But, 𝑀⊤
𝑎 𝑀𝑎 is symmetric and therefore has a real spectrum,

max
‖𝑦‖=1

‖𝑀𝑎𝑦‖ = max
𝑦‖=1

𝑦⊤𝑀⊤
𝑎 𝑀𝑎𝑦 = 𝜆max(𝑀⊤

𝑎 𝑀𝑎).

Thus
max

‖𝑥‖2+‖𝑦‖2=1
𝑥⊤𝑀𝑎𝑦 = 1

2

√

𝜆max(𝑀⊤
𝑎 𝑀).

The two results presented here allow to confine each eigenvalue of the 𝑛 × 𝑛 matrix 𝑀 to a rectangular domain in ℂ, and the
vertices are computable by solving a symmetric eigen problem, which as mentioned in the introduction is a simple problem with
a more accurate solution.

2.3 Bound on Im 𝜆(𝑀) in function of Im 𝜆(𝑀)
We derive now a new bound for the imaginary part of an eigenvalue of a real matrix as function of the real part.

Theorem 1 (Imaginary part bounds). Let 𝑀 ∈ ℝ𝑛×𝑛 have eigenvalue 𝜆 = 𝜎 + 𝑗𝜔, with 𝜎, 𝜔 ∈ ℝ. Let 𝑀𝑠 and 𝑀𝑎 respectively
be the symmetric and anti-symmetric parts of 𝑀 , then
i) the imaginary part of the eigenvalues are upper bounded by

|𝜔| ≤
√

−𝜆min(𝑀2
𝑠 +𝑀2

𝑎 ) + 2𝜎[𝜆max(𝑀𝑠)𝐻(𝜎) + 𝜆min(𝑀𝑠)𝐻(−𝜎)] − 𝜎2. (12)

where 𝐻(⋅) is the Heaviside function,
ii) if 𝐿(𝑀,𝜎) ∶= −𝜆max(𝑀2

𝑠 +𝑀2
𝑎 ) + 2𝜎[𝜆min(𝑀𝑠)𝐻(𝜎) + 𝜆max(𝑀𝑠)𝐻(−𝜎)] − 𝜎2 is real and positive, then

√

𝐿(𝑀,𝜎) is an
effective lower bound for |𝜔|. Else, this lower bound is the zero function.

Proof of Theorem 1. From 𝑀(𝑥+ 𝑗𝑦) = (𝜎 + 𝑗𝜔)(𝑥+ 𝑗𝑦), where 𝑧 = 𝑥+ 𝑗𝑦 is an eigenvector, with 𝑥, 𝑦 ∈ ℝ𝑛, of 𝑀 associated
with eigenvalue 𝜆 = 𝜎 + 𝑗𝜔, we get the pair of equations

𝑀𝑥 = 𝜎𝑥 − 𝜔𝑦 (13)
𝑀𝑦 = 𝜔𝑥 + 𝜎𝑦. (14)

These imply
𝑀2𝑥 = 𝜎𝑀𝑥 − 𝜔𝑀𝑦 − 𝜎𝑀𝑥 − 𝜔2𝑥 − 𝜎𝜔𝑦 = 2𝜎𝑀𝑥 − (𝜔2 + 𝜎2)𝑥,

or
𝜔2𝑥 = −𝑀2𝑥 + 2𝜎𝑀𝑥 − 𝜎2𝑥.

Since both sides scale linearly in 𝑥, we may set ‖𝑥‖ = 1. Premultiplication by 𝑥⊤ yields then

𝜔2 = −𝑥⊤𝑀2𝑥 + 2𝜎𝑥⊤𝑀𝑥 − 𝜎2 = −𝑥⊤(𝑀2)𝑠𝑥 + 2𝜎𝑥⊤𝑀𝑠𝑥 − 𝜎2.

Note that
𝑀2 = (𝑀𝑠 +𝑀𝑎)2 = 𝑀2

𝑠 +𝑀𝑠𝑀𝑎 +𝑀𝑎𝑀𝑠 +𝑀2
𝑎 ⇒ (𝑀2)𝑠 = 𝑀2

𝑠 −𝑀⊤
𝑎 𝑀𝑎.

Using the above established bounds for a symmetric matrix, this leads to

𝜆min(−𝑀2
𝑠 +𝑀⊤

𝑎 𝑀𝑎 + 2𝜎𝑀𝑠 − 𝜎2) ≤ 𝜔2 ≤ 𝜆max(−𝑀2
𝑠 +𝑀⊤

𝑎 𝑀𝑎 + 2𝜎𝑀𝑠 − 𝜎2)

or
−𝜆max((𝑀𝑠 − 𝜎𝐼)2 −𝑀⊤

𝑎 𝑀𝑎) ≤ 𝜔2 ≤ −𝜆min((𝑀𝑠 − 𝜎𝐼)2 −𝑀⊤
𝑎 𝑀𝑎) (15)
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But there is a problem with the bounds in (15) as they need to be evaluated for each 𝜎. In order to get 𝜎 outside the matrix
bounds, we consider the more restrictive bounds (by extremizing each term individually). Thus one arrives at

min
‖𝑥‖=1

[−𝑥⊤(𝑀2)𝑠𝑥] + 2𝜎 min
‖𝑥‖=1

[𝑥⊤𝑀𝑠𝑥] − 𝜎2 ≤ 𝜔2 ≤ max
‖𝑥‖=1

[−𝑥⊤(𝑀2)𝑠𝑥] + 2𝜎 max
‖𝑥‖=1

[𝑥⊤𝑀𝑠𝑥] − 𝜎2.

For 𝜎 > 0, these bounds are evaluated by the quadratic forms in 𝜎:

−𝜆max(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆min(𝑀𝑠) − 𝜎2 ≤ 𝜔2 ≤ −𝜆min(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆max(𝑀𝑠) − 𝜎2. (16)

For the case 𝜎 < 0 this yields instead the quadratic bounds in 𝜎:

−𝜆max(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆max(𝑀𝑠) − 𝜎2 ≤ 𝜔2 ≤ −𝜆min(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆min(𝑀𝑠) − 𝜎2. (17)

From (8) we already know that 𝜎 can be restricted to the interval [𝜆min(𝑀𝑠), 𝜆max(𝑀𝑠)]. Furthermore, the bounds in (16) and
(17) are only informative if they are real and positive.
Consequently, if 𝜆max(𝑀𝑠) > 0 we get for 𝜎 ∈ [0, 𝜆𝑚𝑎𝑥(𝑀𝑠)]∩[−𝜆max(𝑀𝑠)−

√

𝐷+,−𝜆max(𝑀𝑠)+
√

𝐷+] = [max(0,−𝜆max(𝑀𝑠)−
√

𝐷+),min(𝜆max(𝑀𝑠),−𝜆max(𝑀𝑠) +
√

𝐷+)] the bounds
√

−𝜆max(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆min(𝑀𝑠) − 𝜎2 ≤ |𝜔| ≤
√

−𝜆min(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆max(𝑀𝑠) − 𝜎2 (18)

while if 𝜆𝑚𝑖𝑛(𝑀𝑠) < 0 we get for 𝜎 ∈ [𝜆min(𝑀𝑠), 0] ∩ [−𝜆max(𝑀𝑠) −
√

(𝐷′
−),−𝜆max(𝑀𝑠) +

√

(𝐷′
−)] where 𝐷′

− = 𝜆max(𝑀𝑠)2 −
𝜆max(𝑀2

𝑠 −𝑀⊤
𝑎 𝑀𝑎) the bounds
√

−𝜆max(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆max(𝑀𝑠) − 𝜎2 ≤ |𝜔| ≤
√

−𝜆min(𝑀2
𝑠 −𝑀⊤

𝑎 𝑀𝑎) + 2𝜎𝜆max(𝑀𝑠) − 𝜎2 (19)

Combining the upper bounds proves (12). The inequalities also tell us that there is an effective (i.e., positive) lower bound for
|𝜔| if the left hand side quadratic forms in (16) and (17) are positive valued.

Example 1: The matrix 𝑀 =
[

1 13
−13 15

]

has eigenvalues 𝜆± = 7 ± 13.7477270848675𝑗. We find the bounds Re 𝜆 ∈ [1, 13]

and |Im 𝜆| ≤ 15. The function upper and lower bounds of theorem 1 are shown in Figure 1. Note that the exact eigenvalue
corresponds to 𝜎 = 7. Next we explore extensions to the quadratic eigen problem.

Figure 1 Upper and Lower Bound for |𝜔| as function of 𝜎.

