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Abstract

In this paper, we are concerned with the energy decay rates for the viscoelastic wave equation with nonlinear damping and

nonlinear time-varying delay in the boundary and acoustic boundary conditions. Here we consider with minimal condition on

the relaxation function g, namely g ’ ( t ) [?] - μ ( t ) G ( g ( t ) ) , where G is an increasing and convex function near the origin

and μ is a positive nonincreasing function. The decay rates of the energy depend on the functions μ,Γ and on the function F

defined by f 0 which represents the growth at the origin of
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1. Introduction

In this paper, we are concerned with the energy decay rates for the viscoelastic wave equation with

nonlinear damping and nonlinear time-varying delay in the boundary and acoustic boundary conditions

utt(x, t)−∆u(x, t) +

∫ t

0

g(t− s)∆u(x, s)ds = 0, in Ω× (0,∞), (1.1)

u(x, t) = 0, on Γ0 × (0,∞), (1.2)

∂u

∂ν
(x, t)−

∫ t

0

g(t− s)∂u
∂ν

(x, s)ds+ a1f1(ut(x, t)) + a2f2(ut(x, t− τ(t)))

= wt(x, t), on Γ1 × (0,∞), (1.3)

ut(x, t) + h(x)wt(x, t) +m(x)w(x, t) = 0, on Γ1 × (0,∞), (1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (1.5)

ut(x, t) = j0(x, t), in Γ1 × (−τ(0), 0), (1.6)

where Ω is a bounded domain in Rn(n ≥ 1) with smooth boundary Γ = Γ0 ∪Γ1 of class C2,Γ0 and Γ1 are

closed and disjoint, ν is the outward unit normal vector to Γ. w(x, t) is the normal displacement into the

domain of a point x ∈ Γ1 at time t and h,m : Γ1 → R are functions that represent resistivity and spring

constant per unit area, respectively, and are essential bounded, g represents the kernel of the memory

term, f1, f2 : R → R are given functions, a1, a2 are real numbers with a1 > 0, a2 6= 0, τ(t) > 0 represents

the time-varying delay and the initial data (u0, u1, j0) belong to a suitable space. Boundary conditions

E-mail address: jin0624@pusan.ac.kr1, pointegg@hanmail.net2.
∗ corresponding author.
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2 GENERAL STABILITY FOR THE VISCOELASTIC WAVE EQUATION...

(1.3) and (1.4) are called acoustic boundary conditions. (1.4) does not contain the second derivative wtt,

which physically means that the material of the surface is much lighter than a liquid flowing along it.

When a1 = a2 = 0, the model (1.1)-(1.5) are pertinent to noise control and suppression in practical

applications. The noise propagates through some acoustic medium, for example, though air, in a room

that is characterized by a bounded domain Ω and whose walls, floor and ceiling are described by the

boundary conditions [1, 2]. Park and Park [3] studied the general decay for problem (1.1)-(1.5) under the

conditions that
∫∞

0
g(s)ds < 1

2
and g′(t) ≤ −µ(t)g(t), for t ≥ 0, where µ : R+ → R+ is a nonincreasing

differentiable function. Liu [4] improved the work of [3] to an arbitrary rate of decay with not necessarily

of an exponential or polynomial one. Recently, Yoon et al. [5] generalized the work of [3, 4] to general

decay rates without the assumption condition
∫∞

0
g(s)ds < 1

2
. The assumption on relaxation function g

has been weakened compared to the conditions assumed in previous literature [3, 4].

Many phenomena depend on both the current state and past occurrences. There has been a notable

increase in the research on the wave equation with delay effects, which frequently arise in various practical

problems [6-8]. Kirane and Said-Houari [9] showed the global existence and asymptotic stability for the

following viscoelastic wave equation with constant delay

utt(x, t)−∆u(x, t) +

∫ t

0

g(t− s)∆u(x, s)ds+ a1ut(x, t) + a2ut(x, t− τ) = 0,

where a1 and a2 are positive constants. Dai and Yang [10] proved the exponential decay results for the

energy of the concerned problem in the case a1 = 0 which solves an open problem proposed by Kirane

and Said-Houari [9]. The viscoelastic wave equation involving time-varying delay instead of constant delay

is studied by Liu [11]. Afterwards, systems with time-varying delay have been extensively considered by

many authors (see [12-17] and references therein). Moreover, Benaissa et al. [18] investigated the global

existence and energy decay of solutions for the following wave equation with a time-varying delay in the

weakly nonlinear feedbacks

utt(x, t)−∆u(x, t) + a1σ(t)f1(ut(x, t)) + a2σ(t)f2(ut(x, t− τ(t))) = 0,

where a1, a2 > 0 and σ, f1, f2 satisfy some conditions. This result extended the previous works [6, 8]. For

the problem with nonlinear time-varying delay, we also refer [19, 20]. Motivated by these results, we study

the general decay rates of solution for problem (1.1)-(1.6). We put a minimal and general assumption on

relaxation function g, namely

g′(t) ≤ −µ(t)G(g(t)), (1.7)

where µ is a positive nonincreasing function and G is linear or it is strictly increasing and strictly convex

function near the origin. Also, our results obtained without imposing any restrictive growth assumption

on the damping term. The decay rates of the energy depend on the functions µ,G and on the function F

defined by f0 which represents the growth at the origin of f1. Recently, Al-Gharabli et al. [21] considered
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the general and optimal decay result for the viscoelastic equation with nonlinear boundary feedback. When

relaxation function g satisfies the condition (1.7), the general decay of solution for the viscoelastic equation

has been studied by several researchers(see [22, 23] and references therein).

2. Preliminary and statement of main results

Throughout this paper, we use the notation

V = {u ∈ H1(Ω) : u = 0 on Γ0}.

For a Banach space X, ‖ · ‖X denotes the norm of X. For simplicity, we denote ‖ · ‖L2(Ω) and ‖ · ‖L2(Γ1)

by ‖ · ‖ and ‖ · ‖Γ1 , respectively.

The Poincaré inequality hold in V , that is, there exist the smallest positive constants λ and λ∗ such

that

‖u‖2 ≤ λ‖∇u‖2 and ‖u‖2Γ1
≤ λ∗‖∇u‖2 for all u ∈ V. (2.1)

As in [5, 19, 21, 22, 23], we consider the following assumptions on g, f1, f2, τ, h and m.

