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Abstract

Tridacna maxima (T. maxima) are widely distributed in shallow areas near coral reefs and hold significant commercial value
as a food source and for marine tourism. However, it has been extensively harvested and depleted in many regions, leading to
it being listed as endangered species by the International Union for Conservation of Nature (IUCN). While marine protected
areas (MPAs) are considered effective conservation tools, it remains uncertain whether existing MPAs adequately protect these
vulnerable giant clams. Here, we employed a Species Distribution Models (SDMs) approach, combining occurrence records
of T. maxima with environmental variables, to predict their distribution and capture spatiotemporal changes. The findings
revealed the importance of land distance and light at bottom in determining the distribution of T. maxima, with suitable habitats
predominantly found in shallow coastal waters rather than deep sea areas. Furthermore, we modeled potential distribution areas
for T. maxima in 2050 and 2100 under different climate change scenarios, highlighting varying impacts on suitable habitats
across different model predictions. To evaluate current conservation gaps, we conducted an analysis by overlaying suitable
areas with existing protected areas. The results showed that the potential distribution area of T. maxima is 1,519,764.73 km2,
accounting for only 16.10% of the total protected areas. It became evident that the existing protected areas are insufficiently
large or well-connected, suggesting their ineffectiveness in safeguarding giant clams. Therefore, management efforts should focus
on establishing a network of MPAs along the coastlines of West Pacific-Indonesia, matching the dispersal capability of giant
clams. These findings provide valuable insights for the conservation of endangered giant clams, offering a scientific foundation

for designing MPA networks in the Indo-Pacific region.

Unveiling the Suitable Habitats and Conservation Gaps of Tridacna maxima in the Indo-Pacific
Core Area Based on Species Distribution Model

1,2,3
9

Shenghao Liu Tingting Li', Bailin Cong!3, Leyu Yang!'®, Zhaohui Zhang!?, Linlin

Zha01,2,3*

'Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Ministry
of Natural Resources, Qingdao, 266061, China; 2 Marine Ecology and Environmental Science Laboratory,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 2 School of Advanced
Manufacturing, Fuzhou University, Jinjiang 362200, China

*Correspondence: Linlin Zhao, Email: zhaolinlin@fio.org.cn
Abstract

Tridacna mazima (T. mazima)are widely distributed in shallow areas near coral reefs and hold significant
commercial value as a food source and for marine tourism. However, it has been extensively harvested and



depleted in many regions, leading to it being listed as endangered species by the International Union for
Conservation of Nature (IUCN). While marine protected areas (MPAs) are considered effective conservation
tools, it remains uncertain whether existing MPAs adequately protect these vulnerable giant clams. Here,
we employed a Species Distribution Models (SDMs) approach, combining occurrence records of T. mazima
with environmental variables, to predict their distribution and capture spatiotemporal changes. The findings
revealed the importance of land distance and light at bottom in determining the distribution of T.mazima ,
with suitable habitats predominantly found in shallow coastal waters rather than deep sea areas. Further-
more, we modeled potential distribution areas for T. mazima in 2050 and 2100 under different climate change
scenarios, highlighting varying impacts on suitable habitats across different model predictions. To evaluate
current conservation gaps, we conducted an analysis by overlaying suitable areas with existing protected
areas. The results showed that the potential distribution area of 7. mazima is 1,519,764.73 km?, account-
ing for only 16.10% of the total protected areas. It became evident that the existing protected areas are
insufficiently large or well-connected, suggesting their ineffectiveness in safeguarding giant clams. Therefore,
management efforts should focus on establishing a network of MPAs along the coastlines of West Pacific-
Indonesia, matching the dispersal capability of giant clams. These findings provide valuable insights for the
conservation of endangered giant clams, offering a scientific foundation for designing MPA networks in the
Indo-Pacific region.

Keywords:Giant clams, Tridacna mazima,Species distribution models, Habitat suitability, Potential distri-
bution area, Marine protected areas

Introduction

Geographical environmental factors exert constraints on the growth, development, and geographic migration
of species. The flourishing and reproductive success of marine organisms hinge upon their reliance on distinct
ecological niches. Unfortunately, climate change and human activities have triggered a series of alterations
within the marine environment, including elevated water temperatures, diminished primary productivity,
ocean acidification, and hypoxia (Cheung et al., 2013; Lumpkin et al., 2020; Monllor-Hurtado et al., 2017).
These alterations have the potential to surpass physiological and ecological thresholds, leading to habitat loss
and even the extinction of numerous species (Duncan et al., 2023; Penn & Deutsch, 2022). In comparison
to terrestrial communities, marine communities are more susceptible to environmental changes induced by
climate change (Sorte et al., 2010a; Sorte et al., 2010b). As a species occupies a specific ecological niche,
modifications in the attached environmental conditions can disrupt the distribution of that species (Faleiro
et al., 2018; Fu et al., 2021). Given these circumstances, comprehending the impact of future climate change
on species distribution is vital for effective species conservation.

