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Abstract

Modern mobile robots require precise and robust localization and navigation systems to achieve mission tasks correctly. In

particular, in the underwater environment, where Global Navigation Satellite Systems (GNSSs) cannot be exploited, the devel-

opment of localization and navigation strategies becomes more challenging. Maximum A Posteriori (MAP) strategies have been

analyzed and tested to increase navigation accuracy and take into account the entire history of the system state. In particular,

a sensor fusion algorithm relying on a MAP technique for Simultaneous Localization and Mapping (SLAM) has been developed

to fuse information coming from a monocular camera and a Doppler Velocity Log (DVL) and to consider the landmark points

in the navigation framework. The proposed approach can guarantee to simultaneously locate the vehicle, thanks to the onboard

sensors, and map the surrounding environment with the information extracted from the images acquired by a bottom-looking

optical camera. Optical sensors can provide constraints between the vehicle poses and the landmarks belonging to the observed

scene. The DVL measurements have been employed to solve the unknown scale factor and to guarantee the correct vehicle

localization even in absence of visual features. After validating the solution through realistic simulations, an experimental

campaign at sea was conducted in Stromboli Island (Messina), Italy. In conclusion, an algorithm, which works with the Poisson

surface reconstruction method to obtain a smooth seabed surface, for mesh creation has been developed.
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1 Introduction1

From geology to exploration and surveillance of archaeological sites and from Oil and Gas industry to re-2

connaissance for military purposes, exploring and understanding seas and oceans is a matter of primary3

importance. Considering their human hostile nature, since the 1960s, seas and oceans have been explored4

with the aid of robots. The first Unmanned Underwater Vehicles (UUVs) were teleoperated ones and are5

referred in the technical literature as Remotely Operated Vehicles (ROVs). A cable, usually called umbilical6

cable, acts as a constant connection providing power and communications, and specialised operators are thus7

able to control the vehicle using the feedback forwarded by the on-board sensors. In the last decades Au-8

tonomous Underwater Vehicles (AUVs), which are completely autonomous, have gained interest with respect9

to ROVs. Indeed, such vehicles do not require human intervention (except for deployment and recovery),10

are usually equipped with electric batteries, and possess dedicated systems used to control their motion.11

Since the demanded tasks of underwater vehicles have become more and more challenging (Prats et al.,12

2012), (Ferri et al., 2017), researchers and scientists are following the tide of change and are pushing the13

boundaries of AUVs capabilities by integrating cutting-edge technologies. Indeed, autonomous inspection14

(Cashmore et al., 2014), and intervention (Youakim et al., 2020) strategies for underwater installations,15

exploration planning solutions (Vidal et al., 2020), and autonomous coverage approaches (Paull et al., 2012),16

have become essential tools to execute demanding and hazardous subsea operations.17

One of the most significant and complex tasks in autonomous underwater exploration is to retrieve the vehi-18

cle’s pose within the surrounding environment, making use of precise and reliable navigation and localization19

systems, which are necessary regardless of the kind of mission or task the underwater vehicle is required to20

perform. In addition to this, perceptual devices (such as optical cameras and acoustic devices) able to21

sense the surrounding environment have been earning attention throughout the last decades to acquire data22

for monitoring and inspection purposes. The use of optical and acoustic equipment to aid navigation has23

emerged as a relevant alternative or support to traditional navigation sensors.24

Several algorithms have been developed throughout the years to increase the navigation and localization ca-25

pabilities of the AUVs relying on Bayesian estimators, such as Kalman filtering and Maximum A Posteriori26

(MAP) estimators. Both Extended Kalman Filter (EKF) (Dissanayake et al., 2001) and least squares opti-27

mization (Dellaert and Kaess, 2006) have been used extensively in Simultaneous Localization And Mapping28

(SLAM) research in the past (Zhang et al., 2018). Earlier SLAM research has used EKF algorithms where29

the state vector contained the latest robot pose and the positions of the observed features. However, it has30

been shown that EKF-SLAM could result in inconsistent estimate (Julier and Uhlmann, 2001), (Castellanos31

et al., 2004), as the estimated covariance from the algorithm can violate the theoretical achievable lower32

bounds (Dissanayake et al., 2001), (Huang and Dissanayake, 2007). On the contrary, optimization based33

SLAM uses a state vector containing all the robot poses and all the features observed. Considering that34

relinearization is performed during each iteration step, there is no inconsistency issue in optimization based35

SLAM and thus the quality of the estimate is higher than that of EKF-SLAM.36

Consequently, to overcome the limitations introduced by the Kalman filter strategies, which condense all37

the history into the last estimation, a sensor fusion MAP algorithm has been developed for underwater38

navigation in the context of this work. Due to the complexity of retrieving navigation information in the39

underwater environment, a sensor fusion approach has been used. The performance and robustness of the40

visual SLAM algorithm heavily rely on the quality of the images and salient features. Consequently, the41

visual SLAM system has been fused with other sensing algorithms, such as the Doppler Velocity Log (DVL).42

As shown previously, very few works still exist on underwater SLAM fusing data from a monocular camera43

and a DVL. Despite that, fusing an optical and an acoustic sensor in a MAP-based framework can take44

advantages from both sensors, which have an excellent complement to each other. This developed solution45

can be employed to locate the vehicle and map the seabed at the same time in a unified framework. Thus,46

an underwater visual acoustic SLAM strategy which integrates DVL with a visual SLAM system has been47

developed to perform accurate navigation and mapping tasks at the same time. Particular attention has been48

focused on the design of scale factor ambiguity resolution and extrinsic calibration optimization procedure49

and on implementing a reset procedure to reduce the computational burden. Furthermore, the proposed50

strategy has been tested with both simulated and experimental data to evaluate the navigation performance51

and has been compared with an Unscented Kalman Filter (UKF)-based algorithm, whose performance has52



been accurately discussed in authors’ previous works (Bucci et al., 2023), (Bucci et al., 2021).53

The paper is organized as follows: state-of-the-art in SLAM strategies are detailed in Section 2, whereas54

Section 3 is dedicated to introduce the MAP estimation approach. Section 4 outlines the development of the55

factor graph framework, whereas some improvements and peculiarity of the proposed SLAM strategy are56

reported in Section 5. While navigation results obtained from simulated environment and from an experi-57

mental campaign are reported respectively in Section 6 and 7, an analysis of the mapping capabilities are58

depicted in Section 8. Finally, Section 9 draws conclusions.59

2 Related works60

Many estimation problems in robotics have an underlying optimization problem (Dellaert, 2021). In most61

of these optimization problems, the objective to be maximized or minimized is composed of many differ-62

ent factors (e.g., a Global Navigation Satellite System (GNSS) measurement is applied to the pose of the63

vehicle at a particular time and can be referred as an unary factor, an Inertial Measurement Unit (IMU)64

measurement can be related to two vehicle states at adjacent times and can represent an odometry factor).65

