Six Opportunities for Scientists and Engineers to Learn
Programming Using Al Tools such as ChatGPT

Philip J. Guo!

L Affiliation not available

August 21, 2023

Abstract

This article demonstrates how scientists and engineers can use modern Al (artificial intelligence) tools such as ChatGPT and
GitHub Copilot to learn computer programming skills that are relevant for their jobs. It begins by summarizing common ways
that AI tools can already help people learn programming in general. Then it presents six learning opportunities that are catered
to the needs of scientists and engineers, including using Al tools to 1) create customized programming tutorials for one’s own
domain of work, 2) learn complex data visualization libraries; 3) learn to refactor exploratory code into more maintainable
software, 4) learn about inherited legacy code, 5) learn new programming languages on-demand within the context of one’s
workflow, and 6) question the assumptions that one’s scientific code is making. Taken together, these opportunities point
toward a future where Al can help scientists and engineers learn programming on-demand within the context of their existing

real-world workflows.

Introduction

Over the past year (2022-2023) technology companies have released a staggering variety of AI (Artificial
Intelligence) tools that can generate text, code, images, music, and even video clips on-demand. Lately it
feels like new Al tools are coming out every week, and it is impossible to keep up with the latest buzzwords
and marketing slogans. In this article I want to zoom in on one popular kind of Al tool that is especially
relevant for scientists and engineers: Large Language Model (LLM)-based tools such as ChatGPT and
GitHub Copilot that take text (or code) as input from the user and generate text (or code) in response.
Specifically, T will present six opportunities for scientists and engineers to use these LLM-based Al tools
to learn computer programming skills that are relevant for their jobs.

As these Al tools have grown more popular, educators have started writing about ways to use them to teach
and learn programming. However, most writing on this topic so far has been about using AI (especially
within computer science departments) to teach students who aim to become full-time programmers (Becker
et al., 2023; Lau & Guo, 2023; Denny et al., 2023). Here I want to provide a complementary perspective by
addressing the unique needs of scientists and engineers who do not intend to become professional software
developers. For instance, a climate scientist may need to pick up a bit of Python or R to analyze data for their
research; or a mechanical engineer may learn command-line scripting on embedded Linux systems because
they are rigging together hardware components for a measurement device. This article presents six ways
that AI tools can help them learn what they need directly within the context of their existing real-world
workflows (Guo, 2023).



Background: Frequently-Mentioned Thoughts about Using Al
Tools to Learn Programming

Before focusing on scientists and engineers in particular, I will first set the stage by summarizing what others
have already mentioned about using Al to learn programming in general. I distilled these sentiments from
several overview papers (Becker et al., 2023; Lau & Guo, 2023; Denny et al., 2023), which each cite more
detailed research studies in their respective bibliographies.

As of around November 2023, only a year after ChatGPT was released (OpenAl, 2022), here are some
widely-acknowledged capabilities of Al tools for learning programming:

AT tools can solve many kinds of programming exercises that are now used as homework and exam
questions in introductory computer science courses. As a result, some instructors are worried about
students using them to cheat and are reconsidering what kinds of homework assignments and exams
to give in the future.

On a more constructive note, since Al can generate a variety of different solutions for a programming
exercise, those can serve as worked examples (also known as worked-out examples (Renkl, 2005)) that
students can use to learn different approaches to solving a problem. Seeing different wvariations of
solutions can help students learn better (Thuné & Eckerdal, 2009).

AT can automatically generate a wide variety of programming exercises to meet a given pedagogical goal
(e.g., teaching how to join multiple data tables in Python using the pandas library). This capability can
help instructors to prepare assignments more efficiently and give students extra practice opportunities
on-demand.

AT can explain what a piece of code does step-by-step in a novice-friendly way. This capability can
benefit students who may feel embarrassed to ask someone for help on a seemingly ‘simple’ question;
they can now freely ask the AI without fear of being judged.

