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Abstract

In this paper, we study consensus robustness and performance problems for continuous-time multi-agent systems. We consider

first-order unstable agents interconnected by an undirected graph, coordinated by a delayed output feedback protocol. Our

objectives are twofold. First, we seek to determine the largest range of delay permissible so that the agents may achieve

robustly consensus despite variation of the delay length, herein referred to as the delay consensus margin. Second, we attempt

to determine consensus error performance quantified under an H 2 norm criterion, which measures the disruptive effect of

random nodal noises on consensus. For both problems, we obtain analytical solutions. The explicit expressions provide

conceptual insights and exhibit how the agents’ unstable pole, nonminimum phase zero, as well as the network topology may

limit fundamentally the consensus robustness and performance.
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Abstract

In this paper, we study consensus robustness and performance problems for
continuous-time multi-agent systems. We consider first-order unstable agents in-
terconnected by an undirected graph, coordinated by a delayed output feedback
protocol. Our objectives are twofold. First, we seek to determine the largest range of
delay permissible so that the agents may achieve robustly consensus despite varia-
tion of the delay length, herein referred to as the delay consensus margin. Second,
we attempt to determine consensus error performance quantified under an 2 norm
criterion, which measures the disruptive effect of random nodal noises on consensus.
For both problems, we obtain analytical solutions. The explicit expressions provide
conceptual insights and exhibit how the agents’ unstable pole, nonminimum phase
zero, as well as the network topology may limit fundamentally the consensus robust-
ness and performance.

KEYWORDS:
Time-delay systems, multi-agent systems, delay consensus robustness, delay consensus margin, consensus
performance.

1 INTRODUCTION

Multi-agent systems (MASs) are comprised of spatially distributed agents that communicate via a communication network
to enable execution of joint, coordinated tasks. A central problem in the analysis and design of MASs is that of achieving
consensus: The agents are to reach asymptotically a common state. Pertaining to this problem, agents of diverse dynamics have
been investigated, including, e.g., single-integrators1,2,3, double-integrators4,5, Euler-Lagrangian systems6 and more generally,
linear and nonlinear agents7,8. The complexity of feedback protocols that enable the attainment of consensus range from simple
static state feedback to dynamic, nonlinear, and adaptive output feedback. Applications of multi-agent consensus control are also
widespread, in, e.g., formation flight9, sensor networks10, distributed computation, and biological systems, to name just a few.

Robustness and performance issues of MASs began to receive attention in the recent years. For example, system performance
of MASs concerning leader-follower tracking was extensively investigated in , and performance on regulating energy consump-
tion was explored in11. Also under heavy scrutiny are generic notions of consensus error performance; see, e.g.,12,13,14. In these
studies, it has been customary to incorporate transient response and examine the power of the agents subject to stochastic dis-
turbances, which serves to quantify the dispersion of the noises propagated through the network. In particular, to focus on the
fundamental characteristics of the underlying network, it has been common to study simple, low-order agents. Specifically, in-
tegrator agents were studied in13,14 for networks described by an undirected graph, and in12 for those described by a directed

†This research was supported in part by the National Natural Science Foundation of China under Grants 62121004 and 62273152, in part by the Hong Kong RGC under
Project CityU 11203321, CityU 11213322, and in part by City University of Hong Kong under Project 9380054.
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graph. Extensions to higher-order agents (e.g., double integrator agents) and those containing more problematic dynamic behav-
iors (e.g., unstable agents) were pursued in, e.g.,15,16. The studies have led to characterizations and interpretations of network
metrics such as centrality, coherence, and network risk; see, e.g.,15,17,18,19.

Of equal importance, robustness of MASs has also be extensively studied, often in the form of agent heterogeneity20,21,22,23,24

or network transmission uncertainty25,26,27. Particularly relevant to the present work is a thread devoted to the study of consensus
robustness with respect to uncertain inter-agent communication delays. Consensus robustness in this spirit has been investigated
under the notion of delay consensus margin (DCM)28,29, which constitutes the largest range of permissible delay values so that
consensus may be achieved robustly within that range. Notably, for integrator and first-order agents with a static consensus
protocol, analytical expressions of the DCM were obtained in30 and31, respectively. More general consensus feedback such as
proportional-derivative and PID protocols were considered in28,29, which result in readily computable solutions of the DCM,
for first- and second-order agents. More generally, for heterogeneous delays, bounds on the DCM were derived in32, where
a frequency-sweeping method was proposed to estimate the delay range for consensus robustness. Time-varying delays were
investigated, in, e.g.,33,34.

In this paper we continue the aforementioned study on consensus error performance. We consider first-order unstable agents
interconnected by an undirected graph subject to an unknown, uncertain constant delay, and we seek to determine the mean-
square average consensus error under the disruptive influence of stochastic noises. The problem, being so formulated, provides a
power measure for the error response, for which the exogenous stochastic signals can be interpreted as measurement noises at the
nodes of the network, and the performance measure serves as one of resistance of the MAS in countering the nodal noises. For this
purpose, we also attempt, as a precursor, to determine the DCM of the MAS. Our purpose is to investigate how agent dynamics
and network topology may adversarily affect the DCM and the consensus performance. In a significant distinction from the
previous work, we consider output feedback protocols. This allows us to examine unique issues of MASs unseen previously, of
which the effect of an agent’s nonminimum phase zero on consensus robustness and error performance is one of keen interest. On
the other hand, to impose an output feedback protocol renders the problem more challenging. Indeed, as a direct consequence, the
use of output feedback results in a neutral delay system, which is known to exhibit more intricate dynamic behaviors and system
characteristics, and consequently pose significant complications in tackling the DCM and consensus performance problems.

The remainder of this paper is organized as follows. In section 2, we introduce the preliminary background required for our
development, which consists of elementary graph theory and computation of the 2 norm of linear time-invariant (LTI) delay
systems. The DCM and the consensus error performance problem are formulated in Section 3, where the exogenous stochastic
signals are assumed to be uncorrelated white noises. Determining the consensus error performance is then seen to translate
into the computation of the 2 norm of a delay MAS, and accordingly, the minimal consensus error under the power criterion
amounts to solving an optimal 2 control problem. This leads to our main results, presented in Section 4. Analytical expressions
are obtained for both the DCM and the optimal consensus error performance, where the former provides the fundamental limit
of the delay range allowable for consensus attainment, and the latter furnishes the minimal 2 consensus error achievable,
both of which shed useful light into limitations imposed by the agent dynamics and network topology on the robustness and
performance of first-order MASs. Illustrative examples are given in Section 5, and the paper concludes in Section 6.