The use of factorial graphs in the design of algorithms for robotic applications has three main advantages.66

First, since many optimization problems in robotics have the property of locality, factorial graphs can model67

a wide variety of problems in all robotics domains, such as tracking, navigation, and mapping. Secondly,68

by clearly exposing the structure of the problem, reflection on factorial graphs offers many opportunities to69

improve the performance of key algorithms. Many classical algorithms can be viewed as the application of70

the elimination algorithm to a particular type of factorial graph. Still, this algorithm is only optimal for a71

small class of problems. In many applications, knowledge of the specific structure of the problem domain72

can improve the execution time of inference by orders of magnitude. Similarly, well-known algorithmic ideas73

from linear algebra can be generalized to factorial graphs, leading, for example, to incremental inference74

algorithms. Thirdly, apart from performance considerations, factorial graphs are useful when designing and75

thinking about how to model a problem, providing a common language to express ideas to collaborators and76

users of a particular algorithm. After working with factor graphs for a while, one begins to identify factor77

types as a particularly useful design unit. A factor type specifies how many variables a factor is related to78

and the semantics associated with the function to be calculated.79

MAP estimation has recently become the standard approach for modern SLAM strategies (Cadena et al.,80

2016). Indeed, while fixed-lag smoothers and filtering solutions restrict the inference within a window of the81

latest states or to the latest state, respectively, MAP strategies estimate the entire history of the system82

by solving a non-linear optimization problem. Both fixed-lag smoothers and filters marginalize older states,83

collapsing the corresponding information (usually) in a Gaussian prior. This approach can lead to reduced84

robustness against outlier data (Forster et al., 2016). Since MAP strategies can quickly lead to an unsuitable85

approach for real-time applications, the development of incremental smoothing techniques has arisen as the86

state-of-the-art approach. Such techniques can reuse previously calculated quantities when new measure-87

ments or variables are added (Kaess et al., 2008), (Kaess et al., 2012). In particular, in (Kaess et al., 2012)88

a Bayes tree data structure is employed to perform incremental optimization on the factor graph. Also, the89

adopted solution possesses the ability to identify and update only a small subset of variables by accurately90

selecting the ones affected by the new measurement. A complete review can be found in (Grisetti et al.,91

2020) and the references therein.92

Considering the underwater domain, two works have been taken as inspiration for the development of the93

factor graph employed in the proposed SLAM strategy. (Westman and Kaess, 2019) proposes an algorithm94

to generate pose-to-pose constraints for pairs of SONAR images and to fuse these resulting pose constraints95

with the vehicle odometry in a pose graph optimization framework. In (Franchi et al., 2021) Ultra-Short96

BaseLine (USBL) measurements are exploited as observations within the on-board navigation filter, where97

the localization task is solved as a MAP estimation problem. Both these solutions rely on Incremental98

Smoothing and Mapping 2 (iSAM2), which is the last evolution of the incremental smoothing and mapping99

solution developed in Georgia Tech Smoothing And Mapping (GTSAM). Furthermore, other graph-based100

SLAM strategies have been proposed to fuse the data obtained by the navigation sensors and the perception101

sensors, both acoustic and optical. In (Fallon et al., 2013) this approach is used in an AUV for mine counter102



measurement and localization. While the graph is initialized by pose node from a Global Positioning System103

(GPS), a non-linear least square optimization is performed with the DVL and IMU-based Dead Reckoning104

(DR) estimations and the SONAR images. In (Huang and Kaess, 2015) an acoustic structure from motion105

algorithm for recovering 3D scene structure from multiple 2D SONAR images while at the same time local-106

izing the SONAR is presented.107

Turning to visual SLAM, ORB-SLAM (Mur-Artal et al., 2015) is one of the most complete and simple108

algorithms, and the whole system is calculated around Oriented FAST and Rotated BRIEF (ORB) fea-109

ture points, with features such as rotational scale invariance and fast detection. ORB-SLAM2 (Mur-Artal110

and Tardós, 2017) is upgraded from ORB-SLAM, supporting monocular, binocular, and RGB-D modes,111

and has good adaptability. Finally, the latest ORB-SLAM3 (Campos et al., 2021) algorithm fuses opti-112

cal images with inertial sensors. The excellent characteristics of the ORB-SLAM2 algorithm, which can113

achieve centimeter-level precision on the ground, represent an incentive for its application in underwater114

environments. Consequently, the visual part of the developed SLAM algorithm takes inspiration from the115

ORB-SLAM2 framework. Referring to the vision-based SLAM algorithm for underwater navigation and116

mapping, (Hong and Kim, 2020) addresses a visual mapping method for precise camera trajectory estima-117

tion and 3D reconstruction of underwater ship hull surface using a monocular camera as the primary sensor.118

(Du et al., 2017) proposes an underwater visual SLAM system using a stereo camera, which has been tested119

in a circular pool.120

Finally, an acoustic-visual-inertial SLAM strategy has been proposed in (Rahman et al., 2018) and (Rah-121

man et al., 2018). Data coming from a mechanical scanning SONAR, a stereo camera, and proprioceptive122

inertial sensors are fused in a tightly coupled non-linear optimization to estimate the vehicle trajectory and123

reconstruct the surrounding environment. There are few works where the DVL measurements are fused with124

other perception sensors in a SLAM strategies. In (Ozog and Eustice, 2013) a SLAM method, which uses a125

very sparse point cloud derived from a DVL to add constraints to a piecewise-planar framework, is proposed.126

A camera is also employed to bound drifts of odometry fused by a DVL, IMU and pressure Depth Sensor127

(DS) (Kim and Eustice, 2013). Fiducial markers are also integrated into a visual SLAM framework with128

DVL, IMU, and DS in (Westman and Kaess, 2018).129

3 Maximum A Posteriori estimation130

A navigation and mapping problem is a problem where the unknown state variables X = {x1, x2, ..., xM}131

constituted of poses and landmarks has to be determined given the measurements Z = {z1, z2, ..., zN}. The132

MAP estimator maximizes the posterior density p(X|Z) of the states X given the measurements Z:133

XMAP = argmax
X

p(X)l(Z|X) = p(X)