3 QUADRATIC EIGENVALUE PROBLEM

This problem is motivated by Olga Taussky22, having some importance in the analysis of aerodynamic flutter. Given 𝐴 and 𝐵
in ℝ𝑛×𝑛. Let 𝜆 be a complex nonlinear eigenvalue, i.e., a solution of the equation

det(𝜆2𝐼 + 𝜆𝐴 + 𝜆𝐵) = 0. (20)

This implies that a vector, 𝑧 ∈ ℂ𝑛, exists such that

(𝜆2𝐼 + 𝜆𝐴 + 𝜆𝐵)𝑧 = 0.
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As in the previous section, pre-multiply by 𝑧∗ to get

𝜆2𝑧∗𝑧 + 𝜆𝑧∗𝐴𝑧 + 𝑧∗𝐵𝑧 = 0. (21)

which yields by conjugation
𝜆
2
𝑧∗𝑧 + 𝜆𝑧∗𝐴⊤𝑧 + 𝑧∗𝐵⊤𝑧 = 0. (22)

Add and subtract (21) and (22), letting again 𝑧 = 𝑥 + 𝑗𝑦 with 𝑥, 𝑦 ∈ ℝ𝑛 to get

Re(𝜆2(‖𝑥‖2 + ‖𝑦‖2) + Re(𝜆𝑧∗𝐴𝑧) + Re(𝑧∗𝐵𝑧) = 0 (23)
Im(𝜆2(‖𝑥‖2 + ‖𝑦‖2) + Im(𝜆𝑧∗𝐴𝑧) + Im(𝑧∗𝐵𝑧) = 0. (24)

Using (3) with 𝐴 and 𝐵, we get from (23)

(𝜎2 − 𝜔2)(‖𝑥‖2 + ‖𝑦‖2) + 𝜎(𝑥⊤𝐴𝑠𝑥 + 𝑦⊤𝐴𝑠𝑦) − 2𝜔𝑥⊤𝐴𝑎𝑦 + 𝑥⊤𝐵𝑠𝑥 + 𝑦⊤𝐵𝑠𝑦 = 0, (25)

and in (24)

2𝜎𝜔(‖𝑥‖2 + ‖𝑦‖2) + 2𝜎𝑥⊤𝐴𝑎𝑦 + 𝜔(𝑥⊤𝐴𝑠𝑥 + 𝑦⊤𝐴𝑠𝑦) + 2𝑥⊤𝐵𝑎𝑦 = 0. (26)

The equations (25) and (26) obtained this way do not seem very useful. However, if we know that a real eigenvalue exists, or
restrict the analysis to a real eigenvalue), 𝜆 = 𝜎, then let 𝜔 = 0 and 𝑦 = 0 and find

𝜎2
‖𝑥‖2 + 𝜎𝑥⊤𝐴𝑠𝑥 + 𝑥⊤𝐵𝑠𝑥 = 0 (27)

One can deduce from equation (27) the following theorem:

Theorem 2 (Nonexistence of real eigenvalues). No real eigenvalues can exist for the quadratic problem (20) if

max{𝜆2max(𝐴𝑠), 𝜆2min(𝐴𝑠)} < 4𝜆min(𝐵𝑠).

Proof of Theorem 2. Solving (27) for 𝜎, no real solutions can exist if

(𝑥⊤𝐴𝑠𝑥)2 − 4𝑥⊤𝐵𝑠𝑥‖𝑥‖
2 < 0.

Since this condition is scale invariant, it is equivalent to max
‖𝑥‖=1(𝑥⊤𝐴𝑠𝑥)2 < 4min

‖𝑥‖=1 𝑥⊤𝐵𝑠𝑥, i.e., if

max{𝜆2max(𝐴𝑠), 𝜆2min(𝐴𝑠)} < 4𝜆min(𝐵𝑠).

□

Example 2: For the quadratic eigenvalue problem det(𝜆2𝐼 + 𝜆𝐴 + 𝐵) = 0 with

𝐴 =
[

5 10
−10 −3

]

, 𝐵 =
[

10 −1
1 10

]

one finds 𝜆max(𝐴𝑠) = 5, and 𝜆min(𝐴𝑠) = −3, and max(𝜆2max(𝐴𝑠), 𝜆2min(𝐴𝑠)) = 25 < 4𝜆min(𝐵𝑠) = 40. Hence this problem has no
real quadratic eigenvalues. In fact the nonlinear eigenvalues are approximately −3.79345 ± 10.83017 and −0.20655 ± 0.85309.

Theorem 3 (Imaginary part bounds). The magnitude of the imaginary part, |𝜔|, of the eigenvalue of the quadratic eigenvalue
problem (20) is upper bounded in terms of its real part, 𝜎, by

𝜆1∕2max[(𝜎𝐴𝑎 + 𝐵𝑎)⊤(𝐴𝑠 + 2𝜎𝐼)−1(𝜎𝐴𝑎 + 𝐵𝑎)(𝐴𝑠 + 2𝜎𝐼)−1]. (28)

Proof of Theorem 3. : Note that equation (26) is linear in both 𝜎 an 𝜔, and scale invariant jointly in 𝑥 and 𝑦, It follows that,

𝜔 = −
2𝑥⊤(𝜎𝐴𝑎 + 𝐵𝑎)𝑦

𝑥⊤(2𝜎𝐼 + 𝐴𝑠)𝑥 + 𝑦⊤(2𝜎𝐼 + 𝐴𝑠)𝑦
.

Hence |𝜔| is bounded by the maximum of 2|𝑥⊤(𝜎𝐴𝑎+𝐵𝑎)𝑦| if 𝑥 and 𝑦 are constrained by |𝑥⊤(2𝜎𝐼+𝐴𝑠)𝑥+𝑦⊤(2𝜎𝐼+𝐴𝑠)𝑦| = 1.
This maximization problem can be solved as in the previous section, thus giving the bound.
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A more conservative bound is obtained by separately maximizing the numerator and minimizing the absolute value of the
denominator. One finds

|𝜔| ≤
𝜆1∕2𝑚𝑎𝑥[(𝜎𝐴𝑎 + 𝐵𝑎)⊤(𝜎𝐴𝑎 + 𝐵𝑎)]

min𝜆∈Spec𝐴𝑠
|2𝜎 + 𝜆|

. (29)

Observe that (29) is not informative if the real part is 𝜎 = − 1
2
𝜆(𝐴𝑠).

In view of the equivalence between the quadratic eigen problem and the linear eigen problem for the companion form

 =
[

−𝐴 −𝐵
𝐼 0

]

we also know by the fundamental Hermitian method that the real and imaginary components of the quadratic eigenvalue are
respectively bounded by

Re 𝜆 ∈ [𝜆min(𝑠), 𝜆max(𝐴𝑠)]

and

|Im 𝜆| ≤
√

𝜆max(⊤
𝑎𝑎).

Since

𝑠 =
1
2

[

−2𝐴𝑠 𝐼 − 𝐵
𝐼 − 𝐵⊤ 0

]

,

it follows the block determinant identity that Re 𝜆 is bounded by the minimum and maximum eigenvalue, 𝜇 of the symmetric
quadratic problem

det
[

𝜇2𝐼 + 𝜇𝐴𝑠 −
1
4
(𝐵 − 𝐼)(𝐵⊤ − 𝐼)

]

= 0. (30)

The imaginary part of 𝜆 is bounded by the square root of the maximal eigenvalue of the symmetric matrix

⊤
𝑎𝑎 =

1
4

[

−2𝐴⊤
𝑎 𝐼 + 𝐵

𝐼 − 𝐵⊤ 0

] [

−2𝐴𝑎 𝐼 − 𝐵
𝐼 + 𝐵⊤ 0

]

= 1
4

[

4𝐴𝑎𝐴⊤
𝑎 + (𝐼 + 𝐵)(𝐼 + 𝐵⊤) 2𝐴𝑎(𝐼 − 𝐵)
2(𝐼 − 𝐵⊤)𝐴⊤

𝑎 (𝐼 − 𝐵⊤)(𝐼 − 𝐵)

]

. (31)

Example 3: Let 𝐴 = 𝛼𝐼 +𝑁 , with 𝑁⊤ = −𝑁 and 𝛼 ∈ ℝ. The real part of the quadratic eigenvalues satisfying det[𝜆2𝐼 + 𝛼𝜆𝐼 +
𝜆𝑁+𝐵] = 0 are bounded by the minimum and maximum quadratic eigenvalues satisfying det[𝜇2𝐼+2𝜇𝛼𝐼−(𝐵−𝐼)(𝐵⊤−𝐼)] = 0.
But this reduces to

det
[

(𝜇2 + 𝜇𝛼)𝐼 − 1
4
(𝐵 − 𝐼)(𝐵⊤ − 𝐼)

]

= 0,

and since (𝐵 − 𝐼)(𝐵⊤ − 𝐼) is positive semi-definite, its eigenvalues, 𝜃𝑖, are nonnegative. Identifying 𝜇2 + 𝛼𝑚𝑢 with 𝜃, it follows
that the quadratic eigenvalues of the symmetric eigen problem are

𝜇 = −𝛼
2
± 1

2

√

𝛼2 + 𝜃,

and thus the real parts of the quadratic eigenvalues are constrained by

Re 𝜆 ∈
[

−𝛼
2
− 1

2

√

𝛼2 + max 𝜃,−𝛼
2
+ 1

2

√

𝛼2 + max 𝜃
]

.

