GENERAL STABILITY FOR THE VISCOELASTIC WAVE EQUATION WITH NONLINEAR DAMPING AND NONLINEAR TIME-VARYING DELAY AND ACOUSTIC BOUNDARY CONDITIONS

Jum-Ran Kang ${ }^{1}$ and Mi Jin Lee ${ }^{2}$
${ }^{1}$ Pusan National University
${ }^{2}$ Pusan National University Department of Biological Sciences

August 18, 2023

Abstract

In this paper, we are concerned with the energy decay rates for the viscoelastic wave equation with nonlinear damping and nonlinear time-varying delay in the boundary and acoustic boundary conditions. Here we consider with minimal condition on the relaxation function g, namely $g^{\prime}(\mathrm{t})[?]-\mu(\mathrm{t}) \mathrm{G}(\mathrm{g}(\mathrm{t}))$, where G is an increasing and convex function near the origin and μ is a positive nonincreasing function. The decay rates of the energy depend on the functions μ, Γ and on the function F defined by f 0 which represents the growth at the origin of

GENERAL STABILITY FOR THE VISCOELASTIC WAVE EQUATION WITH NONLINEAR DAMPING AND NONLINEAR TIME-VARYING DELAY AND ACOUSTIC BOUNDARY CONDITIONS

Mi Jin Lee ${ }^{1}$, Jum-Ran Kang ${ }^{2, *}$
Department of Mathematics, Pusan National University, Busan 46241, South Korea ${ }^{1}$, Department of Applied Mathematics, Pukyong National University, Busan 48513, South Korea ${ }^{2}$

Abstract

In this paper, we are concerned with the energy decay rates for the viscoelastic wave equation with nonlinear damping and nonlinear time-varying delay in the boundary and acoustic boundary conditions. Here we consider with minimal condition on the relaxation function g, namely $g^{\prime}(t) \leq-\mu(t) G(g(t))$, where G is an increasing and convex function near the origin and μ is a positive nonincreasing function. The decay rates of the energy depend on the functions μ, G and on the function F defined by f_{0} which represents the growth at the origin of f_{1}.

Keywords: optimal decay; viscoelastic wave equation; nonlinear time-varying delay; acoustic boundary conditions

1. Introduction

In this paper, we are concerned with the energy decay rates for the viscoelastic wave equation with nonlinear damping and nonlinear time-varying delay in the boundary and acoustic boundary conditions

$$
\begin{align*}
& u_{t t}(x, t)-\Delta u(x, t)+\int_{0}^{t} g(t-s) \Delta u(x, s) d s=0, \quad \text { in } \Omega \times(0, \infty), \tag{1.1}\\
& u(x, t)=0, \quad \text { on } \Gamma_{0} \times(0, \infty), \tag{1.2}\\
& \frac{\partial u}{\partial \nu}(x, t)-\int_{0}^{t} g(t-s) \frac{\partial u}{\partial \nu}(x, s) d s+a_{1} f_{1}\left(u_{t}(x, t)\right)+a_{2} f_{2}\left(u_{t}(x, t-\tau(t))\right) \\
& \quad=w_{t}(x, t), \text { on } \Gamma_{1} \times(0, \infty), \tag{1.3}\\
& u_{t}(x, t)+h(x) w_{t}(x, t)+m(x) w(x, t)=0, \quad \text { on } \Gamma_{1} \times(0, \infty), \tag{1.4}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad \text { in } \Omega, \tag{1.5}\\
& u_{t}(x, t)=j_{0}(x, t), \quad \text { in } \Gamma_{1} \times(-\tau(0), 0), \tag{1.6}
\end{align*}
$$

where Ω is a bounded domain in $\mathbb{R}^{n}(n \geq 1)$ with smooth boundary $\Gamma=\Gamma_{0} \cup \Gamma_{1}$ of class C^{2}, Γ_{0} and Γ_{1} are closed and disjoint, ν is the outward unit normal vector to $\Gamma . w(x, t)$ is the normal displacement into the domain of a point $x \in \Gamma_{1}$ at time t and $h, m: \Gamma_{1} \rightarrow \mathbb{R}$ are functions that represent resistivity and spring constant per unit area, respectively, and are essential bounded, g represents the kernel of the memory term, $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are given functions, a_{1}, a_{2} are real numbers with $a_{1}>0, a_{2} \neq 0, \tau(t)>0$ represents the time-varying delay and the initial data $\left(u_{0}, u_{1}, j_{0}\right)$ belong to a suitable space. Boundary conditions

[^0](1.3) and (1.4) are called acoustic boundary conditions. (1.4) does not contain the second derivative $w_{t t}$, which physically means that the material of the surface is much lighter than a liquid flowing along it.

When $a_{1}=a_{2}=0$, the model (1.1)-(1.5) are pertinent to noise control and suppression in practical applications. The noise propagates through some acoustic medium, for example, though air, in a room that is characterized by a bounded domain Ω and whose walls, floor and ceiling are described by the boundary conditions [1, 2]. Park and Park [3] studied the general decay for problem (1.1)-(1.5) under the conditions that $\int_{0}^{\infty} g(s) d s<\frac{1}{2}$ and $g^{\prime}(t) \leq-\mu(t) g(t)$, for $t \geq 0$, where $\mu: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a nonincreasing differentiable function. Liu [4] improved the work of [3] to an arbitrary rate of decay with not necessarily of an exponential or polynomial one. Recently, Yoon et al. [5] generalized the work of [3, 4] to general decay rates without the assumption condition $\int_{0}^{\infty} g(s) d s<\frac{1}{2}$. The assumption on relaxation function g has been weakened compared to the conditions assumed in previous literature $[3,4]$.

Many phenomena depend on both the current state and past occurrences. There has been a notable increase in the research on the wave equation with delay effects, which frequently arise in various practical problems [6-8]. Kirane and Said-Houari [9] showed the global existence and asymptotic stability for the following viscoelastic wave equation with constant delay

$$
u_{t t}(x, t)-\Delta u(x, t)+\int_{0}^{t} g(t-s) \Delta u(x, s) d s+a_{1} u_{t}(x, t)+a_{2} u_{t}(x, t-\tau)=0
$$

where a_{1} and a_{2} are positive constants. Dai and Yang [10] proved the exponential decay results for the energy of the concerned problem in the case $a_{1}=0$ which solves an open problem proposed by Kirane and Said-Houari [9]. The viscoelastic wave equation involving time-varying delay instead of constant delay is studied by Liu [11]. Afterwards, systems with time-varying delay have been extensively considered by many authors (see [12-17] and references therein). Moreover, Benaissa et al. [18] investigated the global existence and energy decay of solutions for the following wave equation with a time-varying delay in the weakly nonlinear feedbacks

$$
u_{t t}(x, t)-\Delta u(x, t)+a_{1} \sigma(t) f_{1}\left(u_{t}(x, t)\right)+a_{2} \sigma(t) f_{2}\left(u_{t}(x, t-\tau(t))\right)=0
$$

where $a_{1}, a_{2}>0$ and σ, f_{1}, f_{2} satisfy some conditions. This result extended the previous works $[6,8]$. For the problem with nonlinear time-varying delay, we also refer [19, 20]. Motivated by these results, we study the general decay rates of solution for problem (1.1)-(1.6). We put a minimal and general assumption on relaxation function g, namely

$$
\begin{equation*}
g^{\prime}(t) \leq-\mu(t) G(g(t)) \tag{1.7}
\end{equation*}
$$

where μ is a positive nonincreasing function and G is linear or it is strictly increasing and strictly convex function near the origin. Also, our results obtained without imposing any restrictive growth assumption on the damping term. The decay rates of the energy depend on the functions μ, G and on the function F defined by f_{0} which represents the growth at the origin of f_{1}. Recently, Al-Gharabli et al. [21] considered
the general and optimal decay result for the viscoelastic equation with nonlinear boundary feedback. When relaxation function g satisfies the condition (1.7), the general decay of solution for the viscoelastic equation has been studied by several researchers(see $[22,23]$ and references therein).

2. Preliminary and statement of main results

Throughout this paper, we use the notation

$$
V=\left\{u \in H^{1}(\Omega): u=0 \text { on } \Gamma_{0}\right\} .
$$

For a Banach space $X,\|\cdot\|_{X}$ denotes the norm of X. For simplicity, we denote $\|\cdot\|_{L^{2}(\Omega)}$ and $\|\cdot\|_{L^{2}\left(\Gamma_{1}\right)}$ by $\|\cdot\|$ and $\|\cdot\|_{\Gamma_{1}}$, respectively.

