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Abstract

Significant populations in tropical and sub-tropical locations all over the world are severely impacted by a group of neglected

tropical diseases called leishmaniasis. This disease is caused by roughly 20 species of the protozoan parasite from the Leish-

mania genus. Disease prevention strategies that include early detection, vector control, treatment of affected individuals, and

vaccination are all essential. The diagnosis is critical for selecting methods of therapy, preventing transmission of the disease,

and minimizing symptoms so that the affected individual can have a better quality of life. Nevertheless, the diagnostic methods

do eventually have limitations, and there is no established gold standard. Some disadvantages include the existence of cross-

reactions with other species, limited sensitivity and specificity, which are mostly determined by the type of antigen used to

perform the tests. A viable alternative for a more precise diagnosis is the application of recombinant antigens, which have been

generated using bioinformatics approaches and have shown increased diagnostic accuracy. As a result, identifying potential

new antigens using bioinformatics resources becomes an effective technique, since it may result in an earlier and more accurate

diagnosis. The purpose of this review is to evaluate the efficacy of in silico approaches for selecting recombinant antigens for

leishmaniasis diagnosis.
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Abstract

Significant populations in tropical and sub-tropical locations all over the world are severely impacted by a
group of neglected tropical diseases called leishmaniasis. This disease is caused by roughly 20 species of the
protozoan parasite from the Leishmania genus. Disease prevention strategies that include early detection,
vector control, treatment of affected individuals, and vaccination are all essential. The diagnosis is critical for
selecting methods of therapy, preventing transmission of the disease, and minimizing symptoms so that the
affected individual can have a better quality of life. Nevertheless, the diagnostic methods do eventually have
limitations, and there is no established gold standard. Some disadvantages include the existence of cross-
reactions with other species, limited sensitivity, and specificity, which are mostly determined by the type
of antigen used to perform the tests. A viable alternative for a more precise diagnosis is the application of
recombinant antigens, which have been generated using bioinformatics approaches and have shown increased
diagnostic accuracy. As a result, identifying potential new antigens using bioinformatics resources becomes
an effective technique, since it may result in an earlier and more accurate diagnosis. The purpose of this
review is to evaluate the efficacy of in silico approaches for selecting recombinant antigens for leishmaniasis
diagnosis.

INTRODUCTION

The Leishmaniases are a class of parasitic, non-contagious infections which are part of a diverse group of
conditions considered as Neglected Tropical Diseases. These diseases are widespread over the world, although
most of the occurrences are reported in Africa, Asia, and the Americas1. According to the World Health
Organization (WHO), currently, more than 1 billion people reside where the disease is prevalent, which
represents a serious public health issue.

Leishmaniasis has three main clinical forms2. The most lethal form of leishmaniasis, known as visceral leish-
maniasis (VL or Kala-sar), is characterized by systemic infections that can affect the liver and spleen, among
other organs. Approximately 30,000 cases are expected to occur per year1. While cutaneous leishmaniasis
(CL), the most prevalent form, is recognized by the presence of skin lesions and has been estimated to impact
approximately one million individuals annually2,3. However, if not appropriately treated, it can develop into
a third and more severe form, known as mucocutaneous leishmaniasis (MCL), characterized by nasal ulce-
ration and mucosal infiltration4. These clinical manifestations vary depending on multiple factors, such as
the host’s immune system, nutritional state, genetic background, the environment, and the parasite species
associated with the infection5.

Approximately 20 species with the potential to infect humans have been described. As a setback in the
field, there is a lack of immunological data due to the number of clinical manifestations and infective species,
making it challenging to comprehend the different types of immune responses6. However, it has been reported
that upon the parasite’s entry, innate immune cells are recruited, and different regulatory, susceptibility,
and/or resistance mechanisms are triggered, leading to a complex immune response that is characterized by
both cell-mediated responses and the production of antibodies7.

An early diagnosis, vector control, treatment of infected individuals, and vaccination are important disease
control strategies8. The diagnosis is crucial to designate specific treatment schemes, prevent disease pro-
gression, and alleviate symptoms, allowing the affected individual to have a better quality of life9. Some
limitations of the serological diagnosis techniques include the presence of cross-reactions with other species,
low sensitivity, and specificity, which are primarily determined by the type of antigen used in the assays10.