Giant clams, belonging to the Tridacna genus, hold significant importance as coral reef inhabitants in the
Indian and Pacific Oceans. Their massive colored shells and vibrant mantle tissue make them easily recog-
nizable (Huelsken et al., 2013). Tridacna species are crucial for coral reef ecosystems, serving as ecologically
valuable reef-builders with protective functions. They provide habitat, breeding grounds, and shelter for
other reef organisms, thus playing a crucial role in marine environments, particularly coral reef ecosystems.
The feeding mechanism of Tridacna is one of its unique biological characteristics. It involves symbiotic
zooxanthellae living in its mantle tissue, utilizing inorganic nutrients from seawater through photosynthesis
for growth and respiration (Jantzen et al., 2008; Lucas, 2014; Todd et al., 2009). This symbiosis holds both
ecological and morphological significance for Tridacna . It is estimated that approximately 66% of the energy
source for Tridacna comes from the photosynthetic activity of zooxanthellae (Klumpp et al., 1992; Norton et
al., 1992). Over the past two decades, Tridacnapopulations have suffered substantial damage due to human
activities and global environmental changes, leading to critical endangerment for most species (Andréfouét
et al., 2013; Cabaitan et al., 2008; Neo et al., 2015). T. mazima , a giant clam species, has been classified as
an endangered species in the "China Red List,” listed under Appendix II of CITES, categorized as a species
of least concern in the IUCN Red List, and listed as a Class II protected wild animal in the "National Key
Protected Wildlife List”. It exhibits wide distribution in the western Indian Ocean and the Red Sea, spanning
from the Indo-Malayan archipelago to the Socotra archipelago in the central Pacific (Andréfouét et al., 2014;



Gilbert et al., 2007).

Species Distribution Models (SDMs) are currently valuable tools for predicting potential species distribution
(Anibaba et al., 2022; Capinha et al., 2011; Guisan et al., 2017). The underlying principle of SDMs involves
using existing species distribution data and environmental variables to establish ecological requirements
based on the species’ niche. This approach explores the non-random relationship between environmental
characteristics in known distribution areas and potential distribution areas (Aratjo et al., 2019). It allows
for the prediction of current and future species distribution under varying climatic conditions (Booth et al.,
2014; Guisan & Thuiller, 2005). However, most contemporary studies only use SDMs at the species level,
neglecting intraspecific species variation (Zhang et al., 2021). Local adaptation and intraspecific variation
can influence how a species responds to environmental changes (Li et al., 2022). Therefore, species-level
SDMs often overpredict a species’ future distribution (Hu et al., 2021; Pack et al., 2022). Consequently,
incorporating intraspecific genetic differences into SDMs can result in better and more accurate predictions,
providing valuable information for marine biodiversity conservation efforts (Hu et al., 2021).

The convergence zone between the Indian and Pacific Oceans, a tropical region, represents a biogeographic
hotspot characterized by exceptionally high species diversity in shallow marine ecosystems. This hotspot
is predominantly centered around the Indo-Malay Archipelago (Hoeksema, 2007; Nuryanto & Kochzius,
2009). The Indo-Pacific core region provides unprecedented opportunities for scientific investigations into
the origin, maintenance, and conservation of biodiversity. Literature has documented significant levels of
biodiversity in the Central Indian Ocean-Pacific, Western Indian Ocean, and Central Pacific regions across
various dimensions, designating them as priority areas for conservation (Fan et al., 2023). Current research
efforts in this area predominantly focus on unraveling the ecological and evolutionary processes that shape
marine biodiversity. However, human activities, notably overfishing and pollution, have contributed to the
loss of marine biodiversity (Halpern et al., 2008). In response, marine protected areas (MPAs) have been
established to preserve the marine environment and its biodiversity (Sala & Giakoumi, 2018). MPAs have
proven effective as area-based conservation techniques for protecting marine biodiversity (Grorud-Colvert
et al., 2021). Despite these efforts, few studies have assessed the effectiveness of existing protected areas in
protecting threatened Tridacna species under future climate conditions and ongoing human activities.