In particular, the quadratic eigenvalues for

𝐴 =
[

1 1
−1 1

]

, 𝐵 =
[

1 1
1 0

]

are readily computed as
−1, 0.392646781702641, −0.696323390851321 ± 1.435949864𝑗,

while the bounds give
−1.4510 < Re 𝜆 < 0.4511, and |Im 𝜆| < 3.228.
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4 DELAY-SYSTEM EIGENVALUE PROBLEM

�̇�(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − 1). (32)

It is well-known that this DDE is asymptotically stable in the domain

Ω = { (𝑎, 𝑏) ∈ ℝ2
| 𝑏 > −1, 𝑎 < −𝑏 } ∪ (𝑎, 𝑏) ∈ ℝ2

|∃𝜔 ∈ (0, 𝜋) ∶ 𝑎 + 𝑏 cos𝜔 = 0, 𝜔 + 𝑏 sin𝜔 = 0 }.

The slope of the boundary for 𝑏 ≤ 1 at 𝑏 = 1 (𝜔 = 0)is
d𝑏∕d𝜔
d𝑎∕d𝜔

= cos𝜔 sin𝜔 − 𝜔
𝜔 cos𝜔 − sin𝜔

= 1∕2.

This is shown by setting 𝑥(𝑡) = e(𝜎+𝑗𝜔)𝑡 in the DDE for 𝜎 = 0. Lines for positive 𝜎 correspond to unstable systems. These
lines cannot intersect and are to the right of the boundary of Ω in the (𝑎, 𝑏)-parameter space. By time scaling, one can always
accommodate any fixed delay.

The solution of (32) is expressible in terms of the Lambert W-function, defined as the inverse of 𝑤 e𝑤 = 𝑥, which has infinitely
many (complex) branches. We use the method of characteristics to determine the spectrum and closed form general solution
of the homogeneous time delay system. Suppose that 𝑥(𝑡) = 𝐶e𝜆𝑡, with 𝐶 ≠ 0 is a mode of the system where 𝐶, 𝜆 ∈ ℂ are
constants. Then, substitution in the DDE yields (with 𝐃 the differential operator) yields

𝐃(𝐶e𝜆𝑡) = 𝑎𝐶e𝜆𝑡 + 𝑏𝐶e𝜆(𝑡−1) ⇔ 𝜆 − 𝑎 = 𝑏e−𝜆

⇔ e𝜆−𝑎(𝜆 − 𝑎) = 𝑏e−𝑎

⇔ 𝜆 − 𝑎 = 𝑊 (𝑏e𝑎)

Hence, the 𝑘-th eigenvalue (𝑘 ∈ ℤ) corresponds to the 𝑘-th branch of the Lambert W-function, denoted by 𝑊𝑘

𝜆𝑘 = 𝑎 +𝑊𝑘(𝑏e𝑎). (33)

This proves the following theorem.

Theorem 4 (Spectrum of scalar LTI-DDE). The spectrum of the DDE (32) is given by

Spec = { 𝜆𝑘 | 𝑘 ∈ ℤ, 𝜆𝑘 = 𝑎 +𝑊𝑘(𝑏e𝑎) }.

No continuous or residual spectrum is present for this infinite dimensional system (functional differential equation). The
closed form general solution of the homogeneous system given by (32) will be given as a linear combination of the countably
infinite eigen modes (assuming simple poles, i.e., poles of multiplicity one) as follows:

𝑥(𝑡) =
∞
∑

𝑘=−∞
𝐶𝑘e𝜆𝑘𝑡.

In what follows we discuss an attempt at generalizing this explicit formula for the eigenvalues to higher dimensions. This is
followed by the search for bound of the eigenvalues using an adaptation of the Hermitian approach in sections 2 and 3.

4.1 Attempts at defining a matrix Lambert function
Consider now the higher-dimensional case, with 𝐴,𝐵 ∈ ℝ𝑛×𝑛

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡 − 1). (34)

Its eigenvalues correspond to the solutions of the nonlinear eigen problem

det(𝜆𝐼 − 𝐴 − e−𝜆𝐵) = 0. (35)

First, note that in the special case where 𝐴 and 𝐵 are simultaneously diagonalizable (which is equivalent to both being
diagonalizable and commuting) the equation reduces (letting 𝑇 be the common diagonalizing transformation) to

det(𝜆𝐼 − 𝐴 − e−𝜆𝐵) = det[𝑇 (𝜆𝐼 − 𝐴 − e−𝜆𝐵)𝑇 −1] = det(𝜆𝐼 − 𝐴diag − e−𝜆𝐵diag) =
𝑛

∏

𝑖=1
(𝜆 − 𝑎𝑖𝑖 − e−𝜆𝑏𝑖𝑖),
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where 𝑎𝑖𝑖 = (𝑇𝐴𝑇 −1)𝑖𝑖 and 𝑏𝑖𝑖 = (𝑇𝐵𝑇 −1)𝑖𝑖. Stability can be determined by considering the individual factors, but this requires
the complex extension of the stability domain for the scalar case (since 𝑎𝑖𝑖 and/or 𝑏𝑖𝑖 may be complex. Thus, let us next consider
the delay-differential operator P𝛼 = 𝐃 + 𝛼𝐓1 and the subclass of FDD’s of the form 𝑝(P𝛼)𝑥 = 0 where 𝛼 ∈ ℝ and 𝑝(𝑢) ∈ ℝ[𝑢]
is monic (suggested in Verriest24). The characteristic equation is

∏𝑛
𝑖=1(P − 𝜆𝑖), where the 𝜆𝑖 are the generalized poles of the

system (with respect to the operator P𝛼). The interesting fact is that for these systems, the set of poles is finite. It remains to
discover the set Ω𝛼 ⊂ ℂ for which the equation (P − 𝜆𝑖)𝑥 = 0 is asymptotically stable. Thus let’s consider a potential solution
𝑥(𝑡) = e𝜇𝑡. Substitution in the ‘elementary pole factor’ (P − 𝜆𝑖)𝑥 = 0 yields 𝜇 − 𝛼e−𝑗𝜇 − 𝜆 = 0. Letting again 𝜇 = 𝜎 + 𝑗𝜔 and
𝜆 = Re 𝜆 + 𝑗Im 𝜆 and separating gives

Re 𝜆 = 𝜎 − 𝛼e−𝜎 cos𝜔
Im 𝜆 = 𝜔 + 𝛼e−𝜎 sin𝜔

The stability boundary follows by setting 𝜎 = 0, thus giving the parametric form

Re 𝜆 = −𝛼 cos𝜔
Im 𝜆 = 𝜔 + 𝛼 sin𝜔.

This implies that the stability domain for the elementary operator ¶𝛼 is to the left of the curve described by the parametric
equation. In figures 2 and 3 lines of constant 𝜎 ≥ 0 are displayed for 𝛼 = 0.2 and 𝛼 = 1 respectively. The leftmost ones (with the
cusp in Figure 3) corresponds to 𝜎 = 0 and defines the stability boundary for 𝜆. These curves self intersect (for 𝛼 > 1), in which
case the stability domain is the intersection of the left of all branches. Figure 4 shows lines of constant 𝜎 ≥ 0 for 𝛼 = 2. Note
that these curves extend periodically along the 𝜔 axis. In the more general case for 𝛼 ∈ ℂ, set 𝛼 = |𝛼|e𝐽 arg(𝛼). The parametric

Figure 2 Stability domain for P𝛼 with 𝛼 = 0.2.

equations are then

Re 𝜆 = −|𝛼| cos(𝜔 − arg 𝛼)
Im 𝜆 = 𝜔 + |𝛼| sin(𝜔 − arg 𝛼).

with the effect that the stability region Ω𝛼 is shifted along the 𝜔-axis. This analysis readily extends to FDD’s of the form
∏𝜅

𝑘=1 𝑝𝜅(P𝛼𝜅 )𝑥 = 0, with 𝛼𝜅 ∈ ℂ.

As an alternative method, and by analogy to the scalar case, it was suggested to find a matrix 𝑆 ∈ ℂ𝑛×𝑛 solving

𝑆 − 𝐴 − 𝐵 exp(−𝑆) = 0. (36)
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Figure 3 Stability domain for P𝛼 with 𝛼 = 1.

Figure 4 Stability domain for P𝛼 with 𝛼 = 2.