Considering the challenge of selecting the most suitable antigen, techniques that support the identification
and selection of immunogenic molecules have been demonstrated to be potential alternatives. The principle
of reverse vaccinology, proposed Pizza11, established the idea and concept of employing computational me-
thods, primarily for anticipating the selection of potential molecules for use in immunological investigations
such as vaccinations and diagnostic testing. As a result, recombinant antigens, which are designed using
bioinformatics tools and have demonstrated improved diagnostic accuracy, are a promising alternative for a
more accurate diagnosis of the disease12.
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Several studies on Leishmaniasis diagnosis have explored bioinformatics tools extensively, where they were
employed to search for recombinant proteins and synthetic peptides13,14. These in silico approaches are based
on the prediction of potential antigenic/immunogenic epitopes. This strategy’s applicability, in addition of
being considered straightforward, allows for cost reductions on culture maintenance and decreases variations
in sensitivity and specificity found in conventional serological methodologies14. As a result, identifying po-
tential new recombinant antigens using bioinformatics resources becomes a reliable strategy, as it can lead
to an earlier and more accurate diagnosis. This review aims to determine the efficiency of in silico methods
in selecting recombinant antigens for the diagnosis of leishmaniasis.

The complexity of anti-Leishmania immune responses

When the vector—female Phlebotomus and Lutzomyia spp., in the Old World and New World, respectively—
introduces the promastigote form of the parasite into the host’s bloodstream during their blood meal, the
immune response begins2. Immediately, neutrophils and macrophages, key players of the innate immune
response in pathogen defense, are recruited. These cells play a dual role as they can be associated with both
parasite elimination, and pathogenesis15. Macrophages have important fagocytic and antimicrobial functions
against Leishmania . These cells have the ability to either directly destroy the parasite or act as a location for
Leishmania replication16. However, the parasite can modulate the complement via virulence factors, allowing
it to enter other phagocytic cells17.

Despite the fact that the disease’s immunological mechanisms are quite complex and variable, it was possible
to observe that the protective response to the infection is mainly mediated by T cells18. The activation of
naive T cells can be explored for modeling the immune environment derived from the antigens presented.
The participation of cytokines such as IFN- and TNF- in the response performed by TCD4+ cells favor the
development of a type 1 response (Th1) that is more directed toward the resolution of the infection. While
anti-inflammatory cytokines like IL-4, IL-13, and TGF- are produced during the type 2 response (Th2), which
favors parasite growth. However, the TH1/TH2 paradigm is not well established in humans19. Establishing an
immunological pattern for this population is challenging due to the complex immune response that humans
developed as well as the disease’s wide clinical spectrum11. CD8+ T cells appear to respond differently
depending on the form of Leishmaniasis20. These cells can modulate immunopathology and promote the
development of lesions in CL brought on by L. braziliensis 20. In contrast, it was found that in VL caused
by L. donovani andL. infantum species, CD8+ T cells revealed a protective role through the formation of
effective granulomas, crucial for parasite eradication in both murine and human models21.

While some studies suggest the B cells contributes to the aggravation of the disease, others argue it supports
in the healing of the infection. Additionally, research has shown a correlation between the parasite load, the
chronicity of the infection and the intensity of the humoral response. High levels of antibodies were found
to be associated with an increased disease severity according to studies examining the humoral response
produced in mice infected with three different species ofLeishmania , which were related to the cutaneous
form of the disease22,23. In contrast, antibodies appear to play a protective role in VL endemic areas, as
demonstrated by the high prevalence of healthy seropositive individuals24.

The implications of early detection in Leishmaniasis diagnosis

Early disease detection, chemotherapy, vector control, and a potential vaccine represent the most effective
strategies for controlling Leishmaniasis in its forms and clinical manifestations8. Diagnosing a person in
early stages in a simple, fast, and effective manner is critical in determining a better prognosis. Currently,
Leishmaniasis is diagnosed by combining several factors, such as clinical characteristics presented by the
patient, epidemiological and laboratory data10.

Different laboratory tests, including serological, parasitological, and molecular methods, have been developed
to diagnose Leishmaniasis25. Despite this multitude of tests, defining one as ideal for diagnosing this disease
remains difficult. One of the major challenges is the wide clinical spectrum of cutaneous lesions, which can
be easily misdiagnosed during clinical evaluation with other similar diseases9. The accuracy of the tests is
affected by the variety of Leishmania species. Another factor is the occurrence of asymptomatic cases, and
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even co-infection with the human immunodeficiency virus (HIV)7.

In this scenario, serological tests are widely used in the routine to identify parasite antigens and/or anti-
Leishmania antibodies in samples from the infected individual26. However, the effectiveness of these techni-
ques varies, and is directly associated with the type of antigen used, the species present during the infection.
Therefore, the variety of clinical manifestations of affected individuals27.

Recent studies have demonstrated the variability of results obtained using soluble Leishmania antigen (SLA)
of various species ofLeishmania , demonstrating that the nature of the antigen influences the results. When
the SLA of Leishmania infantum was tested, the sensitivity and specificity ranged from 0 to 96.7% and 63
to 100%, respectively28. Lower performance was observed with antigens from Leishmania major or Leish-
mania braziliensis , with sensitivity ranging from 1 to 87.5% and specificity ranging from 21.3 to 100%29.
Furthermore, these tests continue to fail to detect asymptomatic patients, as well as patients in the early
stages of infection and with low antibody titers28.