The Poincaré inequality hold in V, that is, there exist the smallest positive constants λ and λ_{*} such that

$$
\begin{equation*}
\|u\|^{2} \leq \lambda\|\nabla u\|^{2} \quad \text { and } \quad\|u\|_{\Gamma_{1}}^{2} \leq \lambda_{*}\|\nabla u\|^{2} \text { for all } u \in V . \tag{2.1}
\end{equation*}
$$

As in $[5,19,21,22,23]$, we consider the following assumptions on g, f_{1}, f_{2}, τ, h and m. (H1) $g:[0, \infty) \rightarrow(0, \infty)$ is a differentiable function satisfying

$$
\begin{equation*}
1-\int_{0}^{\infty} g(s) d s=l>0 \tag{2.2}
\end{equation*}
$$

and there exists a C^{1} function $G:(0, \infty) \rightarrow(0, \infty)$ which is linear or it is strictly increasing and strictly convex C^{2} function on $\left(0, r_{0}\right], r_{0} \leq g(0)$, with $G(0)=G^{\prime}(0)=0$, such that

$$
\begin{equation*}
g^{\prime}(t) \leq-\mu(t) G(g(t)), \quad \forall t \geq 0 \tag{2.3}
\end{equation*}
$$

where μ is a positive nonincreasing differentiable function. G in (2.3) has been introduced for the first time in [24]. These are weaker conditions on G than those introduced in [24].
(H2) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing C^{0} function such that there exists a strictly increasing function $f_{0} \in C^{1}\left(\mathbb{R}^{+}\right)$, with $f_{0}(0)=0$, and positive constants c_{1}, c_{2} and ε such that

$$
\begin{align*}
& f_{0}(|s|) \leq\left|f_{1}(s)\right| \leq f_{0}^{-1}(|s|) \text { for all }|s| \leq \varepsilon, \tag{2.4}\\
& c_{1}|s| \leq\left|f_{1}(s)\right| \leq c_{2}|s| \quad \text { for all }|s| \geq \varepsilon \tag{2.5}
\end{align*}
$$

Moreover, we assume that the function F defined by $F(s)=\sqrt{s} f_{0}(\sqrt{s})$, is a strictly convex C^{2} function on ($0, r_{1}$], for some $r_{1}>0$, when f_{0} is nonlinear.
(H3) $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is an odd nondecreasing C^{1} function such that there exist positive constants c_{3}, c_{4} and c_{5} satisfy

$$
\begin{equation*}
\left|f_{2}^{\prime}(s)\right| \leq c_{3}, \quad c_{4} s f_{2}(s) \leq F_{2}(s) \leq c_{5} s f_{1}(s), \text { for } s \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

where $F_{2}(t)=\int_{0}^{t} f_{2}(s) d s$.
(H4) For the time-varying delay, we assume that $\tau \in W^{2, \infty}([0, T])$ for $T>0$ and there exist positive constants τ_{1}, τ_{2} and τ_{3} satisfy

$$
\begin{equation*}
0<\tau_{1} \leq \tau(t) \leq \tau_{2} \text { and } \tau^{\prime}(t) \leq \tau_{3}<1 \text { for all } t>0 . \tag{2.7}
\end{equation*}
$$

Moreover, for $c_{4} \tau_{3}<1$, we assume that a_{1} and a_{2} satisfy

$$
\begin{equation*}
0<\left|a_{2}\right|<\frac{c_{4}\left(1-\tau_{3}\right)}{c_{5}\left(1-c_{4} \tau_{3}\right)} a_{1} . \tag{2.8}
\end{equation*}
$$

(H5) We assume that $h, m \in C\left(\Gamma_{1}\right)$ and $h(x)>0$ and $m(x)>0$ for all $x \in \Gamma_{1}$. This assumption implies that there exist positive constants h_{i} and $m_{i}(i=1,2)$ such that

$$
\begin{equation*}
h_{1} \leq h(x) \leq h_{2}, \quad m_{1} \leq m(x) \leq m_{2} \text { for all } x \in \Gamma_{1} . \tag{2.9}
\end{equation*}
$$

Remark 2.1. ([23]) 1. By (H1), we obtain $\lim _{t \rightarrow+\infty} g(t)=0$. Then there exists $t_{0} \geq 0$ large enough such that

$$
\begin{equation*}
g\left(t_{0}\right)=r_{0} \Rightarrow g(t) \leq r_{0}, \quad \forall t \geq t_{0} \tag{2.10}
\end{equation*}
$$

As g and μ are positive nonincreasing continuous functions and G is a positive continuous function then

$$
c_{6} \leq \mu(t) G(g(t)) \leq c_{7}, \quad \forall t \in\left[0, t_{0}\right],
$$

for some positive constants c_{6} and c_{7}. From (2.3), we obtain

$$
\begin{equation*}
g^{\prime}(t) \leq-\mu(t) G(g(t)) \leq-\frac{c_{6}}{g(0)} g(0) \leq-c_{8} g(t), \quad \forall t \in\left[0, t_{0}\right], \tag{2.11}
\end{equation*}
$$

where $c_{8}=\frac{c_{6}}{g(0)}$ is a positive constant.
2. If G is a strictly increasing and strictly convex C^{2} function on $\left(0, r_{0}\right]$, with $G(0)=G^{\prime}(0)=0$, then it has an extension \bar{G}, which is strictly increasing and strictly convex C^{2} function on $(0, \infty)$. The same remark can be established for \bar{F}.

We recall the well-known Jensen's inequality which will be used essentially to establish our main result. If ϕ is a convex function on $[a, b], p: \Omega \rightarrow[a, b]$ and k are integrable functions on $\Omega, k(x) \geq 0$ and $\int_{\Omega} k(x) d x=k_{0}>0$, then Jensen's inequality states that

$$
\begin{equation*}
\phi\left[\frac{1}{k_{0}} \int_{\Omega} p(x) k(x) d x\right] \leq \frac{1}{k_{0}} \int_{\Omega} \phi[p(x)] k(x) d x . \tag{2.12}
\end{equation*}
$$

Let H^{*} be the conjugate of the convex function H defined by $H^{*}(s)=\sup _{t \geq 0}(s t-H(t))$, then

$$
\begin{equation*}
s t \leq H^{*}(s)+H(t), \quad \forall s, t \geq 0 . \tag{2.13}
\end{equation*}
$$

Moreover, due to the argument given in [25], it holds that

$$
\begin{equation*}
H^{*}(s)=s\left(H^{\prime}\right)^{-1}(s)-H\left(\left(H^{\prime}\right)^{-1}(s)\right), \quad \forall s \geq 0 . \tag{2.14}
\end{equation*}
$$

As in $[6,8]$, we introduce the following new function

$$
z(x, \kappa, t)=u_{t}(x, t-\kappa \tau(t)), \text { for }(x, \kappa, t) \in \Gamma_{1} \times(0,1) \times(0, \infty) .
$$

Then, problem (1.1)-(1.6) is equivalent to

$$
\begin{align*}
& u_{t t}(x, t)-\Delta u(x, t)+\int_{0}^{t} g(t-s) \Delta u(x, s) d s=0, \text { in } \Omega \times(0, \infty), \tag{2.15}\\
& \tau(t) z_{t}(x, \kappa, t)+\left(1-\kappa \tau^{\prime}(t)\right) z_{\kappa}(x, \kappa, t)=0, \text { in } \Gamma_{1} \times(0,1) \times(0, \infty), \tag{2.16}\\
& u(x, t)=0, \text { in } \Gamma_{0} \times(0, \infty), \tag{2.17}\\
& \frac{\partial u}{\partial \nu}(x, t)-\int_{0}^{t} g(t-s) \frac{\partial u}{\partial \nu}(x, s) d s+a_{1} f_{1}\left(u_{t}(x, t)\right)+a_{2} f_{2}(z(x, 1, t))=w_{t}(x, t), \text { on } \Gamma_{1} \times(0, \infty), \tag{2.18}\\
& u_{t}(x, t)+h(x) w_{t}(x, t)+m(x) w(x, t)=0, \text { on } \Gamma_{1} \times(0, \infty), \tag{2.19}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \text { in } \Omega, \tag{2.20}\\
& z(x, \kappa, 0)=j_{0}(x,-\kappa \tau(0)), \text { in } \Gamma_{1} \times(0,1) . \tag{2.21}
\end{align*}
$$

We state the global existence result, which can be established by the arguments of $[18,26]$.
Theorem 2.1. Let initial data $\left(u_{0}, u_{1}\right) \in\left(V \cap H^{2}(\Omega)\right) \times V$ and $j_{0} \in L^{2}\left(\Gamma_{1} \times(0,1)\right)$. Suppose that (H1)-(H5) hold. Then, for any $T>0$, there exists a unique pair of functions (u, w, z) which is a solution to problem (2.15)-(2.21) in the class

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T ; V \cap H^{2}(\Omega)\right), \quad u_{t} \in L^{\infty}(0, T ; V), \quad u_{t t} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& z \in L^{\infty}\left(0, T ; L^{2}\left(\Gamma_{1} \times(0,1)\right)\right), \quad w, w_{t} \in L^{2}\left(0, \infty ; L^{2}\left(\Gamma_{1}\right)\right) .
\end{aligned}
$$

Now, we introduce the energy

$$
\begin{align*}
E(t)= & \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|^{2}+\frac{1}{2}(g \circ \nabla u)(t)+\frac{1}{2} \int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma \\
& +\frac{\zeta \tau(t)}{2} \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma \tag{2.22}
\end{align*}
$$

where $(g \circ \nabla u)(t)=\int_{0}^{t} g(t-s)\|\nabla u(t)-\nabla u(s)\|^{2} d s$ and

$$
\begin{equation*}
\frac{2\left|a_{2}\right|\left(1-c_{4}\right)}{c_{4}\left(1-\tau_{3}\right)}<\zeta<\frac{2\left(a_{1}-\left|a_{2}\right| c_{5}\right)}{c_{5}} \tag{2.23}
\end{equation*}
$$

To show the main results of this paper, we need the following lemma.