Based on geographical and genetic variations, the T. mazimapopulation in the Indo-Pacific core region is
primarily divided into two evolutionary lineages: East Indian Ocean-South China Sea (EIOS) and West
Pacific-Indonesia (WPI) (Hui et al., 2016; Nuryanto & Kochzius, 2009). Although the degree of distribution
overlap and genetic exchange between populations remains uncertain, these two populations have inhabited
distinct ecological environments throughout their extensive evolutionary history, potentially leading to local
adaptations. This study aims to assess the distribution patterns of species richness between these two popu-
lations and identify priority conservation areas as well as conservation gaps of the current protected areas
network. Our study will provide scientific support for the Post-2020 Global Biodiversity Framework and aid
in the development of comprehensive conservation plans for the marine biodiversity of the Indo-Pacific core
region.

Materials and Methods
2.1 Study area and species occurrence data collection

T. maxima is mainly distributed in the Indian Ocean and the Western Pacific. The Indo-West Pacific region,
centered around the Indo-Malay Archipelago, exhibits the highest species diversity in shallow waters of the
ocean. Our study focuses on a limited area of 907 140°E, 11°S™15°N, based on the known distribution ranges
of the two populations. We obtained occurrence records of T. mazima (27091 records) from online public
databases such as the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/), iNaturalist
(https://www.inaturalist.org/), and the Ocean Biogeographic Information System (OBIS, https://obis.org/).
To minimize sampling bias and avoid the representation of conditions in densely sampled areas, we employed
the R software package spThin for spatial refinement of the distribution data. Each 5x5 arc-minute grid
was assigned one occurrence point, resulting in a spatial resolution of 9.2x9.2 km, consistent with the



environmental predictors’ resolution. After data cleansing, we retrieved 213 records within our study area.
According to the genetic population structure (Hui et al., 2016), the EIOS clade was assigned 113 occurrence
records, and the WPI clade had 100 occurrence records (Fig. 1).

2.2 Environmental variables acquisition and filtering

The spatial distribution of species can be significantly influenced by the surrounding habitat environ-
ment (Zhao et al., 2023). In this study, we obtained raster data of variable projections from the com-
prehensive dataset Bio-ORACLE (http://www.bio-oracle.org) and Global Marine Environment Datasets
(http://gmed.aucklan-d.ac.nz), considering their biological relevance and data availability. To assess colli-
nearity among candidate predictor variables, scatter collinearity analysis, Pearson’s correlation coefficients,
and the variation inflation factor (VIF) were employed (Zuur et al., 2010). Variables with correlation values
below 0.8 and VIF values below 10 were retained. Nine predictors were considered based on the collinea-
rity analysis, including mean current velocity, mean salinity, mean temperature, temperature range, mean
dissolved oxygen, light at bottom, phytoplankton, water depth, and land distance (Table 1, Fig. 2).

Bio-ORACLE provides future environmental projections for two time periods (2040-2025, 2090-2100) using
three atmospheric-ocean general circulation models (AOGCMs: CCSM4, HadGEM2-ES and MIROCS5) under
four Representative Concentration Pathways (RCPs) emission scenarios: RCP 2.6, RCP 4.5, RCP 6.0 and
RCP8.5 (Assis et al., 2018). To reduce uncertainty in environmental projections, we averaged the predictions
from the three AOGCMs to represent future climate conditions. RCP 2.6 indicates an optimistic emission
level with well-controlled greenhouse gas concentration, while RCP 4.5 and RCP 6.0 represent moderate
emission levels. RCP8.5 represents a pessimistic scenario without controlled emissions (Moss et al., 2010).
For comparability, we used two RCPs (RCP 2.6 and RCP 8.5) to predict future distributions for the 2050s
(2040-2050) and 2100s (2090-2100). Future environmental factors, including current velocity, mean salinity,
mean temperature, temperature range, are downloaded from Bio-ORACLE, while the other factors were
assumed to remain unchanged in the future (Zhang et al., 2021).

2.3 Model construction and assessment

The modeling program used in this study is SDM based on the biomod2 package in the R platform (Thuiller
et al., 2020). The package includes ten modeling algorithms: maximum entropy (Maxent), random forest
(RF), surface extent envelope (SRE), multiple adaptive regression splines (MARS), artificial neural network
(Moss et al.), flexible discriminant analysis (FDA), classification tree analysis (CTA), generalized boosting
model (GBM), generalized linear model (GLM), and generalized additive model (GAM). Species distribution
modeling and prediction rely on existing/pseudo-missing records and current environmental data. Due to
limited actual sampling point data for most species, pseudo-distribution data is used as a substitute to
overcome this limitation (Barbet-Massin et al., 2012). The pseudo-absences function in the R package MOPA
is employed to randomly simulate an equal number of pseudo-absent records and compare them with the
conditions of actual presence points, thereby improving the model’s predictive performance (Guisan et al.,
2017). To evaluate the accuracy of the model predictions, a five-fold cross-validation method with 10 replicates
was used (Fu et al., 2021). In this methodology, 80% of the dataset is randomly selected for model calibration
and testing, while the remaining 20% is reserved for assessing model predictions.