On the other hand, the combination of molecular biology methodologies and in silico approaches has resulted
in a powerful new strategy for improving the performance of conventional diagnostic methods. The use of
these new methodologies has enabled the investigation and selection of a new class of molecularly defined
antigens, resulting in the discovery of new molecules of various types (recombinant proteins, chimeric proteins,
and peptides) as potential candidates for serological diagnosis29,30. Several studies have attempted to improve
conventional methods, such as ELISA, by incorporating these new molecules, with satisfactory sensitivity
and specificity results (TABLE 1).

The prospect of using an antigen capable of monitoring antibody titers in VL is critical due to the long-term
persistence of anti-Leishmania antibodies even after treatment30. Therefore, the potential for choosing more
suitable antigens for the clinical form and the species involved is a potent strategy, as they are essential
elements for determining the disease in patients and, as a result, its treatment.

Immunoinformaticsin silico approaches for the selection of antigens for diagnosis

One of the challenges in the discovery of new immuno-diagnostic reagents is the identification of the antigenic
region capable of activating the immune system. In this sense, computational methods for antigenic epitope
prediction may provide crucial means to serve this purpose.31 B-cell antigenic epitopes are classified as either
continuous (Linear B-cell epitopes), consisting of a consecutive fragment of amino acids from the protein
sequence, or discontinuous (conformational B-cell epitopes), which consists of atoms from surface residues
of the protein that are brought together by the folding of the polypeptide chain.

Hopp and Wood (1981, 1983) 32,33 developed the first linear epitope prediction method. The authors assigned
to each amino acid, in a sequence, the hydrophilicity scale on the assumption that hydrophilic regions are
predominantly located at the protein surface and are potentially antigenic. This approach is part of the
propensity scale methods and, thus, based on the observation of physicochemical properties of amino acids,
and the antigenic determinants in protein sequences to identify the location of the linear B-cell epitopes in
the query protein sequence. 34

The BEPITOPE tool 35 instead of relying on individual attributes for propensity measurements, this tool
utilizes combinations of physical and chemical parameters to predict linear B-cell epitopes. BEPITOPE
tool was designed to predict continuous protein epitopes and look for patterns in either a single protein, or
in the entire translated genome. In addition to computing, combining, displaying, and printing prediction
profiles, the tool also offers a list of potential linear peptides that could be synthesized and tested. BcePred36

developers stated that both BEPITOPE and BcePred work similarly. The BcePred prediction’s accuracy has
been measured using a database containing 1029 unique experimentally proven epitopes and 1029 random
peptides, yielding a precision that varies from 52.92% to 57.53%, depending on the properties used, while
being capable of achieving the highest accuracy of 58.70% when combining four amino acid properties
(hydrophilicity, flexibility, polarity, and exposed surface).36

Besides the propensity scale methods, a new approach represents an innovation in the field of epitope pre-
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diction, although may present a low performance: the amino acid scale method. Due to its low performance,
the use of machine learning (ML) has been introduced on these methods. The first server developed based
on recurrent neural network was the ABCpred server. 37 This server predicts B cell epitope(s) in an antigen
sequence by using artificial neural network. Users can select window length of 10, 12, 14, 16 and 20 (upper
limit) as predicted epitope length, when epitope length is less than 20 amino acids, then the program will
complete the “missing” amino acids using the original antigenic sequence. The dataset used for training and
testing of ABCpred server, consisting of 700 B-cell epitopes and 700 non-B-cell epitopes (random peptides),
achieved an accuracy of 65.93% using recurrent neural network.

Other tools may use a combination of ML algorithms, such as LBtope38 which was developed using Support
Vector Machine (SVM) and IBk, for example, using a large dataset of B-cell epitopes and non-epitopes, tota-
lizing 12,063 epitopes and 20,589 non epitopes, both obtained from IEDB database (https://www.iedb.org/).
It is important to emphasize that this was the first time experimentally validated non-B-cell epitopes were
used for developing a prediction tool, achieving accuracy that varies from approximately 54% to 86%, using
diverse features like binary profile, dipeptide composition and AAP (amino acid pair) profile. ABCpred and
LBtope methods consist of artificial neural networks (ANNs) trained on similar positive data, B-cell epitopes,
but differ on negative data, the non-B-cell epitopes. The negative data for ABCpred consists of the use of
random peptides, which possibly may contain non validated B-cell epitopes, while the negative data used
for LBtope consists of experimentally validated and, thus, confirmed non-B-cell epitopes from IEDB. The
scores are scaled from 20% to 100%; the default score is 60%, with an accuracy of approximately 80%.