(H1) g : [0,∞)→ (0,∞) is a differentiable function satisfying

1−
∫ ∞

0

g(s)ds = l > 0 (2.2)

and there exists a C1 function G : (0,∞) → (0,∞) which is linear or it is strictly increasing and strictly

convex C2 function on (0, r0], r0 ≤ g(0), with G(0) = G′(0) = 0, such that

g′(t) ≤ −µ(t)G(g(t)), ∀t ≥ 0, (2.3)

where µ is a positive nonincreasing differentiable function. G in (2.3) has been introduced for the first

time in [24]. These are weaker conditions on G than those introduced in [24].

(H2) f1 : R → R is a nondecreasing C0 function such that there exists a strictly increasing function

f0 ∈ C1(R+), with f0(0) = 0, and positive constants c1, c2 and ε such that

f0(|s|) ≤ |f1(s)| ≤ f−1
0 (|s|) for all |s| ≤ ε, (2.4)

c1|s| ≤ |f1(s)| ≤ c2|s| for all |s| ≥ ε. (2.5)

Moreover, we assume that the function F defined by F (s) =
√
sf0(
√
s), is a strictly convex C2 function

on (0, r1], for some r1 > 0, when f0 is nonlinear.

(H3) f2 : R→ R is an odd nondecreasing C1 function such that there exist positive constants c3, c4 and c5

satisfy

|f ′2(s)| ≤ c3, c4sf2(s) ≤ F2(s) ≤ c5sf1(s), for s ∈ R, (2.6)

where F2(t) =
∫ t

0
f2(s)ds.
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(H4) For the time-varying delay, we assume that τ ∈ W 2,∞([0, T ]) for T > 0 and there exist positive

constants τ1, τ2 and τ3 satisfy

0 < τ1 ≤ τ(t) ≤ τ2 and τ ′(t) ≤ τ3 < 1 for all t > 0. (2.7)

Moreover, for c4τ3 < 1, we assume that a1 and a2 satisfy

0 < |a2| <
c4(1− τ3)

c5(1− c4τ3)
a1. (2.8)

(H5) We assume that h,m ∈ C(Γ1) and h(x) > 0 and m(x) > 0 for all x ∈ Γ1. This assumption implies

that there exist positive constants hi and mi(i = 1, 2) such that

h1 ≤ h(x) ≤ h2, m1 ≤ m(x) ≤ m2 for all x ∈ Γ1. (2.9)

Remark 2.1. ([23]) 1. By (H1), we obtain lim
t→+∞

g(t) = 0. Then there exists t0 ≥ 0 large enough such

that

g(t0) = r0 ⇒ g(t) ≤ r0, ∀t ≥ t0. (2.10)

As g and µ are positive nonincreasing continuous functions and G is a positive continuous function then

c6 ≤ µ(t)G(g(t)) ≤ c7, ∀t ∈ [0, t0],

for some positive constants c6 and c7. From (2.3), we obtain

g′(t) ≤ −µ(t)G(g(t)) ≤ − c6
g(0)

g(0) ≤ −c8g(t), ∀t ∈ [0, t0], (2.11)

where c8 = c6
g(0)

is a positive constant.

2. If G is a strictly increasing and strictly convex C2 function on (0, r0], with G(0) = G′(0) = 0, then

it has an extension G, which is strictly increasing and strictly convex C2 function on (0,∞). The same

remark can be established for F .

We recall the well-known Jensen’s inequality which will be used essentially to establish our main result.

If φ is a convex function on [a, b], p : Ω → [a, b] and k are integrable functions on Ω, k(x) ≥ 0 and∫
Ω
k(x)dx = k0 > 0, then Jensen’s inequality states that

φ

[
1

k0

∫
Ω

p(x)k(x)dx

]
≤ 1

k0

∫
Ω

φ[p(x)]k(x)dx. (2.12)

Let H∗ be the conjugate of the convex function H defined by H∗(s) = sup
t≥0

(st−H(t)), then

st ≤ H∗(s) +H(t), ∀s, t ≥ 0. (2.13)

Moreover, due to the argument given in [25], it holds that

H∗(s) = s(H ′)−1(s)−H
(
(H ′)−1(s)

)
, ∀s ≥ 0. (2.14)

As in [6, 8], we introduce the following new function

z(x, κ, t) = ut(x, t− κτ(t)), for (x, κ, t) ∈ Γ1 × (0, 1)× (0,∞).
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Then, problem (1.1)-(1.6) is equivalent to

utt(x, t)−∆u(x, t) +

∫ t

0

g(t− s)∆u(x, s)ds = 0, in Ω× (0,∞), (2.15)

τ(t)zt(x, κ, t) + (1− κτ ′(t))zκ(x, κ, t) = 0, in Γ1 × (0, 1)× (0,∞), (2.16)

u(x, t) = 0, in Γ0 × (0,∞), (2.17)

∂u

∂ν
(x, t)−

∫ t

0

g(t− s)∂u
∂ν

(x, s)ds+ a1f1(ut(x, t)) + a2f2(z(x, 1, t)) = wt(x, t), on Γ1 × (0,∞),(2.18)

ut(x, t) + h(x)wt(x, t) +m(x)w(x, t) = 0, on Γ1 × (0,∞), (2.19)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (2.20)

z(x, κ, 0) = j0(x,−κτ(0)), in Γ1 × (0, 1). (2.21)

We state the global existence result, which can be established by the arguments of [18, 26].

Theorem 2.1. Let initial data (u0, u1) ∈ (V ∩ H2(Ω)) × V and j0 ∈ L2(Γ1 × (0, 1)). Suppose that

(H1)-(H5) hold. Then, for any T > 0, there exists a unique pair of functions (u,w, z) which is a solution

to problem (2.15)-(2.21) in the class

u ∈ L∞(0, T ;V ∩H2(Ω)), ut ∈ L∞(0, T ;V ), utt ∈ L∞(0, T ;L2(Ω)),

z ∈ L∞(0, T ;L2(Γ1 × (0, 1))), w, wt ∈ L2(0,∞;L2(Γ1)).

Now, we introduce the energy

E(t) =
1

2
‖ut(t)‖2 +

1

2

(
1−

∫ t

0

g(s)ds

)
‖∇u(t)‖2 +

1

2
(g ◦ ∇u)(t) +

1

2

∫
Γ1

m(x)w2(t)dΓ

+
ζτ(t)

2

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ, (2.22)

where (g ◦ ∇u)(t) =
∫ t

0
g(t− s)‖∇u(t)−∇u(s)‖2ds and

2|a2|(1− c4)

c4(1− τ3)
< ζ <

2(a1 − |a2|c5)

c5
. (2.23)

To show the main results of this paper, we need the following lemma.