N∏
i=1

l(zi|X), (1)134

where l(zi|X) is the likelihood distribution and an additive Gaussian noise is assumed in all measurement135

models, as reported in Eq. 2.136

p(zi|X) = N (hi(X),Σi) ∝ exp

(
−1

2
‖hi(X)− zi‖2Σi

)
(2)137

where hi(X) is the measurement function, which maps the state estimate X into a predicted value ẑi of138

the measurement zi and Σi is the covariance matrix, which summarizes the uncertainty of the measurement139

model. By applying the monotonic logarithmic function and the Gaussian model previously introduced, the140

optimization problem can be simplified into a nonlinear least square problem:141

XMAP = argmin
X

N∑
i=1

‖hi(X)− zi‖2Σi
(3)142

where143

‖hi(X)− zi‖2Σi
= (hi(X)− zi)>Σ−1

i (hi(X)− zi) (4)144



is the Mahalanobis distance.145

The nonlinear problem can be solved through standard methods, such as the Gauss-Newton or the Levenberg-146

Marquardt algorithms, which iteratively converge to the solution by solving the linear approximation of the147

nonlinear system. More information can be found in (Grisetti et al., 2020), (Dellaert and Kaess, 2017).148

4 Factor graph framework development149

The mathematical modeling of the factors used to represent the measurement constraints to solve the au-150

tonomous navigation and mapping problem is presented. Inspired by (Westman and Kaess, 2018), (Westman151

and Kaess, 2020), the factors described below have been employed, where it is necessary to consider that the152

information included in some factors can be derived from measurements not coming from a single sensor.153

The state of the system at instant i is defined as a complete pose belonging to SE(3), which can be expressed154

mathematically as:155

Txi =

[
Ri ti

01×3 1

]
(5)156

where Ri ∈ SO(3) is the rotation matrix and ti ∈ R3 represents the translation vector. Defining the set of157

poses at time k with Xk, such that Xk = {Txi
}i=0,1,...,k, it is possible to define the optimization problem158

and, in particular, Eq. 4 on the smooth manifold SE(3). Considering a transformation from the state xi to159

the state xj constrained with an odometry measurement zi,j with covariance Σi,j , Eq. 4 becomes:160

‖fij(xi, xj)	 zi,j‖2Σi,j
= ‖ log(T−1

zi,jT
−1
xi
Txj )‖2Σi,j

(6)161

The symbol 	 encodes the logarithmic map from the manifold to an element of the SE(3) Lie algebra, where162

fij(·) represents the measurement function applied to the poses Txi
and Txj

. For ease of explanation Txi
163

can be represented with the vector
[
Xxi

Yxi
Zxi

φxi
θxi

ψxi

]
∈ R6 and the measurement function164

becomes165

fij(xi, xj) =
[
Xxi,j Yxi,j Zxi,j φxi,j θxi,j ψxi,j

]>
(7)166

In contrast, for a measurement zi that indicates a local information on the state xi with covariance Σi, Eq.167

4 is168

‖fi(xi)	 zi‖2Σi
= ‖ log(T−1

zi Txi
)‖2Σi

(8)169

where the measurement function fi(·) applied to the pose Txi can be defined as:170

fi(xi) =
[
Xxi

Yxi
Zxi

φxi
θxi

ψxi

]>
(9)171

The information from the available onboard sensors has been encoded as measurement factors to constrain172

the optimization, whose solution represents the MAP estimate. Inspired by (Westman and Kaess, 2019), the173

following factors have been included:174

• a relative 4D pose-to-pose constraint on x, y, and z translation and yaw rotation, thanks to the175

measurements coming from the DVL and the yaw estimated by the attitude estimator;176

• a unary 2D constraint on pitch and roll rotations, obtained from the attitude estimation filter;177

• a unary 1D constraint on z translation thanks to the DS measurements;178

• a unary constraint on x and y translation exploiting GNSS observations;179

• a relative 6D pose-to-pose constraint on x, y, and z translation and roll, pitch, and yaw rotation,180

thanks to the relative pose estimated through the monocular camera and properly scaled;181

• a camera-based landmark constraint on the vehicle pose and the landmark position for each feature182

seen with the monocular camera over multiple images.183



The implemented approach adds a new state only when at least one observation from GNSS, DVL, DS, or,184

when the visibility is acceptable, the camera is available. The link between adjacent nodes is maintained185

by collapsing the relative motion XYZ-Y in a single compound constraint, where simple DR is performed186

between the two consecutive nodes with the last acquired DVL measurements. The pose Txi
can be repre-187

sented with a vector
[
Xxi Yxi Zxi φxi θxi ψxi

]
∈ R6 that encodes the state at the generic instant.188

Mathematically, at time k, the optimization problem can be written as189

X ∗k = argmax
X

∑k−1
i=1

(
‖mXY Z−Y (xi−1, xi)	 oi−1,i‖2Σoi−1,i

+ ‖mRP (xi)	 ri‖2Σri

)
+

+
∑

i∈Z ‖mZ(xi)− zi‖2Σzi
+

+
∑

i∈G ‖mXY (xi)− gi‖2Σgi
+

+
∑

i,j∈C ‖mXY Z−RPY (xi, xj)	 pi,j‖2Σpi,j
+

+
∑

j∈LM,i∈C ρ
(
‖pij − πi(Txi

P j)‖2Σlmi

)
+

+‖Tx0 	 Txprior‖2Σlmi

(10)190

{mXY Z−Y (·), oi−1,i,Σoi−1,i
}, {mRP (·), ri,Σri}, {mZ(·), zi,Σzi}, {mXY (·), gi,Σgi},191

{mXY Z−RPY (·), pi,j ,Σoi,j} are the measurement functions, the measured values and covariances as-192

sociated to the previously introduced factors. In particular, oi−1,i, ri and pi,j represent, on SE(3), the193

observation for the XYZ-Y part, the RP part and the camera-based XYZ-RPY part, resepectively, zi ∈ R194

is the depth measurement, gi ∈ R2 is the GNSS measurement. The measurement functions are:195

mXY Z−Y (xi−1, xi) =
[
Xxi−1,i

Yxi−1,i
Zxi−1,i

ψxi−1,i

]>
mRP (xi) =

[
φxi

θxi

]>
mZ(xi) = [Zxi ]

mXY (xi) =
[
Xxi

Yxi

]>
mXY Z−RPY (xi, xj) =

[
Xxi,j

Yxi,j
Zxi,j

φxi,j
θxi,j

ψxi,j

]>
(11)196

Thanks to the features extracted from optical images and matched through multiple keyframes, it is possible197

to optimize map point locations P j ∈ R3 and keyframe poses Txi
∈ SE(3) minimizing the reprojection error198

with respect to the matched keypoints pij ∈ R2. The error term for the observation of a map point j in a199

keyframe i is200

eij = pij − πi(Txi
P j) (12)201

where πi(·) is the projection function:202

πi(Txi
P j) =

[
fx

xij

zij
+ cx

fy
yij

zij
+ cy

]
(13)203

where (fx, fy) and (cx, cy) are respectively the focal length and the principal point of the camera and204 [
xij yij zij