Lemma 2.1. Let (H3) and (H4) hold. Then, there exist positive constants γ_{0} and γ_{1} satisfying

$$
\begin{align*}
E^{\prime}(t) \leq & \frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|^{2}-\int_{\Gamma_{1}} h(x) w_{t}^{2}(t) d \Gamma \\
& -\gamma_{0} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma-\gamma_{1} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma \tag{2.24}
\end{align*}
$$

Proof. Multiplying in (2.15) by $u_{t}(t)$, integrating over Ω and using Green's formula, (2.18) and (2.19), we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left[\left\|u_{t}(t)\right\|^{2}+\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|^{2}+(g \circ \nabla u)(t)+\int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma\right]+\int_{\Gamma_{1}} h(x) w_{t}^{2}(t) d \Gamma \\
& =\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|^{2}-a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma-a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u_{t}(t) d \Gamma \tag{2.25}
\end{align*}
$$

where we used the relation

$$
\begin{aligned}
& -\int_{\Omega} \nabla u_{t}(t) \int_{0}^{t} g(t-s) \nabla u(s) d s d x \\
& =\frac{d}{d t}\left[\frac{1}{2}(g \circ \nabla u)(t)-\frac{1}{2} \int_{0}^{t} g(s) d s\|\nabla u(t)\|^{2}\right]-\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)+\frac{1}{2} g(t)\|\nabla u(t)\|^{2}
\end{aligned}
$$

From (2.22) and (2.25), we obtain

$$
\begin{align*}
E^{\prime}(t) & =\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|^{2}-\int_{\Gamma_{1}} h(x) w_{t}^{2}(t) d \Gamma \\
& -a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma-a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u_{t}(t) d \Gamma \\
+ & \frac{\zeta \tau^{\prime}(t)}{2} \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma+\frac{\zeta \tau(t)}{2} \int_{\Gamma_{1}} \int_{0}^{1} f_{2}(z(x, \kappa, t)) z_{t}(x, \kappa, t) d \kappa d \Gamma \tag{2.26}
\end{align*}
$$

where $F_{2}(t)=\int_{0}^{t} f_{2}(s) d s$. We multiply in (2.16) by $f_{2}(z(x, \kappa, t))$ and integrate over $\Gamma_{1} \times(0,1)$ to obtain

$$
\begin{aligned}
& \frac{\zeta \tau(t)}{2} \int_{\Gamma_{1}} \int_{0}^{1} f_{2}(z(x, \kappa, t)) z_{t}(x, \kappa, t) d \kappa d \Gamma \\
& =-\frac{\zeta}{2} \int_{\Gamma_{1}}\left[\left(1-\tau^{\prime}(t)\right) F_{2}(z(x, 1, t))-F_{2}(z(x, 0, t))+\int_{0}^{1} \tau^{\prime}(t) F_{2}(z(x, \kappa, t)) d \kappa\right] d \Gamma
\end{aligned}
$$

Applying this to (2.26) and noting that $z(x, 0, t)=u_{t}(x, t)$, it follows that

$$
\begin{align*}
E^{\prime}(t)= & \frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|^{2}-\int_{\Gamma_{1}} h(x) w_{t}^{2}(t) d \Gamma-a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma \\
& -a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u_{t}(t) d \Gamma-\frac{\zeta}{2} \int_{\Gamma_{1}}\left[\left(1-\tau^{\prime}(t)\right) F_{2}(z(x, 1, t))-F_{2}\left(u_{t}(x, t)\right)\right] d \Gamma . \tag{2.27}
\end{align*}
$$

From (2.6) and (2.7), we get

$$
\begin{align*}
& -\frac{\zeta}{2} \int_{\Gamma_{1}}\left[\left(1-\tau^{\prime}(t)\right) F_{2}(z(x, 1, t))-F_{2}\left(u_{t}(x, t)\right)\right] d \Gamma \\
& \leq-\frac{\zeta c_{4}}{2}\left(1-\tau_{3}\right) \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma+\frac{\zeta c_{5}}{2} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma \tag{2.28}
\end{align*}
$$

Substituting (2.28) into (2.27), we obtain

$$
\begin{align*}
E^{\prime}(t) \leq & \frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|^{2}-\int_{\Gamma_{1}} h(x) w_{t}^{2}(t) d \Gamma-\left(a_{1}-\frac{\zeta c_{5}}{2}\right) \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma \\
& -a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u_{t}(t) d \Gamma-\frac{\zeta c_{4}}{2}\left(1-\tau_{3}\right) \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma \tag{2.29}
\end{align*}
$$

The definition of F_{2} and (2.14) give

$$
\begin{equation*}
F_{2}^{*}(s)=s f_{2}^{-1}(s)-F_{2}\left(f_{2}^{-1}(s)\right), \text { for } s \geq 0 \tag{2.30}
\end{equation*}
$$

Hence, using (2.6), (2.13) and (2.30) with $s=f_{2}(z(x, 1, t))$ and $t=u_{t}(t)$, we get(see details in [20])

$$
\begin{align*}
& -a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u_{t}(t) d \Gamma \\
& \quad \leq\left|a_{2}\right| \int_{\Gamma_{1}}\left(f_{2}(z(x, 1, t)) z(x, 1, t)-F_{2}(z(x, 1, t))+F_{2}\left(u_{t}(t)\right)\right) d \Gamma \\
& \quad \leq\left|a_{2}\right|\left(\left(1-c_{4}\right) \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma+c_{5} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma\right) \tag{2.31}
\end{align*}
$$

By using (2.29) and (2.31) and selecting ζ satisfying (2.23), we obtain the desired inequality (2.24) where $\gamma_{0}=a_{1}-\frac{\zeta c_{5}}{2}-\left|a_{2}\right| c_{5}>0$ and $\gamma_{1}=\frac{\zeta c_{4}}{2}\left(1-\tau_{3}\right)-\left|a_{2}\right|\left(1-c_{4}\right)>0$.

Our main results are the following.

Theorem 2.2. Assume that (H1)-(H5) hold and f_{0} is linear. Then there exist positive constants k_{1}, k_{2}, k_{3} and k_{4} such that the energy functional satisfies, for all $t \geq t_{0}$,

$$
\begin{gather*}
E(t) \leq k_{2} e^{-k_{1} \int_{t_{0}}^{t} \mu(s) d s}, \quad \text { if } G \text { is linear } \tag{2.32}\\
E(t) \leq k_{4} G_{1}^{-1}\left(k_{3} \int_{t_{0}}^{t} \mu(s) d s\right), \text { if } G \text { is nonlinear, } \tag{2.33}
\end{gather*}
$$

where $G_{1}(t)=\int_{t}^{r_{0}} \frac{1}{s G^{\prime}(s)} d s$ is strictly decreasing and convex on $\left(0, r_{0}\right]$.

Theorem 2.3. Assume that (H1)-(H5) hold and f_{0} is nonlinear. Then there exist positive constants $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} such that the energy functional satisfies

$$
\begin{equation*}
E(t) \leq \alpha_{2} F_{1}^{-1}\left(\alpha_{1} \int_{t_{0}}^{t} \mu(s) d s\right), \quad \forall t \geq t_{0}, \text { if } G \text { is linear } \tag{2.34}
\end{equation*}
$$

where $F_{1}(t)=\int_{t}^{r_{1}} \frac{1}{s F^{\prime}(s)} d s$ and

$$
\begin{equation*}
E(t) \leq \alpha_{4}\left(t-t_{0}\right) K_{1}^{-1}\left(\frac{\alpha_{3}}{\left(t-t_{0}\right) \int_{t_{1}}^{t} \mu(s) d s}\right), \quad \forall t \geq t_{1}, \text { if } G \text { is nonlinear } \tag{2.35}
\end{equation*}
$$

where $K_{1}(t)=t K^{\prime}\left(\varepsilon_{2} t\right), 0<\varepsilon_{2}<r_{2}=\min \left\{r_{0}, r_{1}\right\}$ and $K=\left(\bar{G}^{-1}+\bar{F}^{-1}\right)^{-1}$.

3. Technical Lemmas

In this section, we prove the following lemmas to obtain the general decay rates of the solution for problem (2.15)-(2.21).

Lemma 3.1. Under the assumption (H1), the functional Φ_{1} defined by

$$
\Phi_{1}(t)=\int_{\Omega} u(t) u_{t}(t) d x+\int_{\Gamma_{1}} u(t) w(t) d \Gamma+\frac{1}{2} \int_{\Gamma_{1}} h(x) w^{2}(t) d \Gamma
$$

satisfies

$$
\begin{align*}
\Phi_{1}^{\prime}(t) & \leq\left\|u_{t}(t)\right\|^{2}-\frac{l}{2}\|\nabla u(t)\|^{2}+\frac{2 C(\xi)}{l}(i \circ \nabla u)(t)+\frac{8 \lambda_{*}}{l}\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2} \\
& +\frac{a_{1} a_{3}}{l} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+\frac{\left|a_{2}\right| a_{3}}{l} \int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma-\int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma \tag{3.1}
\end{align*}
$$

for any $0<\xi<1$, where

$$
\begin{equation*}
C(\xi)=\int_{0}^{\infty} \frac{g^{2}(s)}{i(s)} d s \quad \text { and } \quad i(t)=\xi g(t)-g^{\prime}(t) \tag{3.2}
\end{equation*}
$$

Proof. Using equation (2.15), (2.17)-(2.19) and utilizing (2.2) and Young's inequality, we obtain

$$
\begin{aligned}
& \Phi_{1}^{\prime}(t)=\left\|u_{t}(t)\right\|^{2}-\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|^{2}+\int_{0}^{t} g(t-s)(\nabla u(s)-\nabla u(t), \nabla u(t)) d s \\
& \quad-a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u(t) d \Gamma-a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u(t) d \Gamma+2 \int_{\Gamma_{1}} u(t) w_{t}(t) d \Gamma-\int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\|u_{t}(t)\right\|^{2}-\frac{7 l}{8}\|\nabla u(t)\|^{2}+\frac{2}{l} \int_{\Omega}\left(\int_{0}^{t} g(t-s)|\nabla u(s)-\nabla u(t)| d s\right)^{2} d x \\
& -a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u(t) d \Gamma-a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u(t) d \Gamma+2 \int_{\Gamma_{1}} u(t) w_{t}(t) d \Gamma-\int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma .
\end{aligned}
$$