In order to generalize the theory and circumvent the highly restricted commutativity requirement of the matrices 𝐴 and 𝐵, a
matrix 𝑄 is introduced in Yi et al.37 which satisfies the following equation:

(𝑆 − 𝐴) exp(𝑆 − 𝐴) = 𝐵𝑄. (37)

The above equation is in a matrix Lambert-W friendly format and its solution was postulated as

𝑆𝑘 = 𝐴 +𝑊𝑘(𝐵𝑄). (38)

The set of all the eigenvalues of the matrix 𝑆𝑘, 𝑘 ∈ ℤ constitutes the spectrum of the higher order time delay system. Substitution
of (38) in (36)

𝑊𝑘(𝐵𝑄) exp(𝑊𝑘(𝐵𝑄) + 𝐴) − 𝐵 = 0. (39)

This specified an algorithm:

Repeat for 𝑘 = 0,±1,±2,…:
Step 1: Solve the nonlinear transcendental equation 𝑊𝑘(𝑀𝑘) exp(𝑊𝑘(𝑀𝑘) + 𝐴) − 𝐵 = 0 for 𝑀𝑘.
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Step 2: Compute 𝑆𝑘 corresponding to 𝑀𝑘 = 𝐵𝑄𝑘 by

𝑆𝑘 = 𝑊𝑘(𝑀𝑘) + 𝐴

Step 3: Compute the eigenvalues of 𝑆𝑘.

However, observe that (36) in Yi et al.36 was derived by assuming a solution of the form 𝑥(𝑡) = exp(𝑆𝑡)𝑥0 to the functional
equation (34) which, after substitution in (34), yields the relation

(𝑆 − 𝐴 − 𝐵 exp(−𝑆))𝑥(𝑡) = 0.

But it holds that if 𝑃 ∈ ℝ𝑛×𝑛, 𝑥 ∈ ℝ𝑛 and 𝑃𝑥 = 0, then the nontrivial solution for 𝑥 exists iff ker (𝑃 ) = 0, equivalently iff 𝑃 is
singular i.e., det(𝑃 ) = 0. Here, ker (𝑃 ) denotes the kernel (null space) of the matrix 𝑃 . In the light of the above fact, equation
(36) is an incorrect characteristic equation. The correct characteristic equation should be,

det(𝑆 − 𝐴 − 𝐵 exp(−𝑆)) = 0.

Unfortunately when this equation is employed in the analysis, it does not boil down to matrix Lambert W-functions in general.
Corless et al.7, have shown that the matrix Lambert W function evaluated at the matrix 𝐴 does not represent all possible
solutions of 𝑆 exp(𝑆) = 𝐴.
Thus, the idea of using matrix Lambert functions presented in subsequent work (See Asl and Ulsoy2, Yi and Ulsoy35, Yi et
al.36, Yi et al.37, Yi et al.38) has some limitations and one needs to be very careful in drawing conclusions about the spectrum
of higher order system using this approach. Ahmed1 generated a set of counterexamples that illustrate that one needs to take
care while drawing conclusion about the spectrum and eigenvalues of higher order time delay systems using Yi and Ulsoy’s
Algorithm as presented in Yi et al.38 and Yi et al.37. In particular, the algorithm does not produce satisfactory results when
the modes have higher multiplicity, i.e. for repeated roots. In some cases, the algorithm produces unnecessary and redundant
roots which are not the actual modes of the system under consideration; in other cases it fails to catch all the poles of the
system. In addition, the algorithm may give an incorrect judgement of the dominant poles. These examples can be reduced
via factorization described in Verriest24 to the scalar Lambert W friendly format. Ahmed also verified these results using the
QPmR algorithm given in31.

In fact, this caution is not limited to delay systems. We illustrate this with a simple ODE system

�̈� = 𝐵𝑥, 𝐵 =
[

0 0
1 0

]

.

If we follow Yi et al.37, on page 14, we should look for solutions in the form

𝑥(𝑡) = exp(𝑆𝑡)𝑐.

Substituting this in the ODE gives
(𝑆2 − 𝐵) exp(𝑆𝑡)𝑐 = 0.

Likewise, consider the difference system in continuous time

𝑥𝑘+2 = 𝐵𝑥𝑘.

Substitute 𝑥𝑘 = 𝑆𝑘𝑥0 to obtain 𝑆𝑘+2𝑥0 = 𝐵𝑆𝑘𝑥0, which can at most give solutions at even steps. To get the odd steps, one
needs 𝑥1 as well. So 𝑥2𝑘+1 = 𝑆2𝑘𝑥1. The key is that the recursion must be of the form

(𝑆2 − 𝐵)𝜉 = 0.

Thus, (𝑆2 − 𝐵) must have a nontrivial null-space, which implies again det(𝑆2 − 𝐵) = 0. If one works with the matrix directly
instead of the determinant, thus trying to solve 𝑆2 = 𝐵, there may not be a solution. This we prove as follows:

Suppose 𝑆 is a solution, then a similarity transformation exists with unit determinant such that 𝑇𝑆𝑇 −1 is in one of following
forms (working over ℂ)

𝑇𝑆𝑇 −1 =
[

𝜆1
𝜆2

]

, or 𝑇𝑆𝑇 −1 =
[

𝜆
1 𝜆

]

.
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Let 𝐵 =
[

0 0
1 0

]

. But then, with 𝑇 =
[

𝑡11 𝑡12
𝑡21 𝑡22

]

this gives 𝑇𝐵𝑇 −1 =
[

𝑡12𝑡22 −𝑡212
𝑡222 −𝑡12𝑡22

]

. So, in the first case 𝑡12 = 𝑡22 = 0, which

is impossible since 𝑇 must be nonsingular. In the Jordan case, we find 𝑆2 =
[

𝜆2 0
2𝜆 𝜆2

]

. It follows that 𝑡12 = 0, and thus 𝜆 = 0

and 𝑡22 = 0, giving the same contradiction.
What can be concluded from (𝑆2 − 𝐵)𝜉 = 0 if we also introduce the vector 𝜉? In the diagonalizable case,

(𝜆21 − 𝑡12𝑡22)𝜉1 + 𝑡212𝜉2 = 0

−𝑡222𝜉1 + (𝜆22 + 𝑡12𝑡22)𝜉2 = 0.

In the Jordan case
(𝜆2 − 𝑡12𝑡22)𝜉1 + 𝑡212𝜉2 = 0

(2𝜆 − 𝑡222)𝜉1 + (𝜆2 + 𝑡12𝑡22)𝜉2 = 0.

which is only possible for nonsingular 𝑇 if 𝜉1 = 0.

We conclude that working with the matrix problem directly (as opposed to its determinant) is not correct. Hence doing the
same technique for a delay system is bound to be problematic.

4.2 Eigenvalue bounds for continuous-time delay systems
We shall now proceed to determine useful bounds on these eigenvalues by mimicking the ideas leading to the Hermitian
decomposition based bounds. If 𝑧 is the corresponding (complex) eigenvector to eigenvalue 𝜆, we get

𝑧∗(𝜆𝐼 − 𝐴 − e−𝜆𝐵)𝑧 = 0.

From this, we get, setting ‖𝑧‖ = 1, and 𝜆 = 𝜎 + 𝑗𝜔

(𝜎 + 𝑗𝜔) = 𝑧∗𝐴𝑧 + e−𝜎(cos𝜔 − 𝑗 sin𝜔)𝑧∗𝐵𝑧.

This yields

𝜎+𝑗𝜔 = 𝑥⊤𝐴𝑠𝑥+𝑦⊤𝐴𝑠𝑦+2𝑗𝑥⊤𝐴𝑎𝑦+e−𝜎 cos𝜔(𝑥⊤𝐵𝑠𝑥+𝑦⊤𝐵𝑠𝑦)+2e−𝜎 sin𝜔𝑥⊤𝐵𝑎𝑦−𝑗e−𝜎 sin𝜔(𝑥⊤𝐵𝑠𝑥+𝑦⊤𝐵𝑠𝑦)+2𝑗e−𝜎 cos𝜔𝑥⊤𝐵𝑎𝑦.

Separating, the real and imaginary parts yields

𝜎 = 𝑥⊤𝐴𝑠𝑥 + 𝑦⊤𝐴𝑠𝑦 + e−𝜎 cos𝜔 (𝑥⊤𝐵𝑠𝑥 + 𝑦⊤𝐵𝑠𝑦) + 2e−𝜎 sin𝜔𝑥⊤𝐵𝑎𝑦 (40)
𝜔 = 2𝑥⊤𝐴𝑎𝑦 − e−𝜎 sin𝜔 (𝑥⊤𝐵𝑠𝑥 + 𝑦⊤𝐵𝑠𝑦) + 2e−𝜎 cos𝜔𝑥⊤𝐵𝑎𝑦 (41)

Theorem 5 (Exponential bound for imaginary part). The imaginary part of the eigenvalues of the system (34) as function of its
real part is exponentially bounded by

|𝜔| ≤
√

𝜆max(𝐴⊤
𝑎𝐴𝑎) + e−𝜎

√

𝜆max(𝐵⊤
𝑎 𝐵𝑎) + 𝜆max(𝐵2

𝑠 ). (42)

Proof of theorem 5. It follows from (41) that

|𝜔| ≤ 2|𝑥⊤𝐴𝑎𝑦| + e−𝜎
√

(𝑥⊤𝐵𝑠𝑥 + 𝑦⊤𝐵𝑠𝑦)2 + 4(𝑥⊤𝐵𝑎𝑦)2.

together with the constraint ‖𝑥‖2+‖𝑦‖2 = 1. Further bounding, similar to the quadratic eigenvalue problem, leads to (42). This
gives exponential bounds for the imaginary part of the eigenvalues of the delay system in terms of the real part.