]>
are the coordinates of the point. The cost function to be minimized can be defined as:205

fLM (xi) = ρ
(
‖pij − πi(TxiP j)‖2Σlmi

)
(14)206

where ρ(·) is the Huber robust cost function and Σlmi is the covariance matrix associated to the scale at207

which the keypoint i was detected. While Z, G and C are the set of pose nodes for which DS, GNSS and208

camera measurements respectively occur, LM is the set of landmark nodes. Txprior
is the prior constraint209

on the first pose, which is necessary to anchor the state evolution to a global coordinate frame (Fig. 1).210

In terms of implementation, the GTSAM library (Dellaert, 2012) has been used as the back-end for the211

localization solution. Further information can be found in (Kaess et al., 2008), (Kaess et al., 2012). iSAM2,212

which is the latest evolution of the incremental smoothing and mapping solution developed in GTSAM,213

allows only the typical small subset of variables affected by a new measurement, i.e., the measurement func-214

tion and associated covariances, to be identified and updated, thus limiting the computational load of the215



Figure 1: Example of the factor graph at the iteration i constrained with vision-based landmarks and all the
onboard sensors.

estimation, offering a trade-off between accuracy and efficiency. Several issues affect the vision in underwa-216

ter environments, which can negatively influence the employment of visual SLAM algorithms. Specifically,217

while scattering reduces light intensity causing a loss of contrast and haze in underwater images, light ab-218

sorption leads to a decrease in the color quality of underwater images. Light attenuation in water introduces219

degradation in underwater images, such as poor colors, decreased contrast, haziness, and blurring, making220

them hardly usable for the filter. Thus it is necessary to guarantee that the visual part of the navigation221

framework, which is dependent on uncontrollable external conditions, can be correctly inserted or removed222

from the factor graph. Only when the visual SLAM algorithm is correctly initialized and the current scale223

factor is computed, it is possible to insert keyframe poses and map point locations in the factor graph. Edges224

computed thanks to other onboard sensors, which do not suffer from visibility limitations, are inserted in225

the whole factor graph during the entire mission. The developed system, through the map points obtained226

from the vision system and the DVL beams, can build a map of the surrounding environment independently227

from the visibility. Indeed, when the reduced visibility impedes the usage of the visual-based features as228

map points, DVL-based beams can be employed to build an approximated map of the sea bottom. The229

quality and resolution of the produced map depend on the availability of the visual landmarks. Still, thanks230

to the DVL measurements, the reconstruction can be performed for the whole mission. Considering that,231

when an AUV accomplishes an underwater mission, the sea bottom texture can change very fast, and its232

depth can increase rapidly, the possibility to guarantee reconstruction of the surrounding environment, even233

approximated, represents a helpful advantage. Obviously, it is necessary to highlight that the DVL beams234

cannot be employed as landmark nodes in the factor graph. Still, they can only be added to the map utilizing235

the sensor geometrical model. It is necessary to highlight that underwater SLAM fusing camera, and DVL236

sensors can increase the localization accuracy and robustness thanks to the excellent complement between237

these two sensors: DVL provides reliable motion estimates for underwater visual SLAM, extending SLAM’s238

robustness and operation even without visual features, and vision, when applicable, helps the estimation239

process by introducing visual landmarks which increase the constraints on the vehicle position.240

Turning to the specific strategies for DVL and camera-based factor graph constraint computation, the fol-241

lowing approaches have been employed. It is necessary to notice that while the primary application field242

of a DVL is vehicle navigation through a DR strategy that computes the AUV position by integrating the243

measured linear velocity, the DVL has four acoustic beams, each pointing in a different direction, which can244

be employed to acquire the 3D location of 4 points of the sea bottom during each speed measurement. The245

points located thanks to the DVL beams cannot be employed as additional constraints in the navigation pose246

graph because they do not link any node of the graph. Still, they can easily be used to increase the number247

of points in the estimated map of the sea bottom. Indeed, by knowing the vehicle’s actual position from the248

navigation algorithm, the location of the four beams can be converted from the DVL frame to the North,249

East, Down (NED) reference system. The visual SLAM algorithm employed in the developed navigation250

framework is a feature-based monocular SLAM system that operates to estimate the camera trajectory and251

an environment map. The basic idea of the SLAM system introduced in the navigation filter takes inspira-252

tion from the algorithms proposed in (Mur-Artal et al., 2015), (Mur-Artal and Tardós, 2017). Furthermore,253



following the results reported in (Zacchini et al., 2019), (Bucci et al., 2022), where accurate comparisons254

between several feature detectors are explained, ORB feature detector has been chosen as the preferable255

solution instead of Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF) and256

Accelerated-KAZE (AKAZE). Considering that a monocular camera is employed, a scale factor ambiguity257

to be solved features the visual-based estimate.258

5 Factor graph framework improvements259

5.1 Scale factor ambiguity resolution260

This procedure, which is executed every time the visual SLAM algorithm is correctly initialized, has two261

main purposes, the scale factor ambiguity resolution and accurate compensation of the fixed rototranslation262

between the camera and the body frames. This transformation is represented as a similarity transforma-263

tion composed of a scale factor s, a translation vector tc,b =
[
txc,b tyc,b tzc,b

]>
and a rotation matrix264

Rb
c = Rz(ψb

c)Ry(θbc)Rx(φbc). It is based on comparing the trajectories estimated through the DVL and the265

other inertial sensors and the camera. It is necessary to notice that until the scale factor has not been esti-266

mated, the measurements obtained thanks to the visual SLAM algorithm are not inserted in the whole factor267

graph. Considering this algorithm’s two purposes and that, usually, underwater vehicles for survey missions268

execute planar trajectories at constant depth, the problem has been solved with a two-step algorithm. In269

particular, while the first part of the algorithm determines a closed-form solution for the x and y directions,270

yaw rotation, and the scale factor, the second part optimizes the whole scaled rototranslation with an itera-271

tive algorithm. This framework has been adopted due to the limitations introduced by the particular motion272

executed by the AUV. Indeed, on the one hand, the optimal closed-form solution estimated with 3D points273

that almost lie on a plane cannot correctly estimate the roll and pitch angles of the rigid transformation274

between the two considered reference frames. On the other hand, the iterative algorithm locally converges275

and requires an initial guess in the neighborhood of the exact solution, which can be measured directly on276

the vehicle or evaluated through the closed-form solution.277

The two steps of the algorithm are described in detail. Firstly, the closed-form solution is found by comput-278

ing the trajectory alignment transformation with translational component on the xy-plane of the trajectory279

estimated with the DVL and the camera and with rotational component computed with respect to the280

perpendicular axis to this plane. Given the DVL-based positions {pDV L
i }Ni=1 and the camera-based posi-281

tions {pCAM
i }Ni=1, it is necessary to determine the optimal similarity transformation S∗ = {s∗, Rb ∗

c , t∗c,b} =282

{s∗, ψb ∗
c , tx ∗c,b , t

y ∗
c,b} that satisfies the minimization problem reported in Eq. 15.283

S∗ = argmin
s,Rb

c,tc,b

N∑
i=1

‖pDV L
i − sRb

cp
CAM
i − tc,b‖2 (15)284

where it is necessary to suppose that285

Rb
c = Rz

(
ψb
c

)
(16)286

287

tc,b =
[
txc,b tyc,b 0

]>
(17)288

The solution of this least squares problem can be found using the method explained in (Umeyama, 1991).289