Lemma 2.1. Let (H3) and (H4) hold. Then, there exist positive constants γ0 and γ1 satisfying

E′(t) ≤ 1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−γ0

∫
Γ1

f1(ut(t))ut(t)dΓ− γ1

∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ. (2.24)

Proof. Multiplying in (2.15) by ut(t), integrating over Ω and using Green’s formula, (2.18) and (2.19), we

have

1

2

d

dt

[
‖ut(t)‖2 +

(
1−

∫ t

0

g(s)ds
)
‖∇u(t)‖2 + (g ◦ ∇u)(t) +

∫
Γ1

m(x)w2(t)dΓ

]
+

∫
Γ1

h(x)w2
t (t)dΓ

=
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖2 − a1

∫
Γ1

f1(ut(t))ut(t)dΓ− a2

∫
Γ1

f2(z(x, 1, t))ut(t)dΓ, (2.25)
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where we used the relation

−
∫

Ω

∇ut(t)
∫ t

0

g(t− s)∇u(s)dsdx

=
d

dt

[
1

2
(g ◦ ∇u)(t)− 1

2

∫ t

0

g(s)ds‖∇u(t)‖2
]
− 1

2
(g′ ◦ ∇u)(t) +

1

2
g(t)‖∇u(t)‖2.

From (2.22) and (2.25), we obtain

E′(t) =
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−a1

∫
Γ1

f1(ut(t))ut(t)dΓ− a2

∫
Γ1

f2(z(x, 1, t))ut(t)dΓ

+
ζτ ′(t)

2

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ +
ζτ(t)

2

∫
Γ1

∫ 1

0

f2(z(x, κ, t))zt(x, κ, t)dκdΓ, (2.26)

where F2(t) =
∫ t

0
f2(s)ds. We multiply in (2.16) by f2(z(x, κ, t)) and integrate over Γ1 × (0, 1) to obtain

ζτ(t)

2

∫
Γ1

∫ 1

0

f2(z(x, κ, t))zt(x, κ, t)dκdΓ

= −ζ
2

∫
Γ1

[
(1− τ ′(t))F2(z(x, 1, t))− F2(z(x, 0, t)) +

∫ 1

0

τ ′(t)F2(z(x, κ, t))dκ

]
dΓ.

Applying this to (2.26) and noting that z(x, 0, t) = ut(x, t), it follows that

E′(t) =
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ− a1

∫
Γ1

f1(ut(t))ut(t)dΓ

−a2

∫
Γ1

f2(z(x, 1, t))ut(t)dΓ− ζ

2

∫
Γ1

[
(1− τ ′(t))F2(z(x, 1, t))− F2(ut(x, t))

]
dΓ. (2.27)

From (2.6) and (2.7), we get

−ζ
2

∫
Γ1

[
(1− τ ′(t))F2(z(x, 1, t))− F2(ut(x, t))

]
dΓ

≤ −ζc4
2

(1− τ3)

∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ +
ζc5
2

∫
Γ1

f1(ut(t))ut(t)dΓ. (2.28)

Substituting (2.28) into (2.27), we obtain

E′(t) ≤ 1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ−

(
a1 −

ζc5
2

)∫
Γ1

f1(ut(t))ut(t)dΓ

−a2

∫
Γ1

f2(z(x, 1, t))ut(t)dΓ− ζc4
2

(1− τ3)

∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ. (2.29)

The definition of F2 and (2.14) give

F ∗2 (s) = sf−1
2 (s)− F2(f−1

2 (s)), for s ≥ 0. (2.30)

Hence, using (2.6), (2.13) and (2.30) with s = f2(z(x, 1, t)) and t = ut(t), we get(see details in [20])

−a2

∫
Γ1

f2(z(x, 1, t))ut(t)dΓ

≤ |a2|
∫

Γ1

(
f2(z(x, 1, t))z(x, 1, t)− F2(z(x, 1, t)) + F2(ut(t))

)
dΓ

≤ |a2|
(

(1− c4)

∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ + c5

∫
Γ1

f1(ut(t))ut(t)dΓ
)
. (2.31)
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By using (2.29) and (2.31) and selecting ζ satisfying (2.23), we obtain the desired inequality (2.24) where

γ0 = a1 − ζc5
2
− |a2|c5 > 0 and γ1 = ζc4

2
(1− τ3)− |a2|(1− c4) > 0. �

Our main results are the following.

Theorem 2.2. Assume that (H1)-(H5) hold and f0 is linear. Then there exist positive constants k1, k2, k3

and k4 such that the energy functional satisfies, for all t ≥ t0,

E(t) ≤ k2e
−k1

∫ t
t0
µ(s)ds

, if G is linear, (2.32)

E(t) ≤ k4G
−1
1

(
k3

∫ t

t0

µ(s)ds

)
, if G is nonlinear, (2.33)

where G1(t) =
∫ r0
t

1
sG′(s)ds is strictly decreasing and convex on (0, r0].

Theorem 2.3. Assume that (H1)-(H5) hold and f0 is nonlinear. Then there exist positive constants

α1, α2, α3 and α4 such that the energy functional satisfies

E(t) ≤ α2F
−1
1

(
α1

∫ t

t0

µ(s)ds

)
, ∀t ≥ t0, if G is linear, (2.34)

where F1(t) =
∫ r1
t

1
sF ′(s)ds and

E(t) ≤ α4(t− t0)K−1
1

(
α3

(t− t0)
∫ t
t1
µ(s)ds

)
, ∀t ≥ t1, if G is nonlinear, (2.35)

where K1(t) = tK′(ε2t), 0 < ε2 < r2 = min{r0, r1} and K =
(
G
−1

+ F
−1)−1

.

3. Technical Lemmas

In this section, we prove the following lemmas to obtain the general decay rates of the solution for

problem (2.15)-(2.21).