AT can help debug students’ code, which can enable them to make progress on their homework without
feeling self-conscious about asking someone for help.

e Al can automatically write tests for students’ code, which can help them spot more bugs.
e Al can perform code reviews to give students feedback on their coding style and aesthetics.

And here are some frequently-mentioned limitations of these tools:

First and foremost, Al tools can generate code that is incorrect, buggy, insecure, or violates other
known best practices. Moreover, students may have trouble spotting the bugs in Al-generated code
since it often appears to be well-written.

Relatedly, since Al-generated code looks convincing at first glance, students may grow over-
reliant (Passi & Vorvoreanu, 2022) and reflexively copy-paste it into their projects without questioning
whether it is correct or not. As a result, instructors have emphasized that it is critical for students to
learn to write test cases for Al-generated code (Lau & Guo, 2023).

Even if Al-generated code is correct and of high-quality, the fact remains that the student did not
write that code themselves. This makes it harder for them to understand what the code does and to
make future updates to it.

AT tools are optimized for “doing” rather than teaching. This means when a student asks the AI a
question, it will directly give them an answer. While this can be convenient, it may hinder learning.
In contrast, a good human tutor would teach the underlying concepts and gradually guide the student
to solve the problem on their own (with well-timed hints along the way) instead of giving them the
answer right away.

It is hard for novices to develop a mental model of what these Al tools are and are not capable of,
since how they work is mysterious even to experts. Thus, some students may get frustrated that Al
cannot help them with seemingly-straightforward requests, when in reality those requests appear vague
or unclear to the AI tool. In practice one must learn to become good at prompt engineering (Denny et
al., 2023) to be able to write prompts (i.e., textual requests to the AI tool) that can consistently elicit



high-quality responses.

e The code or explanations that Al tools produce by default may be too complex for novices to un-
derstand, since Al mimics the style of code found on the internet and is not specifically tuned to be
beginner-friendly.

e Al tools may generate text that reinforces existing social biases, contains toxic content, or uses copy-
righted materials without the original creators’ permission.

As you read about the opportunities below for Al to help scientists and engineers learn programming, please
also keep the above limitations in mind.

Opportunity 1: Using Al to Create Customized Programming Tu-
torials for Your Own Domain

The opportunity I am most excited about is using Al tools to create programming tutorials that are cus-
tomized for a scientist or engineer’s own domain of work. Why is this significant? Because scientists and
engineers often learn programming to analyze their own data, but existing tutorials all use generic datasets
such as the popular ‘iris’ or ‘mtcars’ data that come pre-installed with the R programming language. The
‘iris’ dataset describes 150 samples of iris flowers with features such as their sepal and petal dimensions; and
‘mtcars’ catalogs information about 32 car models from the early 1970s, with features such as their number
of carburetors, horsepower, and rear axle ratio. Unless you happen to be a flower or car enthusiast, chances
are that you do not care at all about this data, so learning programming using these datasets may not be
that motivating for you.

Instead of reading tutorials that use generic datasets, you can now use an Al tool like ChatGPT to generate
customized tutorials with example data from your own domain of work. No matter if you are a geologist or
astrophysicist or structural engineer, Al tools possess enough knowledge about the basics of your field to be
able to generate synthetic data and code examples that you can relate to more than ‘iris’ or ‘mtcars.” For
instance, if you are learning how to do multiple linear regression in MATLAB, it can be far more relatable
to see examples using data from your own domain (e.g., geology) rather than, say, predicting car horsepower
from rear axle ratios. You can even paste in real datasets from your own research (e.g., a neuroscience study)
and have the AI tool generate a programming tutorial based on your data. Learning programming using
authentic data in a domain you personally care about can make that knowledge stick better than reading
generic tutorials (Kjelvik & Schultheis, 2019). For more details, I walk through an example of this idea in
the “Intermission 1: ChatGPT as a Personalized Tutor” section of my Real-Real-World Programming with
ChatGPT article (Guo, 2023).