Note that the bound increases as 𝜎 → −∞.

Corollary 1 (Bound on the real part). The eigenvalues of the system (34) lie to the left of 𝜆max(𝐴𝑠) +𝑊0(e−𝜆max(𝐴𝑠)𝛽(𝐵)) where
where

𝛽(𝐵) =
√

𝜆max(𝐵⊤
𝑎 𝐵𝑎) + 𝜆max(𝐵2

𝑠 ). (43)
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Proof of corollary 1. It follows from (40) that

𝜆min(𝐴𝑠) − e−𝜎
√

𝜆max(𝐵⊤
𝑎 𝐵𝑎) + 𝜆max(𝐵2

𝑠 ) ≤ 𝜎 ≤ 𝜆max(𝐴𝑠) + e−𝜎
√

𝜆max(𝐵⊤
𝑎 𝐵𝑎) + 𝜆max(𝐵2

𝑠 ).

These bounds are of the form 𝜎 ≤ 𝑎 + e−𝜎𝑏 and 𝜎 ≥ 𝑎′ − e−𝜎𝑏, with 𝑏 > 0. Equivalently,

(𝜎 − 𝑎)e𝜎−𝑎 ≤ e−𝑎𝑏 and (𝜎 − 𝑎′)e𝜎−𝑎′ ≥ −e−𝑎′𝑏.

From the graph of 𝑤e𝑤 = 𝑥 we can see that 𝑤e𝑤 is monotonically increasing for 𝑤 > −1 and decreasing for 𝑤 < −1. Moreover
(𝑤, 𝑥) = (−1, e−1) corresponds to a minimum. Thus, since e−𝑎𝑏 > 0, and 𝜎 ∈ ℝ, we can express this in terms of the real
branches of the Lambert W-function

𝜎 ≤ 𝑎 +𝑊 (e−𝑎𝑏),

and for e−𝑎′𝑏 < e−1

{ 𝜎 ≥ 𝑎′ +𝑊0(−e−𝑎
′𝑏) }

⋁

{ 𝜎 ≤ 𝑎′ +𝑊−1(−e−𝑎
′𝑏) }

where 𝑊0 and 𝑊−1 are the real branches of the Lambert W function. In terms of the given matrices only the first yields useful
information, which in terms of the original matrices is

𝜎 ≤ 𝜆max(𝐴𝑠) +𝑊0(e−𝜆max(𝐴𝑠)𝛽(𝐵)), (44)

with 𝛽(𝐵) as defined in (43).

We infer form this the following sufficient condition for stability

Theorem 6 (Asymptotic Stability). Let 𝛽 be as in (43). The delay system is asymptotically stable if

𝜆max(𝐴𝑠) ≤ −𝛽(𝐵). (45)

Proof of theorem 8. Obviously, if the right hand side in (44) is negative, the upper bound

𝜆max(𝐴𝑠) +𝑊 (e−𝜆max(𝐴𝑠)𝛽(𝐵))) < 0

ensures that 𝜎 < 0 and all eigenvalues must lie in the open left half plane. By the definition of the Lambert W function, this
simplifies to the condition (45).

We close this section by providing bounds for any real eigenvalue of the system (34).

Theorem 7 (Bounds on real eigenvalues). If 𝜆 ∈ ℝ is an eigenvalue of the delay system (34) with 𝐵𝑠 positive semi-definite, then

𝜆min(𝐴𝑠) +𝑊0(e−𝜆max(𝐴𝑠)𝜆min(𝐵𝑠)) ≤ 𝜆 ≤ 𝜆max(𝐴𝑠) +𝑊0(e−𝜆min(𝐴𝑠)𝜆max(𝐵𝑠)). (46)

Proof of theorem 7. With a real eigenvalue 𝜆 corresponds a real eigenvector, 𝑥 such that 𝐴𝑥 + e−𝜆𝐵𝑥 = 𝜆𝑥. Premultiplication
with 𝑥⊤ yields

𝑥⊤𝐴𝑠𝑥 + e−𝜆𝑥⊤𝐵𝑠𝑥 = 𝜆.

which is reorganized in the form
(𝜆 − 𝑥⊤𝐴𝑠𝑥)e𝜆−𝑥

⊤𝐴𝑠𝑥 = e−𝑥⊤𝐴𝑠𝑥𝑥⊤𝐵𝑠𝑥.

Now invoke the real branch of the Lambert W function to get

𝜆 = 𝑥⊤𝐴𝑠𝑥 +𝑊0(e−𝑥
⊤𝐴𝑠𝑥𝑥⊤𝐵𝑠𝑥).

Noting that 𝑊0(𝑢) is monotone for 𝑢 > 0, it follows from the positive semi-definiteness of 𝐵𝑠 that for all 𝑥, 𝑥⊤𝐵𝑠𝑥 ≥ 0. Then
observe that

e−𝜆max(𝐴𝑠)𝜆min(𝐵𝑠) ≤ e−𝑥⊤𝐴𝑠𝑥𝑥⊤𝐵𝑠𝑥 ≤ e−𝜆min(𝐴𝑠)𝜆max(𝐵𝑠).

The bounds (46) follow by monotonicity of 𝑊0 for positive argument and the bounds on the real part of an eigenvalue of a
matrix.
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5 GERSHGORIN’S THEOREM

In this section we first review the classical theorem by Gershgorin. This is a very simple and easily shown result, which remark-
ably is rather seldomly exploited. It provides bounds in terms of the entries of a matrix. This theorem has found some use in
networks by Lee and Spong20 and Wang and Elia32. Using the semi-discretization technique of Insperger and Stépán19, an LTI
delay system with constant delay may be represented by an infinite-dimensional ODE, and approximated by a finite-dimensional
one, which when solved leads to a large dimensional LTI discrete dynamics, representing the state transition in successive inter-
vals with length equal to the fixed delay time. Gershgorin can then be applied to the resulting dynamical matrix, which actually
is an approximation of the infinitesimal operator. What’s more, if the delay is periodically varying, but with the causality con-
straint �̇� < 1 imposed, then a semi-discretization approximation with fixed dimension is still applicable. The necessity of this
rate-constraint for well-posedness of the problem is argued in Verriest26. The MIMO state-augmentation technique of Helmke
and Verriest14 (which differs from the usual monodromy system) yields then a linear time-invariant a representation for which
Gershgorin is directly applicable to constrain the eigenvalues of this alternate monodromy system. We also adapt Gershgorin’s
technique for the nonlinear eigenvalue problem directly, including LTI functional differential equations.

5.1 Gershgorin’s theorem
Let 𝐴 ∈ ℂ𝑛×𝑛, and let 𝜆 be an eigenvalue of 𝐴. Then there exists 𝑥 ∈ ℂ𝑛 such that 𝜆𝑥 = 𝐴𝑥. Componentwise this means

∀𝑖, 𝜆𝑥𝑖 = (𝐴𝑥)𝑖 =
𝑛
∑

𝑗=1
𝐴𝑖𝑗𝑥𝑗

and thus
∀𝑖 ∶ (𝜆 − 𝐴𝑖𝑖)𝑥𝑖 =

∑

𝑗≠𝑖
𝐴𝑖𝑗𝑥𝑗 .

Taking the modulus leads to the inequalities

∀𝑖 ∶ |𝜆 − 𝐴𝑖𝑖||𝑥𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗||𝑥𝑗|

One of these satisfies |𝑥𝑖| ≥ |𝑥𝑗|, for all 𝑗 ≠ 𝑖. Hence for this maximizing index 𝑖

|𝜆 − 𝐴𝑖𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗|

|𝑥𝑗|
|𝑥𝑖|

≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗|. (47)

This means that 𝜆 belongs to a disk, 𝐷(𝐴𝑖𝑖, 𝜌𝑖), centered at 𝐴𝑖𝑖 with radius 𝜌𝑖 =
∑

𝑗≠𝑖 |𝐴𝑖𝑗|. But as we do not have knowledge of
which 𝑖 is maximizing, all we can say is that 𝜆 must belong to one of the disks 𝐷(𝐴𝑖𝑖, 𝜌𝑖), and therefore to the union of all such
disks in (47)

𝜆 ∈
𝑛
⋃

𝑖=1
𝐷(𝐴𝑖𝑖, 𝜌𝑖).