The notation used throughout this paper is as follows. For any number 𝑧, any vector 𝑢, and any matrix 𝐴, we denote by 𝑧𝑇 ,
𝑢𝑇 , and 𝐴𝑇 their transposes, respectively. For any matrix 𝐴 = [𝑎𝑖𝑗], we denote its Frobenius norm by ‖𝐴‖𝐹 . For a square matrix
𝐴, we denote its trace by Tr(𝐴), and its pseudo-inverse by 𝐴+. We write 𝐴 ⪰ 0 if 𝐴 is nonnegative definite. The Hölder 𝓁2 norm
of a vector 𝑢 is denoted by ‖𝑢‖. For a vector signal 𝑢(𝑡) defined on [0, ∞), we denote its 2 norm by ‖𝑢‖2, where

‖𝑢‖22 =

∞

∫
0

‖𝑢(𝑡)‖2d𝑡.

The 2 norm of a matrix function 𝐹 (𝑗𝜔) defined on the imaginary axis is defined by

‖𝐹‖22 = 1
2𝜋

∞

∫
−∞

‖𝐹 (𝑗𝜔)‖2𝐹 d𝜔.

For a stable transfer function matrix 𝐹 (𝑠), the 2 norm coincides with its 2 norm. Note that while we use the same notation
‖ ⋅ ‖2 for 2 and 2 norms, the distinction will be self-evident from the context. Finally, we denote the expectation operator by
𝔼{⋅}.
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2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Elementary Graph Theory
We begin by introducing some basics of graph theory35. It is routine to associate a communication network with a graph repre-
sented by  = ( ,  , ). Here  = {𝑣1,⋯ , 𝑣𝑁} is the node set with each node 𝑣𝑖 representing an agent, and  ⊂  ×  is an
edge set of paired nodes. If an edge (𝑣𝑖, 𝑣𝑗) ∈  , the 𝑗th node can obtain information from the 𝑖th node. This access to informa-
tion need not be reciprocal, depending on whether the graph is directed or undirected. A graph is said to be undirected if for all
𝑣𝑖, 𝑣𝑗 ∈  , (𝑣𝑗 , 𝑣𝑖) ∈  implies that (𝑣𝑖, 𝑣𝑗) ∈  ; otherwise, the graph is said to be directed. Throughout this paper, we consider
undirected graphs. A path from node 𝑣1 to node 𝑣𝑘 is a sequence of nodes 𝑣1,⋯ , 𝑣𝑘, such that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘−1, (𝑣𝑖, 𝑣𝑖+1)
is an edge. A graph is said to be connected if there exists a path from any node to any other node, and complete if every pair
of distinct nodes is connected by an edge. We assume that the graph under consideration is connected. A graph  can be rep-
resented by its adjacency matrix  = [𝑎𝑖𝑗], whose element 𝑎𝑖𝑗 corresponds to the adjacent nodes (𝑣𝑖, 𝑣𝑗). Define the in-degree
matrix  ≜ diag(

∑

𝑗 𝑎1𝑗 , ⋯ ,
∑

𝑗 𝑎𝑁𝑗). Then, the graph can also be equivalently described by its Laplacian matrix  = −.
It is well-known that for an undirected graph , the Laplacian matrix  is symmetric and nonnegative definite. Under this cir-
cumstance,  admits a unitary decomposition  = 𝛬𝑇 , where 𝛬 is a diagonal matrix, i.e., Λ = diag(𝜆1,⋯ , 𝜆𝑁 ) with
0 = 𝜆1 < 𝜆2 ≤ ⋯ ≤ 𝜆𝑁 . The matrix  = [𝑤1 𝑤2 ⋯ 𝑤𝑁 ] is a unitary matrix with𝑤1 = (1∕

√

𝑁)𝟏𝑁 , where 𝟏𝑁 = [1 1 ⋯ 1]𝑇 .
It follows that 𝑤𝑇

𝑖 𝟏𝑁 = 0 for 𝑖 = 2,⋯ , 𝑁 .

2.2 2 norm of Delay System
Consider the linear time-invariant neutral delay system

𝐵0𝑥̇(𝑡) + 𝐵1𝑥̇(𝑡 − 𝜏) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡 − 𝜏) + 𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡),

(1)

where 𝑥(𝑡) represents the state, 𝑢(𝑡) the input, and 𝑦(𝑡) the output of the system, respectively. 𝐵0, 𝐵1, 𝐴0, 𝐴1, 𝐵 and 𝐶 are real
matrix of appropriate dimensions. The parameter 𝜏 > 0 is a constant but unknown delay. Let the system be stable and define its
transfer function

𝐻(𝑠) = 𝐶
((

𝐵0 + 𝐵1𝑒
−𝜏𝑠) 𝑠 −

(

𝐴0 + 𝐴1𝑒
−𝜏𝑠))−1 𝐵.

Define the output and input delay Lyapunov matrix36 by

𝑈 (𝑡) =

∞

∫
0

Φ𝑇 (𝑠)𝐶𝑇𝐶Φ(𝑠 + 𝑡)d𝑡, (2)

𝑉 (𝑡) =

∞

∫
0

Φ𝑇 (𝑠)𝐵𝐵𝑇Φ(𝑠 + 𝑡)d𝑡, (3)

where Φ(𝑡) is the fundamental solution matrix to the system (1). The following result, adapted from37, characterizes the system’s
2 norm in terms of solutions to delayed Lyapunov equations.

Lemma 1. Suppose that the system (1) is stable. Then the 2 norm of the transfer function matrix 𝐻(𝑠) is given by

‖𝐻‖

2
2 = Tr (𝐵𝑇𝑈 (0)𝐵) = Tr (𝐶𝑉 (0)𝐶𝑇 ), (4)

where 𝑈 (𝑡) is the unique solution to the delayed Lyapunov equation

𝑈̇ (𝑡)𝐵0 + 𝑈̇ (𝑡 − 𝜏)𝐵1 = 𝑈 (𝑡)𝐴0 + 𝑈 (𝑡 − 𝜏)𝐴1,
𝑈 (−𝑡) = 𝑈𝑇 (𝑡), (5)

−𝐶𝑇𝐶 =
1
∑

𝑖=0

1
∑

𝑖=0

(

𝐵𝑇𝑖 𝑈 (𝜏𝑖 − 𝜏𝑗)𝐴𝑗 + 𝐴𝑇𝑗 𝑈
𝑇 (𝜏𝑖 − 𝜏𝑗)𝐵𝑖

)

,
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with 𝜏0 = 0, and 𝑉 (𝑡) is the unique solution to the delayed Lyapunov equation

𝑉̇ (𝑡) + 𝑉̇ (𝑡 − 𝜏)𝐵𝑇1 = 𝑉 (𝑡)𝐴𝑇0 + 𝑉 (𝑡 − 𝜏)𝐴𝑇1 ,
𝑉 (−𝑡) = 𝑉 𝑇 (𝑡), (6)

−𝐵𝐵𝑇 =
1
∑

𝑖=0

1
∑

𝑖=0

(

𝐵𝑖𝑉 (𝜏𝑖 − 𝜏𝑗)𝐴𝑇𝑗 + 𝐴𝑗𝑉 𝑇 (𝜏𝑖 − 𝜏𝑗)𝐵𝑇𝑖
)

.