Lemma 3.1. Under the assumption (H1), the functional Φ1 defined by

Φ1(t) =

∫
Ω

u(t)ut(t)dx+

∫
Γ1

u(t)w(t)dΓ +
1

2

∫
Γ1

h(x)w2(t)dΓ

satisfies

Φ′1(t) ≤ ‖ut(t)‖2 −
l

2
‖∇u(t)‖2 +

2C(ξ)

l
(i ◦ ∇u)(t) +

8λ∗
l
‖wt(t)‖2Γ1

+
a1a3

l

∫
Γ1

f2
1 (ut(t))dΓ +

|a2|a3

l

∫
Γ1

f2
2 (z(x, 1, t))dΓ−

∫
Γ1

m(x)w2(t)dΓ, (3.1)

for any 0 < ξ < 1, where

C(ξ) =

∫ ∞
0

g2(s)

i(s)
ds and i(t) = ξg(t)− g′(t). (3.2)

Proof. Using equation (2.15), (2.17)-(2.19) and utilizing (2.2) and Young’s inequality, we obtain

Φ′1(t) = ‖ut(t)‖2 −
(

1−
∫ t

0

g(s)ds
)
‖∇u(t)‖2 +

∫ t

0

g(t− s)(∇u(s)−∇u(t),∇u(t))ds

−a1

∫
Γ1

f1(ut(t))u(t)dΓ− a2

∫
Γ1

f2(z(x, 1, t))u(t)dΓ + 2

∫
Γ1

u(t)wt(t)dΓ−
∫

Γ1

m(x)w2(t)dΓ
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≤ ‖ut(t)‖2 −
7l

8
‖∇u(t)‖2 +

2

l

∫
Ω

(∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx

−a1

∫
Γ1

f1(ut(t))u(t)dΓ− a2

∫
Γ1

f2(z(x, 1, t))u(t)dΓ + 2

∫
Γ1

u(t)wt(t)dΓ−
∫

Γ1

m(x)w2(t)dΓ.

Using Cauchy-Schwarz inequality and (3.2), we have(see [23, 27])∫
Ω

(∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx ≤
(∫ t

0

g2(s)

i(s)
ds

)
(i ◦ ∇u)(t) ≤ C(ξ)(i ◦ ∇u)(t). (3.3)

Applying Young’s inequality and (2.1), we obtain for η > 0,∣∣∣∣− a1

∫
Γ1

f1(ut(t))u(t)dΓ

∣∣∣∣ ≤ ηa1λ∗‖∇u(t)‖2 +
a1

4η

∫
Γ1

f2
1 (ut(t))dΓ, (3.4)∣∣∣∣− a2

∫
Γ1

f2(z(x, 1, t))u(t)dΓ

∣∣∣∣ ≤ η|a2|λ∗‖∇u(t)‖2 +
|a2|
4η

∫
Γ1

f2
2 (z(x, 1, t))dΓ, (3.5)

and

2

∫
Γ1

u(t)wt(t)dΓ ≤ l

8
‖∇u(t)‖2 +

8λ∗
l
‖wt(t)‖2Γ1

. (3.6)

Combining estimates (3.3)-(3.6), we see that

Φ′1(t) ≤ ‖ut(t)‖2 − (
3l

4
− ηa1λ∗ − η|a2|λ∗)‖∇u(t)‖2 +

2C(ξ)

l
(i ◦ ∇u)(t) +

8λ∗
l
‖wt(t)‖2Γ1

+
a1

4η

∫
Γ1

f2
1 (ut(t))dΓ +

|a2|
4η

∫
Γ1

f2
2 (z(x, 1, t))dΓ−

∫
Γ1

m(x)w2(t)dΓ.

Setting a3 = (a1 + |a2|)λ∗ and choosing η = l
4a3

leads to (3.1). �

Lemma 3.2. Under the assumption (H1), the functional Φ2 defined by

Φ2(t) = −
∫

Ω

ut(t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

satisfies

Φ′2(t) ≤ −
(∫ t

0

g(s)ds− δ
)
‖ut(t)‖2 + δ‖∇u(t)‖2 +

C1(1 + C(ξ))

δ
(i ◦ ∇u)(t) + δλ∗‖wt(t)‖2Γ1

+δa1λ∗

∫
Γ1

f2
1 (ut(t))dΓ + δ|a2|λ∗

∫
Γ1

f2
2 (z(x, 1, t))dΓ, (3.7)

for any 0 < δ < 1.

Proof. Using equation (2.15), (2.17) and (2.18), we get

Φ′2(t) =

(
1−

∫ t

0

g(s)ds

)∫
Ω

∇u ·
∫ t

0

g(t− s)(∇u(t)−∇u(s))dsdx

+

∫
Ω

(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)2

dx−
∫

Γ1

wt(t)

∫ t

0

g(t− s)(u(t)− u(s))dsdΓ

+a1

∫
Γ1

f1(ut(t))

∫ t

0

g(t− s)(u(t)− u(s))dsdΓ + a2

∫
Γ1

f2(z(x, 1, t))

∫ t

0

g(t− s)(u(t)− u(s))dsdΓ

−
∫

Ω

ut(t)

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
(∫ t

0

g(s)ds
)
‖ut(t)‖2

= I1 + I2 + I3 + I4 + I5 + I6 −
(∫ t

0

g(s)ds
)
‖ut(t)‖2.
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By Young’s inequality, (2.1) and (3.3), we obtain for δ > 0,

I1 ≤ δ‖∇u(t)‖2 +
C(ξ)

4δ
(i ◦ ∇u)(t),

I2 ≤ C(ξ)(i ◦ ∇u)(t),

|I3| ≤ δλ∗‖wt(t)‖2Γ1
+
C(ξ)

4δ
(i ◦ ∇u)(t),

|I4| ≤ δa1λ∗

∫
Γ1

f2
1 (ut(t))dΓ +

a1C(ξ)

4δ
(i ◦ ∇u)(t),

|I5| ≤ δ|a2|λ∗
∫

Γ1

f2
2 (z(x, 1, t))dΓ +

|a2|C(ξ)

4δ
(i ◦ ∇u)(t).

Using Young’s inequality, (2.1), (2.2), (3.2) and (3.3), we see that

I6 =

∫
Ω

ut(t)

∫ t

0

i(t− s)(u(t)− u(s))dsdx−
∫

Ω

ut(t)

∫ t

0

ξg(t− s)(u(t)− u(s))dsdx

≤ δ‖ut(t)‖2 +
1

2δ

∫
Ω

(∫ t

0

i(t− s)|u(s)− u(t)|ds
)2

dx+
ξ2

2δ

∫
Ω

(∫ t

0

g(t− s)|u(t)− u(s)|ds
)2

dx

≤ δ‖ut(t)‖2 +
λ(g(0) + ξ)

2δ
(i ◦ ∇u)(t) +

λξ2C(ξ)

2δ
(i ◦ ∇u)(t).