Moreover, the spectrum of 𝐴 is the same as the spectrum of 𝐴⊤, so that we may directly conclude that also

𝜆 ∈
𝑛
⋃

𝑖=1
𝐷(𝐴𝑖𝑖, 𝜌

′
𝑖), 𝜌′𝑖 =

∑

𝑗≠𝑖
|𝐴𝑗𝑖|.

Consequently, all eigenvalues of a matrix 𝐴 ∈ ℂ𝑛×𝑛 lie inside

𝜆 ∈
𝑛
⋃

𝑖=1
𝐷(𝐴𝑖𝑖, 𝜌𝑖) ∩

𝑛
⋃

𝑖=1
𝐷(𝐴𝑖𝑖, 𝜌

′
𝑖). (48)

5.2 Gershgorin for matrix polynomials
Since 𝜆 ∈ SpecA implies 𝑝(𝜆) ∈ Spec 𝑝(𝐴) for any polynomial, 𝑝, we get also
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Theorem 8 (polynomial form). If 𝑝 ∈ ℝ[𝑥], and 𝜆 ∈ Spec𝐴, then

𝑝(𝜆) ∈
𝑛
⋃

𝑖=1
𝐷

(

(𝑝(𝐴))𝑖𝑖,
∑

𝑗≠𝑖
(|𝑝(𝐴)|𝑖𝑗

)

. (49)

Note that although the Cayley-Hamilton theorem makes considering polynomials of degree larger than 𝑛 − 1 redundant, it
does lead to different forms in Gershgorin’s theorem as [𝑝(𝐴)]𝑖𝑖 ≠ 𝑝(𝐴𝑖𝑖).

In particular, the powers of 𝜆 are constrained to:

𝜆𝑘 ∈
𝑛
⋃

𝑖=1
𝐷

(

(𝐴𝑘)𝑖𝑖,
∑

𝑗≠𝑖
(|(𝐴𝑘)|𝑖𝑗

)

. (50)

Equation (50) means that 𝜆 belongs to the inverse map of the disk under the power map. This yields 𝑘 possibly overlapping
domains in ℂ. If 𝜆𝑚 is in a disk region 𝐷(𝑐, 𝜌), then the parameterized form of the boundary of 𝜆𝑚 is

[𝑥(𝑡) = 𝑐 + 𝜌 cos(𝑡), 𝑦(𝑡) = 𝜌 sin(𝑡), 𝑡 = 0..2𝜋].

It follows that the boundary of the domains in which 𝜆 lies is given by the union
𝑚−1
⋃

𝑘=0
[𝑥(𝑡, 𝑘), 𝑦(𝑡, 𝑘), 𝑡 = 0..2𝜋]

where

𝑥(𝑡, 𝑘) =
(

(𝑐 + 𝜌 sin 𝑡)2 + 𝜌2 cos2 𝑡
)1∕(2𝑚)

⋅ cos
(

2𝑘𝜋
𝑚

+ 1
𝑚
arctan

(

𝜌 sin 𝑡
𝑐 + 𝜌 cos 𝑡

))

,

𝑦(𝑡, 𝑘) =
(

(𝑐 + 𝜌 sin 𝑡)2 + 𝜌2 cos2 𝑡
)1∕(2𝑚)

⋅ sin
(2𝑘𝜋

𝑚
+ 1

𝑚
arctan

( sin 𝑡
𝑐 + cos 𝑡

))

,

The following are then evident:

Corollary 2 (Specification of Spec (𝐴) from 𝐴𝑘). If 𝜆 ∈ Spec𝐴, where 𝐴 is real, then 𝜆𝑚 is in the regions parameterized by
𝑚 ∈ ℤ+ bounded by

𝑚−1
⋃

𝑘=0

[

𝑥(𝑡) = (−(𝐴𝑚)𝑖𝑖 +
∑

𝑗≠𝑖
|(𝐴𝑚)𝑖𝑗| cos 𝑡, 𝑦(𝑡) = (−(𝐴𝑚)𝑖𝑖 +

∑

𝑗≠𝑖
|(𝐴𝑚)𝑖𝑗| sin 𝑡, 𝑡 = 0..2𝜋

]

Corollary 3 (Companion form). If 𝐴 is in companion form, with characteristic polynomial 𝑎(𝑠) = 𝑠𝑛+𝑎1𝑠𝑛−1+⋯+𝑎𝑛−1𝑠+𝑎𝑛,
the disks are 𝐷(−𝑎1, |𝑎2| + |𝑎3| +⋯ + |𝑎𝑛|), and 𝐷(0, 1) (the latter 𝑛 − 1 times). Hence all roots of the polynomial 𝑎(𝑠) lie in
the union of the disks 𝐷(0, 1) and 𝐷(−𝑎1,

∑

𝑗≠1 |𝑎𝑗|).

Example 4: The figures below show the domains constraining the spectrum of 𝐴 =
[

9 1
−3 1

]

given 𝐴𝑘 for 𝑘 = 1, 2, 3. The exact

eigenvalues are 𝜆1 = 1.3945, 𝜆2 = 8.6056. One can see that the domains given by successive powers (Figure 6) shrinks to a
small neighborhood of 𝜆2, while the domains for 𝜆1 enlarge with increasing power 𝑘.

5.3 Gershgorin for Quadratic Polynomials
Consider the autonomous systems in discrete and continuous time, respectively described by

𝑥𝑘+2 + 𝐴𝑥𝑘+1 + 𝐵𝑥𝑘 = 0
�̈� + 𝐴�̇� + 𝐵𝑥 = 0

Exponential solutions, e𝜆𝑡𝑥 (for continuous time) or 𝜆𝑘 (for discrete time) are characterizable by a common quadratic equation

(𝜆2𝐼 + 𝜆𝐴 + 𝐵)𝑥 = 0. (51)
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Figure 5 Gershgorin circles for 𝐴 (by row)

Figure 6 Gershgorin domains using 𝐴𝑘 for 𝑘 = 1, 2, 3 (by row)

This is a nonlinear (here quadratic) eigen-problem already considered in section 3. Applying the ideas in the proof of
Gershgorin’s theorem, The following "no-go" theorem is deduced:

Theorem 9 (No solution). Let 𝛾 be a positive number. The equation det(𝜆2𝐼 + 𝜆𝐴 + 𝐵) = 0 has no solutions with |𝜆| < 𝛾 if
for 𝑖 = 1,… , 𝑛

𝛾2 + 𝛼𝑖𝛾 + 𝛽𝑖 < |𝐵𝑖𝑖|.] (52)
where

𝛼𝑖 =
𝑛
∑

𝑗=1
|𝐴𝑖𝑗|, 𝛽𝑖 =

∑

𝑗≠𝑖
|𝐵𝑖𝑗|. (53)
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Proof of theorem 5.3. The relation (51) implies that componentwise

(𝜆2 − 𝐵𝑖𝑖)𝑥𝑖 = −𝜆
𝑛
∑

𝑗=1
𝐴𝑖𝑗𝑥𝑗 −

∑

𝑗≠𝑖
𝐵𝑖𝑗𝑥𝑗 .

It follows that for some 𝑖 in {1,… , 𝑛}

|𝜆2 − 𝐵𝑖𝑖| ≤ |𝜆|
𝑛
∑

𝑗=1
|𝐴𝑖𝑗| +

∑

𝑗≠𝑖
|𝐵𝑖𝑗|.

For any pole of the system satisfying |𝜆| < 𝛾 it must hold that

|𝜆2 − 𝐵𝑖𝑖| ≤ 𝛾
𝑛
∑

𝑗=1
|𝐴𝑖𝑗| +

∑

𝑗≠𝑖
|𝐵𝑖𝑗|.

and all poles with norm less than 𝛾 must lie in the union of disks
⋃𝑛

𝑖=1 𝐷(𝐵𝑖𝑖, 𝛾𝛼𝑖 + 𝛽𝑖). Hence poles with |𝜆| < 𝛾 cannot exist
if for all 𝑖

𝐷(0, 𝛾2) ∩𝐷(𝐵𝑖𝑖, 𝛾𝛼𝑖 + 𝛽𝑖) = ∅. (54)

Since 𝐵𝑖𝑖 is real, (54) is equivalent to 𝐵𝑖𝑖−𝛾𝛼𝑖−𝛽𝑖 > 𝛾2 if 𝐵𝑖𝑖 > 0 or 𝐵𝑖𝑖+𝛾𝛼𝑖+𝛽𝑖 < −𝛾2 if 𝐵𝑖𝑖 < 0. In either case, the condition
is that for all 𝑖

𝛾2 + 𝛼𝑖𝛾 + 𝛽𝑖 < |𝐵𝑖𝑖|.