2.3 The Consensus Problem
We consider continuous-time agents with dynamics described by the transfer function

𝑝(𝑠) =
𝛼𝑠 − 𝛽
𝑠 − 𝑝

, (7)

where 𝛼 ≥ 0, 𝑝 ≥ 0, and 𝛽 is a real number that can be both nonnegative and negative. The agents can also be described by the
state-space equation

𝑥̇𝑖(𝑡) = 𝑝𝑥𝑖(𝑡) + 𝑢𝑖(𝑡),
𝑦𝑖(𝑡) = (𝛼𝑝 − 𝛽)𝑥𝑖(𝑡) + 𝛼𝑢𝑖(𝑡),

(8)

for 𝑖 = 1, ⋯ , 𝑁 . With this formulation, the agents are unstable and may or may not be nonminimum phase, depending on
whether 𝛽 > 0 or 𝛽 ≤ 0. Note that with different combinations of 𝛼, 𝛽, and 𝑝, the formulation reduces to some of the agent
models frequently studied previously; for example, for 𝛽 = 0, the consensus problem was studied in28,29, and if further 𝑝 = 0,
the agents become pure integrators.

We consider the output feedback control protocol

𝑢𝑖(𝑡) = −𝑘
𝑁
∑

𝑗=1
𝑎𝑖𝑗

(

𝑦𝑖 (𝑡 − 𝜏) − 𝑦𝑗 (𝑡 − 𝜏)
)

+ 𝑣𝑖(𝑡). (9)

In this feedback law, the agent’s input undergoes a constant delay 𝜏 ≥ 0. The exogenous signal 𝑣𝑖(𝑡) can be interpreted as a
disturbance signal or a measurement noise. Define the average state of the MAS by

𝑥̄(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖(𝑡),

and the error responses by
𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥̄(𝑡), 𝑖 = 1, ⋯ , 𝑁,

With the output feedback protocol (9), we say that the MAS (8) achieves consensus over the graph, represented by the adjacency
matrix , if

lim
𝑡→∞

|

|

𝑒𝑖(𝑡)|| = 0, ∀𝑖 = 1, ⋯ , 𝑁. (10)
In the sequel, one of the primary objectives is to investigate how the delay in the feedback protocol (9) may affect consensus,

and determine accordingly the largest range of this delay so that consensus can be achieved robustly. Another objective is to
quantify the consensus error responses under the effect of the noise signals 𝑣𝑖(𝑡). For these purposes, we shall first derive the
closed-loop error response equation. Denote

𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), ⋯ , 𝑥𝑁 (𝑡)]𝑇 ,
𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), ⋯ , 𝑦𝑁 (𝑡)]𝑇 ,
𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), ⋯ , 𝑢𝑁 (𝑡)]𝑇 ,
𝑣(𝑡) = [𝑣1(𝑡), 𝑣2(𝑡), ⋯ , 𝑣𝑁 (𝑡)]𝑇 ,

and correspondingly their Laplace transforms by 𝑋(𝑠), 𝑌 (𝑠), 𝑈 (𝑠), and 𝑉 (𝑠), respectively. Then it follows from (8) and (9) that

𝑌 (𝑠) = (𝛼𝑝 − 𝛽)𝑋(𝑠) + 𝛼𝑈 (𝑠),
𝑈 (𝑠) = −𝑘𝑌 (𝑠)𝑒−𝜏𝑠 + 𝑉 (𝑠).

Solving for 𝑈 (𝑠) yields

𝑈 (𝑠) = −
[

𝐼 + 𝛼𝑘𝑒−𝜏𝑠
]−1 𝑘(𝛼𝑝 − 𝛽)𝑒−𝜏𝑠𝑋(𝑠) +

[

𝐼 + 𝛼𝑘𝑒−𝜏𝑠
]−1 𝑉 (𝑠).
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This, along with (8), gives rise to
𝑥̇(𝑡) + 𝛼𝑘𝑥̇(𝑡 − 𝜏) = 𝑝𝑥(𝑡) + 𝛽𝑘𝑥(𝑡 − 𝜏) + 𝑣(𝑡). (11)

Note that whenever 𝛼 ≠ 0, that is, when the agent dynamics contain a finite zero, then the MAS as described by (11) results in
a neutral delay system, due to the use of output feedback protocol.

3 DELAY CONSENSUS MARGIN

With the agents given by (8) and the consensus feedback protocol given by (9), we define the delay consensus margin (DCM) by

𝜏 = sup{𝜇 ≥ 0 ∶ There exists a 𝑘 such that consensus of MAS (8) is achieved under the protocol (9) ∀𝜏 ∈ [0, 𝜇)}.

Clearly, the DCM 𝜏 defines the largest range of delay within which the consensus can be achieved by the proportional output
feedback protocol, for all 𝜏 ∈ [0, 𝜏). Denote similarly 𝑒(𝑡) = [𝑒1(𝑡), 𝑒2(𝑡), ⋯ , 𝑒𝑁 (𝑡)]𝑇 , and consider 𝑒(𝑡) = 𝑇 𝑒(𝑡). Evidently,
lim
𝑡→∞

|𝑒(𝑡)| = 0 if and only if lim
𝑡→∞

|𝑒(𝑡)| = 0. Hence, for consensus, we may consider the error signal 𝑒(𝑡). Furthermore, with no
loss of generality, we may assume that 𝑣(𝑡) = 0. From (11), it then follows that

̇̃𝑒(𝑡) + 𝛼𝑘Λ ̇̃𝑒(𝑡 − 𝜏) = 𝑝𝑒(𝑡) + 𝛽𝑘Λ𝑒(𝑡 − 𝜏).

Since 𝑒1(𝑡) =
1

√

𝑁
𝟏𝑇𝑁𝑒(𝑡) =

1
√

𝑁
𝟏𝑇𝑁

(

𝐼 − 1
𝑁
𝟏𝑁𝟏𝑇𝑁

)

𝑥(𝑡) = 0, it suffices to consider

̇̃𝑒𝑖(𝑡) + 𝛼𝑘𝜆𝑖 ̇̃𝑒𝑖(𝑡 − 𝜏) = 𝑝𝑒𝑖(𝑡) + 𝛽𝑘𝜆𝑖𝑒𝑖(𝑡 − 𝜏), 𝑖 = 2, ⋯ , 𝑁. (12)

In other words, the consensus of MAS (8) is achieved under the protocol (9) if and only if the delay systems in (12) are all stable.
For the latter to be true, it is necessary for the discrete parts of the neutral system, that is, the systems

𝑒𝑖(𝑡) + 𝛼𝑘𝜆𝑖𝑒𝑖(𝑡 − 𝜏) = 0, 𝑖 = 2, ⋯ , 𝑁,

to be stable38, which requires that
𝛼 |𝑘| 𝜆𝑖 < 1, 𝑖 = 2, ⋯ , 𝑁. (13)

Moreover, for the MAS (8) to achieve consensus over [0, 𝜏) for some 𝜏, the systems in (12) must also be stable at 𝜏 = 0. Under
the condition (13), this means that

𝛽𝑘𝜆𝑖 < −𝑝, 𝑖 = 2, ⋯ , 𝑁. (14)
The conditions (13) and (14) together suggest that 𝑝∕(|𝛽|𝜆2) < |𝑘| < 1∕(𝛼𝜆𝑁 ). Define

Ω =
{

𝑘 ∶
𝑝

|𝛽|𝜆2
< |𝑘| < 1

𝛼𝜆𝑁

}

.