Using Cauchy-Schwarz inequality and (3.2), we have(see [23, 27])

$$
\begin{equation*}
\int_{\Omega}\left(\int_{0}^{t} g(t-s)|\nabla u(s)-\nabla u(t)| d s\right)^{2} d x \leq\left(\int_{0}^{t} \frac{g^{2}(s)}{i(s)} d s\right)(i \circ \nabla u)(t) \leq C(\xi)(i \circ \nabla u)(t) \tag{3.3}
\end{equation*}
$$

Applying Young's inequality and (2.1), we obtain for $\eta>0$,

$$
\begin{align*}
& \left|-a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u(t) d \Gamma\right| \leq \eta a_{1} \lambda_{*}\|\nabla u(t)\|^{2}+\frac{a_{1}}{4 \eta} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma, \tag{3.4}\\
& \left|-a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) u(t) d \Gamma\right| \leq \eta\left|a_{2}\right| \lambda_{*}\|\nabla u(t)\|^{2}+\frac{\left|a_{2}\right|}{4 \eta} \int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma, \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
2 \int_{\Gamma_{1}} u(t) w_{t}(t) d \Gamma \leq \frac{l}{8}\|\nabla u(t)\|^{2}+\frac{8 \lambda_{*}}{l}\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2} . \tag{3.6}
\end{equation*}
$$

Combining estimates (3.3)-(3.6), we see that

$$
\begin{aligned}
\Phi_{1}^{\prime}(t) \leq & \left\|u_{t}(t)\right\|^{2}-\left(\frac{3 l}{4}-\eta a_{1} \lambda_{*}-\eta\left|a_{2}\right| \lambda_{*}\right)\|\nabla u(t)\|^{2}+\frac{2 C(\xi)}{l}(i \circ \nabla u)(t)+\frac{8 \lambda_{*}}{l}\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2} \\
& +\frac{a_{1}}{4 \eta} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+\frac{\left|a_{2}\right|}{4 \eta} \int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma-\int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma .
\end{aligned}
$$

Setting $a_{3}=\left(a_{1}+\left|a_{2}\right|\right) \lambda_{*}$ and choosing $\eta=\frac{l}{4 a_{3}}$ leads to (3.1).
Lemma 3.2. Under the assumption (H1), the functional Φ_{2} defined by

$$
\Phi_{2}(t)=-\int_{\Omega} u_{t}(t) \int_{0}^{t} g(t-s)(u(t)-u(s)) d s d x
$$

satisfies

$$
\begin{align*}
\Phi_{2}^{\prime}(t) \leq & -\left(\int_{0}^{t} g(s) d s-\delta\right)\left\|u_{t}(t)\right\|^{2}+\delta\|\nabla u(t)\|^{2}+\frac{C_{1}(1+C(\xi))}{\delta}(i \circ \nabla u)(t)+\delta \lambda_{*}\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2} \\
& +\delta a_{1} \lambda_{*} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+\delta\left|a_{2}\right| \lambda_{*} \int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma \tag{3.7}
\end{align*}
$$

for any $0<\delta<1$.
Proof. Using equation (2.15), (2.17) and (2.18), we get

$$
\begin{aligned}
& \Phi_{2}^{\prime}(t)=\left(1-\int_{0}^{t} g(s) d s\right) \int_{\Omega} \nabla u \cdot \int_{0}^{t} g(t-s)(\nabla u(t)-\nabla u(s)) d s d x \\
& +\int_{\Omega}\left(\int_{0}^{t} g(t-s)(\nabla u(t)-\nabla u(s)) d s\right)^{2} d x-\int_{\Gamma_{1}} w_{t}(t) \int_{0}^{t} g(t-s)(u(t)-u(s)) d s d \Gamma \\
& +a_{1} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) \int_{0}^{t} g(t-s)(u(t)-u(s)) d s d \Gamma+a_{2} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) \int_{0}^{t} g(t-s)(u(t)-u(s)) d s d \Gamma \\
& -\int_{\Omega} u_{t}(t) \int_{0}^{t} g^{\prime}(t-s)(u(t)-u(s)) d s d x-\left(\int_{0}^{t} g(s) d s\right)\left\|u_{t}(t)\right\|^{2} \\
& =I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}-\left(\int_{0}^{t} g(s) d s\right)\left\|u_{t}(t)\right\|^{2}
\end{aligned}
$$

By Young's inequality, (2.1) and (3.3), we obtain for $\delta>0$,

$$
\begin{aligned}
& I_{1} \leq \delta\|\nabla u(t)\|^{2}+\frac{C(\xi)}{4 \delta}(i \circ \nabla u)(t) \\
& I_{2} \leq C(\xi)(i \circ \nabla u)(t) \\
& \left|I_{3}\right| \leq \delta \lambda_{*}\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2}+\frac{C(\xi)}{4 \delta}(i \circ \nabla u)(t) \\
& \left|I_{4}\right| \leq \delta a_{1} \lambda_{*} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+\frac{a_{1} C(\xi)}{4 \delta}(i \circ \nabla u)(t) \\
& \left|I_{5}\right| \leq \delta\left|a_{2}\right| \lambda_{*} \int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma+\frac{\left|a_{2}\right| C(\xi)}{4 \delta}(i \circ \nabla u)(t)
\end{aligned}
$$

Using Young's inequality, (2.1), (2.2), (3.2) and (3.3), we see that

$$
\begin{aligned}
& I_{6}=\int_{\Omega} u_{t}(t) \int_{0}^{t} i(t-s)(u(t)-u(s)) d s d x-\int_{\Omega} u_{t}(t) \int_{0}^{t} \xi g(t-s)(u(t)-u(s)) d s d x \\
\leq & \delta\left\|u_{t}(t)\right\|^{2}+\frac{1}{2 \delta} \int_{\Omega}\left(\int_{0}^{t} i(t-s)|u(s)-u(t)| d s\right)^{2} d x+\frac{\xi^{2}}{2 \delta} \int_{\Omega}\left(\int_{0}^{t} g(t-s)|u(t)-u(s)| d s\right)^{2} d x \\
\leq & \delta\left\|u_{t}(t)\right\|^{2}+\frac{\lambda(g(0)+\xi)}{2 \delta}(i \circ \nabla u)(t)+\frac{\lambda \xi^{2} C(\xi)}{2 \delta}(i \circ \nabla u)(t)
\end{aligned}
$$

Combining all above estimates and taking $C_{1}=\max \left\{\frac{\lambda(g(0)+\xi)}{2}, \delta+\frac{1+\lambda \xi^{2}}{2}+\frac{a_{1}+\left|a_{2}\right|}{4}\right\}$, the desired inequality (3.7) is established.

Lemma 3.3. Under the assumptions (H3) and (H4), the functional Φ_{3} defined by

$$
\Phi_{3}(t)=\tau(t) \int_{\Gamma_{1}} \int_{0}^{1} e^{-\kappa \tau(t)} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma
$$

satisfies

$$
\begin{align*}
\Phi_{3}^{\prime}(t) & \leq-e^{-\tau_{2}} \tau(t) \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma-c_{4}\left(1-\tau_{3}\right) e^{-\tau_{2}} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma \\
& +c_{5} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma \tag{3.8}
\end{align*}
$$

Proof. Using the equation (2.16), integration by parts, (2.6) and (2.7), we obtain(see [19])

$$
\begin{aligned}
\Phi_{3}^{\prime}(t)= & \tau^{\prime}(t) \int_{\Gamma_{1}} \int_{0}^{1} e^{-\kappa \tau(t)} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma-\tau(t) \int_{\Gamma_{1}} \int_{0}^{1} \kappa \tau^{\prime}(t) e^{-\kappa \tau(t)} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma \\
& -\int_{\Gamma_{1}} \int_{0}^{1} e^{-\kappa \tau(t)}\left(1-\kappa \tau^{\prime}(t)\right) \frac{d}{d \kappa} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma \\
= & -\Phi_{3}(t)-e^{-\tau(t)} \int_{\Gamma_{1}}\left(1-\tau^{\prime}(t)\right) F_{2}(z(x, 1, t)) d \Gamma+\int_{\Gamma_{1}} F_{2}\left(u_{t}(x, t)\right) d \Gamma \\
\leq & -e^{-\tau_{2}} \tau(t) \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma-c_{4}\left(1-\tau_{3}\right) e^{-\tau_{2}} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma \\
& +c_{5} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma
\end{aligned}
$$