Example 5: Consider det
(

𝜆2𝐼 + 𝜆
[

0 1
−1 0

]

+
[

1 0
0 2

])

= 0. The poles are solutions to det
[

𝜆2 + 1 𝜆
−𝜆 𝜆2 + 2

]

= (𝜆2 + 1)(𝜆2 +

2) + 𝜆2 = 0 which are 𝜆 ∈ {
√

2 +
√

2𝑗,−𝑗
√

2 +
√

2,
√

2 −
√

2𝑗,−𝑗
√

2 −
√

2} = {±1.847759065𝑗,±0.7653668650𝑗}.
The theorem states the nonexistence of eigenvalues with modulus less than 𝛾 if

𝛾2 + 𝛾 < 1
𝛾2 + 𝛾 < 2

Both inequalities are satisfied for 𝛾 < 0.618034, so that one would conclude that there are no poles with modulus less than
0.618034.

For the same system we can alternatively work as follows: If 𝜆 ≠ 0, (51) is equivalent to
(

𝜆𝐼 + 𝐴 + 1
𝜆
𝐵
)

𝑥 = 0.

Again componentwise,

(𝜆 + 𝐴𝑖𝑖)𝑥𝑖 = −
∑

𝑗≠𝑖
𝐴𝑖𝑗𝑥𝑗 −

1
𝜆

𝑛
∑

𝑗=1
𝐵𝑖𝑗𝑥𝑗

Bounding the magnitude

|𝜆 + 𝐴𝑖𝑖||𝑥𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗||𝑥𝑗| +

1
|𝜆|

𝑛
∑

𝑗=1
|𝐵𝑖𝑗||𝑥𝑗|

Thus for some 𝑖 ∈ 1,… , 𝑛 it holds that
|𝜆 + 𝐴𝑖𝑖| =

∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

1
|𝜆|

∑

𝑗
|𝐵𝑖𝑗|

Consequently, if 𝜆 is such a nonlinear eigenvalue, then

𝜆 ∈
𝑛
⋃

𝑖=1
𝐷

(

−𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

1
|𝜆|

∑

𝑗
|𝐵𝑖𝑗|

)

.

Consider the subset (possibly empty) of nonlinear eigenvalues for which |𝜆| ≥ 𝛾 then 1
|𝜆|

≤ 1
𝛾

and

𝜆 ∈
𝑛
⋃

𝑖=1
𝐷

(

−𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

1
𝛾
∑

𝑗
|𝐵𝑖𝑗|

)

.
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Clearly, this set is empty if for all 𝑖 ∈ {1,… , 𝑛} it holds that

−𝐴𝑖𝑖 +
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

1
𝛾
∑

𝑗
|𝐵𝑖𝑗| < 𝛾. (55)

We conclude then with the statement

Theorem 10 (No solution II). All nonlinear eigenvalues, i.e., solutions of det(𝜆2𝐼 + 𝜆𝐴 + 𝐵) = 0, have norm less than 𝛾 if for
all 𝑖

𝛾 − 𝛼′
𝑖 −

1
𝛾
𝛽′𝑖 > |𝐴𝑖𝑖|. (56)

𝛼′
𝑖 =

𝑛
∑

𝑗≠𝑖
|𝐴𝑖𝑗|, 𝛽′𝑖 =

𝑛
∑

𝑗=1
|𝐵𝑖𝑗|. (57)

Proof of theorem 10. The condition (56) is readily seen to be equivalent to (55) for all 𝑖 = 1,… , 𝑛.

For the above example 5, the inequalities read

𝛾2 − 𝛾 − 1 > 0
𝛾2 − 𝛾 − 2 > 0

Both inequalities are satisfied for 𝛾 > 2, so that one would conclude that there are no poles with modulus larger than 2.

6 GERSHGORIN FOR SYSTEM WITH DELAY

In this section we apply ideas similar to the derivation of Gershgorin’s theorem to obtain bound on the eigenvalues of a simple
delay systems. Then we extend this to systems with multiple delays and distributed delays.

6.1 Systems with a single fixed delay
Consider first the LTI delay system

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡 − 1). (58)
Any other fixed delay 𝜏 can be accommodated by time scaling the result. The characteristic equation is

det(𝜆𝐼 − 𝐴 − e−𝜆𝐵) = 0. (59)

Theorem 11 (Bounds for single delay). Let 𝛾 be a positive number. The poles with real part exceeding 𝛾 ∈ ℝ of the delay
system �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡 − 1) lie in the union of the disks 𝐷(𝐴𝑖𝑖,

∑

𝑗≠𝑖 |𝐴𝑖𝑗| + e−𝛾
∑𝑛

𝑗=1 |𝐵𝑖𝑗|).

Proof of Theorem 11. Equation (59) implies that an 𝑥 ∈ ℂ𝑛 exists such that

(𝜆𝐼 − 𝐴 − e−𝜆𝐵)𝑥 = 0

Hence, componentwise
𝜆𝑥𝑖 − (𝐴𝑥)𝑖 − e−𝜆(𝐵𝑥)𝑖 = 0.

Assume that the real part of 𝜆 exceeds 𝛼, then for 𝜆 = 𝜎 + 𝑗𝜔 it holds that

|e−𝜆| = e−𝜎|e−𝑗𝜔| ≤ e−𝛼 .

Thus,

|𝜆 − 𝐴𝑖𝑖||𝑥𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗||𝑥𝑗| + e−𝜆

∑

𝑗
|𝐵𝑖𝑗||𝑥𝑗|

≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗||𝑥𝑗| + e−𝛼

∑

𝑗
|𝐵𝑖𝑗||𝑥𝑗|.
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Letting again 𝑥𝑖 be the maximum among {|𝑥𝑗|}𝑛𝑗=1, then

|𝜆 − 𝐴𝑖𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗| + e−𝛼

∑

𝑗
|𝐵𝑖𝑗|.

Thus any pole with real part larger than 𝛼 lies in the disk 𝐷(𝐴𝑖𝑖,
∑

𝑗≠𝑖 |𝐴𝑖𝑗|+ e−𝛼
∑

𝑗 |𝐵𝑖𝑗|). Consequently, 𝜆 such that Re 𝜆 > 𝛼,
lies in the union (𝑖 = 1… 𝑛) of these disks. Now, if the rightmost point of this union is less than 𝛼, it means that no such 𝛼 can
exists. Thus there are no poles with real part larger than 𝛼 if for all 𝑖 = 1,… , 𝑛

∀𝑖 ∶ 𝐴𝑖𝑖 +
∑

𝑗≠𝑖
|𝐴𝑖𝑗| + e−𝛼

∑

𝑗
|𝐵𝑖𝑗| < 𝛼.

In particular, we obtain a sufficient condition for stability

Corollary 4 (Asymptotic stability via Gershgorin). The delay system (58) is asymptotically stable if

∀𝑖 ∶ 𝐴𝑖𝑖 +
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

𝑛
∑

𝑗=1
|𝐵𝑖𝑗| < 0. (60)

Theorem 12 (Wedge theorem). The poles of the delay system �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡 − 1) lie within the wedge bounded by
𝑦 = ±𝜁 (𝑥), where 𝜁 (𝑥) = max𝑖(𝛼𝑖 + e−𝑥𝛽𝑖).

Proof of theorem 12. If 𝜆 is a pole with real part 𝜎, we know by Theorem 1 that 𝜆 lies within the union of the Gershgorin disks
𝐷(𝐴𝑖𝑖, 𝛼𝑖 + e−𝜎𝛽𝑖), where 𝛼𝑖 =

∑

𝑗≠𝑖 |𝐴𝑖𝑗| and 𝛽 =
∑𝑛

𝑗=1 |𝐵𝑖𝑗|. Consequently, its imaginary component 𝑗𝜔 lies in the union of
the disks 𝐷(𝐴𝑖𝑖 − 𝜎, 𝛼𝑖 + e−𝜎𝛽𝑖) It follows that 𝜔 ∈ [−𝜁 (𝜎), 𝜁(𝜎)], where 𝜁 (𝜎) = max𝑖(𝛼𝑖 + e−𝜎𝛽𝑖).

Example 6:

𝐴 =
[

𝑎1
𝑎2

]

, 𝐵 =
[

𝑏1
𝑏2

]

, 𝜏 = 1.

If Re 𝜆 > 𝛼
𝜆 ∈ 𝐷(𝑎1, e−𝛼|𝑏1|) ∪ 𝐷(𝑎2, e−𝛼|𝑏2|)

Sufficient condition for stability: 𝑎1 + |𝑏1| < 0 and 𝑎2 + |𝑏2| < 0 (as then there cannot exits a pole with positive real part).