Two model evaluation indices embedded in biomod2, namely true skill statistics (TSS) and the area under
the receiver operating characteristic curve (AUC), are calculated to estimate predictive accuracy. Given the
potential diversity in outcomes generated by the ten models, an ensemble projecting approach is adopted
to reduce uncertainty and enhance reliability (Buisson et al., 2010; Morato et al., 2020). To improve the
accuracy of ensemble models, only models with an AUC greater than 0.8 and a TSS greater than 0.7 are
retained, indicating high predicted accuracy and low uncertainty (Allouche et al., 2010; Mei et al., 2017).

Species-level and population-level modeling analyses are conducted, drawing species response curves for each
environmental variable using the generated SDMs to visualize the variation in species occurrence probability
along the environmental gradient. The significance of each predictor is estimated using a randomly permuted
method (Guisan et al., 2017). The potential distributions of the entire species and the two populations (EIOS



and WPI) under present and future climate scenarios (2050s, 2100s) for RCP 2.6 and RCP 8.5, respectively,
were predicted using the ensemble models at both species and population levels. Continuous habitat suita-
bility maps are created based on the direct outputs from the ensemble models. Using automatically derived
thresholds that maximize the TSS values of the ensemble model, we translated the continuous prediction
into binary values for a clearer comprehension of habitat appropriateness (Liu et al., 2013).

2.4 Niche differentiation comparison

The ecological niche space occupied by a population, which depends on environmental variables influencing
population occurrence, can be estimated using the n-dimensional ecological hypervolume (Lé et al., 2008).
Using the R package hypervolume, we then estimated the four-dimensional hypervolumes for the EIOS and
WPI populations based on the selected principal components. The size of the population’s niche space can
be quantified by the values of hypervolume, a unitless measure. We used the R package BAT to calculate the
niche differentiation between the EIOS and WPI populations. Total niche differentiation (3Total) represents
the degree of overlap or separation between two hypervolumes. It can be further divided into two parts: niche
contraction/expansion, which indicates the net variations in how much space each hypervolume encompasses,
and niche shift, which represents the replacement of the space between the hypervolumes inhabited by two
populations (Carvalho & Cardoso, 2020; Mammola & Cardoso, 2020).

2.5 Identifying the conservation gaps

For subsequent analysis, the binary maps were utilized to calculate the extent of suitable habitat and retrieve
information on all marine protected areas within the Indo-Pacific core area, Data online from the world’s
protected areas (http://www.protectedplanet.net, WDPA) in June 2023. ArcGIS was employed to conduct
an overlay analysis by combining the distribution data of these protected areas with the potential distribution
range of T. maxima . This analysis aimed to assess current protection gaps and identify areas lacking
protection for theT. mazima species in the Indo-Pacific core area. Furthermore, to evaluate the effectiveness
of the existing protected area system for T. mazima in the Indo-Pacific core area, we also calculated the ratio
between the species’ distribution area within the established protected areas and its potential distribution
area. This ratio serves as a measure to determine the level of effective protection provided to the species.

Results
3.1 Niche differentiation among the two populations

To minimize the dimensionality of the niche space, we initially conducted a principal component analysis
(PCA) on environmental variables. The top four principal components were retained as they collectively
explained 81.7% of the total variance (Fig. 3A). The EIOS (1992.44) had a larger four-dimensional hypervol-
ume than the WPI (1588.38). There was a modest level of niche differentiation between the two populations
(BTotal = 0.465), primarily driven by niche shift (0.180), which accounted for 49.32% of the observed differ-
ence, and niche contraction/expansion (0.184), which accounted for 50.41% of the difference. Analyzing the
niche centroids for the two population comparisons revealed that PCA1 played a crucial role in explaining
the distinct niches of the EIOS and WPI populations (Fig. 3B). This difference was mainly attributed to
variations in mean temperature, mean dissolved oxygen, phytoplankton abundance, and mean salinity (Fig.
30).

3.2 Model training fitting and environmental variable assessment

To improve model performance, a 10-replicate five-fold cross-validation procedure was employed. During
simulation, 20% of the known species distribution data was used for model validation, while the remaining
80% was used for training. The predictive performance of the 10 modeling algorithms varied, as indicated by
different T'SS and AUC values. The modeling technique with the highest predictive performance, determined
by TSS and AUC values, was selected. Eight out of the ten single models (excluding MAXENT and SRE)
were chosen to create weighted ensemble models at both the species and population levels (Fig. 4A, 3B).
Overall, the ensemble models demonstrated good accuracy for most species, with AUC values above 0.80



and TSS values above 0.70. The high AUC and TSS values across all three ensemble models indicated strong
predictive performance (Table 2).