The second step works with Ceres Solver, an open-source library that provides a rich set of tools to construct290

and solve an optimization problem. Ceres solves robustified bounds constrained non-linear least squares291

problems of the form:292

min
x

lj ≤ xj ≤ uj

1

2

∑
i

ρi
(
‖fi(xi1 , ..., xik)‖2

)
. (18)293



Figure 2: Comparison of the two factor graphs (e.g., the DVL-based graph on the top and the camera-based
graph on the bottom of the image) employed for the scale factor ambiguity resolution. The dashed lines in
the bottom graph are the edges which are not reported in the whole graph. For ease of reading, a one-to-one
association between the two graphs is considered.

The expression ρi
(
‖fi(xi1 , ..., xik)‖2

)
represents the residual block, where ρi(·) is the loss function used to294

reduce the influence of outliers on the solution and fi(·) is the cost function that depends on the parameters295

block {xi1 , ..., xik}. lj and uj are the lower and upper bounds on the parameter block xj .296

Defining the state x =
[
s φbc θbc ψb

c txc,b tyc,b tzc,b
]>

, the loss function is assumed to be the identity297

function, the cost function is the same as in the first step of the algorithm298

f(x) = pDV L
i − sRb

cp
CAM
i − tc,b (19)299

where, unlike the previous case, it is supposed that300

Rb
c = Rz

(
ψb
c

)
Ry

(
θbc
)
Rz

(
φbc
)

(20)301

302

tc,b =
[
txc,b tyc,b tzc,b

]>
. (21)303

The initial guess and the upper and lower bounds are computed thanks to the values estimated in the closed-304

form solution. Considering that this is a small problem with few parameters and relatively dense Jacobians,305

dense QR factorization is the method of choice (Björck, 1996).306

5.2 Reset procedures307

Although iSAM2 reduces the variables to be optimized to a small subset, it is necessary to apply a reset308

procedure to maintain a limited factor graph and avoid increasing nodes and edges. In particular, considering309

that the presence of visual landmark nodes constrains several pose nodes, the computational burden tends310

to increase at every iteration step, and the factor graph is more arduous to be managed. Two factor graph311

reset procedures have been developed to avoid the increase of the graph size, where the first is dedicated to312

compacting the factor graph without reducing the visual landmark nodes, and the second operates on the313

whole factor graph reducing all the information to the ones contained in the last node. While the first reset314

strategy will be called keyframe reset, the second one will be referred as global reset. One of the two reset315

strategies is applied when the number of pose nodes of the factor graph reaches a value equal to N . The316

status of the factor graph is checked to decide which one of the two strategies are applied. In particular, the317

keyframe reset procedure is recalled only if the visual SLAM algorithm is active and for a maximum number318

of consecutive times equal to p. The last condition is set to maintain control of the increase of the execution319



Figure 3: Last nodes of the factor graph g constrained with vision-based landmarks and all the onboard
sensors.

time of each filter iteration. When the visual SLAM part of the navigation algorithm is not working due to320

the external visibility conditions or when the factor graph is reset for the (p + 1)-th time, the global reset321

algorithm is employed. It is necessary to notice that the keyframe reset procedure does not delete all the322

information contained in the previous pose graph. Still, only the ones related to the IMU, DVL, and DS323

measurements are removed. Indeed, this information is compressed in a new framework, which contains all324

the properties to be transferred from the previous to the following factor graph. On the contrary, the global325

factor reset reduces all the information to be transferred to the new factor graph to the ones in the last node326

of the previous factor graph.327

Both the reset strategies are now analyzed in detail to outline which information is passed from the previous328

to the actual graph and how these measurements are compressed in the new framework. Considering the329

keyframe reset procedure and referring to Fig. 3 and Fig. 4, the following actions are performed to obtain330

the graph g + 1 from the graph g.331

• The i + 1 keyframe pose nodes are transferred from the previous to the actual factor graph. The332

first keyframe node, as the one associated with the state x
(g)
k , is constrained with a prior factor with333

the last estimated value. All the subsequent i− 1 keyframe nodes are determined by an XYZ-RPY334

factor obtained from each last estimated value and the associated covariance.335

• All the m + 1 visual landmark points are transferred from the previous to the actual factor graph.336

They are employed to maintain constraints between all the keyframe pose nodes. Each landmark337

node is reported in the current graph with its last estimate and covariance and all the vision-based338

edges.339

• The last pose node associated with the state x
(g)
N , even if it is not a keyframe node, is transferred to340

the actual graph to be employed as starting point to insert the acquired measurements as constraints.341

This node is constrained to the last keyframe node with an XYZ-RPY odometry factor computed342

from the last pose estimated values of the two nodes. The relative rototranslation transformation is343

thus computed and applied as a constraint.344

All the DVL-based landmarks are reported in the global NED reference frame using the poses estimated with345

the graph g, and they are employed to build the point cloud for the seabed reconstruction. Even though the346

whole graph has been reset, the visual SLAM part, if the visibility is acceptable, continues to compute poses347

and visual landmarks, which are inserted in the new graph and connected to the keyframe nodes passed from348

the previous graph. Furthermore, until a new keyframe is not computed, the new nodes are inserted thanks349

to the DVL-based DR, the DS measurements, and the attitude estimator filter outputs.350



Figure 4: First nodes of the factor graph g + 1 after the employment of the keyframe reset procedure. The
values in the grey boxes represent the corresponding states taken from the previous factor graph g and
transferred to the actual graph g + 1.

Figure 5: First nodes of the factor graph g+1 after the employment of the global reset procedure. The values
in the grey boxes represent the corresponding states taken from the previous factor graph g and transferred
to the actual graph g + 1.