In a similar way to LBtope, the SVMtrip 31 also uses the SVM machine learning approach, contrasting
by the fact that SVMtrip combines tripeptide similarity and propensity scores for prediction of linear B-
cell epitopes in standalone software, and in a web server. The prediction performance show that SVMTriP
achieves a sensitivity of 80.1% and a precision of 55.2%, based on the size of epitopes, being 20 amino acids
length the optimal and default setting. Regarding the ROC curves, SVMTriP (AUC = 0.702) presented a
significantly larger true positive. The combination of similarity and propensity of tripeptide subsequences
can improve the prediction performance for linear B-cell epitopes. Similarly, BepiPred 2.0 39 also offers both
a standalone software and a web server for linear B-cell epitope prediction and is based on a Random Forest
algorithm trained with epitopes annotated from Antigen-Antibody (Ag-Ab) protein structures. A dataset
of 649 Antigen-Antibody crystal structures was used, considering all non-antibody protein chains having
atoms within 4Å radius of their respective antibody’s Complementary Determining Region (CDR). After
removing the complexes with similar antigen sequence (> 70% identical), the total number of structures was
reduced to 160, on which 5 randomly selected structures were selected among the final evaluation set, while
the remaining 155 structures were distributed on five groups for cross-validation and algorithm’s training.
When compared to other prediction tools, BepiPred 2.0 presented the highest AUC value (0.62), followed
by BepiPred 1.0 (0.57) and LBtope (0.54).39

Due to the need of the three-dimensional (3D) structures of antigenic proteins required to predict Confor-
mational B-cell epitopes, the development of reliable discontinuous epitope prediction method has lagged
that of linear B-cell epitopes. Additionally, it is a difficult task to isolate conformational B-cell epitopes from
their protein context, for selective antibody production, when compared to the linear B-cells epitopes. 40

The Conformational Epitope Prediction (CEP) server 41 uses a prediction method that, when tested using
X-ray crystal structures of Ag-Ab complexes available at Protein Data Bank (PDB), accurately predicts
conformational epitopes, antigenic determinants, and sequential epitopes with an accuracy of 75%. This tool
is a step toward the new paradigm of “binding-determines function”, that will aid the development of assays
to map the residues implicated in the Ag-Ab contact.

The DiscoTope 42 is a tool capable of detecting 15.5% of residues located in discontinuous epitopes with a
specificity of 95%. DiscoTope combines the propensity scale matrices, spatial proximity, and surface exposure,
for the first time. This tool uses informations like amino acid statistics, spatial information and surface
accessibility, which have been gathered on a data set based on discontinuous epitopes established by X-ray
crystallography of Ag-Ab protein complexes.
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SEPPA 43 server combine single physicochemical properties of amino acids with geometrical structural
properties. SEPPA (Spatial Epitope Prediction of Protein Antigens) introduced a novel concept of ’unit
patch of residue triangle’. SEPPA is now on version 3.0, enabling glycoprotein antigens. When tested with
independent glycoprotein antigens only, SEPPA 3.0 gave an AUC of 0.749 and BA of 0.665, leading the top
performance among peers.

The EPITOPIA server 44 implements a machine-learning based algorithm which can handle both 3D struc-
tures, and sequence inputs to predict immunogenic regions as candidate B-cell epitopes. This approach uses
a naive Bayesian classifier on forty-four physico-chemical and structural–geometrical attributes, including
secondary structure, propensity, conservation, solvent accessible surface, and hydrophilicity. When compared
with ABCpred 37 which also have machine-learning algorithms and were trained on a very similar data set,
EPITOPIA 44 presented a better performance, yielding a success rate of 80.4% (mean AUC of 0.59), while
ABCpred yielded a success rate of 67% (mean AUC of 0.55). When compared to other methodologies like
DiscoTope 42, EPITOPIA44 presented a success rate of 89.4% against 81.8% DiscoTope. Although CEP
does not individually score amino acids, this sever achieved a mean of 0.53 AUC, which was the lowest
performance among the compared servers, with AUC results of EPITOPIA (0.6) and DiscoTope (0.62).

In a study by Arab-Mazar et al. (2022) 45, immunogenic B-cell epitopes were identified based on the amino
acid sequences of the GP63, LACK, and TSA proteins of L. major, using ABCpred and Bepipred Linear Epi-
tope Prediction. The results showed L. major’sintegrated recombinant GP63, LACK, and TSA multiepitope
antigens could be important components for constructing a viable diagnostic ELISA sandwich test for Cuta-
neous Leishmaniasis antigen detection. Menezes-Souza et al. (2015) 12 demonstrated that rLbMAPK3 and
rLbMAPK4.1 might be one of the target molecules for human and canine leishmaniasis immunodiagnostics,
using immunoinformatics tools including BepiPred program which was used to identify Linear B-Cell epito-
pes. Assis et al. (2014) 46 identified 148 linear epitopes using BepiPred and BcePred, from the calpain-like
cysteine peptidase (CP), thiol-dependent reductase 1 (TDR1) and HSP70 proteins of L. infantum. It was the
first study using a combination of several in silico epitope prediction approaches, as well as an assessment
of secondary structures for the discovery of Leishmania epitopes.