The habitat suitability models developed in this study incorporated nine different predictors, each contribut-
ing differently to the modeled species (Fig. 4C). In general, land distance and light at bottom emerged as the
most important predictors for T. mazima , contrasting with ocean depth, current velocity, dissolved oxygen,
salinity, mean temperature, and phytoplankton (Fig. 4C). The species-level model revealed that the distri-
bution of T. mazima was primarily influenced by land distance and light at bottom. The model predicted
that T. mazima tends to prefer environments with land distances between 0 and 30 km (Fig. 5A1) and light
at bottom between 5 and 45 (Fig. 5A2). At the population level, land distance and mean temperature were
the most significant predictors for the distribution of EIOS, while light at bottom and land distance played
key roles in predicting the distribution of WPI. For the EIOS population, occurrence probability decreased
with increasing distance from land and was highest when the mean temperature ranged from 10 to 30 °C
(Fig. 5B1, 4B2). As for the WPI population, preferred habitats exhibited light at bottom above 20 and were
located near the coast within approximately 100 m (Fig. 5C1, 4C2).

3.3 Habitat suitability in scenarios of the current and future climatic conditions

The modeling analyses were conducted at both the species level (species model) and population level (EI-
OS model and WPI model). Under present conditions, potential habitat for T. mazima exhibited higher
suitability indices in the Indo-Pacific core area. In terms of distribution ranges, the predictions from the
species-level and population-level models frequently demonstrated good agreement (Fig. 6A). T. mazima
's preferred habitats occurred primarily in shallow coastal waters, with little of it in deep ocean regions.
Notably, the species-level prediction showed the largest suitable habitat area (1,519,764.73 km?), while the
two population-level predictions indicated the areas of 1,326,478.08 km2and 1,204,511.84 km?, respectively.
Despite limited ecological niche differentiation, certain variations in the projected results were identified
between two populations that were predicted by EIOS model and WPI model (Fig. 6B and C). Moreover,
distinct differences are observed in certain regions. For instance, in the South China Sea, the species-level
model predicts the smallest suitable habitat area for T. mazima , whereas the WPI population-level model
predicts the largest area. In the Strait of Malacca, the EIOS model predicts a larger suitable zone compared
to the species-level and WPI models.

The extent of habitat change depends on the scenario of climate change. Under the pessimistic scenario of
uncontrolled greenhouse gas emissions (RCP 8.5), significant changes in the suitable range are projected
(Table 3, Fig. 7). The species-level and population-level models predict different impacts of climate change
on potential suitable habitats. The species-level model presents a more pessimistic outcome with greater loss
of potential suitable habitats for 7. mazima in the Nansha Islands, Strait of Malacca, and Java Sea regions
under RCP 8.5 scenarios. The EIOS model predicted moderate loss of suitable areas forT. mazima among
the Indo-Pacific core area, while the WPI model forecasted substantial loss of suitable areas in shallow
waters surrounding the Philippine Islands, Sumatra Island, and Java Island. Unlike the species-level and
WPI models, the EIOS model predicted a gain (approximately 2.43%) of spotted suitable habitats in coastal
waters of the Nansha Islands, Mindoro Island, Eastern and Southern Indonesia under RCP 8.5 scenarios.

3.4 Identifying the conservation gaps in the Indo-Pacific core area

The distribution of potential suitable habitats was predicted by SDMs. Areas far from the coast were iden-
tified as less critical for conservation, while the most important areas tended to be coastal. From the dis-
tribution of existing protected areas (Fig. 8), it can be seen that they are scattered in different directions
and present a ”point-like” pattern, greatly weakening their protective role for habitat. According to the gap
analysis, the potential distribution area of T. mazima within natural protected areas is 244730.58 km?, with
a protection ratio of only 16.10%, which does not match the status of the study area as a biodiversity center.
Most of the potential areas for the T. mazima have not yet been protected, indicating an urgent need to
expand and optimize the protected area system in the Indo-Pacific core region, moving from a ”point-like”
pattern towards a ”grid-like” one, to comprehensively improve the effectiveness of species protection.