Considering the global reset procedure and referring to Fig. 3 and Fig. 5, the following actions are performed351

to obtain the graph g + 1 from the graph g.352

• Only the last pose node associated with the state x
(g)
N is transferred to the actual graph to be353

employed as starting point to insert the acquired measurements as constraints. It is constrained354

with a prior factor with the last estimated value.355

• The visual landmarks and the keyframe poses are not transferred from the previous to the actual356

graph. All positions of the estimated DVL-based and visual landmarks are saved as estimated in357

the last optimization of the previous graph, and they are employed to build the point cloud for the358

seabed reconstruction.359

Even if the visibility is acceptable, the visual SLAM algorithm is reinitialized, the scale factor is again360

computed, and no information is transferred from the vision-based part of the previous graph. Despite the361

loss of some helpful information, the global reset procedure is necessary to limit the algorithm’s computation362

burden.363



Figure 6: East and North position estimation errors versus their 3σ bounds obtained from 100 simulation
analysis with the SLAM algorithm. The σ values are computed as the square-root of the corresponding
diagonal element of the estimated covariance matrix.

6 Navigation results in simulated environment364

To validate the developed DVL and camera-based SLAM algorithm, realistic simulations were performed by365

means of the Unmanned Underwater Vehicle Simulator (UUV Simulator). In particular, while navigation366

performance has been evaluated thanks to a Monte Carlo simulation, mapping capabilities have been analyzed367

with a lawnmower survey at a constant depth over a simulated seabed generated with a known mathematical368

function z = f(x, y). The obtained results have been employed to evaluate the goodness of the whole369

algorithm and some of its main features, such as the reset procedure and the scale factor computation370

algorithm. To focus attention on the navigation and mapping capabilities of the filter, the DVL and the371

camera have been modeled thanks to the simulator features. The realistic simulations were based on the372

dynamic model of FeelHippo AUV implemented in the UUV Simulator and on modeling all the onboard373

sensors. In particular, the DVL beams have been modeled by applying a noise in the measured value, which374

determines a noise in the measured velocity. The camera has been modeled with a noise in the pixel position375

of the acquired image, which influences both the vehicle and landmark position estimation.376

During the Monte Carlo simulations, the position filter was fed with the data coming from the simulated377

sensors, as the GNSS, when the vehicle was higher than a fixed depth, depth sensor, DVL and camera. To378

increase adherence to the real dataset, the DVL speed measurements have been published with a 5 Hz rate,379

and the camera acquired images with a frequency of 10 Hz. The proposed strategies have been tested on a380

vehicle whose dynamic behavior has been simulated using the model implemented in UUV Simulator, which381

has traveled a rectangular path at a fixed depth of 2 m. A Monte Carlo simulation with 100 iterations has382

been performed. The position errors and the estimated 3σ bounds along the East and North directions are383

reported in Fig. 6. The covariance trend follows the trajectory described by the vehicle. Still, the SLAM384

algorithm, due to the presence of visual landmarks which constrains the vehicle position, provides an elliptic385

3σ bound with major axis perpendicular to the direction followed by the vehicle. Despite its particular shape,386

the 3σ bound continuously diverges when the vehicle is under the sea surface, and no position measurements387

are available, correctly representing the behavior of the AUV.388

Furthermore, as in the previous section, the estimated resurfacing position has been compared with the389

theoretical first GNSS fix and its 3σ bound. The resurfacing positions estimated in all the Monte Carlo390

simulations fall inside the 3σ bound, guaranteeing reasonable estimations. Furthermore, it is possible to391

compare the 3σ bound estimation obtained from the filter and the 3σ bound estimation obtained from the392

simulated data, evaluating the latter by computing the best normal distribution approximating the estimated393

resurfacing positions with respect to the theoretical ones (Fig. 7).394

Analyzing the results obtained from the lawnmower survey at a constant depth of 5 meters and comparing395

the estimated trajectory with the ground truth provided by the simulator, it is possible to notice that396

the divergence over time of the navigation error is reduced (see Fig. 8). Indeed, even if a global loop397

closure on the visual keyframes is not performed, the presence of the highly accurate DVL measurements398

can maintain a low estimation error drift. Furthermore, Fig. 8 shows the estimated trajectory on the NED399

frame, where it is possible to notice the points where the system has been reset. Considering that the400



Figure 7: On the left, the estimated resurfacing positions versus the theoretical GNSS fix position obtained
from 100 simulation analysis for the SLAM algorithm. On the right, histograms containing the estimated
resurfacing position errors obtained from 100 simulation analysis for the SLAM algorithm.

Table 1: FeelHippo AUV Main Properties

Weight [kg] 35
Dimensions [mm] 600×640×500

Maximum Depth [m] 30
Maximum Longitudinal Speed [m/s] 1

Battery Life [h] 3

simulated seabed has been textured with a feature-rich image, it is necessary to see that the visual part401

of the SLAM algorithm continues to work for the whole trajectory. Thus, both reset strategies have been402

employed to limit the computational burden. Fig. 9 reports the estimated trajectory and the generated403

point cloud. It is possible to evaluate the algorithm mapping capabilities by comparing the estimated point404

cloud and the function employed to simulate the seabed. Considering that several outliers are kept in the405

point cloud during the SLAM algorithm, which negatively influences the seabed reconstruction, the estimated406

landmarks are elaborated to eliminate the wrong points and to downsample the cloud. Consequently, the407

seabed reconstruction capabilities of the developed algorithm are analyzed in Section 8, where the employed408

post-processing strategies are described.409

7 Experimental results410

The presented navigation and mapping strategy has been tested and validated by employing experimental411

data recorded in Stromboli Island, Messina (Italy), in September 2022, during an autonomous underwater412

mission performed in the framework of the project PATHFinder. During its autonomous navigation along413

a pre-programmed path, the payload sensors were switched on, and the vehicle acquired both acoustic414

and optical data. GNSS readings obtained from the satellites of the Galileo system were collected before415

FeelHippo AUV (Allotta et al., 2017) dove and after it resurfaced. They have been employed as ground416

truth to compute the resurfacing error and to globally reference the trajectory and the map.417

FeelHippo AUV (see Fig. 10) is a compact vehicle capable of performing missions in shallow waters. The418

main features of FeelHippo AUV are reported in Tab. 1. Furthermore, the sensors available on board are419

listed as follows:420

• U-blox 7P precision GNSS;421



Figure 8: 3D plot of the estimated trajectory in the NED reference system, where the reset points and the
areas where vision is not working are highlighted.

Figure 9: Representation of the point cloud and the travelled trajectory estimated through the SLAM
algorithm. While on the top image the entire point cloud is reported and, due to the presence of outliers,
the depth scale is too extended, on the bottom image a zoom on the region of interest is performed.

Figure 10: FeelHippo AUV before an on-field underwater mission.