It follows that for the MAS (8) to achieve consensus, it is necessary that 𝑘 ∈ Ω. Note that for Ω not to be empty, necessarily,
𝜆𝑁
𝜆2

<
|𝛽|
𝛼𝑝
, (15)

thus indicating that the presence of the nonminimum phase zero imposes a stringent constraint on the eigen-ratio 𝜆𝑁∕𝜆2, widely
known as a measure of network connectivity. We shall assume that this condition is met throughout the paper.

The following result provides an analytical expression of the DCM.

Theorem 1. Let 𝛽 > 0 and suppose that the condition (15) hold. Then for a connected undirected graph , the DCM of MAS
(12) under the protocol (9) is

𝜏 =

arctan
⎛

⎜

⎜

⎝

𝛾
1−

𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

1+
𝛼𝑝𝜆2𝑁
𝛽𝜆22

⎞

⎟

⎟

⎠

𝑝𝛾
, (16)

where

𝛾 =

√

√

√

√

√

√

√

𝜆2𝑁
𝜆22

− 1

1 − 𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

. (17)
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It is clear from Theorem 1 that for first-order multi-agent (8), DCM is achieved at the boundary of its allowable range Ω. The
explicit expression of DCM quantifies the effect of the agents’ unstable poles, nonminimum phase zeros, and the eigenvalues
ratio of the Laplacian matrix on consensus of delay system. Theorem 1 also leads to several useful observations.

Remark 1. For first-order agents with relative degree one, i.e., when 𝛼 = 0, the DCM becomes

𝜏 =
arctan

(√

𝜆2𝑁
𝜆22

− 1
)

𝑝
√

𝜆2𝑁
𝜆22

− 1
. (18)

This result was previously obtained in31,29. In comparison, it is easy to see that in the presence of the nonminimum phase zero
𝛽∕𝛼, 𝛽 > 0, the DCM is reduced. This can be seen by noting that 𝜏 can be written alternatively as

𝜏 =

arctan

⎛

⎜

⎜

⎜

⎝

√

𝜆2𝑁
𝜆22

− 1

√

1−
𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

1+
𝛼𝑝𝜆2𝑁
𝛽𝜆22

⎞

⎟

⎟

⎟

⎠

𝑝
√

𝜆2𝑁
𝜆22

− 1

√

√

√

√1 −
𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

. (19)

Evidently,
√

1 − 𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

1 + 𝛼𝑝𝜆2𝑁
𝛽𝜆22

≤ 1.

Hence,

𝜏 ≤
arctan

(√

𝜆2𝑁
𝜆22

− 1
)

𝑝
√

𝜆2𝑁
𝜆22

− 1

√

√

√

√1 −
𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

≤
arctan

(√

𝜆2𝑁
𝜆22

− 1
)

𝑝
√

𝜆2𝑁
𝜆22

− 1
.

Remark 2. Consider more specifically the case 𝛼 = 1 and 𝛽 = 𝑧 > 0. Under this circumstance, the expression (19) reduces to

𝜏 =

arctan

⎛

⎜

⎜

⎜

⎝

√

𝜆2𝑁
𝜆22

− 1

√

1−
(

𝑝
𝑧

)2 𝜆2𝑁
𝜆22

1+
(

𝑝
𝑧

) 𝜆2𝑁
𝜆22

⎞

⎟

⎟

⎟

⎠

𝑝
√

𝜆2𝑁
𝜆22

− 1

√

√

√

√1 −
(𝑝
𝑧

)2 𝜆2𝑁
𝜆22
. (20)

It is clear that 𝜏 is monotonically decreasing with respect to 𝑝∕𝑧. Hence, as expected intuitively, when the unstable pole 𝑝 and
the nonminimum phase zero 𝑧 become closer, a smaller DCM results. In the limit when 𝑝∕𝑧 → 0, the DCM approaches that in
the absence of nonminimum phase zero, i.e., (18), while as 𝑝∕𝑧 → 𝜆2∕𝜆𝑁 , 𝜏 → 0. Note also that for a complete graph, that is,
if 𝜆2 = ⋯ = 𝜆𝑁 , then by taking the limit with 𝜆𝑁∕𝜆2 → 1, the DCM is found to be

𝜏 = 1
𝑝
− 1
𝑧
,

which coincides with the delay margin of a first-order system with one unstable pole and one nonminimum phase zero39,40.

The rest of this section is devoted to the proof of Theorem 1. Before proceeding, we first need the following preliminary
lemma.

Lemma 2. i) For any 𝜁 ≥ 0 and 𝜂 ≥ 0,

arctan 𝜁 − arctan 𝜂 = arctan
𝜁 − 𝜂
1 + 𝜁𝜂

. (21)
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ii) For any 𝑎 > 0 and 𝑏 > 0 such that 𝑎 < 𝑏, the function

𝑓 (𝜔) =
arctan(𝑏𝜔) − arctan(𝑎𝜔)

𝜔
(22)

is monotonically decreasing with respect to 𝜔 ≥ 0.

Proof. The statement i) is a well-known property of the arctangent function, which can be found in, e.g.,41. To prove ii), we
evaluate the derivative of 𝑓 (𝜔) with respect to 𝜔, which is given by

𝑓 ′(𝜔) =
𝑏𝜔

1+(𝑏𝜔)2
− arctan(𝑏𝜔) − 𝑎𝜔

1+(𝑎𝜔)2
+ arctan(𝑎𝜔)

𝜔2
. (23)

Denote
𝑔(𝑥) = 𝑥

1 + 𝑥2
− arctan 𝑥.

It is easy to see that 𝑔(𝑥) is monotonically decreasing with respect to 𝑥 ≥ 0. Indeed, this can be readily verified by taking the
derivative of 𝑔(𝑥), yielding

𝑔′(𝑥) = 1 − 𝑥2

(1 + 𝑥2)2
− 1

1 + 𝑥2
= − 2𝑥2

(1 + 𝑥2)2
≤ 0.