Discussion
4.1 Ecological niche differentiation in SDMs

The use of species distribution models (SDMs) in biodiversity assessments primarily focuses on estimating
habitat suitability at the species level (Collart et al., 2021; Elith et al., 2010; Elith & Leathwick, 2009).
These species-level SDMs assume ”ecological niche conservatism” and overlook within-species phylogenetic or
functional heterogeneity. However, recent studies have highlighted the importance of considering population-
level differences in sustainable management systems, as they reveal variations in climate predictor responses
within species (Benito Garzoén et al., 2019; Collart et al., 2021; Nielsen et al., 2021; Song & Li, 2023). Using
the Japanese crayfish (Cambaroides japonicus ) as an example, researchers demonstrated that by accounting
for local adaptations in distinct populations, SDMs with resolutions below the species level can more reliably
forecast changes in biodiversity (Zhang et al., 2021).

Our findings indicate intermediate niche differences (0.465) between the EIOS and WPI lineages of T. mazima
, suggesting the need for population-level SDMs for this species (Fig. 1-2). While all our models exhibited
strong predictive performance and good model transferability (Table 2), the species-level model projected
larger range contractions due to climate change compared to the lineage-level models (Table 3). Incorporating
possible local adaptations, population-level SDMs yield different predictions regarding the effects of climate
change. Therefore, our distribution predictions were less pessimistic when using lineage-level models, aligning
with earlier research suggesting that intraspecific variation may mitigate the impact of climate change on
species distribution (Chardon et al., 2020; Razgour et al., 2019).

4.2 Effects of environment factors on the distribution of T. maxima

Land distance and light at bottom were important variables of habitat suitability for T. mazima(Fig. 5),
consistent with studies on species distributions of Acropora tenuis in the Great Barrier Reef (Strahl et al.,
2019) and T. mazima in the Central Red Sea (Rossbach et al., 2019). The most unique biological feature of
T. mazima is its nutritional relationship with Zoozanthellae , whereby the majority of their required nutrients
and energy are obtained through photosynthesis (Lucas, 2014; Yonge, 1975). This symbiotic relationship has
significant ecological and morphological significance for T. mazima . On the one hand, the distribution of
T. mazima is limited by their symbiotic dinoflagellates, which require sufficient light for photosynthesis.
Land distance is generally shallow with high transparency and ample sunshine, meeting the basic conditions
for maintaining the symbiotic relationship. In addition, 7. mazimaattach themselves to coral reefs or live
freely. Their habitat is mainly in the low tide zone near coral reefs in tropical waters or in shallower reefs,
making them an important component of coral reef ecosystems. Giant clams support overall reef biodiversity
and functionality, making them flagship taxa for coral reef conservation efforts (Killam et al., 2023; Lee et
al., 2022). A significant decline in the number of T. mazima in a particular area indicates damage to the
coral reef ecosystem. Conversely, a relatively stable population size and species composition of T. mazima
indicate good health of the coral reef ecosystem (Dewiyanti et al., 2021). Interestingly, the distribution range
of coral reefs highly coincides with that of T. mazima , as shown in the Allen Coral Atlas (Lyons et al.,
2020), further explaining why 7. mazima are found at a close land distance and verifying the accuracy of
species distribution models in predicting their distribution. We speculate that coevolution of these species in
this shared environment has led to similar response patterns among associated species in the face of climate
change (Chen et al., 2023). This also provides an ideal system for studying how each species in Tridacninae
, corals, andZoozxanthellae utilizes local climate adaptation, dispersal, and other strategies to mitigate the
risks of climate change in the future. In addition, light directly or indirectly affects Tridacninae physiological
activities, such as growth and energy metabolism (Ip et al., 2006). Studies have shown that the oxygen
production rate in 7. croceagradually increases with rising light intensity within an experimental range.
Light intensity significantly impacts the metabolic synthesis of T. crocea and other symbiotic dinoflagellates,
promoting their photosynthetic activity and growth (Liu et al., 2018; Liu et al., 2021).

4.3 Giant clam protection and adaptative management

SDMs establish relationships between species occurrence records and environmental factors using species



coordinates and environmental data, enabling the prediction of suitable habitats and distribution patterns
(Guisan et al., 2017; Héllfors et al., 2016). As field surveys have limited coverage, SDM predictions play
a crucial role as supplements in marine biodiversity conservation efforts. In recent years, numerous studies
have utilized SDMs to identify distribution characteristics of diverse marine taxonomic groups, providing
a vital foundation for the development of scientifically sound conservation plans (Hu et al., 2022; Wang et
al., 2023). Notably, there is increasing momentum under the Post-2020 Global Biodiversity Framework to
raise protection targets to 30% of the ocean by 2030 (Brito-Morales et al., 2022). Our study revealed that
the potential distribution area of T. mazima is 1,519,764.73 km?, while only 244,730.58 km? falls within
protected areas, constituting 16.10% of the total (Fig. 8). These findings contradict the Indo-Pacific region’s
reputation as the world’s richest in terms of marine species. Although a certain number of marine protected
areas have been established here (with a total area of approximately 459,711.65 km?), they inadequately cover
the suggested priority conservation areas identified in this study due to their scattered distributions. The
existing protected areas are not sufficiently large or well-connected, suggesting that they may not be effective
for protecting giant clams. Therefore, management efforts should include establishing a MPA network along
the coastlines of West Pacific-Indonesia to match the dispersal capability of giant clams.