Opportunity 2: Using Al to Learn Complex Data Visualization
Libraries

A staple of scientific programming is writing code to produce data visualizations ranging from simple
bar charts all the way to interactive multi-scale dynamic diagrams. Scientists face an inevitable tradeoff
here — they can either a) use a point-and-click interface like Excel or Google Sheets, or b) write custom
Python/R/JavaScript/MATLAB/etc. code using libraries such as Matplotlib, Seaborn, ggplot2, Bokeh,
Plotly, Altair, or D3.js. The former is easier to learn but offers less expressive power, while the latter is more
expressive but harder to learn.

AT tools can lower the barriers to learning the latter category of data visualization libraries. Similar to
Opportunity 1, you can use Al to generate tutorials for how to use these libraries within the context of the
data you are currently working with. For instance, let’s say you are a marine biologist wanting to make a
scatterplot to correlate observations of different types of fish, and you want the data points to vary in color,



shape, and size according to certain fishy properties. Even though you may not know how to write the exact
code to do so, you have a clear vision of what the output should look like. By expressing this request to an
AT tool, it can both generate the data visualization code and add inline comments to teach you how that
code works step-by-step.

Using Al to write data visualization code for you can be effective since it is something that can be hard for
humans to do but easier for humans to verify. Let’s face it — not even seasoned programmers remember how to
write Matplotlib, ggplot2, or other visualization code from scratch. These complex libraries contain hundreds
of different functions, each with a heap of different parameters that interact in idiosyncratic ways. It’s a
waste of our human brainpower to memorize all these mundane details, but Al is great at “remembering”
these details for us. Since we have an intuitive sense of what the output visualization should look like,
we can verify whether the Al-generated code looks more-or-less correct and make adjustments if needed.
This ease of human verification gets around a core limitation of Al tools, which is that they might generate
incorrect code or output. However, note that looking at the visualization alone may not be enough to fully
verify correctness, so it is still important to inspect the Al-generated code to make sure that its logic makes
sense.

Opportunity 3: Learning to Refactor Exploratory Code into More
Maintainable Software

Scientific programming is often exploratory in nature and done in a mix of creatively-named files (e.g., MY _-
ANALYSIS_SCRIPT _v2_param53_final FINAL.py) and computational (e.g., Jupyter or R) notebooks. The
main goal, especially during early stages of research, is to iterate quickly to explore and refine hypotheses,
not to produce clean maintainable code. But if these initial explorations are successful, then inevitably this
draft code ends up living far longer than originally intended. So one big challenge for scientists and engineers
is learning to refactor this prototype code into something more maintainable longer-term.

Refactoring is a software engineering technique where a programmer revises code to be more clear and
maintainable while still maintaining the same functionality. Al tools can help you here by inspecting your
code and suggesting refactoring opportunities such as creating more descriptive variable names, encapsulating
common snippets into their own functions, making indentation and spacing more consistent, and adding inline
comments to describe what each part of your code does. By seeing how Al refactors your code, you can
learn habits that you can apply in the future. In this way, AI plays the role of a senior colleague who
demonstrates best practices within the context of your own codebase. These in-situ, context-specific lessons
can stick better than if you had read a general guide to code refactoring.

Similar to Opportunity 2, this can be a great use case for Al since it is relatively easy for a human to verify
whether the output is correct. Since you already have code that works, the Al-refactored code should behave
the exact same way when you run it. You can look at the old and new versions side-by-side and run both to
give you confidence that the AI worked as intended. Using Al to refactor can be less risky than using it to
write brand-new code.

Opportunity 4: Learning about Inherited Legacy Code

Scientists often inherit code from former lab members who have graduated or move onto new jobs. As
mentioned above, ideally everyone would take the time to refactor their exploratory code into something
more maintainable. But in reality lots of old code is hard to understand since it may have been duct-taped
together in a hurry to get experiments working for a paper submission deadline. And even if the original
authors intended to clean it up and document it well, they are always under pressure to move onto the next
project, aim for the next publication or grant deadline, and so on. Plus, we as scientists are not professional



software developers, so we may lack the expertise to follow industry best practices for code quality even if
we have the best of intentions. The end result is that inherited code (formally called legacy code (Feathers,
2004)) can be very hard to understand and work with, which slows down scientific progress.