Despite the efforts of developing new epitopes prediction algorithms, this research area in bioinformatics still
lacks softwares and servers which can make use of properties that are universally observed for the antigenic
epitopes, but not for other protein surfaces during the predictions.

Immunoinformatics in the selection of antibodies for diagnosis

The Structural Antibody Database (SAbDab) is a web tool database of antibody structures which has over
6,000 antibody structures.47 The annotations include experimental information, gene details, accurate heavy
and light chain pairings, antigen details, and in some cases, also include antibody-antigen binding affinity.

IMGT/mAb-DB is a monoclonal antibody database, part of IMGT®, the international ImMunoGene-
Tics information system®, which is the standard reference for immunogenetics and immunoinformatics.
IMGT/mAb-DB is a one-of-a-kind specialist resource for immunoglobulins (IG) or monoclonal antibodies
(mAb) with therapeutic indications, as well as fusion proteins for immunological applications (FPIA).48 The
server database contains 1,261 entries, being 1,091 structures of immunoglobulin.

Immunoinformatics and docking analyses for diagnostic tools

Tools that use antibody-specific decoy generation and scoring methods perform better when compared with
the general methods (protein-protein docking). 49 ClusPro,50FRODOCK,51 PatchDock 52 and ZDOCK53

are examples of tools which include specific algorithms to perform antibody–antigen global docking and
rigid-body approaches.

The ClusPro server 50, a widely used tool for protein–protein docking, do not consider possible conformational
changes upon binding (rigid-body docking), and has an algorithm based on the Fast Fourier Transform (FFT).
FRODOCK 51 also uses FFT correlation algorithms, with differences in spherical harmonic (SH) based
rotational search, which has been proven to be a faster alternative in protein–protein docking. PatchDock

6



P
os

te
d

on
26

A
u
g

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

30
25

52
.2

40
62

05
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

52is a geometry-based molecular docking algorithm that combines geometric hashing and pose clustering to
find interactions between antibody–antigen complexes. Its high efficiency could be explained due to the fast
transformational search based on local feature matching, avoiding exhaustive orientation search. ZDOCK
53 is a rigid protein docking program which performs a thorough search for probable binding modes of
two component proteins, using FFT. This tool searches through each conceivable posture in the translation
and rotation spaces of the two proteins. The scoring function, which calculates potential energy, spatial
complementarity, and electric field force, is an energy-based scoring function.

SnugDock 54 and HADDOCK 55 are tools that can perform flexible docking. The SnugDock is a Rosetta
protocol (some of these protocols are fully automated via the ROSIE web server, rosie.rosettacommons.org)
tailored to perform antibody-antigen docking. SnugDock’s local search algorithm models the CDR loops and
the VH-VL orientation in the context of the antibody-antigen contact. When the crystal structure of the
antibody is unavailable, this tool may predict high-resolution antibody-antigen complex structures, which
is particularly helpful. The relative orientation of the antibody light and heavy chains, the conformations
of the six complementarity determination region loops, and the placements of the antibody and antigen
rigid bodies can all be optimized simultaneously using this method. On the other hand, the HADDOCK
(High Ambiguity Driven protein-protein DOCKing) server 56 allows its users to perform protein-protein
docking, considering the flexibility in the side chains and backbones, in order to consider conformational
rearrangements in the interaction surface. This tool combines a global rigid body search with ambiguous
restraints, simulated annealing in torsion space, and minimization in Cartesian space.

Jeliazkov et al. (2021) 56 performed a comparative study of different docking tools, having specific options for
antibody-antigen modeling, on sixteen target complexes. HADDOCK achieved 75% success rate (according
to the CAPRI quality criterion, having a model of acceptable quality or better in the top ten57 followed by
ClusPro (67.8%) and ZDOCK (56.3%). In another recent assessment, with 67 target complexes, Guest et al.
(2021)58 compared ClusPro and ZDOCK. showing that ClusPro achieved a success rate on the benchmark
of 34%, although ZDOCK produced more medium accuracy or higher models (22% success, versus 16% of
ClusPro).