Combining all above estimates and taking C1 = max{λ(g(0)+ξ)
2

, δ+ 1+λξ2

2
+ a1+|a2|

4
}, the desired inequality

(3.7) is established. �

Lemma 3.3. Under the assumptions (H3) and (H4), the functional Φ3 defined by

Φ3(t) = τ(t)

∫
Γ1

∫ 1

0

e−κτ(t)F2(z(x, κ, t))dκdΓ

satisfies

Φ′3(t) ≤ −e−τ2τ(t)

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ− c4(1− τ3)e−τ2
∫

Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ

+c5

∫
Γ1

f1(ut(t))ut(t)dΓ. (3.8)

Proof. Using the equation (2.16), integration by parts, (2.6) and (2.7), we obtain(see [19])

Φ′3(t) = τ ′(t)

∫
Γ1

∫ 1

0

e−κτ(t)F2(z(x, κ, t))dκdΓ− τ(t)

∫
Γ1

∫ 1

0

κτ ′(t)e−κτ(t)F2(z(x, κ, t))dκdΓ

−
∫

Γ1

∫ 1

0

e−κτ(t)(1− κτ ′(t)) d
dκ
F2(z(x, κ, t))dκdΓ

= −Φ3(t)− e−τ(t)

∫
Γ1

(1− τ ′(t))F2(z(x, 1, t))dΓ +

∫
Γ1

F2(ut(x, t))dΓ

≤ −e−τ2τ(t)

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ− c4(1− τ3)e−τ2
∫

Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ

+c5

∫
Γ1

f1(ut(t))ut(t)dΓ.

�
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Lemma 3.4. ([23]) Under the assumption (H1), the functional Φ4 defined by

Φ4(t) =

∫
Ω

∫ t

0

G2(t− s)|∇u(s)|2dsdx,

satisfies

Φ′4(t) ≤ 3(1− l)‖∇u(t)‖2 − 1

2
(g ◦ ∇u)(t), (3.9)

where G2(t) =
∫∞
t
g(s)ds.

Next, let us define the perturbed modified energy by

L(t) = NE(t) +N1Φ1(t) +N2Φ2(t) + Φ3(t) + b1E(t), (3.10)

where N,N1, N2 and b1 are some positive constants.

As in [3, 19], for N > 0 large enough, there exist positive constants β1 and β2 such that

β1E(t) ≤ L(t) ≤ β2E(t).

Lemma 3.5. Assume that (H1), (H3)-(H5) hold. Then, there exist positive constants β3, β4 and β5 such

that

L′(t) ≤ −β3E(t) + β4

∫ t

t0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds+ β5

∫
Γ1

f2
1 (ut(t))dΓ, ∀t ≥ t0, (3.11)

where t0 was introduced in (2.10).

Proof. Let g0 =
∫ t0

0
g(s)ds. Using the fact that i(t) = ξg(t)−g′(t) and combining (2.24), (3.1), (3.7), (3.8)

and (3.10), we get, for all t ≥ t0,

L′(t) ≤ ξN

2
(g ◦ ∇u)(t)−

( lN1

2
− δN2

)
‖∇u(t)‖2 −

(
g0N2 − δN2 −N1

)
‖ut(t)‖2

−
(N

2
− 2C(ξ)N1

l
− C1(1 + C(ξ))N2

δ

)
(i ◦ ∇u)(t)−N1

∫
Γ1

m(x)w2(t)dΓ + b1E
′(t)

−
(
h1N −

8λ∗N1

l
− δλ∗N2

)
‖wt(t)‖2Γ1

− e−τ2τ(t)

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ

−
(
γ0N − c5

) ∫
Γ1

f1(ut(t))ut(t)dΓ−
(
γ1N + c4(1− τ3)e−τ2

)∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ

+
(a1a3N1

l
+ δa1λ∗N2

)∫
Γ1

f2
1 (ut(t))dΓ +

( |a2|a3N1

l
+ δ|a2|λ∗N2

)∫
Γ1

f2
2 (z(x, 1, t))dΓ. (3.12)

From (2.6), we find that∫
Γ1

f2
2 (z(x, 1, t))dΓ ≤ c3

∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ. (3.13)

Applying (3.13) to (3.12) and taking δ = l
4N2

, we get, for all t ≥ t0,

L′(t) ≤ ξN

2
(g ◦ ∇u)(t)−

( lN1

2
− l

4

)
‖∇u(t)‖2 −

(
g0N2 −N1 −

l

4

)
‖ut(t)‖2

−
(
N

2
− 4C1N

2
2

l
− C(ξ)

[2N1

l
+

4C1N
2
2

l

])
(i ◦ ∇u)(t)−N1

∫
Γ1

m(x)w2(t)dΓ

−
(
h1N −

8λ∗N1

l
− lλ∗

4

)
‖wt(t)‖2Γ1

− e−τ2τ(t)

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ
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−
(
γ0N − c5

) ∫
Γ1

f1(ut(t))ut(t)dΓ +

(
a1a3N1

l
+
a1lλ∗

4

)∫
Γ1

f2
1 (ut(t))dΓ + b1E

′(t)

−
(
γ1N + c4(1− τ3)e−τ2 − |a2|a3c3N1

l
− |a2|c3lλ∗

4

)∫
Γ1

f2(z(x, 1, t))z(x, 1, t)dΓ.

We choose N1 large enough so that

lN1

2
− l

4
> 4(1− l),

then N2 large enough so that

g0N2 −N1 −
l

4
> 1.

Using the fact that ξg2(s)
i(s)

< g(s) and the Lebesgue dominated convergence theorem, we deduce that

ξC(ξ) =

∫ ∞
0

ξg2(s)

i(s)
ds→ 0 as ξ → 0.

Hence, there is 0 < ξ0 < 1 such that if ξ < ξ0, then

ξC(ξ)
[2N1

l
+

4C1N
2
2

l

]
<

1

8
.