6.2 Systems with multiple fixed delays
Consider now the functional differential equation

�̇�(𝑡) = 𝐴𝑥(𝑡) +
𝑚
∑

𝓁=1
𝐵(𝓁)𝑥(𝑡 − 𝜏𝓁). (61)

The characteristic equation is

det

(

𝜆𝐼 − 𝐴 −
𝑚
∑

𝓁=1
𝐵(𝓁)e−𝜆𝜏𝓁

)

= 0. (62)

Theorem 13 (Eigenvalue bounds for multiple delays). ] Let 𝛾 be positive number. The functional differential equation �̇�(𝑡) =
𝐴𝑥(𝑡) +

∑𝑚
𝓁=1 𝐵

(𝓁)𝑥(𝑡 − 𝜏𝓁) has a pole with real part larger than 𝛾 if for all 𝑖:

𝐴𝑖𝑖 +
𝑛
∑

𝑗≠𝑖
𝐴𝑖𝑗 +

𝑚
∑

𝓁=1

𝑛
∑

𝑗=1
e−𝜏𝓁𝛾 |𝐵(𝓁)

𝑖𝑗 | < 𝛾. (63)

Proof of theorem 13. Again, any 𝜆 solving the (62) is an eigenvalue, i.e., a pole of the delay differential equation (61). Thus, for
every eigenvalue 𝜆𝑘 there exists a vector 𝑥(𝑘) ∈ ℂ𝑛 such that

(

𝜆𝑘𝐼 − 𝐴 −
𝑚
∑

𝓁=1
𝐵(𝓁)e−𝜆𝜏𝓁

)

𝑥(𝑘) = 0
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and for all 𝑖 = 1,… , 𝑛

(𝜆𝑘 − 𝐴𝑖𝑖)𝑥
(𝑘)
𝑖𝑖 =

∑

𝑗≠𝑖
𝐴𝑖𝑗𝑥𝑗 +

𝑚
∑

𝓁=0

∑

𝑗
e−𝜏𝓁𝜆𝐵𝓁

𝑖𝑗𝑥𝑗 .

Let now 𝜆𝑘 be an eigenvalue with real part exceeding 𝛾 , then

|𝜆𝑘 − 𝐴𝑖𝑖||𝑥
(𝑘)
𝑖𝑖 | ≤

∑

𝑗≠𝑖
|𝐴𝑖𝑗||𝑥𝑗| +

𝑚
∑

𝓁=0

∑

𝑗
e−𝜏𝓁𝛾 |𝐵𝓁

𝑖𝑗||𝑥𝑗|.

It follows that from the component, 𝑖, with largest absolute value

𝜆𝑘 ∈ 𝐷

(

𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

𝑚
∑

𝓁=0

∑

𝑗
e−𝜏𝓁𝛾 |𝐵𝓁

𝑖𝑗|

)

.

and thus

𝜆𝑘 ∈
𝑛
⋃

𝑖=1
𝐷

(

𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

𝑚
∑

𝓁=0

∑

𝑗
e−𝜏𝓁𝛾 |𝐵𝓁

𝑖𝑗|

)

.

Theorem 13 implies a sufficient condition for stability.

Corollary 5 (Stability with multiple delays). If for all 𝑖,

𝐴𝑖𝑖 +
𝑛
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

𝑚
∑

𝓁=1

𝑛
∑

𝑗=1
|𝐵(𝓁)

𝑖𝑗 | < 0, (64)

then an eigenvalue with positive real part cannot exist, and the delay system is asymptotically stable.

6.3 Systems with a Distributed Delay
As a last class, consider the LTI systems with distributed delay

�̇�(𝑡) = 𝐴𝑥(𝑡) +

∞

∫
0

𝐵(𝜏)𝑥(𝑡 − 𝜏), d𝜏. (65)

where the support of 𝐵 may be finite. The characteristic equation for this system is

det
⎛

⎜

⎜

⎝

𝜆𝐼 − 𝐴 −

∞

∫
0

𝐵(𝜏)e−𝜆𝜏 d𝜏
⎞

⎟

⎟

⎠

= 0 (66)

Observe that the integral ∫ ∞
0 𝐵(𝜏)e−𝜆𝜏 d𝜏 in (66) is the (unilateral) Laplace transform, 𝐵(𝜆), of the matrix function 𝐵(𝑡). We get

then
det

(

𝜆𝐼 − 𝐴 − 𝐵(𝜆)
)

= 0

Proceeding as n the previous subsections, this means that for some 𝑖

|𝜆 − 𝐴𝑖𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

∑

𝑗
|𝐵𝑖𝑗(𝜆𝑖)|.

The problem is that this implicit inequality in 𝜆 is not easy to handle. A more accessible but also more restrictive form is

|𝜆 − 𝐴𝑖𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

∑

𝑗

∞

∫
0

|𝐵𝑖𝑗(𝜏)| e−𝜏Re 𝜆 d𝜏. (67)

Since Re𝜆 > 𝛾 implies e−𝜏Re 𝜆 < e−𝛾 , the right hand side side of (67) is further bounded by
∑

𝑗≠𝑖 |𝐴𝑖𝑗|+
∑

𝑗 ∫
∞
0 |𝐵𝑖𝑗(𝜏)| e−𝜏𝛾 d𝜏.

Poles with real part exceeding 𝛾 cannot exist if the intersection of ℂ+(𝛾) with the union of the Gershgorin disks
𝑛
⋃

𝑖=1
𝐷
⎛

⎜

⎜

⎝

𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

∑

+𝑗 = 1𝑛
∞

∫
0

|𝐵𝑖𝑗(𝜏)|e−𝜏𝛾 d𝜏
⎞

⎟

⎟

⎠
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is empty.

𝜆 ∈
𝑛
⋃

𝑖=1
𝐷
⎛

⎜

⎜

⎝

𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

∑

𝑗

∞

∫
0

|𝐵𝑖𝑗(𝜏)| e−𝜏𝛾 d𝜏
⎞

⎟

⎟

⎠

≤ 𝛾.

Moreover, if the 𝐵𝑖𝑗 ∈ 𝐿1, then the Laplace transforms, |̂𝐵|𝑖𝑗(𝛾)| of the moduli |𝐵𝑖𝑗| exists and converge on the imaginary axis.
The disks can then be described as

𝑛
⋃

𝑖=1
𝐷

(

𝐴𝑖𝑖,
∑

𝑗≠𝑖
|𝐴𝑖𝑗| +

∑

𝑗
|̂𝐵|𝑖𝑗(𝛾)|

)

≤ 𝛾.

Example 7: Consider for 𝛾 > 0 the Volterra system

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵

∞

∫
0

e−𝛾𝜏𝑥(𝑡 − 𝜏) d𝜏.

Its characteristic function is

det(𝑠𝐼 − 𝐴 − 𝐵

∞

∫
0

𝑒−𝛾𝜏e−𝑠𝜏 d𝜏 = det
(

𝑠𝐼 − 𝐴 − 1
𝑠 + 𝛾

𝐵
)

.

provided the integral converges, i.e., Res + 𝛾 > 0. We note that this is a quadratic system in disguise. By Gershgorin,

|𝑠 − 𝐴𝑖𝑖| ≤
∑

𝑗≠𝑖
|𝐴𝑖𝑗|

⏟⏞⏟⏞⏟
=𝛼𝑖

+
∑

𝑗
|𝐵𝑖𝑗|

⏟⏞⏟⏞⏟
=𝛽𝑖

|

|

|

|

1
𝑠 + 𝛾

|

|

|

|

.

The eigenvalues lie in the union of the disks 𝐷(𝐴𝑖𝑖, 𝛼𝑖+
𝛽𝑖

𝜎1+𝛾
). Let ℂ𝜎1,𝜎2 denote the strip 𝜎1 < Re 𝑠 < 𝜎2, then max𝑠∈ℂ𝜎1 ,𝜎2

|

|

|

1
𝑠+𝛾

|

|

|

=
1

𝜎1+𝛾
for 𝜎 > −𝛾 . Based on the geometry of the Gershgorin disks, there cannot exist eigenvalues in ℂ𝜎1,𝜎2 if for all 𝑖 either

𝐴𝑖𝑖 + 𝛼𝑖 +
𝛽𝑖

𝜎1 + 𝛾
< 𝜎1 < 𝜎2

or
𝐴𝑖𝑖 − 𝛼𝑖 −

𝛽𝑖
𝜎1 + 𝛾

> 𝜎2 < 𝜎1.

Combining,
(𝜎1 + 𝛾)2 − (𝜎1 + 𝛾)(𝐴𝑖𝑖 + 𝛼𝑖 + 𝛾) − 𝛽𝑖 > 0.

In particular, the system is asymptotically stable if for all 𝑖

(𝐴𝑖𝑖 + 𝛼𝑖)𝛾 + 𝛽𝑖 > 0
𝐴𝑖𝑖 + 𝛼𝑖) > 𝛾.

7 CONCLUSIONS

We reviewed classical results on Hermitian decompositions and Gershgorin’s theorem to obtain bounds on the location of
eigenvalues of a matrix. It was shown that these results can be applied to obtain bounds for nonlinear eigenvalue problems.
These conditions lead also to sufficient conditions for asymptotic stability for some classes of systems.
In particular we analyzed the quadratic eigen problem as a warm-up for extensions to the problem of finding some interesting
bounds for eigenvalues of delay systems. Further results on bounding the eigenvalues of a matrix may potentially be explored,
based on works of Wolkowicz and Styan34, and Higham and Tisseur15 among other.
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