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Abstract

Labeling fine-grained objects manually is extremely challenging, as it is not only label-intensive but also requires professional

knowledge. Accordingly, robust learning methods for fine-grained recognition with web images collected from Internet of Things

have drawn significant attention. However, training deep fine-grained models directly using untrusted web images is confronted

by two primary obstacles: 1) label noise in web images and 2) domain variance between the online sources and test datasets.

To this end, in this study, we mainly focus on addressing these two pivotal problems associated with untrusted web images.

To be specific, we introduce an end-to-end network that collaboratively addresses these concerns in the process of separating

trusted data from untrusted web images. To validate the efficacy of our proposed model, untrusted web images are first

collected by utilizing the text category labels found within fine-grained datasets. Subsequently, we employ the designed deep

model to eliminate label noise and ameliorate domain mismatch. And the chosen trusted web data are utilized for model

training. Comprehensive experiments and ablation studies validate that our method consistently surpasses other state-of-the-

art approaches for fine-grained recognition task in a real-world scenario. Simultaneously, this introduces a novel pipeline for

fine-grained recognition with substantial efficacy in practical applications. The source code and models can be accessed at:

https://github.com/NUST-Machine-Intelligence-Laboratory/DDN.
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Abstract
Labeling fine-grained objects manually is extremely challenging, as it is not only label-intensive but also
requires professional knowledge. Accordingly, robust learning methods for fine-grained recognition with
web images collected from Internet of Things have drawn significant attention. However, training deep fine-
grained models directly using untrusted web images is confronted by two primary obstacles: 1) label noise
in web images and 2) domain variance between the online sources and test datasets. To this end, in this
study, we mainly focus on addressing these two pivotal problems associated with untrusted web images. To
be specific, we introduce an end-to-end network that collaboratively addresses these concerns in the process
of separating trusted data from untrusted web images. To validate the efficacy of our proposed model,
untrusted web images are first collected by utilizing the text category labels found within fine-grained
datasets. Subsequently, we employ the designed deep model to eliminate label noise and ameliorate domain
mismatch. And the chosen trusted web data are utilized for model training. Comprehensive experiments
and ablation studies validate that our method consistently surpasses other state-of-the-art approaches for
fine-grained recognition task in a real-world scenario. Simultaneously, this introduces a novel pipeline for
fine-grained recognition with substantial efficacy in practical applications. The source code and models can
be accessed at: https://github.com/NUST-Machine-Intelligence-Laboratory/DDN.

K E Y W O R D S

deep neural network, label noise, domain mismatch, fine-grained recognition, internet of things.

1 INTRODUCTION

Discerning nuanced distinctions within fine-grained categories (e.g., various bird species1, or flowers2) typically demands a
substantial volume of accurately annotated images. However, annotating objects at the subcategory level3 often necessitates
specialized expertise, thereby significantly constraining the viability of supervised fine-grained algorithms in practical real-
world implementations.

To mitigate the need for extensive manual annotation and facilitate the development of pragmatic fine-grained models, the
utilization of web images for training is gaining significant popularity. Nevertheless, as shown in Fig. 1 (a), due to the impact of
inaccurate automated or non-expert annotations, as well as label corruption, web images typically come with noisy labels. As
pointed out by Reference 4 and Reference 5, deep neural networks exhibit powerful capacity, allowing them to memorize in-
correctly labeled training data. Therefore, it would be problematic to train deep models by directly leveraging web images with
label noise6,7. To this end, Cui et al.8 employed a universal iterative structure to bootstrap datasets for fine-grained categoriza-
tion. For each round, the model selects several images according to confidence scores and forwards them to human annotators
for precise manual labeling. Apart from this, Krause et al.9 proposed to actively gather extensive amounts of fine-grained
data for training networks. Generally, these strategies founded on either semi-supervised or active learning principles8,9,10,11,12

have the capacity to effectively address common challenges inherent in webly supervised learning scenarios. Nevertheless, the
requirement for varying degrees of human interaction restricts the scalability potential of these techniques.
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F I G U R E 1 The issues of label noise and domain mismatch for web images. (a) The collected web images by text query
"Bobolink" may include some incorrect instances, such as "mallard" image (red box) and "sayomis" image (purple box). Using
these collected noisy web images for training is likely to result in identifying the test image "mallard" and "sayomis" as
"Bobolink". (b) Web images commonly come from various sources and contains multiple domains (e.g., natural, sketch, and
cartoon images), leading to domian mismatch between training data and test set. For instance, the test image "cardinal" may
be classified as "Bobolink" despite being free of noise.