Finally, selecting ξ = 1
2N

and choosing N large enough so that

N > max
{16C1N

2
2

l
,

1

h1

(8λ∗N1

l
+
lλ∗
4

)
,
c5
γ0
,

1

γ1

( |a2|a3c3N1

l
+
|a2|c3lλ∗

4
− c4(1− τ3)e−τ2

)}
,

we obtain

L′(t) ≤ −‖ut(t)‖2 − 4(1− l)‖∇u(t)‖2 +
1

4
(g ◦ ∇u)(t)−N1

∫
Γ1

m(x)w2(t)dΓ

−e−τ2τ(t)

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ + β5

∫
Γ1

f2
1 (ut(t))dΓ + b1E

′(t), ∀t ≥ t0, (3.14)

where β5 = a1a3N1
l

+ a1lλ∗
4

. Using (2.11) and (2.24), we find that, for any t ≥ t0,∫ t0

0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds ≤ − 1

c8

∫ t0

0

g′(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds ≤ − 2

c8
E′(t). (3.15)

Combining (2.22), (3.14) and (3.15) and taking a suitable choice of b1, we obtain the estimate (3.11). �

Lemma 3.6. ([21]) Assume that (H2) holds and max{r1, f0(r1)} < ε, where ε was introduced in (2.4).

Then there exist positive constants C2, C3 and C4 such that∫
Γ1

f2
1 (ut(t))dΓ ≤

 C2

∫
Γ1

f1(ut(t))ut(t)dΓ, if f0 is linear,

C3F
−1(χ(t))− C3E

′(t), if f0 is nonlinear,
(3.16)

where

χ(t) =
1

|Γ11|

∫
Γ11

f1(ut(t))ut(t)dΓ ≤ −C4E
′(t), (3.17)

Γ11 = {x ∈ Γ1 : |ut(t)| ≤ ε1} and 0 < ε1 = min{r1, f0(r1)}.

Next, we define ρ(t) by

ρ(t) := −
∫ t

t0

g′(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds ≤ −2E′(t). (3.18)
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Lemma 3.7. Assume that (H1) and (H2) hold and G is nonlinear. Then, the solution of (2.15)-(2.21)

satisfies the estimates∫ t

t0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds ≤


1

θ
G
−1
(
θρ(t)

µ(t)

)
, ∀t ≥ t0, if f0 is linear,

t− t0
θ

G
−1
(

θρ(t)

(t− t0)µ(t)

)
, ∀t > t0, if f0 is nonlinear,

(3.19)

where θ ∈ (0, 1) and G is an extension of G.

Proof. First, we prove the estimate (3.19) when f0 is linear. We introduce the functional

L(t) = L(t) + Φ4(t),

which is nonnegative. From (3.9) and (3.14), we see that, for all t ≥ t0,

L′(t) ≤ −‖ut(t)‖2 − (1− l)‖∇u(t)‖2 − 1

4
(g ◦ ∇u)(t)−N1

∫
Γ1

m(x)w2(t)dΓ

−e−τ2τ(t)

∫
Γ1

∫ 1

0

F2(z(x, κ, t))dκdΓ + β5

∫
Γ1

f2
1 (ut(t))dΓ + b1E

′(t).

Applying (2.22), (2.24) and (3.16) and selecting a suitable choice of b1, we have

L′(t) ≤ −d1E(t),

where d1 is some positive constant. This implies that∫ ∞
0

E(s)ds <∞. (3.20)

For 0 < θ < 1, we define I(t) by

I(t) := θ

∫ t

t0

∫
Ω

|∇u(t)−∇u(t− s)|2dxds.

By (3.20), θ is taken so small that, for all t ≥ t0,

I(t) < 1. (3.21)

Since G is strictly convex on (0, r0], then

G(qy) ≤ qG(y), (3.22)

where 0 ≤ q ≤ 1 and y ∈ (0, r0]. Using the fact that µ is a positive nonincreasing function and applying

(2.3), (3.21), (3.22) and Jensen’s inequality (2.12), we find that(see details in [21, 23])

ρ(t) ≥ µ(t)

θI(t)

∫ t

t0

I(t)G(g(s))

∫
Ω

θ|∇u(t)−∇u(t− s)|2dxds

≥ µ(t)

θI(t)

∫ t

t0

G(I(t)g(s))

∫
Ω

θ|∇u(t)−∇u(t− s)|2dxds

≥ µ(t)

θ
G

(
θ

∫ t

t0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds
)
. (3.23)

Since G is strictly increasing, we obtain∫ t

t0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds ≤ 1

θ
G
−1
(
θρ(t)

µ(t)

)
.



GENERAL STABILITY FOR THE VISCOELASTIC WAVE EQUATION... 13

Now, we show the estimate (3.19) when f0 is nonlinear. Since we cannot guarantee (3.20), we define the

following function

δ(t) :=
θ

t− t0

∫ t

t0

∫
Ω

|∇u(t)−∇u(t− s)|2dxds, ∀t > t0.

Using the fact that E′(t) ≤ 0 and (2.22), we have

δ(t) ≤ 2θ

t− t0

∫ t

t0

(||∇u(t)||2 + ||∇u(t− s)||2)ds ≤ 8θE(0)

l
.

Choosing θ small enough so that, for all t > t0,

δ(t) ≤ 1. (3.24)

Similar to (3.23), using (2.3), (3.22), (3.24) and Jensen’s inequality (2.12), we obtain

ρ(t) =
t− t0
θδ(t)

∫ t

t0

δ(t)(−g′(s))
∫

Ω

θ

t− t0
|∇u(t)−∇u(t− s)|2dxds

≥ (t− t0)µ(t)

θδ(t)

∫ t

t0

G(δ(t)g(s))

∫
Ω

θ

t− t0
|∇u(t)−∇u(t− s)|2dxds

≥ (t− t0)µ(t)

θ
G

(
θ

t− t0

∫ t

t0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds
)
.

This implies that∫ t

t0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds ≤ t− t0
θ

G
−1
(

θρ(t)

(t− t0)µ(t)

)
.

�

4. Proof of Theorem 2.2.

In this section, we prove the main result of our work. Now, we consider the following two cases.

Case 1: G(t) is linear. Multiplying (3.11) by the positive nonincreasing function µ(t) and using (2.3),

(2.24) and (3.16), we get

µ(t)L′(t) ≤ −β3µ(t)E(t) + β4

∫ t

t0

µ(s)g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds+ β5µ(t)

∫
Γ1

f2
1 (ut(t))dΓ

≤ −β3µ(t)E(t)− β4

∫ t

t0

g′(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds+ β5C2µ(0)

∫
Γ1

f1(ut(t))ut(t)dΓ

≤ −β3µ(t)E(t)− C5E
′(t),

where C5 = 2β4 + β5C2µ(0)
γ0

is a positive constant. From µ(t) is nonincreasing, we have

(µL+ C5E)′(t) ≤ −β3µ(t)E(t), ∀t ≥ t0.