As a result, for 𝑎 < 𝑏, 𝑔 (𝑏𝜔) ≤ 𝑔 (𝑎𝜔), and hence 𝑓 ′(𝜔) = (𝑔 (𝑏𝜔) − 𝑔 (𝑎𝜔)) ∕𝜔2 ≤ 0; that is, 𝑓 (𝜔) is monotonically decreasing
with respect to 𝜔 ≥ 0. ■

We are now ready to present the proof for Theorem 1.
Proof of Theorem 1. The characteristic quasipolynomials of the systems in (12) are readily found as

𝑞𝑖(𝑠, 𝑒−𝜏𝑠) = 𝑠 + 𝛼𝑘𝜆𝑖𝑠𝑒−𝜏𝑠 − 𝑝 − 𝛽𝑘𝜆𝑖𝑒−𝜏𝑠, 𝑖 = 2, ⋯ , 𝑁.

Under the condition (13), a necessary and sufficient condition38 for the systems to be stable is that the quasipolynomials
𝑞𝑖(𝑠, 𝑒−𝜏𝑠) are stable for all 𝑖 = 2, ⋯ , 𝑁 , that is, 𝑞𝑖(𝑠, 𝑒−𝜏𝑠) ≠ 0 for all 𝑠 ∈ ℂ+. For any 𝑘 ∈ Ω, 𝑞𝑖(𝑠, 𝑒−𝜏𝑠) is stable at 𝜏 = 0.
Hence by continuity, it becomes unstable for some 𝜏 > 0 whenever 𝑞𝑖(𝑗𝜔, 𝑒−𝑗𝜏𝜔) = 0. Denote

𝐿𝑖(𝑠) =
(𝛼𝑠 − 𝛽)𝑘𝜆𝑖

𝑠 − 𝑝
,

Then equivalently, 𝑞𝑖(𝑗𝜔, 𝑒−𝑗𝜏𝜔) = 0 if and only if

1 + 𝐿𝑖(𝑗𝜔)𝑒−𝑗𝜏𝜔 = 0. (24)

Find the frequency 𝜔𝑖(𝑘) such that |𝐿𝑖(𝑗𝜔𝑖(𝑘))| = 1, which is given by the solution

𝜔2
𝑖 (𝑘) =

𝛽2𝑘2𝜆2𝑖 − 𝑝
2

1 − 𝛼2𝑘2𝜆2𝑖
, (25)

for any 𝑘 ∈ Ω. At 𝜔 = 𝜔𝑖(𝑘), we obtain

∢𝐿𝑖(𝑗𝜔𝑖(𝑘)) = −𝜋 + arctan
𝜔𝑖(𝑘)
𝑝

− arctan
𝛼𝜔𝑖(𝑘)
𝛽

.

Select 𝜏𝑖(𝑘) such that

𝜔𝑖(𝑘)𝜏𝑖(𝑘) = arctan
𝜔𝑖(𝑘)
𝑝

− arctan
𝛼𝜔𝑖(𝑘)
𝛽

.

It follows that 1+𝐿𝑖(𝑗𝜔𝑖(𝑘))𝑒−𝑗𝜏𝑖(𝑘)𝜔𝑖(𝑘) = 0, and that for any 𝜔 ≥ 0, 1+𝐿𝑖(𝑗𝜔)𝑒−𝑗𝜏𝜔 ≠ 0 for all 𝜏 ∈ [0, 𝜏𝑖(𝑘)). Thus, the largest
range of delay such that 𝑞𝑖(𝑠, 𝑒−𝜏𝑠) are stable for all 𝑖 = 2, ⋯ , 𝑁 is min

2≤𝑖≤𝑁
𝜏𝑖(𝑘), and in turn the DCM is found as

𝜏 = sup
𝑘∈Ω

min
2≤𝑖≤𝑁

𝜏𝑖(𝑘) = sup
𝑘∈Ω

min
2≤𝑖≤𝑁

arctan 𝜔𝑖(𝑘)
𝑝

− arctan 𝛼𝜔𝑖(𝑘)
𝛽

𝜔𝑖(𝑘)
.

According to (15), 𝛼∕𝛽 ≤ 1∕𝑝. Hence, in light of Lemma 2 ii), 𝜏𝑖(𝑘) is a monotonically decreasing function of 𝜔𝑖(𝑘).
Furthermore, it is easy to verify that 𝜔𝑖(𝑘) increase monotonically with 𝜆𝑖. As a result,

min
2≤𝑖≤𝑁

𝜏𝑖(𝑘) =
arctan 𝜔𝑁 (𝑘)

𝑝
− arctan 𝛼𝜔𝑁 (𝑘)

𝛽

𝜔𝑁 (𝑘)
= 𝜏𝑁 (𝑘),
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and

𝜏 = sup
𝑘∈Ω

arctan 𝜔𝑁 (𝑘)
𝑝

− arctan 𝛼𝜔𝑁 (𝑘)
𝛽

𝜔𝑁 (𝑘)

= 𝜏𝑁

(

𝑝
𝛽𝜆2

)

,

where the supremum is achieved at 𝑘 = 𝑝∕(𝛽𝜆2), again by the monotonicity of 𝜏𝑖(𝑘) with respect to 𝑘. The proof can then be
completed by noting that

𝜔𝑁

(

𝑝
𝛽𝜆2

)

= 𝑝

√

√

√

√

√

√

√

𝜆2𝑁
𝜆22

− 1

1 − 𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

,

and by incoking Lemma 2 i). ■
In summary, Theorem 1 indicates that with output consensus feedback, the nonminimum phase zero of the agents will invari-

ably constrain the DCM achievable, which corresponds to 𝛽 > 0. Analogously, by mimicking the proof of Theorem 1, one may
also obtain the expression of DCM in the case 𝛽 < 0, that is, in the presence of a minimum phase zero |𝛽|∕𝛼, found as

𝜏 =

arctan
⎛

⎜

⎜

⎝

𝛾
1−

𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

1−
𝛼𝑝𝜆2𝑁
|𝛽|𝜆22

⎞

⎟

⎟

⎠

𝑝𝛾
if 𝛼𝑝𝜆2𝑁∕(|𝛽|𝜆

2
2) < 1, and otherwise

𝜏 =

𝜋 + arctan
⎛

⎜

⎜

⎝

𝛾
1−

𝛼2𝑝2𝜆2𝑁
𝛽2𝜆22

1−
𝛼𝑝𝜆2𝑁
|𝛽|𝜆22

⎞

⎟

⎟

⎠

𝑝𝛾
,

where 𝛾 is given in (17). In either case, it is easy to see that the DCM is greater than that in (16).

4 CONSENSUS ERROR PERFORMANCE

Having determined the delay consensus margin, in this section we attempt to quantify the minimal consensus error under criterion
compatible with external noises. The problem under consideration concerns the disruption effect of the noises on consensus.
We consider specifically random noises characterized by the following assumptions:

Assumption 1. Each component 𝜉𝑖(𝑡) of 𝜉(𝑡) = [𝜉1(𝑡), ⋯ , 𝜉𝑁 (𝑡)]𝑇 is zero mean, 𝔼{𝜉𝑖(𝑡)} = 0, and

𝔼{|𝜉𝑖(𝑠)|2} ≤ 𝜎2𝑖 𝛿(𝑡 − 𝑠),

where 𝛿(𝑡) is the Dirac function, and 𝜎2𝑖 is a given bound on the variance of 𝜉𝑖(𝑡).