Bioinformatics is a valuable tool for identifying new proteins and antigens that can be used as targets for the
diagnosis and treatment of infectious diseases. However, most studies on leishmaniasis focus on identifying
new drugs and vaccines. Although there are studies that use docking tools to identify potential Leishmania
antigens, there is a lack of studies reporting the use of these approaches for the identification of new diagnostic
methods. Thus, studies in this area may be more challenging and may require greater experimental effort to
validate docking results. Our research group has been applying the mentionedin silico tools, as evidenced by
our publications in the field of immunoinformatics. 59
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8. Zuben AP, Donaĺısio MR. Difficulties in Implementing the Guidelines of the Brazilian Visceral Leish-
maniasis Control Program in large cities.Cad saude publica (2016) 20;32 (6):102-311. doi:10.1590/0102-
311X00087415

9. Aronso NE, Joya CA. Cutaneous leishmaniasis: Updates in diagnosis and management. Infectious
Disease Clinics (2019) 33(1):101-117. doi.org/10.1016/j.idc.2018.10.004

10. De Brito RCF, Aguiar-Soares RDO, Cardoso JMO, Coura-Vital W, Roatt BM, Reis AB. Recent
advances and new strategies in Leishmaniasis diagnosis. Applied Microbiology and Biotechnology (2020)
104(19):8105-8116. doi: 10.1007/s00253-020-10846-y

11. Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Arico, B., Comanducci, M., . . . &amp; Rappuo-
li, R. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome
sequencing. Science, 287(5459), 1816-1820.

12. MENEZES-SOUZA, Daniel et al. Linear B-cell epitope mapping of MAPK3 and MAPK4 from Leis-
hmania braziliensis: implications for the serodiagnosis of human and canine leishmaniasis. Applied
microbiology and biotechnology, v. 99, p. 1323-1336, 2015.

13. Souza AP, Soto M, Costa JML, Boaventura VS, de Oliveira CI, Cristal JR et al. Towards a More
Precise Serological Diagnosis of Human Tegumentary Leishmaniasis Using Leishmania Recombinant
Proteins.PLoS ONE (2013) 8(6): e66110. doi.org/10.1371/journal.pone.0066110

14. Duarte MC, Pimenta DC, Menezes-Souza D, Magalhães RDM, Diniz JLCP, Costa LE, et al. Proteins
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TABLE 1: List of proteins/peptides selected in silicoand used in the diagnosis of leishmaniasis

Peptide/Protein Performance Clinical form Reference
rCatL SPE: 95.71 % SENS:

95.56 %
Visceral Leishmaniasis DOI:

10.1371/journal.pntd.0003426
rLiHyS SPE: 100 % SENS: 100 % Visceral Leishmaniasis

and Cutaneous
Leishmaniasis

DOI: 10.1016/j.parint.20
8.02.001

rPHB + pept́ıdeo
sintético (para LT)

SPE: 98,31 % SENS:
84,91 %

Visceral Leishmaniasis
and Cutaneous
Leishmaniasis

DOI:
10.1016/j.jim.2019.112641

rLbMAPK3 rLbMAPK4 rLbMAPK3 SPE: 71.43%
SENS: 83.08%
rLbMAPK4: SPE:97.14
% SENS: 75.38 %

Visceral Leishmaniasis
and Cutaneous
Leishmaniasis

DOI: 10.1007/s00253-
014-6168-7

rLbHyM SPE: 98.0% SENS:100 % Leishmaniose
Tegumentar

DOI: 10.1007/s00436-
017-5397-y
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LbK39 SPE: 98% SENS: 88% Visceral Leishmaniasis
and Cutaneous
Leishmaniasis

DOI:
10.1016/j.onehlt.2019.100111

rLiHypA SPE: 100 % SENS: 98,2
%

Visceral Leishmaniasis
and Cutaneous
Leishmaniasis

DOI:
10.1016/j.cellimm.2017.06.001

rLB8E e rLb6H rLb6H SPE: 100.0% %
SENS: 93,9 % rLb8E
SPE: 83.3% SENS: 83.3%

Cutaneous Leishmaniasis DOI:
10.1128/jcm.01904-16

rHSP70 e rH2A SPE: 100 % SENS: 98 % Cutaneous Leishmaniasis DOI:
10.1371/journal.pone.0066110

rLiHyC + PeptC SPE: 100 % SENS: 100 % Visceral Leishmaniasis DOI:
10.1016/j.actatropica.2019.105318

ChimLeish SPE: 100 % SENS: 100 % Visceral Leishmaniasis DOI: 10.1007/s00436-
021-07342-1

rSMP-3 SPE: > 90 % SENS: >
90 %

Visceral Leishmaniasis
and Cutaneous
Leishmaniasis

DOI:
10.1016/j.imbio.2018.09.003.

rEF1b SPE: 100 % SENS: 100 % Visceral Leishmaniasis
and Cutaneous
Leishmaniasis

DOI:
10.1016/j.micpath.2019.103783

Synthetic peptides (P1,
P2, P3) e MIX(P1P2P3)

MIX SENS: 79%% P1
SENS: 72% SPE:
78-100%

Visceral Leishmaniasis DOI:
10.1155/2017/5871043

rKDDR SPE: 100% SENS:
92,86%

Visceral Leishmaniasis DOI:
10.1371/journal.pone.0211719

rK28 ESP: 98.6 % SENS: > 96
%

Visceral Leishmaniasis DOI: 10.1186/s13071-
016-1667-2

rLiHyV SPE: 95.4% SENS: 85% Cutaneous Leishmaniasis DOI: 10.1186/s13071-
015-0964-5

NOTE : SPE: Specifitity / SENS: sensibility

TABLE 2: List of methods, access information and main references for the tools discussed in the text.