Since µ(t)L(t) + C5E(t) ∼ E(t), for some positive constants k1 and k2, we obtain

E(t) ≤ k2e
−k1

∫ t
t0
µ(s)ds

.
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Case 2: G(t) is nonlinear. This case is obtained through the ideas presented in [23] as follows. Using

(2.24), (3.11), (3.16) and (3.19), we obtain

L′(t) ≤ −β3E(t) +
β4

θ
G
−1
(
θρ(t)

µ(t)

)
− β5C2

γ0
E′(t), ∀t ≥ t0. (4.1)

Let L1(t) = L(t) + β5C2
γ0

E(t) ∼ E(t), then (4.1) becomes

L′1(t) ≤ −β3E(t) +
β4

θ
G
−1
(
θρ(t)

µ(t)

)
, ∀t ≥ t0. (4.2)

For 0 < ε0 < r0, using (4.2) and the fact that E′ ≤ 0, G
′
> 0 and G

′′
> 0, we find that the functional L2,

defined by

L2(t) := G
′
(
ε0
E(t)

E(0)

)
L1(t) ∼ E(t)

satisfies

L′2(t) ≤ −β3E(t)G
′
(
ε0
E(t)

E(0)

)
+
β4

θ
G
′
(
ε0
E(t)

E(0)

)
G
−1
(
θρ(t)

µ(t)

)
, ∀t ≥ t0. (4.3)

With s = G
′(
ε0

E(t)
E(0)

)
and t = G

−1( θρ(t)
µ(t)

)
, using (2.13), (2.14) and (4.3), we get

L′2(t) ≤ −β3E(t)G′
(
ε0
E(t)

E(0)

)
+
ε0β4

θ

E(t)

E(0)
G′
(
ε0
E(t)

E(0)

)
+
β4ρ(t)

µ(t)
,

where, we have used that ε0
E(t)
E(0)

< r0 and G
′

= G′ on (0, r0]. Multiplying this by µ(t) and using (3.18),

we obtain

µ(t)L′2(t) ≤ −
(
β3E(0)− ε0β4

θ

)µ(t)E(t)

E(0)
G′
(
ε0
E(t)

E(0)

)
− 2β4E

′(t).

By defining L3(t) = µ(t)L2(t) + 2β4E(t), we see that, for some positive constants γ2 and γ3,

γ2L3(t) ≤ E(t) ≤ γ3L3(t). (4.4)

With a suitable choice of ε0, we get, for some positive constant d2,

L′3(t) ≤ −d2µ(t)
E(t)

E(0)
G′
(
ε0
E(t)

E(0)

)
= −d2µ(t)G2

(
E(t)

E(0)

)
, ∀t ≥ t0, (4.5)

where G2(t) = tG′(ε0t). Using the strict convexity of G on (0, r0] and G′2(t) = G′(ε0t) + ε0tG
′′(ε0t), we

see that G2(t), G′2(t) > 0 on (0, 1]. Finally, defining

Q(t) =
γ2L3(t)

E(0)

and using (4.4), we have

Q(t) ≤ E(t)

E(0)
≤ 1 and Q(t) ∼ E(t). (4.6)

From (4.5), (4.6) and the fact that G′2(t) > 0 on (0, 1], we arrive at

Q′(t) ≤ −k3µ(t)G2(Q(t)), ∀t ≥ t0,

where k3 = d2γ2
E(0)

is a positive constant. Integrating this over (t0, t) and using variable transformation, we

find that(see details in [23])∫ t0

t

ε0Q
′(s)

ε0Q(s)G′(ε0Q(s))
ds ≥ k3

∫ t

t0

µ(s)ds =⇒
∫ ε0Q(t0)

ε0Q(t)

1

sG′(s)
ds ≥ k3

∫ t

t0

µ(s)ds.



GENERAL STABILITY FOR THE VISCOELASTIC WAVE EQUATION... 15

Since ε0 < r0 and Q(t) ≤ 1, for all t ≥ t0, we have

G1(ε0Q(t)) =

∫ r0

ε0Q(t)

1

sG′(s)
ds ≥ k3

∫ t

t0

µ(s)ds =⇒ Q(t) ≤ 1

ε0
G−1

1

(
k3

∫ t

t0

µ(s)ds
)
, (4.7)

where G1(t) =
∫ r0
t

1
sG′(s)ds. Here, we have used the fact that G1 is strictly decreasing function on (0, r0].

Therefore, using (4.6) and (4.7), the estimate (2.33) is established.

5. Proof of Theorem 2.3

Case 1: G(t) is linear. Multiplying (3.11) by the positive nonincreasing function µ(t) and using (2.3),

(2.24) and (3.16), we get

µ(t)L′(t) ≤ −β3µ(t)E(t) + β5C3µ(t)F−1(χ(t))− C6E
′(t), (5.1)

where C6 = 2β4 + β5C3µ(0) is a positive constant. Since µ(t) is nonincreasing, (5.1) becomes

F ′3(t) ≤ −β3µ(t)E(t) + β5C3µ(t)F−1(χ(t)), ∀t ≥ t0, (5.2)

where F3(t) = µ(t)L(t) + C6E(t) ∼ E(t). For 0 < ε1 < r1, using (5.2) and the fact that E′ ≤ 0, F ′ > 0

and F ′′ > 0 on (0, r1], the functional F4 defined by

F4(t) := F ′
(
ε1
E(t)

E(0)

)
F3(t) ∼ E(t)

satisfies

F ′4(t) ≤ −β3µ(t)E(t)F ′
(
ε1
E(t)

E(0)

)
+ β5C3µ(t)F ′

(
ε1
E(t)

E(0)

)
F−1(χ(t)).

As (2.13) and (2.14) with s = F ′
(
ε1

E(t)
E(0)

)
and t = F−1(χ(t)), using (3.17), we obtain that

F ′4(t) ≤ −β3µ(t)E(t)F ′
(
ε1
E(t)

E(0)

)
+ ε1β5C3

µ(t)E(t)

E(0)
F ′
(
ε1
E(t)

E(0)

)
+ β5C3µ(0)χ(t)

≤ −
(
β3E(0)− ε1β5C3

)µ(t)E(t)

E(0)
F ′
(
ε1
E(t)

E(0)

)
− β5C3C4µ(0)E′(t), ∀t ≥ t0.