Assumption 2. {𝜉𝑖(𝑡)} and 𝜉𝑗(𝑡) are uncorrelated processes for 𝑖 ≠ 𝑗, i.e.,

𝔼{𝜉𝑖(𝑡)𝜉𝑗(𝑠)} = 0, ∀𝑡, 𝑠 and 𝑖 ≠ 𝑗.

With these assumptions, 𝜉(𝑡) may be considered a continuous-time white noise, resembling its discrete-time counterpart. We
denote the class of all signals satisfying Assumption 1 and Assumption 2 by the set Ξ.

For the given Laplacian matrix , decompose the unitary matrix  as

 =
[ 1
√

𝑁
𝟏𝑁 𝑄

]

. (26)

Let 𝑣(𝑡) = 𝑄𝜉(𝑡), with 𝜉(𝑡) ∈ Ξ. We may rewrite (11) as

𝑥̇(𝑡) + 𝛼𝑘𝐿𝑥̇(𝑡 − 𝜏) = 𝑝𝑥(𝑡) + 𝛽𝑘𝐿𝑥(𝑡 − 𝜏) +𝑄𝜉(𝑡), (27)
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For any 𝑘 ∈ Ω and 𝜏 ∈ [0, 𝜏), we are interested in finding

𝐸 = sup
𝜉(𝑡)∈Ξ

𝔼{‖𝑒(𝑡)‖22}.

This amounts to determining the variance of the consensus error response under the protocol (9), due to the disruptive effect
of all possible random noises in the class Ξ, propagated through the network topology represented by 𝑄. The measure thus
characterizes the mean-square performance achievable by delayed output proportional feedback protocol.

Theorem 2. Let 𝛽 > 0 and  be a connected undirected graph. Then under Assumption 1 and Assumption 2, the mean-square
consensus error performance, for any 𝑘 ∈ Ω and 𝜏 ∈ [0, 𝜏), is given by

𝐸 = 1
2(𝛽 + 𝛼𝑝)|𝑘|

𝑁
∑

𝑖=2

cos(Γ𝑖𝜏 + 𝜃𝑖)𝜎2𝑖
𝜆𝑖 cos 𝜃𝑖(1 − sin(Γ𝑖𝜏 + 𝜃𝑖))

, (28)

where

Γ𝑖 =

√

√

√

√

𝛽2𝑘2𝜆2𝑖 − 𝑝2

1 − 𝛼2𝑘2𝜆2𝑖
,

𝜃𝑖 = cos−1
Γ𝑖(1 − 𝛼2𝑘2𝜆2𝑖 )
|𝑘|𝜆𝑖(𝛽 + 𝛼𝑝)

.

Proof. We first note that 𝑄 ∈ ℝ𝑁×(𝑁−1) satisfies the following properties:
𝑄∗𝟏𝑁 = 0,
𝑄∗𝑄 = 𝐼𝑁−1,
𝑄𝑄∗ = 𝐼𝑁 − 1

𝑁
𝟏𝑁𝟏𝑇𝑁 .

(29)

As a result, we have 𝑒(𝑡) = 𝑄𝑄∗𝑥(𝑡), and ‖𝑒(𝑡)‖2 = ‖𝑄∗𝑥(𝑡)‖2. Let 𝑧(𝑡) = 𝑄∗𝑥(𝑡). Then the signal 𝑧(𝑡), together with the
equation (27), forms a state-space description with input 𝜉(𝑡) and output 𝑧(𝑡), whose transfer function matrix is given by

𝐻(𝑠) = 𝑄∗(𝑠𝐼 − 𝑝𝐼 + 𝛼𝑘𝐿𝑠𝑒−𝜏𝑠 − 𝛽𝑘𝐿𝑒−𝜏𝑠)−1𝑄
=

(

(𝑠 − 𝑝)𝐼 + (𝛼𝑠 − 𝛽)𝑘Λ̄𝑒−𝜏𝑠
)−1 ,

where Λ̄ = diag(𝜆2,⋯ , 𝜆𝑁 ). It thus follows that ‖𝑒(𝑡)‖2 = ‖𝑄∗𝑥(𝑡)‖2 = ‖𝑧(𝑡)‖2. Under Assumption 1 and Assumption 2, this
leads to

𝔼{‖𝑧(𝑡)‖22} =
𝑁
∑

𝑖=2
‖𝐺𝑖‖

2
2𝔼{‖𝜉(𝑡)‖

2
2},

where 𝐺𝑖(𝑠) = 𝐺(𝑠, 𝜆) with 𝜆 = 𝜆𝑖, and
𝐺(𝑠, 𝜆) = 1

𝑠 − 𝑝 + (𝛼𝑠 − 𝛽)𝑘𝜆𝑒−𝜏𝑠
.

Evidently,

sup
𝜉(𝑡)∈Ξ

𝔼{‖𝑧(𝑡)‖22} =
𝑁
∑

𝑖=2
𝜎2𝑖 ‖𝐺𝑖‖

2
2.

We proceed to compute ‖𝐺𝑖‖2. For this purpose, we note that 𝐺(𝑠) admits a state-space realization given by (1), with 𝐴0 = 𝑝,
𝐴1 = 𝛽𝑘𝜆, 𝐵0 = 1, 𝐵1 = 𝛼𝑘𝜆, 𝐵 = 1, and 𝐶 = 1. The delay Lyapunov matrix is given by

𝜙(𝑡) =

∞

∫
0

𝜇(𝑟)𝜇(𝑟 + 𝑡)d𝑟 =
∞

∫
𝑡

𝜇(𝑟 − 𝑡)𝜇(𝑟)d𝑟,

where
𝜇̇(𝑡) + 𝛼𝑘𝜆𝜇̇(𝑡 − 𝜏) = 𝑝𝜇(𝑡) + 𝛽𝑘𝜆𝜇(𝑡 − 𝜏);

that is, 𝜇(𝑡) is the fundamental solution. According to Lemma 1, 𝜙(𝑡) satisfies the delay Lyapunov equation

𝜙̇(𝑡) + 𝛼𝑘𝜆𝜙̇(𝑡 − 𝜏) = 𝑝𝜙(𝑡) + 𝛽𝑘𝜆𝜙(𝑡 − 𝜏).