Lemma 3.4. ([23]) Under the assumption (H1), the functional Φ_{4} defined by

$$
\Phi_{4}(t)=\int_{\Omega} \int_{0}^{t} G_{2}(t-s)|\nabla u(s)|^{2} d s d x
$$

satisfies

$$
\begin{equation*}
\Phi_{4}^{\prime}(t) \leq 3(1-l)\|\nabla u(t)\|^{2}-\frac{1}{2}(g \circ \nabla u)(t), \tag{3.9}
\end{equation*}
$$

where $G_{2}(t)=\int_{t}^{\infty} g(s) d s$.
Next, let us define the perturbed modified energy by

$$
\begin{equation*}
L(t)=N E(t)+N_{1} \Phi_{1}(t)+N_{2} \Phi_{2}(t)+\Phi_{3}(t)+b_{1} E(t), \tag{3.10}
\end{equation*}
$$

where N, N_{1}, N_{2} and b_{1} are some positive constants.
As in $[3,19]$, for $N>0$ large enough, there exist positive constants β_{1} and β_{2} such that

$$
\beta_{1} E(t) \leq L(t) \leq \beta_{2} E(t) .
$$

Lemma 3.5. Assume that (H1), (H3)-(H5) hold. Then, there exist positive constants β_{3}, β_{4} and β_{5} such that

$$
\begin{equation*}
L^{\prime}(t) \leq-\beta_{3} E(t)+\beta_{4} \int_{t_{0}}^{t} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s+\beta_{5} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma, \quad \forall t \geq t_{0} \tag{3.11}
\end{equation*}
$$

where t_{0} was introduced in (2.10).
Proof. Let $g_{0}=\int_{0}^{t_{0}} g(s) d s$. Using the fact that $i(t)=\xi g(t)-g^{\prime}(t)$ and combining (2.24), (3.1), (3.7), (3.8) and (3.10), we get, for all $t \geq t_{0}$,

$$
\begin{align*}
& L^{\prime}(t) \leq \frac{\xi N}{2}(g \circ \nabla u)(t)-\left(\frac{l N_{1}}{2}-\delta N_{2}\right)\|\nabla u(t)\|^{2}-\left(g_{0} N_{2}-\delta N_{2}-N_{1}\right)\left\|u_{t}(t)\right\|^{2} \\
& \quad-\left(\frac{N}{2}-\frac{2 C(\xi) N_{1}}{l}-\frac{C_{1}(1+C(\xi)) N_{2}}{\delta}\right)(i \circ \nabla u)(t)-N_{1} \int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma+b_{1} E^{\prime}(t) \\
& \quad-\left(h_{1} N-\frac{8 \lambda_{*} N_{1}}{l}-\delta \lambda_{*} N_{2}\right)\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2}-e^{-\tau_{2}} \tau(t) \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma \\
& \quad-\left(\gamma_{0} N-c_{5}\right) \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma-\left(\gamma_{1} N+c_{4}\left(1-\tau_{3}\right) e^{-\tau_{2}}\right) \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma \\
& \quad+\left(\frac{a_{1} a_{3} N_{1}}{l}+\delta a_{1} \lambda_{*} N_{2}\right) \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+\left(\frac{\left|a_{2}\right| a_{3} N_{1}}{l}+\delta\left|a_{2}\right| \lambda_{*} N_{2}\right) \int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma . \tag{3.12}
\end{align*}
$$

From (2.6), we find that

$$
\begin{equation*}
\int_{\Gamma_{1}} f_{2}^{2}(z(x, 1, t)) d \Gamma \leq c_{3} \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma . \tag{3.13}
\end{equation*}
$$

Applying (3.13) to (3.12) and taking $\delta=\frac{l}{4 N_{2}}$, we get, for all $t \geq t_{0}$,

$$
\begin{aligned}
& L^{\prime}(t) \leq \frac{\xi N}{2}(g \circ \nabla u)(t)-\left(\frac{l N_{1}}{2}-\frac{l}{4}\right)\|\nabla u(t)\|^{2}-\left(g_{0} N_{2}-N_{1}-\frac{l}{4}\right)\left\|u_{t}(t)\right\|^{2} \\
& \quad-\left(\frac{N}{2}-\frac{4 C_{1} N_{2}^{2}}{l}-C(\xi)\left[\frac{2 N_{1}}{l}+\frac{4 C_{1} N_{2}^{2}}{l}\right]\right)(i \circ \nabla u)(t)-N_{1} \int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma \\
& \quad-\left(h_{1} N-\frac{8 \lambda_{*} N_{1}}{l}-\frac{l \lambda_{*}}{4}\right)\left\|w_{t}(t)\right\|_{\Gamma_{1}}^{2}-e^{-\tau_{2}} \tau(t) \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\gamma_{0} N-c_{5}\right) \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma+\left(\frac{a_{1} a_{3} N_{1}}{l}+\frac{a_{1} l \lambda_{*}}{4}\right) \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+b_{1} E^{\prime}(t) \\
& -\left(\gamma_{1} N+c_{4}\left(1-\tau_{3}\right) e^{-\tau_{2}}-\frac{\left|a_{2}\right| a_{3} c_{3} N_{1}}{l}-\frac{\left|a_{2}\right| c_{3} l \lambda_{*}}{4}\right) \int_{\Gamma_{1}} f_{2}(z(x, 1, t)) z(x, 1, t) d \Gamma
\end{aligned}
$$

We choose N_{1} large enough so that

$$
\frac{l N_{1}}{2}-\frac{l}{4}>4(1-l)
$$

then N_{2} large enough so that

$$
g_{0} N_{2}-N_{1}-\frac{l}{4}>1
$$

Using the fact that $\frac{\xi g^{2}(s)}{i(s)}<g(s)$ and the Lebesgue dominated convergence theorem, we deduce that

$$
\xi C(\xi)=\int_{0}^{\infty} \frac{\xi g^{2}(s)}{i(s)} d s \rightarrow 0 \text { as } \xi \rightarrow 0
$$

Hence, there is $0<\xi_{0}<1$ such that if $\xi<\xi_{0}$, then

$$
\xi C(\xi)\left[\frac{2 N_{1}}{l}+\frac{4 C_{1} N_{2}^{2}}{l}\right]<\frac{1}{8}
$$

Finally, selecting $\xi=\frac{1}{2 N}$ and choosing N large enough so that

$$
N>\max \left\{\frac{16 C_{1} N_{2}^{2}}{l}, \frac{1}{h_{1}}\left(\frac{8 \lambda_{*} N_{1}}{l}+\frac{l \lambda_{*}}{4}\right), \quad \frac{c_{5}}{\gamma_{0}}, \quad \frac{1}{\gamma_{1}}\left(\frac{\left|a_{2}\right| a_{3} c_{3} N_{1}}{l}+\frac{\left|a_{2}\right| c_{3} l \lambda_{*}}{4}-c_{4}\left(1-\tau_{3}\right) e^{-\tau_{2}}\right)\right\}
$$

we obtain

$$
\begin{align*}
L^{\prime}(t) \leq & -\left\|u_{t}(t)\right\|^{2}-4(1-l)\|\nabla u(t)\|^{2}+\frac{1}{4}(g \circ \nabla u)(t)-N_{1} \int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma \\
& -e^{-\tau_{2}} \tau(t) \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma+\beta_{5} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+b_{1} E^{\prime}(t), \quad \forall t \geq t_{0} \tag{3.14}
\end{align*}
$$

where $\beta_{5}=\frac{a_{1} a_{3} N_{1}}{l}+\frac{a_{1} l \lambda_{*}}{4}$. Using (2.11) and (2.24), we find that, for any $t \geq t_{0}$,

$$
\begin{equation*}
\int_{0}^{t_{0}} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \leq-\frac{1}{c_{8}} \int_{0}^{t_{0}} g^{\prime}(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \leq-\frac{2}{c_{8}} E^{\prime}(t) \tag{3.15}
\end{equation*}
$$

Combining (2.22), (3.14) and (3.15) and taking a suitable choice of b_{1}, we obtain the estimate (3.11).

Lemma 3.6. ([21]) Assume that (H2) holds and $\max \left\{r_{1}, f_{0}\left(r_{1}\right)\right\}<\varepsilon$, where ε was introduced in (2.4). Then there exist positive constants C_{2}, C_{3} and C_{4} such that

$$
\int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma \leq \begin{cases}C_{2} \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma, & \text { if } f_{0} \text { is linear } \tag{3.16}\\ C_{3} F^{-1}(\chi(t))-C_{3} E^{\prime}(t), & \text { if } f_{0} \text { is nonlinear }\end{cases}
$$

where

$$
\begin{equation*}
\chi(t)=\frac{1}{\left|\Gamma_{11}\right|} \int_{\Gamma_{11}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma \leq-C_{4} E^{\prime}(t) \tag{3.17}
\end{equation*}
$$

$\Gamma_{11}=\left\{x \in \Gamma_{1}:\left|u_{t}(t)\right| \leq \varepsilon_{1}\right\}$ and $0<\varepsilon_{1}=\min \left\{r_{1}, f_{0}\left(r_{1}\right)\right\}$.
Next, we define $\rho(t)$ by

$$
\begin{equation*}
\rho(t):=-\int_{t_{0}}^{t} g^{\prime}(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \leq-2 E^{\prime}(t) \tag{3.18}
\end{equation*}
$$

Lemma 3.7. Assume that (H1) and (H2) hold and G is nonlinear. Then, the solution of (2.15)-(2.21) satisfies the estimates

$$
\int_{t_{0}}^{t} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \leq\left\{\begin{array}{l}
\frac{1}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\mu(t)}\right), \forall t \geq t_{0}, \text { if } f_{0} \text { is linear, } \tag{3.19}\\
\frac{t-t_{0}}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\left(t-t_{0}\right) \mu(t)}\right), \forall t>t_{0}, \text { if } f_{0} \text { is nonlinear }
\end{array}\right.
$$

where $\theta \in(0,1)$ and \bar{G} is an extension of G.