Let F5(t) = F4(t) + β5C3C4µ(0)E(t), then which satisfies, for positive constants γ4 and γ5,

γ4F5(t) ≤ E(t) ≤ γ5F5(t). (5.3)

Consequently, with a suitable choice of ε1, we have, for some positive constant d3,

F ′5(t) ≤ −d3µ(t)
E(t)

E(0)
F ′
(
ε1
E(t)

E(0)

)
= −d3µ(t)F0

(
E(t)

E(0)

)
, ∀t ≥ t0, (5.4)

where F0(t) = tF ′(ε1t). From the strict convexity of F on (0, r1], we obtain F0(t), F ′0(t) > 0 on (0, 1]. Let

J(t) =
γ4F5(t)

E(0)
,

and from (5.3) and (5.4), we get

J(t) ≤ E(t)

E(0)
≤ 1 and J ′(t) ≤ −α1µ(t)F0(J(t)), ∀t ≥ t0,
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where α1 = d3γ4
E(0)

is a positive constant. Then, similar to (4.7), the integration over (t0, t) and variable

transformation yield

J(t) ≤ 1

ε1
F−1

1

(
α1

∫ t

t0

µ(s)ds
)
, (5.5)

where F1(t) =
∫ r1
t

1
sF ′(s)ds, which is strictly decreasing function on (0, r1]. Combining (5.3) and (5.5), the

estimate (2.34) is proved.

Case 2: G(t) is nonlinear. This case is obtained by the ideas presented in [21] as follows. Using (3.11),

(3.16) and (3.19), we obtain

L′(t) ≤ −β3E(t) +
β4(t− t0)

θ
G
−1
(

θρ(t)

(t− t0)µ(t)

)
+ β5C3F

−1(χ(t))− β5C3E
′(t), ∀t > t0. (5.6)

Since lim
t→∞

1

t− t0
= 0, there exists t1 > t0 such that

1

t− t0
< 1, ∀t ≥ t1. (5.7)

Using the strictly increasing and strictly convex function of F and (3.22) with q = 1
t−t0

, we see that

F
−1

(χ(t)) ≤ (t− t0)F
−1
(
χ(t)

t− t0

)
, ∀t ≥ t1. (5.8)

Combining (5.6) and (5.8), we arrive at

R′1(t) ≤ −β3E(t) +
β4(t− t0)

θ
G
−1
(

θρ(t)

(t− t0)µ(t)

)
+ β5C3(t− t0)F

−1
(
χ(t)

t− t0

)
, ∀t ≥ t1, (5.9)

where R1(t) = L(t) + β5C3E(t) ∼ E(t). Let

r2 = min{r0, r1}, ϕ(t) = max

{
θρ(t)

(t− t0)µ(t)
,
χ(t)

t− t0

}
and K =

(
G
−1

+ F
−1)−1

, ∀t ≥ t1. (5.10)

So, (5.9) reduces to

R′1(t) ≤ −β3E(t) + C7(t− t0)K−1(ϕ(t)), ∀t ≥ t1, (5.11)

where C7 = max{β4
θ
, β5C3}. The strictly increasing and strictly convex properties of G and F imply that

K′ =
G
′
F
′

G
′
+ F

′ > 0 and K′′ =
G
′′
(F
′
)2 + (G

′
)2F

′′

(G
′
+ F

′
)2

> 0, (5.12)

on (0, r2]. Now, for 0 < ε2 < r2, using (5.7), we see that ε2
t−t0

E(t)
E(0)

< r2. Defining

R2(t) = K′
(

ε2

t− t0
E(t)

E(0)

)
R1(t), ∀t ≥ t1,

and using (5.11) and (5.12), we find that

R′2(t) =

(
− ε2

(t− t0)2

E(t)

E(0)
+

ε2

t− t0
E′(t)

E(0)

)
K′′
(

ε2

t− t0
E(t)

E(0)

)
R1(t) +K′

(
ε2

t− t0
E(t)

E(0)

)
R′1(t)

≤ −β3E(t)K′
(

ε2

t− t0
E(t)

E(0)

)
+ C7(t− t0)K′

(
ε2

t− t0
E(t)

E(0)

)
K−1(ϕ(t)), ∀t ≥ t1. (5.13)

Using (2.13) and (2.14) with s = K′
(
ε2
t−t0

E(t)
E(0)

)
and t = K−1(ϕ(t)) and applying (5.13), we get

R′2(t) ≤ −β3E(t)K′
(

ε2

t− t0
E(t)

E(0)

)
+ ε2C7

E(t)

E(0)
K′
(

ε2

t− t0
E(t)

E(0)

)
+ C7(t− t0)ϕ(t). (5.14)
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From (3.17), (3.18) and (5.10), we obtain

(t− t0)µ(t)ϕ(t) ≤ −C8E
′(t), (5.15)

where C8 = min{2θ, C4µ(0)}. Multiplying (5.14) by the positive nonincreasing function µ(t) and using

(5.15), we have

R′3(t) ≤ −
(
β3E(0)− ε2C7

)µ(t)E(t)

E(0)
K′
(

ε2

t− t0
E(t)

E(0)

)
, ∀t ≥ t1,

where R3(t) = µ(t)R2(t) + C7C8E(t) ∼ E(t). For a suitable choice of ε2, we find that

R′3(t) ≤ −d4
µ(t)E(t)

E(0)
K′
(

ε2

t− t0
E(t)

E(0)

)
, ∀t ≥ t1, (5.16)

where d4 is a positive constant. An integration of (5.16) yields

d4

E(0)

∫ t

t1

E(s)K′
(

ε2

s− t0
E(s)

E(0)

)
µ(s)ds ≤

∫ t1

t

R′3(s)ds ≤ R3(t1).

Using (5.12) and the non-increasing property of E, we see that the map t → E(t)K′
(
ε2
t−t0

E(t)
E(0)

)
is non-

increasing and consequently, we obtain

d4
E(t)

E(0)
K′
(

ε2

t− t0
E(t)

E(0)

)∫ t

t1

µ(s)ds ≤ R3(t1), ∀t ≥ t1. (5.17)

Multiplying (5.17) by 1
t−t0

, we get

d4K1

(
1

t− t0
E(t)

E(0)

)∫ t

t1

µ(s)ds ≤ R3(t1)

t− t0
, ∀t ≥ t1,

where K1(s) = sK′(ε2s) which is strictly increasing. Therefore, we deduce that

E(t) ≤ α4(t− t0)K−1
1

(
α3

(t− t0)
∫ t
t1
µ(s)ds

)
, ∀t ≥ t1,

where α3 and α4 are positive constants. This completes the proof.
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