Define 𝜓(𝑡) = 𝜙(𝜏 − 𝑡) = 𝜙(𝑡 − 𝜏). Then the equation can be written as

𝜙̇(𝑡) + 𝛼𝑘𝜆𝜓̇(𝑡) = 𝑝𝜙(𝑡) + 𝛽𝑘𝜆𝜓(𝑡). (30)
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Furthermore,

𝜓̇(𝑡) = −𝜙̇(𝜏 − 𝑡) = 𝛼𝑘𝜆𝜙̇(−𝑡) − 𝑝𝑈 (𝜏 − 𝑡) − 𝛽𝑘𝜆𝜙(−𝑡)
= −𝛼𝑘𝜆𝜙̇(𝑡) − 𝑝𝜓(𝑡) − 𝛽𝑘𝜆𝜙(𝑡). (31)

The equations (30) and (31) can together be written as
[

1 𝛼𝑘𝜆
𝛼𝑘𝜆 1

] [

𝜙̇(𝑡)
𝜓̇(𝑡)

]

=
[

𝑝 𝛽𝑘𝜆
−𝛽𝑘𝜆 −𝑝

] [

𝜙(𝑡)
𝜓(𝑡)

]

,

or equivalently,
[

𝜙̇(𝑡)
𝜓̇(𝑡)

]

= 1
1 − 𝛼2𝑘2𝜆2

[

𝑝 + 𝛼𝛽𝑘2𝜆2 𝑘𝜆(𝛽 + 𝛼𝑝)
−𝑘𝜆(𝛽 + 𝛼𝑝) −(𝑝 + 𝛼𝛽𝑘2𝜆2)

] [

𝜙(𝑡)
𝜓(𝑡)

]

.

Denote by Φ(𝑠) and Ψ(𝑠) the Laplace transforms of 𝜙(𝑡) and 𝜓(𝑡). Then,
[

Φ(𝑠)
Ψ(𝑠)

]

= 1
𝐷(𝑠)

[

𝑠 + 𝑝+𝛼𝛽𝑘2𝜆2

1−𝛼2𝑘2𝜆2
𝑘𝜆(𝛽+𝛼𝑝)
1−𝛼2𝑘2𝜆2

− 𝑘𝜆(𝛽+𝛼𝑝)
1−𝛼2𝑘2𝜆2

𝑠 − 𝑝+𝛼𝛽𝑘2𝜆2

1−𝛼2𝑘2𝜆2

]

[

𝜙(0)
𝜓(0)

]

, (32)

where
𝐷(𝑠) = 𝑠2 +

𝛽2𝑘2𝜆2 − 𝑝2

1 − 𝛼2𝑘2𝜆2
.

For any 𝑘 ∈ Ω and 𝜆 = 𝜆𝑖, 𝑖 = 2, ⋯ , 𝑁 , 𝛽2𝑘2𝜆2 − 𝑝2 > 0 and 1 − 𝛼2𝑘2𝜆2 > 0. Denote

Γ =
√

𝛽2𝑘2𝜆2 − 𝑝2

1 − 𝛼2𝑘2𝜆2
.

Taking inverse Laplace transform, we find
[

𝜙(𝜏)
𝜓(𝜏)

]

=

[

cos(Γ𝜏) + 𝑝+𝛼𝛽𝑘2𝜆2

Γ(1−𝛼2𝑘2𝜆2)
sin(Γ𝜏) 𝑘𝜆(𝛽+𝛼𝑝)

Γ(1−𝛼2𝑘2𝜆2)
sin(Γ𝜏)

− 𝑘𝜆(𝛽+𝛼𝑝)
Γ(1−𝛼2𝑘2𝜆2)

sin(Γ𝜏) cos(Γ𝜏) − 𝑝+𝛼𝛽𝑘2𝜆2

Γ(1−𝛼2𝑘2𝜆2)
sin(Γ𝜏)

]

[

𝜙(0)
𝜓(0)

]

.

Noting that 𝜓(𝜏) = 𝜙(0) and 𝜓(0) = 𝜙(𝜏), we obtain

𝜙(0) =
cos(Γ𝜏) − 𝑝+𝛼𝛽𝑘2𝜆2

Γ(1−𝛼2𝑘2𝜆2)
sin(Γ𝜏)

1 + 𝑘𝜆(𝛽+𝛼𝑝)
Γ(1−𝛼2𝑘2𝜆2)

sin(Γ𝜏)
𝜙(𝜏) =

Γ(1 − 𝛼2𝑘2𝜆2) cos(Γ𝜏) − (𝑝 + 𝛼𝛽𝑘2𝜆2) sin(Γ𝜏)
Γ(1 − 𝛼2𝑘2𝜆2) + 𝑘𝜆(𝛽 + 𝛼𝑝) sin(Γ𝜏)

𝜙(𝜏). (33)

By a direct calculation, we find that

Γ2(1 − 𝛼2𝑘2𝜆2)2 + (𝑝 + 𝛼𝛽𝑘2𝜆2)2 = 𝑘2𝜆2(𝛽 + 𝛼𝑝)2.

Define
𝜃 = cos−1

Γ(1 − 𝛼2𝑘2𝜆2)
|𝑘|𝜆(𝛽 + 𝛼𝑝)

.

Since 𝑘 < 0 by (14), the equation (33) can be rewritten as

𝜙(0) =
cos 𝜃 cos(Γ𝜏) − sin 𝜃 sin(Γ𝜏)

cos 𝜃 − sin(Γ𝜏)
𝜙(𝜏) =

cos(Γ𝜏 + 𝜃)
cos 𝜃 − sin(Γ𝜏)

𝜙(𝜏). (34)

Meanwhile, from (5), 𝜙(𝜏) and 𝜙(0) are related by the equation

𝜙(𝜏) +
𝑝 + 𝛼𝛽𝑘2𝜆2

(𝛽 + 𝛼𝑝)𝑘𝜆
𝜙(0) = − 1

2(𝛽 + 𝛼𝑝)𝑘𝜆
.

or equivalently,
𝜙(𝜏) = sin 𝜃𝜙(0) + 1

2(𝛽 + 𝛼𝑝)|𝑘|𝜆
. (35)

Substituting (35) into (34), we then arrive at the solution

𝜙(0) =
(

1
2(𝛽 + 𝛼𝑝)|𝑘|𝜆

)

cos(Γ𝜏 + 𝜃)
cos 𝜃 − sin(Γ𝜏) − sin 𝜃 cos(Γ𝜏 + 𝜃)

. (36)

In view of Lemma 1, this gives rise to

‖𝐺(𝑠, 𝜆)‖22 = 𝜙(0) =
(

1
2(𝛽 + 𝛼𝑝)|𝑘|𝜆

)

cos(Γ𝜏 + 𝜃)
cos 𝜃 − sin(Γ𝜏) − sin 𝜃 cos(Γ𝜏 + 𝜃)

.



Peng ET AL 11

The result then follows by noting the identity

cos 𝜃 − sin(Γ𝜏) − sin 𝜃 cos(Γ𝜏 + 𝜃) = cos 𝜃 (1 − sin(Γ𝜏 + 𝜃)) .