Figure 11: On the left, comparison between the trajectories estimated with the SLAM algorithm and the
UKF algorithm during the mission accomplished in Stromboli Island, Messina (Italy). A ground truth, when
the vehicle was under the sea surface, is not available, but the first GNSS fix when the vehicle resurfaces
can be employed as reference to evaluate the resurfacing error. On the right, 3σ bound of the last positions
under the sea surface estimated with the SLAM and UKF algorithms and the first GNSS fix measurement
with its accuracy 3σ bound.

Table 2: Navigation performance for the mission accomplished in Stromboli Island, Messina (Italy): resur-
facing error.

Navigation strategy Error [m]
UKF algorithm 1.943

SLAM algorithm 0.899

• Orientus Advanced Navigation IMU;422

• KVH DSP 1760 single-axis high precision Fiber Optic Gyroscope (FOG);423

• Nortek DVL1000 DVL, measuring linear velocity and acting as DS;424

• Teledyne BlueView M900 2D Forward Looking SONAR (FLS);425

• two Microsoft Lifecam Cinema forward- and bottom-looking cameras.426

The developed SLAM strategy has been compared with the Standard UKF algorithm chosen from the427

navigation strategies proposed in (Bucci et al., 2023). The position resurfacing error values and covariances428

have been evaluated on the North-East plane. Fig. 11 reports the estimated trajectories and an analysis of429

the resurfacing errors with their 3σ bound. From Tab. 2, analyzing the results from the GNSS resurfacing430

error, it is easily noticeable that both the proposed strategies are acceptable in terms of navigation estimation431

quality.432

To evaluate the agreement between estimation errors and estimated uncertainty, the 3σ bounds during the433

resurfacing phase are presented. This is summarized in Fig. 11, where the 3σ bounds for the filters and434

the GNSS are presented. In all the analyzed cases, the position provided by the filter (with its confidence435

bounds) appears to guarantee a reasonable prediction of the vehicle’s true position when it resurfaces. The436

employed GNSS has an expected accuracy on the order of meters and the 2D error can be represented as a437

2D Gaussian distribution whose components are independently distributed.438

Focusing the attention on the SLAM algorithm and its mapping capabilities, Fig. 12 reports the SLAM-439

based estimated trajectory and the generated point cloud. It is possible to evaluate the algorithm mapping440



Figure 12: Representation of the point cloud and the travelled trajectory estimated through the SLAM
algorithm during the mission in Stromboli Island, Messina (Italy). While on the top image the entire point
cloud is reported and, due to the presence of outliers, the depth scale is too extended, on the bottom image
a zoom on the region of interest is performed.

Table 3: Estimated scale factor and rototranslation transform between DVL and camera reference systems.

Parameter Initial guess Value after step 1 Value after step 2
s 0.0 5.448 5.529

φbc [deg] 0.0 0.0 −0.005
θbc [deg] 90.0 90.0 89.477
ψb
c [deg] 0.0 10.119 8.43
txc,b [m] 0.24 0.24 0.233

tyc,b [m] 0.07 0.06 0.076

tzc,b [m] 0.05 0.05 0.049

capabilities by comparing the estimated point cloud with a bathymetry of the region around the island. As441

for the test in simulated environments, several outliers are kept in the point cloud during the SLAM algorithm442

operation, which negatively influences the seabed reconstruction. Consequently, the seabed reconstruction443

capabilities of the developed algorithm and the comparison with the ground truth bathymetry are reported444

in Section 8, where the employed post-processing strategies are described.445

The scale factor computation procedure has been applied to estimate the scale factor between the DVL-446

based trajectory and the visual part of the algorithm before fusing them in the whole factor graph. In447

particular, approximate values of the relative position and orientation between the DVL and the camera has448

been provided as input to the algorithm, but their values have been kept as variables in the optimization449

process. The scale factor between the DVL-based trajectory and the visual SLAM has been solved with the450

developed algorithm, and the results have been reported in Tab. 3. It is necessary to highlight that the451

proposed strategy can compensate the alignment error between the camera and the DVL frames. Indeed, due452

to uncontrollable external conditions (e.g., loosening of the screws during the vehicle preparation, collisions453

during the diving procedure), the camera rotated around its z-axis during the autonomous mission of an454

unknown quantity which has been estimated and compensated by the algorithm. The resurfacing error value455

is equal to 0.899 meters, indicating a high navigation accuracy of the proposed strategy with respect to the456

GNSS fixes obtained when the vehicle resurfaced.457

Finally, regarding the computational burden, the execution time of the filter has been subject of the analysis.458

The sum of the requested time to perform the measurement insertion in the factor graph and the optimization459



Figure 13: On the left, execution time of the SLAM filter, calculated at each iteration as the sum of the
requested time for measurement insertion in the factor graph and for the optimization process. On the right,
Central Processing Unit (CPU) burden analysis. In red and green are respectively reported the mean and
the median.

Table 4: Mean with the associated covariance and median values of the depth error in presence and in
absence of the filtering procedure.

Parameter Before filtering After filtering
Mean [m] 0.2767 0.2002

Covariance [m] 7.6212 0.0386
Median [m] 0.1469 0.1465

process has been considered. For what concern the CPU analysis, the output of the command top has been460

recorded to store the data. The results can be found in Fig. 13. It is necessary to notice that the instants461

where the visual part of the algorithm is initialized and stopped can be easily highlighted thanks to its462

influence on the execution time of each iteration. Indeed, despite the SLAM algorithm optimizes only the463

last nodes thanks to the properties of the iSAM2 library, handling a continuously growing point cloud464

increases the required computational cost. When the vehicle resurfaces and the visual part of the algorithm465

is excluded due to visibility limitations, the necessary computational burden drastically decreases. Indeed,466

the point cloud is saved, and only the position nodes are updated when new measurements are acquired.467

8 Mapping performance analysis468

Mapping the surrounding environment is a common task in underwater exploration, and it is fundamental469

to enhance the vehicle capabilities to find objects of potential interest. The point clouds obtained from470

the SLAM algorithm have been processed with an automatic tool to obtain a 3D reconstruction of the sea471

bottom. The developed reconstruction strategy takes as input the estimated point cloud and the geograph-472

ical coordinate of a reference point and automatically generates a 3D reconstruction and a georeferenced473

depth map, thanks to the employment of the functions implemented in the open-source libraries Point Cloud474

Library (PCL) (Rusu and Cousins, 2011) and Open3d (Zhou et al., 2018).475

Analyzing the point cloud obtained from the navigation algorithm applied in both simulated and real envi-476

ronments, it is necessary to notice that some points can be classified as outliers. Therefore the need arises to477

eliminate them as the displayed graphs are excessively bulky and negatively influence the mesh realization.478