Recently, significant endeavors13,14,15 have been directed towards automatically coping with label noise. Among these, sev-
eral focus on calculating the noise transition probabilities across various category labels. For instance, Goldberger et al.16 first
devised an adaptation layer to simulate the noise transition matrix. Patrini et al.17 presented loss correction to rectify noisy
labels using the estimated noise transition matrix. However, accurate noise transition probability is too difficult to estimate
due to the lack of prior knowledge, while inaccurate matrix estimation can even worsen the negative effects of noise. Another
family of studies (e.g., Bootstrapping8, MentorNet18, Active Learning19, Decoupling20 and Co-teaching21) focus on selecting
correctly-labeled samples and removing noisy instances. These works usually operate on the assumption that the lower the
noise rate of web data, the higher the performance of learned models. Despite promising results have been obtained in these
works, as shown in Fig. 1 (b), none of them solve the domain mismatch problem which is also widely existed in the web data22.
To minimize the domain discrepancy between web images used for training and test data, some methods23,24 bolstered the
diversity of the selected web images by leveraging query expansions or a Multiple Instance Learning (MIL) strategy.

Our approach is inspired by Reference 12, which utilizes deep MIL and noisy web images for fine-grained visual classifi-
cation as well. However, we are different from Reference 12. Firstly, our method operates solely with web-supervised data,
eliminating the need for manually annotated data. Reference 12 is a semi-supervised method and it still needs detailed annota-
tions including part landmarks and bounding boxes for fine-grained classification. Secondly, while Reference 12 allocates fixed
and equal weights to the instances within each bag, our approach diverges significantly. We propose an attention-based MIL
pooling method, enabling the assignment of varying weights, particularly larger ones, to the key instances within the bags. This
results in highly informative bag representations, facilitating the removal of noisy images and addressing domain mismatch
effectively. Given the high similarity between subcategories in web-supervised fine-grained tasks, the identification and alloca-
tion of larger weights to key instances play a vital role in achieving superior performance. Thirdly, our proposed framework
can mitigate label noise and alleviate domain discrepancy simultaneously in an end-to-end manner, while Reference 12 is not.

This decision that overcomes both problems simultaneously, rather than separately, stems from the intertwined nature of these
challenges; tackling one while neglecting the other tends to fall short in significantly enhancing the performance of the model
trained with web data. Our approach combines the bag-level MIL and the instance-level MIL into a single framework. And the
later MIL employs attention mechanism to boost the recognition accuracy of the former one. Utilizing the combined output of
two networks allows for more effective removal of noisy instances in bags. Furthermore, the way we construct bags in our deep
MIL network contributes to bridging domain gap between web images and test set concurrently. Thorough experimentation
and meticulous ablation studies showcase that our method surpasses the performance of cutting-edge approaches. Moreover,
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we have made our source code publicly available, aiming to provide opportunities for researchers engaged in multimedia and
affiliated domains to progress their research endeavors..

The primary contributions of this study can be summarized as follows: (1) We introduce a comprehensive end-to-end deep
neural network model that tackles the challenges of mitigating label noise and alleviating domain discrepancy concurrently. By
addressing these issues simultaneously, our model enhances the performance of web-supervised learning. Moreover, we have
made our source code publicly available, aiming to foster further research and innovation among scholars in multimedia and re-
lated domains. (2) We perform extensive experiments regarding various baseline approaches to verify our proposed deep neural
network model. Our experimental findings, observed on CUB200-2011 and Stanford Dogs datasets, provide empirical evidence
of our method’s superiority over existing state-of-the-art (SOTA). Additionally, through comprehensive ablation studies, we
establish the strengths of our proposed model configurations. (3) Our work serves as a valuable pre-processing phase prior to
direct web data learning. It aids in selecting appropriate instances, thereby enhancing the overall efficiency and effectiveness
of web-based learning.

2 RELATED WORK

2.1 Fine-grained Visual Recognition

Fine-grained visual recognition focuses on distinguishing between subordinate categories, and previous works can be briefly
categorized into three streams. The first cluster comprises strongly supervised learning approaches, hinging on manually
annotated bounding boxes or detailed part labels for training25,26,27,28,29,30,31,32,33,34,35. The second category involves weakly
supervised learning approaches, that solely rely on image-level labels in the training process, avoiding the need for detailed
annotations36,37,38,39,40,41,42,43,44. The third class incorporates the use of web images for facilitating fine-grained recognition
tasks8,9,10,11,12,45. Strictly speaking, these works8,9,10,11,12,45 are not purely web-supervised learning, as all of them involve a cer-
tain level of human intervention. In contrast to these studies, our approach operates autonomously without the need for human
intervention.

2.2 Webly Supervised Learning

Learning directly from images found on the web, which circumvents the need for human intervention, is growing increasingly
popular. However, the endeavor to train fine-grained recognition models using web-derived examples often encounters per-
formance issues, primarily due to label noise46. Statistical learning has contributed significantly to solving the issue of noisy
labels, particularly within the domain of theoretical analysis. This strategy can be classified into three distinct threads: surrogate
loss, estimation of noise rates, and utilization of probabilistic models. Nonetheless, many of these theoretical approaches often
come with specific priors or assumptions, yielding only moderate effectiveness when confronted with real-world complexities
of label noise. Therefore, our primary emphasis lies in deep learning based approaches. To enhance the effectiveness of web-
based learning, numerous deep learning approaches have been introduced to tackle the issue of label inaccuracies. To the best
of our knowledge, prior research can be roughly divided into four sets. The initial category revolves around changing the loss
function47,48. The second approach focuses on estimating the noise transition matrix16,17. The third approach put examples into
buckets49. The fourth strategy tries to enhance data quality with a sample selection phase8,12,20,18,21,50,51,52. Nevertheless, these
efforts do not specifically cater to fine-grained image recognition.