Proof. First, we prove the estimate (3.19) when f_{0} is linear. We introduce the functional

$$
\mathcal{L}(t)=L(t)+\Phi_{4}(t)
$$

which is nonnegative. From (3.9) and (3.14), we see that, for all $t \geq t_{0}$,

$$
\begin{aligned}
\mathcal{L}^{\prime}(t) & \leq-\left\|u_{t}(t)\right\|^{2}-(1-l)\|\nabla u(t)\|^{2}-\frac{1}{4}(g \circ \nabla u)(t)-N_{1} \int_{\Gamma_{1}} m(x) w^{2}(t) d \Gamma \\
& -e^{-\tau_{2}} \tau(t) \int_{\Gamma_{1}} \int_{0}^{1} F_{2}(z(x, \kappa, t)) d \kappa d \Gamma+\beta_{5} \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma+b_{1} E^{\prime}(t)
\end{aligned}
$$

Applying (2.22), (2.24) and (3.16) and selecting a suitable choice of b_{1}, we have

$$
\mathcal{L}^{\prime}(t) \leq-d_{1} E(t)
$$

where d_{1} is some positive constant. This implies that

$$
\begin{equation*}
\int_{0}^{\infty} E(s) d s<\infty \tag{3.20}
\end{equation*}
$$

For $0<\theta<1$, we define $I(t)$ by

$$
I(t):=\theta \int_{t_{0}}^{t} \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s
$$

By (3.20), θ is taken so small that, for all $t \geq t_{0}$,

$$
\begin{equation*}
I(t)<1 \tag{3.21}
\end{equation*}
$$

Since G is strictly convex on $\left(0, r_{0}\right]$, then

$$
\begin{equation*}
G(q y) \leq q G(y) \tag{3.22}
\end{equation*}
$$

where $0 \leq q \leq 1$ and $y \in\left(0, r_{0}\right]$. Using the fact that μ is a positive nonincreasing function and applying $(2.3),(3.21),(3.22)$ and Jensen's inequality (2.12), we find that(see details in [21, 23])

$$
\begin{align*}
\rho(t) & \geq \frac{\mu(t)}{\theta I(t)} \int_{t_{0}}^{t} I(t) G(g(s)) \int_{\Omega} \theta|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \\
& \geq \frac{\mu(t)}{\theta I(t)} \int_{t_{0}}^{t} G(I(t) g(s)) \int_{\Omega} \theta|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \\
& \geq \frac{\mu(t)}{\theta} \bar{G}\left(\theta \int_{t_{0}}^{t} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s\right) \tag{3.23}
\end{align*}
$$

Since \bar{G} is strictly increasing, we obtain

$$
\int_{t_{0}}^{t} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \leq \frac{1}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\mu(t)}\right)
$$

Now, we show the estimate (3.19) when f_{0} is nonlinear. Since we cannot guarantee (3.20), we define the following function

$$
\delta(t):=\frac{\theta}{t-t_{0}} \int_{t_{0}}^{t} \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s, \forall t>t_{0}
$$

Using the fact that $E^{\prime}(t) \leq 0$ and (2.22), we have

$$
\delta(t) \leq \frac{2 \theta}{t-t_{0}} \int_{t_{0}}^{t}\left(\|\nabla u(t)\|^{2}+\|\nabla u(t-s)\|^{2}\right) d s \leq \frac{8 \theta E(0)}{l}
$$

Choosing θ small enough so that, for all $t>t_{0}$,

$$
\begin{equation*}
\delta(t) \leq 1 \tag{3.24}
\end{equation*}
$$

Similar to (3.23), using (2.3), (3.22), (3.24) and Jensen's inequality (2.12), we obtain

$$
\begin{aligned}
\rho(t) & =\frac{t-t_{0}}{\theta \delta(t)} \int_{t_{0}}^{t} \delta(t)\left(-g^{\prime}(s)\right) \int_{\Omega} \frac{\theta}{t-t_{0}}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \\
& \geq \frac{\left(t-t_{0}\right) \mu(t)}{\theta \delta(t)} \int_{t_{0}}^{t} G(\delta(t) g(s)) \int_{\Omega} \frac{\theta}{t-t_{0}}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \\
& \geq \frac{\left(t-t_{0}\right) \mu(t)}{\theta} \bar{G}\left(\frac{\theta}{t-t_{0}} \int_{t_{0}}^{t} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s\right) .
\end{aligned}
$$

This implies that

$$
\int_{t_{0}}^{t} g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s \leq \frac{t-t_{0}}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\left(t-t_{0}\right) \mu(t)}\right) .
$$

4. Proof of Theorem 2.2 .

In this section, we prove the main result of our work. Now, we consider the following two cases.
Case 1: $G(t)$ is linear. Multiplying (3.11) by the positive nonincreasing function $\mu(t)$ and using (2.3), (2.24) and (3.16), we get

$$
\begin{aligned}
& \mu(t) L^{\prime}(t) \leq-\beta_{3} \mu(t) E(t)+\beta_{4} \int_{t_{0}}^{t} \mu(s) g(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s+\beta_{5} \mu(t) \int_{\Gamma_{1}} f_{1}^{2}\left(u_{t}(t)\right) d \Gamma \\
& \leq-\beta_{3} \mu(t) E(t)-\beta_{4} \int_{t_{0}}^{t} g^{\prime}(s) \int_{\Omega}|\nabla u(t)-\nabla u(t-s)|^{2} d x d s+\beta_{5} C_{2} \mu(0) \int_{\Gamma_{1}} f_{1}\left(u_{t}(t)\right) u_{t}(t) d \Gamma \\
& \leq-\beta_{3} \mu(t) E(t)-C_{5} E^{\prime}(t),
\end{aligned}
$$

where $C_{5}=2 \beta_{4}+\frac{\beta_{5} C_{2} \mu(0)}{\gamma_{0}}$ is a positive constant. From $\mu(t)$ is nonincreasing, we have

$$
\left(\mu L+C_{5} E\right)^{\prime}(t) \leq-\beta_{3} \mu(t) E(t), \quad \forall t \geq t_{0}
$$

Since $\mu(t) L(t)+C_{5} E(t) \sim E(t)$, for some positive constants k_{1} and k_{2}, we obtain

$$
E(t) \leq k_{2} e^{-k_{1} \int_{t_{0}}^{t} \mu(s) d s}
$$

Case 2: $G(t)$ is nonlinear. This case is obtained through the ideas presented in [23] as follows. Using (2.24), (3.11), (3.16) and (3.19), we obtain

$$
\begin{equation*}
L^{\prime}(t) \leq-\beta_{3} E(t)+\frac{\beta_{4}}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\mu(t)}\right)-\frac{\beta_{5} C_{2}}{\gamma_{0}} E^{\prime}(t), \quad \forall t \geq t_{0} . \tag{4.1}
\end{equation*}
$$

Let $L_{1}(t)=L(t)+\frac{\beta_{5} C_{2}}{\gamma_{0}} E(t) \sim E(t)$, then (4.1) becomes

$$
\begin{equation*}
L_{1}^{\prime}(t) \leq-\beta_{3} E(t)+\frac{\beta_{4}}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\mu(t)}\right), \quad \forall t \geq t_{0} . \tag{4.2}
\end{equation*}
$$

For $0<\varepsilon_{0}<r_{0}$, using (4.2) and the fact that $E^{\prime} \leq 0, \bar{G}^{\prime}>0$ and $\bar{G}^{\prime \prime}>0$, we find that the functional L_{2}, defined by

$$
L_{2}(t):=\bar{G}^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right) L_{1}(t) \sim E(t)
$$

satisfies

$$
\begin{equation*}
L_{2}^{\prime}(t) \leq-\beta_{3} E(t) \bar{G}^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)+\frac{\beta_{4}}{\theta} \bar{G}^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right) \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\mu(t)}\right), \quad \forall t \geq t_{0} \tag{4.3}
\end{equation*}
$$

With $s=\bar{G}^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)$ and $t=\bar{G}^{-1}\left(\frac{\theta \rho(t)}{\mu(t)}\right)$, using (2.13), (2.14) and (4.3), we get

$$
L_{2}^{\prime}(t) \leq-\beta_{3} E(t) G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)+\frac{\varepsilon_{0} \beta_{4}}{\theta} \frac{E(t)}{E(0)} G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)+\frac{\beta_{4} \rho(t)}{\mu(t)},
$$

where, we have used that $\varepsilon_{0} \frac{E(t)}{E(0)}<r_{0}$ and $\bar{G}^{\prime}=G^{\prime}$ on ($0, r_{0}$]. Multiplying this by $\mu(t)$ and using (3.18), we obtain

$$
\mu(t) L_{2}^{\prime}(t) \leq-\left(\beta_{3} E(0)-\frac{\varepsilon_{0} \beta_{4}}{\theta}\right) \frac{\mu(t) E(t)}{E(0)} G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)-2 \beta_{4} E^{\prime}(t)
$$

By defining $L_{3}(t)=\mu(t) L_{2}(t)+2 \beta_{4} E(t)$, we see that, for some positive constants γ_{2} and γ_{3},

$$
\begin{equation*}
\gamma_{2} L_{3}(t) \leq E(t) \leq \gamma_{3} L_{3}(t) \tag{4.4}
\end{equation*}
$$

With a suitable choice of ε_{0}, we get, for some positive constant d_{2},

$$
\begin{equation*}
L_{3}^{\prime}(t) \leq-d_{2} \mu(t) \frac{E(t)}{E(0)} G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)=-d_{2} \mu(t) G_{2}\left(\frac{E(t)}{E(0)}\right), \quad \forall t \geq t_{0} \tag{4.5}
\end{equation*}
$$

where $G_{2}(t)=t G^{\prime}\left(\varepsilon_{0} t\right)$. Using the strict convexity of G on $\left(0, r_{0}\right]$ and $G_{2}^{\prime}(t)=G^{\prime}\left(\varepsilon_{0} t\right)+\varepsilon_{0} t G^{\prime \prime}\left(\varepsilon_{0} t\right)$, we see that $G_{2}(t), G_{2}^{\prime}(t)>0$ on $(0,1]$. Finally, defining

$$
Q(t)=\frac{\gamma_{2} L_{3}(t)}{E(0)}
$$

and using (4.4), we have

$$
\begin{equation*}
Q(t) \leq \frac{E(t)}{E(0)} \leq 1 \quad \text { and } Q(t) \sim E(t) . \tag{4.6}
\end{equation*}
$$