It has been demonstrated that under future climate scenarios, global marine species distributions are shifting
at rates of tens to hundreds of kilometers per decade (Stuart-Smith et al., 2017). In the present study,
the projected future potential distribution area of T. mazima is 1,285,800.49 km?, with 208,080.73 km?
falling within protected areas, accounting for 16.18% (Fig. 8). Considering the impact of climate change on
habitats, it is crucial to assess whether existing protected areas can still fulfill their original conservation
functions. Additionally, management efforts should address the effects of future climate change on habitats in
order to maintain population connectivity and adaptability in separated regions. This requires constructing
appropriate models to understand the distribution patterns of numerous threatened species under climate
change, identifying species richness hotspots in the Indo-Pacific core region, and evaluating the effectiveness of
individual and networked marine protected areas. Such endeavors hold significant importance in formulating
adaptive and forward-looking conservation policies.

4.4 Model performance and verification

Habitat suitability modeling techniques have inherent limitations, but we have taken several measures to
ensure the accuracy of our research findings. We employed ensemble modeling to reduce uncertainties asso-
ciated with SDMs. However, it is important to acknowledge that SDM modeling algorithms still have their
own limitations. Previous studies have emphasized the presence of uncertainties in SDMs, which can be
minimized through a combination modeling approach (Guisan et al., 2017; Thuiller et al., 2019; Zhang et
al., 2019). By integrating multiple models, we can address variable importance and capture habitat changes
resulting from different factors, thereby advancing the study of species’ spatial distribution more efficiently
and accurately (Fig. 3-4). Furthermore, during model validation, techniques for validating presence/absence
models are well-developed and offer higher interpretability of prediction results (Palialexis et al., 2011).
Therefore, this study utilized presence/absence data for habitat analysis. Moreover, existing evidence sug-
gests that T. mazimaexhibits two evolutionary branches within our study area’s spatial scale (Nuryanto &
Kochzius 2009; Hui et al. 2016). However, a more detailed classification would likely lead to more accurate
predictions. Future research can explore this hypothesis by conducting further genetic studies on T. mazima

Conclusion

Post-2020, biodiversity conservation has become a shared concern among all parties to the Convention on
Biological Diversity. Giant clams hold significant economic and ecological importance as coral reef species. In
the present study, we employed SDMs with a dataset comprising 213 occurrence records and nine environ-
mental variables to assess the potential distribution of T. mazima , a giant clam species, in the Indo-Pacific
core region. We identified that land distance and light intensity are the dominate factors influencing the
distribution of T. mazima . Our analysis encompassed both current and future climate scenarios. Our study
revealed that the potential distribution area of T. maxima is 1,519,764.73 km2, constituting 16.10% of the



total protected areas. Additionally, through an overlay analysis, we evaluated the alignment between po-
tential suitable areas and existing protected areas, enabling us to identify gaps in conservation efforts. Our
findings provide insight into the spatial distribution patterns of 7. maxima , offering scientific guidance for
effective conservation management and recommendations for the establishment of future protected areas.
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Figure Captions

Figure 1 The global distribution map of Tridacna maxima (A) and the study area map (B). The red
dots represent existing occurrence records of the T. maxima worldwide, while the yellow and blue dots
represent occurrence records of the East Indian Ocean-South China Sea population (EIOS) and the West
Pacific-Indonesian population (WPI), respectively.

Figure 2 Results of collinearity analysis of nine predictors. Scatter collinearity analysis (A), Pearson’s
correlation analysis (B), and variance inflation factor analysis (C) results for nine predictor variables. Depth
- ocean depth; LandD - land distance; Cv - current velocity; Do - dissolved oxygen; Sal - salinity; Tmean —
temperature mean; Trange — temperature mean; Lb - Light at bottom; Pp - Phytoplankton.