For each point, a fixed number of neighbors is defined to estimate the mean of the average distance, and a479

point is considered an outlier if the average distance to its neighbors is above a specified threshold (Rusu480

et al., 2008). The outlier eliminating process, therefore, leads to a significant decrease in points, making the481

representations more uniform. Subsequently, the point cloud is processed with a smoothing method to filter482



Figure 14: Filtered point cloud and estimated trajectory travelled by the simulated vehicle.

out the noise of the measurements on the processed points. In particular, median filtering of the 3D point483

cloud data is performed.484

The 3D mesh generation algorithm is applied to the filtered point cloud. The Poisson algorithm (Kazh-485

dan et al., 2006) is applied, and its parameters have been set to optimize the reconstruction process. It is486

necessary to note that the depth value and the limit density of the points at which the reconstruction is487

cut have been chosen to compromise reconstruction speed and estimation quality. The advantages of the488

Poisson algorithm over other surface fitting methods are numerous. Many implicit methods of surface fitting489

segment the data into regions for local fitting and further combine these local approximations using blending490

functions. In contrast, Poisson reconstruction is a global solution that considers all the data simultaneously491

without resorting to heuristic partitioning or blending. In this way, Poisson reconstruction creates very492

smooth surfaces that robustly approximate noisy data.493

Firstly, considering that in the simulated environment created with UUV Simulator the seabed can be494

generated with a mathematical function z = f(x, y), it is possible to evaluate the performance of the filtering495

algorithm. It is also necessary to notice that the simulated seabed has been textured with an image rich496

in features to facilitate the correct behavior of the visual part of the SLAM algorithm. Fig. 14 reports the497

3D filtered point cloud with the estimated trajectory. It is necessary to compare this point cloud with the498

one directly obtained from the SLAM algorithm and reported in Fig. 9. Two error maps have been created499

with the point clouds, as before and after the filtering procedure, to analyze the improvements in seabed500

reconstruction. It is necessary to notice that the outlier points are correctly removed, and the point cloud501

size is reduced to increase its easiness of management by the reconstruction algorithm (see Fig. 15 and Fig.502

16). As can be retrieved from Tab. 4, while the outlier removal process does not influence the mean and the503

median values due to the high number of points, the covariance associated with the mean value is strongly504

reduced.505

Finally, the 3D point cloud has been processed with the Poisson reconstruction algorithm to build the506

3D mesh. Thanks to the chosen reconstruction algorithm, the obtained mesh is smoothed and correctly507

follows the shape of the simulated sea bottom (see Fig. 17). Some of the results obtained during the508

mission performed in Stromboli Island, Messina (Italy), in September 2022, are presented. In particular, a509

3D reconstruction and a geo-localized map of the sea bottom are reported. The reconstruction comprises510

around 240k points obtained as output from the SLAM algorithm. Firstly, the outlier points have been511

removed (see Fig. 19), and then, the 3D point cloud has been processed with the Poisson reconstruction512

algorithm to build the 3D mesh, which is shown in Fig. 20.513

The good matching between the reference bathymetry, whose data have mainly funded by the National514

Research Council and Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile, through515

specific agreement (see Fig. 18), and the estimated 3D reconstruction can also be observed to prove the516



Figure 15: Representation of the error point clouds computed by comparing the reference sea bed function
and the estimated point cloud and generation of the estimated error maps before (top image) and after
(bottom image) the filtering procedure.

Figure 16: Comparison between the estimated error maps before (top image) and after (bottom image) the
filtering procedure with respect to the travelled trajectory by the simulated vehicle.



Figure 17: Resulting sea bottom 3D mesh reconstruction and estimated trajectory travelled by the simulated
vehicle.

Figure 18: Reference bathymetry of the sea bottom around Stromboli Island, Messina (Italy). The test area,
where FeelHippo AUV performed its autonomous mission, is highlighted.

reconstruction’s goodness. The provided bathymetry has a horizontal resolution of 5 meters. Thus only517

an approximate comparison can be performed, but it can be sufficient to have a simple evaluation of the518

generated point cloud. All the points of the cloud that lies in each square generated from the ground truth519

bathymetry are employed to compute the mean point and perform the comparison (Fig. 21).520

9 Conclusion and future developments521

Considering that Kalman filtering condenses the vehicle’s history in the last estimate and covariance, a522

MAP strategy based on factor graphs has been developed to overcome these limitations and include visual523

landmarks in the estimation process. Visual features are sometimes difficult to be found in underwater524

environments due to visibility and texture issues. Consequently, the strategy fuses DVL measurements with525

a visual SLAM system to simultaneously perform accurate navigation and mapping tasks. DVL beam data526

can be employed for speed measurement and to obtain an approximated knowledge of the sea bottom. Both527

simulated and experimental data have been employed to evaluate the capabilities of the developed strategy.528

The experimental data have been acquired during trials at Stromboli Island, Messina (Italy).529

During the experimental campaign, FeelHippo AUV was the only vehicle involved; nevertheless, since the530

proposed solution is not tailored to a particular vehicle, its outcomes can be deemed as general, and future531

developments will include the testing of the navigation strategy on other vehicles. Furthermore, progresses532

on the developed algorithms still needs to be made. Integrating the developed estimation strategy within533



Figure 19: Filtered point cloud and estimated trajectory travelled by the vehicle during the autonomous
mission accomplished in Stromboli Island, Messina (Italy).

Figure 20: Resulting sea bottom 3D mesh reconstruction and estimated trajectory travelled by the vehicle
during the autonomous mission accomplished in Stromboli Island, Messina (Italy).



Figure 21: Estimated error bathymetry map with respect to the trajectory travelled by the vehicle during
the autonomous mission accomplished in Stromboli Island, Messina (Italy).

the attitude estimator could represent an important subject to be investigated. Indeed, developing a unique534

filter that works on both the attitude and position estimation in a coupled way could increase navigation535

precision. Concerning the strategies for graph edge computation, including constraints obtained from acoustic536

FLS images, which have been employed for speed estimation in (Bucci et al., 2023), in the pose graph537

framework would push forward the performance of the navigation filter. Despite the intrinsic characteristic538

(low resolution, influence of the viewpoint) of FLS images poses relevant issues to face, the employment539

of an additional acoustic sensor can be useful to apply the developed strategy in scenarios with reduced540

visibility. Finally, from a mapping-based point of view, a multi-vehicle solution for autonomously fusing541

the underwater environment reconstructions could represent a coherent continuation of the research activity542

carried out so far. The proposed SLAM strategy could operate onboard of each vehicle and, by employing543

relative or absolute position measurements, the estimated maps could be fused in a unique more detailed544

reconstruction.545
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