Linear Epitope
Prediction
Tools

Linear Epitope
Prediction
Tools

Linear Epitope
Prediction
Tools

Linear Epitope
Prediction
Tools

Linear Epitope
Prediction
Tools

Tool Method Access Reference Reference
Hopp and Wood
(1981)

Propensity scale Unavailable in
February 2023

DOI:10.1073/PNAS.78.6.3824
DOI: 10.1016/0161-
5890(83)90029-9

DOI:10.1073/PNAS.78.6.3824
DOI: 10.1016/0161-
5890(83)90029-9

PREDITOP
(1993)

Propensity scale Unavailable in
February 2023

DOI:
10.1016/0263-
7855(93)80074-2

DOI:
10.1016/0263-
7855(93)80074-2

PEOPLE (1999) Propensity scale Unavailable in
February 2023

DOI: 10.1016/S0264-
410X(99)00329-1

DOI: 10.1016/S0264-
410X(99)00329-1

BEPITOPE
(2003)

Combinations of
physical and
chemical
parameters

bepitope.ibs.fr DOI:
10.1002/jmr.602

DOI:
10.1002/jmr.602
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BcePred (2004) Combinations of
physical and
chemical
parameters

webs.iiitd.edu.in/raghava/bcepredDOI:
10.1007/978-3-
540-30220-9 16

DOI:
10.1007/978-3-
540-30220-9 16

ABCpred server
(2006)

Machine learning webs.iiitd.edu.in/raghava/abcpredDOI:
10.1002/prot.21078

DOI:
10.1002/prot.21078

SVMtrip (2012) Machine learning sysbio.unl.edu/SVMTriPDOI:
10.1371/journal.pone.0045152

DOI:
10.1371/journal.pone.0045152

LBtope (2013) Machine learning webs.iiitd.edu.in/raghava/lbtopeDOI: 10.1371/journal.pone.0062216DOI: 10.1371/journal.pone.0062216
BepiPred (2017) Machine learning services.healthtech.dtu.dk/services/BepiPred-

3.0
DOI:
10.1093/nar/gkx352

DOI:
10.1093/nar/gkx352

Continuous
Epitope
Prediction
Tools

Continuous
Epitope
Prediction
Tools

Continuous
Epitope
Prediction
Tools

Continuous
Epitope
Prediction
Tools

Continuous
Epitope
Prediction
Tools

Tool Method Access Reference Reference
CEP (2005) Use X-ray crystal

structures of
Ag-Ab complexes
to predicts
conformational
epitopes

www.hsls.pitt.edu/obrc/index.php?page=URL1127484564DOI:
10.1093/nar/gki460

DOI:
10.1093/nar/gki460

DiscoTope (2006) Combines the
propensity scale
matrices, spatial
proximity and
surface exposure

tools.iedb.org/discotopeDOI:
10.1110/ps.062405906

DOI:
10.1110/ps.062405906

ElliPro (2008) Modified version
of Thornton’s
approach

tools.iedb.org/ellipro DOI:
10.1186/1471-
2105-9-514

DOI:
10.1186/1471-
2105-9-514

PEPITO (2008) Combine single
physicochemical
properties of amino
acids with
geometrical
structural
properties

PEPITO is
available as part of
the SCRATCH
suite of protein
structure predictors:
scratch.proteomics.ics.uci.edu

DOI:
10.1093/bioinformatics/btn199

DOI:
10.1093/bioinformatics/btn199

SEPPA 3.0 (2009) Combine single
physicochemical
properties of
amino acids with
geometrical
structural
properties

www.badd-
cao.net/seppa3/index.html

DOI:
10.1093/nar/gkp417

DOI:
10.1093/nar/gkp417

EPITOPIA server
(2009)

Machine learning epitopia.tau.ac.il DOI: 10.1186/1471-
2105-10-287

DOI: 10.1186/1471-
2105-10-287

COBEpro (2009) Machine learning scratch.proteomics.ics.uci.eduDOI:
10.1093/protein/gzn075

DOI:
10.1093/protein/gzn075

CBTOPE (2010) Machine learning crdd.osdd.net/raghava/cbtope
(unavailable in
February 2023)

DOI: 10.1186/1745-
7580-6-6

DOI: 10.1186/1745-
7580-6-6
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Mimotope
Prediction
Tools