Figure 3Ecological niche differentiation. (A) Percentage of explained variance of each principal component
of principal component analysis for the nine selected predictors. (B) The niches of the two populations
of Tridacna mazxima quantified via four-dimensional hypervolumes. To visualize the shape and boundary of
the hypervolumes in two dimensions, a random selection of 20,000 stochastic points for each hypervolume was
used. The large blue and orange points indicate the mean niche position (niche centroid) of EIOS and WPI,
respectively. (C) Contribution of environmental predictors to each principal component (PC). The number
in the bar indicates the contribution rate (%) of each predictor to PC axes, and only values>15% are shown.
Depth - ocean depth; LandD - land distance; Cv - current velocity; Do - dissolved oxygen; Sal - salinity;
Tmean — temperature mean; Trange — temperature mean; Lb - Light at bottom; Pp - Phytoplankton.

Figure 4Model evaluation and importance of environmental factors. Predictive abilities of the ten modeling
algorithms in projecting the distribution of Tridacna maxima at the population and species levels. (A) the
True Skill Statistics (TSS) value; (B) the Area Under the receiver operating characteristic Curve (AUC)
value. The black horizontal lines indicate the cutoff values of the AUC (0.8) and TSS (0.7) of the single
model used to build the ensemble model. (C) Relative importance of the nine predictor variables in the three



ensemble models built at population and species levels. Data are expressed as mean + standard error. Depth
- ocean depth; LandD - land distance; Cv - current velocity; Do - dissolved oxygen; Sal - salinity; Tmean —
temperature mean; Trange — temperature mean; Lb - Light at bottom; Pp - Phytoplankton.

Figure 5The response curves of Tridacna maxima occurrence probability against the two most important
driving factors based on the population-level (A1, A2) and species-level model (including the Eastern Indian
Ocean — South Sea population (B1, B2) and the Western Pacific — Indonesia population (C1, C2)). LandD
- land distance; Tmean — temperature mean; Lb - Light at bottom.

Figure 6Habitat suitability maps of Tridacna mazima predicted by species and population level integrated
models under current climate scenarios. Panels (Al, A2) show the corresponding continuous and binary
maps for the species; panels (B1, B2) show the corresponding maps for EIOS; panels (C1, C2) show the
corresponding maps for WPI.

FigureTFuture predictions and changes. Habitat suitability maps of Tridacna mazima predicted by an inte-
grated model established at both species and population levels under future climate scenarios. Panels (A1,
B1, C1) are binary maps for each species, and panels (A2, B2, C2) show the predicted changes in suitable
habitats for the 2100s under RCP 8.5 (0085). The category “loss” represents areas projected to be suitable
under current climatic conditions but unsuitable under future climatic conditions; “stable” represents areas
projected to be suitable under both current and future climatic conditions; “gain” represents areas projec-
ted to be unsuitable under current climatic conditions but suitable under future climatic conditions; and
“unsuitable” represents areas projected to be unsuitable under current and future climatic conditions.

Figure 8 Analysis of Marine Protected Area (MPA) Gaps. (A) Analysis of suitable habitats for Tridacna
mazima in the current climate scenario and existing MPA gaps. (B) Analysis of suitable habitats for Tridacna
mazima in the 2100s under the RCP 8.5 climate scenario and existing MPA gaps.

Table 1The nine environmental variables selected for this study

Environment variable Unit Source Data for the future
Current velocity m-St http:/ /www.bio-oracle.org Downloaded from Bio-oracle
Salinity PSS http:/ /www.bio-oracle.org Downloaded from Bio-oracle
Temperature Mean http:/ /www.bio-oracle.org Downloaded from Bio-oracle
Temperature Range http:/ /www.bio-oracle.org Downloaded from Bio-oracle
Depth m http://www.bio-oracle.org Remain unchanged

Land Distance km http://gmed.auckland.ac.nz  Remain unchanged
Dissolved oxygen mol-m™  http://gmed.auckland.ac.nz  Remain unchanged

Light at bottom / http:/ /www.bio-oracle.org Remain unchanged
Phytoplankton umol-m™  http://www.bio-oracle.org Remain unchanged

Table 2 Mean values of the true skill statistics (T'SS) and the area under the receiver operating characteristic
curve (AUC) for the ensemble models built at the species level (species model) and populations level (EIOS

model and WPI model).

EIOS, East Indian Ocean-South China Sea; WPI, West Pacific-Indonesia.

Ensemble models TSS AUC
Species model 0.753 0.892
EIOS model 0.822 0.928
WPI model 0.773 0.886
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Table 3 Size of predicted changes (%) in species range based on population-level and species-level models
for the middle (2050s) and end (2100s) of the 21st century under RCPs 2.6 and 8.5.

Year RCP EIOS EIOS WPI WPI SPECIES SPECIES

2050s 2100s 2050s 2100s 2050s 2100s
RCP 2.6 4.17 4.15 -8.60 -8.43 -10.72 -15.13
RCP 8.5 3.87 2.43 -10.11 -17.79 -18.49 -25.86
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