AT tools can help here by automatically inspecting a pile of old legacy code and generating step-by-step
explanations, clarifying code comments, and supplemental documentation to summarize how that code
works. These explanations may not be 100% accurate, but they can serve as a starting point for human
investigation. Think of the AI here as an intrepid explorer buddy who can help you out when spelunking into
a deep cave of unexplored legacy code. By working alongside the Al when exploring an unknown codebase,
you can learn both how to work with it specifically and also more general skills for how to effectively deal
with legacy code in the future.

Opportunity 5: Learning New Programming Languages On-
Demand Within the Context of Your Workflow

Scientists and engineers may have to learn a new programming language on short notice if an important
library they need is available only in that language. Since they need to get their job done efficiently, they
cannot easily put their main work on hold in order to take a formal course or work through a textbook.
Instead, it would be much more convenient to be able to learn just-in-time and on-demand within the context
of their own existing workflow. Al tools can facilitate this type of learning in two ways:

1. The scientist can write code for their task in the language they are most comfortable with (e.g.,
Python) and then use an Al tool to automatically translate it into the language they want to learn
(e.g., Julia). While this translation is by no means perfect, it is likely “good enough” to show the
correspondences between the two languages (e.g., which Python features map to which Julia features).
This way, someone can learn a bit of Julia directly within the context of a piece of Python code that
they are familiar with.

2. Going the other way, a scientist can find a piece of example code in an unfamiliar language (e.g., Julia)
and then use an Al tool to translate it back into a language they already know well (e.g, Python).
This can come in handy if, say, that piece of example code implements an important algorithm that
they need for their research, but they do not understand how it works since they are not familiar with
the language it is written in.

Opportunity 6: Questioning the Assumptions Your Scientific Code
is Making

One of the most challenging aspects of writing scientific code is making sure the assumptions that underlie
your code are well-justified. Even if you implement the most elegant, efficient, and bug-free algorithm to run
on your data, if that is not the appropriate algorithm to use, then your code is still useless (or may even be
harmful if it gives misleading or biased results). However, it is impossible for existing code analysis tools to
tell whether your code may be making incorrect assumptions since these tools do not know anything about
the underlying scientific or engineering questions your code is trying to address. Modern Al tools have the
potential to overcome this limitation via a clever rhetorical trick: by asking you whether the assumptions
you are making are sound and having you come up with answers on your own.

AT tools still cannot do your science for you, but what they can do is serve as a skeptical inquisitor to question
the assumptions your scientific code is making. For instance, if you are a geneticist writing scripts using the
Biopython library to process a specific type of gene sequencing data, an Al tool may know enough about
this domain to ask skeptical questions about why you decided to, say, run a specific parametric statistical
test, and whether that test is justified given the properties of the data set you are using. Or the tool can



question you about why you decided to use linear instead of logistic regression when your outcome variable
seems to be binary. The AI does not necessarily know the correct answer to those questions, but it likely
knows “enough” about genetics and statistical tests to pose these questions for you to reflect on. This use
case is like having the Al serve as a sort of Socratic tutor (Al-Hossami et al., 2023) to get you to introspect
more deeply on your thought process.

Parting Thoughts and Call to Action

In summary, Al tools like ChatGPT offer unique potential for scientists and engineers to learn programming,
while also aiding in various aspects of their work. These tools can generate personalized programming
tutorials, facilitate learning of complex data visualization libraries, suggest refactoring of exploratory code,
and assist in understanding inherited legacy code. Moreover, they may help in learning new programming
languages in the context of work and encourage the questioning of assumptions in scientific code. However,
it’s essential to maintain a balanced perspective and acknowledge the limitations of these AI tools. They
are only as good as their training data, can sometimes produce incorrect output, and, importantly, lack
true comprehension of context and domain-specific knowledge. They should be seen as aides that can
help streamline certain tasks, but are not replacements for the essential expertise, judgment, and creative
problem-solving abilities of human scientists and engineers. Therefore, I encourage the scientific community
to explore these tools with a critical eye, understanding their strengths and limitations. Use them where
they can genuinely add value and continue relying on human intellect and insight where it matters most. In
doing so, we can use technology to enhance our work without over-relying on it, striking a beneficial balance
in this era of digital advancement.