Mimotope
Prediction
Tools

Mimotope
Prediction
Tools

Mimotope
Prediction
Tools

Mimotope
Prediction
Tools

Examples: tools.iedb.org/main/analysis-
tools/mapping-
mimotopes

tools.iedb.org/main/analysis-
tools/mapping-
mimotopes

tools.iedb.org/main/analysis-
tools/mapping-
mimotopes

tools.iedb.org/main/analysis-
tools/mapping-
mimotopes

Database Availability Availability Availability Reference
MIMOX (2006) web.archive.org/web/20191025115806/http://immunet.cn/mimoxweb.archive.org/web/20191025115806/http://immunet.cn/mimoxweb.archive.org/web/20191025115806/http://immunet.cn/mimoxDOI:

10.1186/1471-
2105-7-451

PEPITOPE
(2007)

pepitope.tau.ac.il pepitope.tau.ac.il pepitope.tau.ac.il DOI:
10.1093/bioinformatics/btm493

EpiSearch (2009) curie.utmb.edu/episearch.htmlcurie.utmb.edu/episearch.htmlcurie.utmb.edu/episearch.htmlDOI:
10.4137/bbi.s2745

MIMOPRO (2011) informatics.nenu.edu.cn/MimoPro
(unavailable in
February 2023)

informatics.nenu.edu.cn/MimoPro
(unavailable in
February 2023)

informatics.nenu.edu.cn/MimoPro
(unavailable in
February 2023)

DOI: 10.1186/1471-
2105-12-199

Pep-3D-Search
(2008)

kyc.nenu.edu.cn/Pep3DSearch
(unavailable in
February 2023)

kyc.nenu.edu.cn/Pep3DSearch
(unavailable in
February 2023)

kyc.nenu.edu.cn/Pep3DSearch
(unavailable in
February 2023)

DOI: 10.1186/1471-
2105-9-538

MEPS (2007) www.caspur.it/meps
(unavailable in
February 2023)

www.caspur.it/meps
(unavailable in
February 2023)

www.caspur.it/meps
(unavailable in
February 2023)

DOI: 10.1186/1471-
2105-8-S1-S6

MIMOP (2006) upon request upon request upon request DOI:
10.1093/bioinformatics/btl012

3D-Epitope-
Explorer (3DEX)
(2005)

www.schreiber-
abc.com/3dex
(unavailable in
February 2023)

www.schreiber-
abc.com/3dex
(unavailable in
February 2023)

www.schreiber-
abc.com/3dex
(unavailable in
February 2023)

DOI:
10.1002/jcc.20229

PEPMAPPER
(2012)

informatics.nenu.edu.cn/PepMapper
(unavailable in
February 2023)

informatics.nenu.edu.cn/PepMapper
(unavailable in
February 2023)

informatics.nenu.edu.cn/PepMapper
(unavailable in
February 2023)

DOI:
10.1371/journal.pone.0037869

Antibodies
Databases

Antibodies
Databases

Antibodies
Databases

Antibodies
Databases

Antibodies
Databases

Database Availability Availability Availability Reference
SAbDab opig.stats.ox.ac.uk/webapps/sabdabopig.stats.ox.ac.uk/webapps/sabdabopig.stats.ox.ac.uk/webapps/sabdabDOI:

10.1093/nar/gkz827
IMGT/mAb-DB imgt.org imgt.org imgt.org DOI:

10.3390/antib11040065
Docking Tools Docking Tools Docking Tools Docking Tools Docking Tools
Tool Method Access Reference Reference
ZDOCK Rigid protein

docking program
using Fast Fourier
Transform (FFT)
techniques

zdock.umassmed.edu DOI:
10.1002/prot.10389

DOI:
10.1002/prot.10389

PatchDock (2005) Geometry-based
molecular docking
algorithm

bioinfo3d.cs.tau.ac.il/PatchDockDOI:
10.1093/nar/gki481

DOI:
10.1093/nar/gki481
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SnugDock (2010) Docking and the
relative
orientation of the
antibody and
antigen bodies
can be optimized

rosie.rosettacommons.org/snug -
dock

DOI:
10.1371/journal.pcbi.1000644

DOI:
10.1371/journal.pcbi.1000644

FRODOCK
(2016)

Uses FFT
correlation
algorithms, with
differences in
spherical
harmonic (SH)
based rotational
search

chaconlab.org/modeling/frodockDOI:
10.1093/bioinformatics/btw141

DOI:
10.1093/bioinformatics/btw141

HADDOCK
(2015)

Combines a global
rigid body search
with ambiguous
restraints

wenmr.science.uu.nl/haddock2.4DOI:
10.1016/j.jmb.2015.09.014

DOI:
10.1016/j.jmb.2015.09.014

ClusPro 2.0
(2017)

Algorithm based
on the FFT

cluspro.bu.edu DOI:
10.1038/nprot.2016.169

DOI:
10.1038/nprot.2016.169
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