From (4.5), (4.6) and the fact that $G_{2}^{\prime}(t)>0$ on $(0,1]$, we arrive at

$$
Q^{\prime}(t) \leq-k_{3} \mu(t) G_{2}(Q(t)), \quad \forall t \geq t_{0}
$$

where $k_{3}=\frac{d_{2} \gamma_{2}}{E(0)}$ is a positive constant. Integrating this over $\left(t_{0}, t\right)$ and using variable transformation, we find that(see details in [23])

$$
\int_{t}^{t_{0}} \frac{\varepsilon_{0} Q^{\prime}(s)}{\varepsilon_{0} Q(s) G^{\prime}\left(\varepsilon_{0} Q(s)\right)} d s \geq k_{3} \int_{t_{0}}^{t} \mu(s) d s \Longrightarrow \int_{\varepsilon_{0} Q(t)}^{\varepsilon_{0} Q\left(t_{0}\right)} \frac{1}{s G^{\prime}(s)} d s \geq k_{3} \int_{t_{0}}^{t} \mu(s) d s
$$

Since $\varepsilon_{0}<r_{0}$ and $Q(t) \leq 1$, for all $t \geq t_{0}$, we have

$$
\begin{equation*}
G_{1}\left(\varepsilon_{0} Q(t)\right)=\int_{\varepsilon_{0} Q(t)}^{r_{0}} \frac{1}{s G^{\prime}(s)} d s \geq k_{3} \int_{t_{0}}^{t} \mu(s) d s \Longrightarrow Q(t) \leq \frac{1}{\varepsilon_{0}} G_{1}^{-1}\left(k_{3} \int_{t_{0}}^{t} \mu(s) d s\right) \tag{4.7}
\end{equation*}
$$

where $G_{1}(t)=\int_{t}^{r_{0}} \frac{1}{s G^{\prime}(s)} d s$. Here, we have used the fact that G_{1} is strictly decreasing function on $\left(0, r_{0}\right]$. Therefore, using (4.6) and (4.7), the estimate (2.33) is established.

5. Proof of Theorem 2.3

Case 1: $G(t)$ is linear. Multiplying (3.11) by the positive nonincreasing function $\mu(t)$ and using (2.3), (2.24) and (3.16), we get

$$
\begin{equation*}
\mu(t) L^{\prime}(t) \leq-\beta_{3} \mu(t) E(t)+\beta_{5} C_{3} \mu(t) F^{-1}(\chi(t))-C_{6} E^{\prime}(t), \tag{5.1}
\end{equation*}
$$

where $C_{6}=2 \beta_{4}+\beta_{5} C_{3} \mu(0)$ is a positive constant. Since $\mu(t)$ is nonincreasing, (5.1) becomes

$$
\begin{equation*}
F_{3}^{\prime}(t) \leq-\beta_{3} \mu(t) E(t)+\beta_{5} C_{3} \mu(t) F^{-1}(\chi(t)), \quad \forall t \geq t_{0} \tag{5.2}
\end{equation*}
$$

where $F_{3}(t)=\mu(t) L(t)+C_{6} E(t) \sim E(t)$. For $0<\varepsilon_{1}<r_{1}$, using (5.2) and the fact that $E^{\prime} \leq 0, F^{\prime}>0$ and $F^{\prime \prime}>0$ on $\left(0, r_{1}\right.$], the functional F_{4} defined by

$$
F_{4}(t):=F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right) F_{3}(t) \sim E(t)
$$

satisfies

$$
F_{4}^{\prime}(t) \leq-\beta_{3} \mu(t) E(t) F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right)+\beta_{5} C_{3} \mu(t) F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right) F^{-1}(\chi(t))
$$

As (2.13) and (2.14) with $s=F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right)$ and $t=F^{-1}(\chi(t))$, using (3.17), we obtain that

$$
\begin{aligned}
F_{4}^{\prime}(t) & \leq-\beta_{3} \mu(t) E(t) F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right)+\varepsilon_{1} \beta_{5} C_{3} \frac{\mu(t) E(t)}{E(0)} F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right)+\beta_{5} C_{3} \mu(0) \chi(t) \\
& \leq-\left(\beta_{3} E(0)-\varepsilon_{1} \beta_{5} C_{3}\right) \frac{\mu(t) E(t)}{E(0)} F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right)-\beta_{5} C_{3} C_{4} \mu(0) E^{\prime}(t), \quad \forall t \geq t_{0}
\end{aligned}
$$

Let $F_{5}(t)=F_{4}(t)+\beta_{5} C_{3} C_{4} \mu(0) E(t)$, then which satisfies, for positive constants γ_{4} and γ_{5},

$$
\begin{equation*}
\gamma_{4} F_{5}(t) \leq E(t) \leq \gamma_{5} F_{5}(t) \tag{5.3}
\end{equation*}
$$

Consequently, with a suitable choice of ε_{1}, we have, for some positive constant d_{3},

$$
\begin{equation*}
F_{5}^{\prime}(t) \leq-d_{3} \mu(t) \frac{E(t)}{E(0)} F^{\prime}\left(\varepsilon_{1} \frac{E(t)}{E(0)}\right)=-d_{3} \mu(t) F_{0}\left(\frac{E(t)}{E(0)}\right), \quad \forall t \geq t_{0} \tag{5.4}
\end{equation*}
$$

where $F_{0}(t)=t F^{\prime}\left(\varepsilon_{1} t\right)$. From the strict convexity of F on $\left(0, r_{1}\right]$, we obtain $F_{0}(t), F_{0}^{\prime}(t)>0$ on $(0,1]$. Let

$$
J(t)=\frac{\gamma_{4} F_{5}(t)}{E(0)},
$$

and from (5.3) and (5.4), we get

$$
J(t) \leq \frac{E(t)}{E(0)} \leq 1 \quad \text { and } J^{\prime}(t) \leq-\alpha_{1} \mu(t) F_{0}(J(t)), \quad \forall t \geq t_{0}
$$

where $\alpha_{1}=\frac{d_{3} \gamma_{4}}{E(0)}$ is a positive constant. Then, similar to (4.7), the integration over $\left(t_{0}, t\right)$ and variable transformation yield

$$
\begin{equation*}
J(t) \leq \frac{1}{\varepsilon_{1}} F_{1}^{-1}\left(\alpha_{1} \int_{t_{0}}^{t} \mu(s) d s\right) \tag{5.5}
\end{equation*}
$$

where $F_{1}(t)=\int_{t}^{r_{1}} \frac{1}{s F^{\prime}(s)} d s$, which is strictly decreasing function on ($\left.0, r_{1}\right]$. Combining (5.3) and (5.5), the estimate (2.34) is proved.
Case 2: $G(t)$ is nonlinear. This case is obtained by the ideas presented in [21] as follows. Using (3.11), (3.16) and (3.19), we obtain

$$
\begin{equation*}
L^{\prime}(t) \leq-\beta_{3} E(t)+\frac{\beta_{4}\left(t-t_{0}\right)}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\left(t-t_{0}\right) \mu(t)}\right)+\beta_{5} C_{3} F^{-1}(\chi(t))-\beta_{5} C_{3} E^{\prime}(t), \quad \forall t>t_{0} \tag{5.6}
\end{equation*}
$$

Since $\lim _{t \rightarrow \infty} \frac{1}{t-t_{0}}=0$, there exists $t_{1}>t_{0}$ such that

$$
\begin{equation*}
\frac{1}{t-t_{0}}<1, \quad \forall t \geq t_{1} \tag{5.7}
\end{equation*}
$$

Using the strictly increasing and strictly convex function of \bar{F} and (3.22) with $q=\frac{1}{t-t_{0}}$, we see that

$$
\begin{equation*}
\bar{F}^{-1}(\chi(t)) \leq\left(t-t_{0}\right) \bar{F}^{-1}\left(\frac{\chi(t)}{t-t_{0}}\right), \quad \forall t \geq t_{1} . \tag{5.8}
\end{equation*}
$$

Combining (5.6) and (5.8), we arrive at

$$
\begin{equation*}
R_{1}^{\prime}(t) \leq-\beta_{3} E(t)+\frac{\beta_{4}\left(t-t_{0}\right)}{\theta} \bar{G}^{-1}\left(\frac{\theta \rho(t)}{\left(t-t_{0}\right) \mu(t)}\right)+\beta_{5} C_{3}\left(t-t_{0}\right) \bar{F}^{-1}\left(\frac{\chi(t)}{t-t_{0}}\right), \quad \forall t \geq t_{1} \tag{5.9}
\end{equation*}
$$

where $R_{1}(t)=L(t)+\beta_{5} C_{3} E(t) \sim E(t)$. Let

$$
\begin{equation*}
r_{2}=\min \left\{r_{0}, r_{1}\right\}, \quad \varphi(t)=\max \left\{\frac{\theta \rho(t)}{\left(t-t_{0}\right) \mu(t)}, \frac{\chi(t)}{t-t_{0}}\right\} \quad \text { and } K=\left(\bar{G}^{-1}+\bar{F}^{-1}\right)^{-1}, \quad \forall t \geq t_{1} \tag{5.10}
\end{equation*}
$$