■
While Theorem 2 exhibits an intricate dependence of the error performance on the agent and network characteristics, insights

may still be gained by resorting to analysis of special cases. We make below a number of observations to this effect.

Remark 3. For a delay-free protocol, i.e., when 𝜏 = 0, the expression (28) reduces to

𝐸 = 1
2(𝛽 + 𝛼𝑝)|𝑘|

𝑁
∑

𝑖=2

𝜎2𝑖
𝜆𝑖(1 − sin 𝜃𝑖)

= 1
2

𝑁
∑

𝑖=2

1
(𝛽|𝑘|𝜆𝑖 − 𝑝)(1 − 𝛼|𝑘|𝜆𝑖)

. (37)

For simplicity, consider further 𝛼 = 1, 𝛽 = 𝑧. Then,

𝐸 = 1
2𝑧

𝑁
∑

𝑖=2

𝜎2𝑖
(|𝑘|𝜆𝑖 − (𝑝∕𝑧))(1 − |𝑘|𝜆𝑖)

,

thus exhibiting the negative effect of the nonminimum phase zero on the consensus performance. As 𝑝∕𝑧 increases, i.e., when
the nonminimum phase zero and the unstable pole of the agents become closer, the consensus performance is worsened. By a
more in-depth inspection, one can assert that this statement holds in general. Indeed, since both Γ𝑖 and 𝜃𝑖 increase monotonically
with 𝛼, 𝐸 decreases monotonically with 𝛼. This suggests that for agents without a finite nonminimum phase zero, that is, 𝛼 = 0,
the error performance is better, exhibiting yet again the degrading effect of nonminimum phase zero. Note in particular that for
integrator agents, i.e., when 𝛼 = 0, 𝑝 = 0, then Γ𝑖 = 𝛽|𝑘|𝜆𝑖, 𝜃𝑖 = 0. Consequently,

𝐸 = 1
2𝛽|𝑘|

𝑁
∑

𝑖=2

cos(𝛽|𝑘|𝜆𝑖𝜏)𝜎2𝑖
𝜆𝑖(1 − sin(𝛽|𝑘|𝜆𝑖𝜏))

.

We note that this result was previously obtained in42. Interestingly, the expression in (28), while for considerably more
sophisticated agent dynamics, retains its essential form.

Remark 4. By a direct calculation, we find that

𝑑𝐸
𝑑𝜏

= 1
2(𝛽 + 𝛼𝑝)|𝑘|

𝑁
∑

𝑖=2

Γ𝑖𝜎2𝑖
𝜆𝑖 cos 𝜃𝑖(1 − sin(Γ𝑖𝜏 + 𝜃𝑖))

.

This enables us to conclude that 𝐸 increases monotonically with 𝜏 ∈ [0, 𝜏), demonstrating the effect of time delay on the
consensus performance.

5 ILLUSTRATIVE EXAMPLES

We now illustrate the preceding analytical results. Consider the MAS (8) with 6 agents, connected by an undirected network
described by the Laplacian matrix

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

8 −4 0 −2 −2 0
−4 7 −3 0 0 0
0 −3 6 0 0 −3
−2 0 0 4 0 −2
−2 0 0 0 2 0
0 0 −3 −2 0 5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This matrix has an eigenvalue at the origin and other eigenvalues at 𝜆2 = 1.6193, 𝜆3 = 3.7549, 𝜆4 = 4.5889, 𝜆5 = 9.3741, and
𝜆6 = 12.6628. We first examine the effect of the unstable pole on the DCM. For this purpose, we fix the value of 𝛽 = 0.1 and
let the unstable pole 𝑝 vary from 0 to 0.003. We also compare the cases 𝛼 = 0 and 𝛼 = 2. Fig. 1 shows that the DCM decreases
rapidly even when 𝑝 increases slightly. It also demonstrates that the presence of the nominimum phase zero reduces the DCM.
Next, we examine the effect of the nonminimum phase zero. Fix 𝑝 = 0.8 and select 𝛼 = 1. Note that by the condition (15), it is
necessary that

𝛽 >
𝜆𝑁
𝜆2
𝑝 = 12.6628

1.6193
(0.8) = 6.2559.
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Hence, let 𝑧 = 𝛽 vary in the interval [6.4, 12]. Fig. 2 shows that as 𝑧 moves away further from the unstable pole 𝑝, the DCM
increases.
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Figure 1 Delay consensus margin with different 𝛼: 𝛼 = 0 and 𝛼 = 4.
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Figure 2 Delay consensus margin with different nonminimum phase zero:𝑝 = 0.8.

It is also of interest to see how the agents behave for different values of the delay parameter. Select 𝑝 = 0.15, 𝛼 = 2, and
𝛽 = 5. Thus, the agents have a nonminimum phase zero at 𝛽∕𝛼 = 2.5. With the coupling gain 𝑘 = −0.02, the DCM given in
(17) is computed as 𝜏 = 0.7382. Set the initial condition to be 𝑥(0) = [−10, 5, 15,−15, 20, 1]𝑇 . For 𝜏 = 0.6 < 𝜏, Fig. 3 shows
that the consensus error responses converge to zero, while for 𝜏 = 0.8 > 𝜏, Fig. 4 indicates that the consensus is not achieved.

Finally, we compute the consensus error performance. Select the same 𝑝 = 0.15, 𝛼 = 2, and 𝛽 = 5. Fig. 5 shows that 𝐸
increases monotonically with 𝜏. In particular, when 𝜏 approaches 𝜏, 𝐸 increases drastically. For purpose of comparison, we
also plot 𝐸 in the case of 𝛼 = 0. Note that in this latter case, the DCM is computed by (18), which yields 𝜏 = 1.24. The error
performance is seen markedly better.
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Figure 3 Consensus achieved at 𝜏 = 0.6: Error responses.
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Figure 4 Consensus not achieved at 𝜏 = 0.8: Error responses.

6 CONCLUSION

In this paper we have addressed consensus robustness and performance problems for first-order unstable MASs, under delayed
consensus output feedback subject to unknown time delay. We derived an analytical expression for the delay consensus margin,
which serves a fundamental delay robustness measure, the largest range of delay so that consensus may be achieved robustly
within that range. We also derived an explicit expression for the consensus error performance, which quantifies the disruptive
effect of random nodal noises on consensus. The latter problem translates into the calculation of the 2 norm of a delay system.
Both results exhibit useful insights into the constraints imposed by the agents’ unstable pole and nonminiumum phase zero, as
well as by the network topology and network delay on the consensus robustness and performance.

It should be pointed out, nonetheless, that our present development is restricted to networks described by an undirected graph
and feedback protocols of an uniform delay. More general problems that incorporate, e.g., directed graphs and heterogeneous
delays pose technical challenges and remain open. The uncertainties in the agent dynamics, likely to be heterogeneous and of a
higher order, are also pertinent in the consensus robustness studies and require a more in-depth investigation.
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Figure 5 Consensus error performance as a function of 𝜏.
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