I promise this prior paragraph is the only one in this entire article that was written by an AI tool (ChatGPT
with GPT-4). T asked ChatGPT to summarize what I wrote, and the original paragraph it generated was too
overenthusiastic about the benefits of AT (very self-serving of it!). So then I instructed ChatGPT to “make it
more balanced and less pro-Al” and it generated the more nuanced response that you just read. Although
it is a well-written summary, its style doesn’t really match my own. So at least for now I will still be doing
my own writing without AI assistance, even though I do use AI to help me in programming (Guo, 2023).
It’s hard to predict how these tools will evolve in the coming years, but hopefully the ideas I presented here
can serve as starting points for you to learn more about this fast-changing topic.

Acknowledgments

Thanks to Lorena Barba for encouraging me to write this article, Shannon Ellis for helping me brainstorm
ideas for it, and Ashley Juavinett for feedback. This material is based upon work supported by the National
Science Foundation under Grant No. NSF IIS-1845900.

References

Programming Is Hard - Or at Least It Used to Be: Educational Opportunities and Challenges of AT Code
Generation. (2023, March). Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. https://doi.org/10.1145/3545945.3569759

From “Ban It Till We Understand It” to “Resistance is Futile”: How University Programming Instructors
Plan to Adapt as More Students Use Al Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. (2023). ACM Conference on International Computing Education Research (ICER).

Computing Education in the Era of Generative Al (2023). Communications of the ACM.


https://doi.org/10.1145/3545945.3569759

Real-Real-World Programming with ChatGPT: Taking AI Far Beyond Small Self-Contained Coding
Tasks. (2023). O’Reilly Radar. https://www.oreilly.com/radar/real-real-world-programming-
with-chatgpt/

Introducing ChatGPT. (2022). https://openai.com/blog/chatgpt. https://openai.com/blog/chatgpt

The Worked-Out Examples Principle in Multimedia Learning. (2005). In The Cambridge Handbook
of Multimedia Learning (pp. 229-246). Cambridge University Press. https://doi.org/10.1017/
cbo9780511816819.016

Variation theory applied to students’ conceptions of computer programming. (2009). FEuropean Journal of
Engineering Education, 34(4), 339-347. https://doi.org/10.1080/03043790902989374

Overreliance on Al: Literature Review (Microsoft Research Technical Report). (2022). Microsoft Research.

Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
(2023, March). Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1.
https://doi.org/10.1145/3545945.3569823

Gardner, S. (Ed.). (2019). Getting Messy with Authentic Data: Exploring the Potential of Using Data from
Scientific Research to Support Student Data Literacy. CBELife Sciences Education, 18(2), es2. https:
//doi.org/10.1187/cbe.18-02-0023

Working Effectively with Legacy Code. (2004). Prentice Hall Professional Technical Reference.

Socratic Questioning of Novice Debuggers: A Benchmark Dataset and Preliminary Evaluations. (2023).
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA
2023). https://doi.org/10.18653/v1/2023.bea-1.57


https://www.oreilly.com/radar/real-real-world-programming-with-chatgpt/
https://www.oreilly.com/radar/real-real-world-programming-with-chatgpt/
https://openai.com/blog/chatgpt.
https://openai.com/blog/chatgpt
https://doi.org/10.1017/cbo9780511816819.016
https://doi.org/10.1017/cbo9780511816819.016
https://doi.org/10.1080/03043790902989374
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1187/cbe.18-02-0023
https://doi.org/10.1187/cbe.18-02-0023
https://doi.org/10.18653/v1/2023.bea-1.57