So, (5.9) reduces to

$$
\begin{equation*}
R_{1}^{\prime}(t) \leq-\beta_{3} E(t)+C_{7}\left(t-t_{0}\right) K^{-1}(\varphi(t)), \quad \forall t \geq t_{1} \tag{5.11}
\end{equation*}
$$

where $C_{7}=\max \left\{\frac{\beta_{4}}{\theta}, \beta_{5} C_{3}\right\}$. The strictly increasing and strictly convex properties of \bar{G} and \bar{F} imply that

$$
\begin{equation*}
K^{\prime}=\frac{\bar{G}^{\prime} \bar{F}^{\prime}}{\bar{G}^{\prime}+\bar{F}^{\prime}}>0 \text { and } K^{\prime \prime}=\frac{\bar{G}^{\prime \prime}\left(\bar{F}^{\prime}\right)^{2}+\left(\bar{G}^{\prime}\right)^{2} \bar{F}^{\prime \prime}}{\left(\bar{G}^{\prime}+\bar{F}^{\prime}\right)^{2}}>0 \tag{5.12}
\end{equation*}
$$

on ($0, r_{2}$]. Now, for $0<\varepsilon_{2}<r_{2}$, using (5.7), we see that $\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}<r_{2}$. Defining

$$
R_{2}(t)=K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right) R_{1}(t), \quad \forall t \geq t_{1}
$$

and using (5.11) and (5.12), we find that

$$
\begin{align*}
& R_{2}^{\prime}(t)=\left(-\frac{\varepsilon_{2}}{\left(t-t_{0}\right)^{2}} \frac{E(t)}{E(0)}+\frac{\varepsilon_{2}}{t-t_{0}} \frac{E^{\prime}(t)}{E(0)}\right) K^{\prime \prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right) R_{1}(t)+K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right) R_{1}^{\prime}(t) \\
& \leq-\beta_{3} E(t) K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right)+C_{7}\left(t-t_{0}\right) K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right) K^{-1}(\varphi(t)), \quad \forall t \geq t_{1} . \tag{5.13}
\end{align*}
$$

Using (2.13) and (2.14) with $s=K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right)$ and $t=K^{-1}(\varphi(t))$ and applying (5.13), we get

$$
\begin{equation*}
R_{2}^{\prime}(t) \leq-\beta_{3} E(t) K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right)+\varepsilon_{2} C_{7} \frac{E(t)}{E(0)} K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right)+C_{7}\left(t-t_{0}\right) \varphi(t) \tag{5.14}
\end{equation*}
$$

From (3.17), (3.18) and (5.10), we obtain

$$
\begin{equation*}
\left(t-t_{0}\right) \mu(t) \varphi(t) \leq-C_{8} E^{\prime}(t) \tag{5.15}
\end{equation*}
$$

where $C_{8}=\min \left\{2 \theta, C_{4} \mu(0)\right\}$. Multiplying (5.14) by the positive nonincreasing function $\mu(t)$ and using (5.15), we have

$$
R_{3}^{\prime}(t) \leq-\left(\beta_{3} E(0)-\varepsilon_{2} C_{7}\right) \frac{\mu(t) E(t)}{E(0)} K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right), \quad \forall t \geq t_{1}
$$

where $R_{3}(t)=\mu(t) R_{2}(t)+C_{7} C_{8} E(t) \sim E(t)$. For a suitable choice of ε_{2}, we find that

$$
\begin{equation*}
R_{3}^{\prime}(t) \leq-d_{4} \frac{\mu(t) E(t)}{E(0)} K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right), \quad \forall t \geq t_{1}, \tag{5.16}
\end{equation*}
$$

where d_{4} is a positive constant. An integration of (5.16) yields

$$
\frac{d_{4}}{E(0)} \int_{t_{1}}^{t} E(s) K^{\prime}\left(\frac{\varepsilon_{2}}{s-t_{0}} \frac{E(s)}{E(0)}\right) \mu(s) d s \leq \int_{t}^{t_{1}} R_{3}^{\prime}(s) d s \leq R_{3}\left(t_{1}\right) .
$$

Using (5.12) and the non-increasing property of E, we see that the map $t \rightarrow E(t) K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right)$ is nonincreasing and consequently, we obtain

$$
\begin{equation*}
d_{4} \frac{E(t)}{E(0)} K^{\prime}\left(\frac{\varepsilon_{2}}{t-t_{0}} \frac{E(t)}{E(0)}\right) \int_{t_{1}}^{t} \mu(s) d s \leq R_{3}\left(t_{1}\right), \quad \forall t \geq t_{1} \tag{5.17}
\end{equation*}
$$

Multiplying (5.17) by $\frac{1}{t-t_{0}}$, we get

$$
d_{4} K_{1}\left(\frac{1}{t-t_{0}} \frac{E(t)}{E(0)}\right) \int_{t_{1}}^{t} \mu(s) d s \leq \frac{R_{3}\left(t_{1}\right)}{t-t_{0}}, \quad \forall t \geq t_{1}
$$

where $K_{1}(s)=s K^{\prime}\left(\varepsilon_{2} s\right)$ which is strictly increasing. Therefore, we deduce that

$$
E(t) \leq \alpha_{4}\left(t-t_{0}\right) K_{1}^{-1}\left(\frac{\alpha_{3}}{\left(t-t_{0}\right) \int_{t_{1}}^{t} \mu(s) d s}\right), \quad \forall t \geq t_{1}
$$

where α_{3} and α_{4} are positive constants. This completes the proof.

Acknowledgements

The authors would like to thank the handling editor and the referees for their relevant remarks and corrections in order to improve the final version.

Funding

This work was supported by the Pukyong National University Industry-university Cooperation Research Fund in 2023(202311540001).

Conflict of interest statement

This work does not have any conflicts of interest.

References

[1] J.T. Beale and S.I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc. 80 (1974), 1276-1278.
[2] J.E. Munoz Rivera and Y.M. Qin, Polynomial decay for the energy with an acoustic boundary condition, Appl. Math. Lett. 16 (2003), 249-256.
[3] J.Y. Park and S.H. Park, Decay rate estimates for wave equation of memory type with acoustic boundary conditions, Nonlinear Analysis TMA. 74(3) (2011), 993-998.
[4] W.J. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary coditions, Appl. Math. Lett. $\mathbf{3 8}$ (2014), 155-161.
[5] M. Yoon, M.J. Lee and J.R. Kang, General decay result for the wave equation with memory and acoustic boundary conditions, Appl. Math. Lett. 135 (2023), 108385.
[6] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), 1561-1585.
[7] S. Nicaise and C. Pignotti, Stability of the wave equation with boundary or internal distributed delay, Differential Integral Equation. 21 (2008), 935-958.
[8] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differ. Equ. 2011(41) (2011), 1-20.
[9] M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys. 62 (2011), 1065-1082.
[10] Q. Dai and Z.F. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys. 65 (2014), 885-903.
[11] W.J. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term, Taiwanese J. Math. 17 (6) (2013), 2101-2115.
[12] B.W. Feng, Well-posedness and exponential stability for a plate equation with time-varying delay and past history, Z. Angew. Math. Phys. 68(1) (2017), 1-24.
[13] M.J. Lee, D.W. Kim and J.Y. Park, General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions, Bound. Value Probl. 2016(173) (2016), 1-21.
[14] G.W. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta. Appl. Math. 155 (2018), 9-19.
[15] M.I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys. 64 (2013), 1353-1362.
[16] S.H. Park, Decay rate estimates for a weak viscoelastic beam equation with time-varying delay, Appl. Math. Lett. 31 (2014), 46-51.
[17] S.H. Park and J.R. Kang, General decay for weak viscoelastic Kirchhoff plate equations with delay boundary conditions, Bound. Value Probl. 2017(96) (2017), 1-17.
[18] A. Benaissa, A. Benaissa and S.A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys. 53 (2012), no. 123514.
[19] J.R. Kang, M.J. Lee and S.H. Park, Asymptotic stability of a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay, Comput. Math. Appl. 74 (2017), 1506-1515.
[20] S.H. Park, Energy decay for a von Karman equation with time-varying delay, Appl. Math. Lett. 55 (2016), 10-17.
[21] M.M. Al-Gharabli, A.M. Al-Mahdi and S.A. Messaoudi, General and optimal decay result for a viscoelastic problem with nonlinear boundary feedback, J. Dyn. Cotrol Syst. 25 (2019), 551-572.
[22] M.M. Al-Gharabli, M. Balegh, B.W. Feng, Z. Hajjej and S.A. Messaoudi, Existence and general decay of BalakrishnanTaylor viscoelastic equation with nonlinear frictional damping and logarithmic source term, Evol. Equ. Control Theory. 11(4) (2022), 1149-1173.
[23] M.I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Meth. Appl. Sci. 41 (2018), $192-204$.
[24] F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory dissipative evolution equations, C.R.Acad Sci Paris Ser I. 347 (2009), 867-872.
[25] V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1989.
[26] J.Y. Park and T.G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys. 50 (2009), no. 013506.
[27] K.P. Jin, J. Liang and T.J. Xiao, Coupled second order evolution equations with fading memory: optimal energy decay rate, J. Differ. Equ., 257(5) (2014), 1501-1528.

[^0]: E-mail address: jin0624@pusan.ac.kr ${ }^{1}$, pointegg@hanmail.net ${ }^{2}$.

 * corresponding author.