2.3 Domain Adaptation

Our research is also pertinent to the field of domain adaptation. Chen et al.53 proposed methods to tackle the issue of domain
shift, specifically aiming to minimize the disparity between the source domain and the target domain. Since our methodology
gathers training data from the internet, it shares resemblances with the approach described in Reference 54 that also capitalizes
on supplementary data sources for its training regimen. Nevertheless, these techniques do not possess a specific focus on the
context of fine-grained recognition under web-supervised conditions.
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F I G U R E 2 The framework of our deep neural network model. The input provided to our network consists of many
"bags", each comprising multiple "instances" or "images". These bags first undergo initial processing in a backbone model
(i.e., VGG16) to extract features. Subsequently they enters a fully connected (FC) layer and a ReLU activation to generate a
feature vector NNN. Two branches are leverage to process the intermediate vectors. Our proposed attention block in the upper
branch includes a FC layer, a Tanh layer and a sigmoid layer. Through attention block, the instance probability vector can be
obtained. For the bottom branch, the proposed attention block generates weights to multiply NNN and estimate the positive proba-
bility of bags. Last, our deep neural network employs Attentive Focal Loss in the upper stream and the Negative Bernoulli Log
Loss in the bottom stream. Our ultimate loss function results from combining the losses of both branches through a weighted
summation.

3 METHODOLOGY

Fig. 2 shows the framework of our proposed deep neural network model. Subsequent sections details the formulation of label
noise, MIL with neural networks, novel attention mechanisms, and our approach’s loss functions. Moreover, we also delve into
domain mismatch, which is a key aspect of our proposed method.

3.1 Formulation

Images collected from search engines such as Google and platforms like Flickr often exhibit loose and noisy labels. Conse-
quently, directly using these images for training can lead to a sharp drop in classifier performance, especially with limited
data9. Hence, prior to utilizing web images for model training, it’s imperative to conduct noise removal to ensure more accurate
learning outcomes.

For supervised learning algorithms, training data are typically represented as pairs {(xi, yi)}, in which xi ∈ Rd represents the
feature vector while yi ∈ {0, 1} denotes the corresponding label. Due to the nature of collecting images from the web using
text queries, it is not possible for webly supervised learning to obtain ground truth labels of these examples. For multi-instance
learning (MIL) paradigm, the training data is typically structured into collections referred to as bags {Xi}, where each bag
encompasses multiple samples {xi,j}. It’s important to note that the true label information, denoted as {Yi}, pertains solely to
the entire bag, without specific labels assigned to the instances within the bag, marked as {yi,j}. To be specific, the assumptions
for multi-instance learning problem can be written as:

Yi =
{

0,
∑

j yi,j = 0,
1, otherwise.

(1)
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Further, two statements in Eq. (1) can be reformulated as a compact form via a maximum operator.

Yi = max
j

yi,j. (2)

Then we can formulate noisy samples removal as a MIL problem by treating web data as individual "instance", while regarding
the search keyword as the label for the "bag".

3.2 MIL with Neural Networks

In the conventional MIL scenario, the norm is to express instances using features. Nevertheless, the method55 demonstrates
the utility of employing fully-connected deep neural networks for MIL problem. For tasks related to computer vision, the
integration of MIL and deep neural networks has been verified to enhance overall performance56. For this work, we follow
the idea in Reference 56 as it has the potential to facilitate a versatile form of transformation that can be defined using neural
networks’ parameters. Specifically, we employ specific transformations to convert the k-th images into a compact representation,
hi,j = fϕ(xi,j), where hi,j ∈ H and H = [0, 1]. The concept of utilizing deep neural networks to parameterize all transformations
holds considerable appeal, as it affords a high degree of flexibility to the entire approach. This permits seamless end-to-end
training of the network through back-propagation. The sole requirement is the differentiability of the MIL pooling process.

3.3 Attention-based MIL Pooling

For multi-instance learning problem, the operating of pooling should exhibit permutation invariance. In a prior work57, two dis-
tinct pooling techniques for MIL were introduced: the maximal pooling operator denoted as maxj=1,...,J{hi,j}, and the averaged
pooling operator represented as 1

J

∑J
j=1 hi,j. However, both the max and mean pooling mechanisms are fixed in advance and not

subject to training. Hence, an adjustable and versatile MIL pooling technique becomes imperative in this context.
Attention mechanism We employ a deep neural network to compute the weighted average of instances. Furthermore, it’s

crucial to fulfill a specific requirement: the weights must collectively add up to 1 in order to maintain invariance with respect to
the bag’s size. A critical requirement here is that the aggregate of these weights should equate to 1, thus ensuring invariance to
the size of a bag. In particular, let H = {hi,1, ..., hi,j} denote a collection consisting of J instances. The MIL pooling technique
put forward can be described as follows:

z =
J∑

j=1

ai,jhi,j, (3)

ai,j =
exp{w⊤ tanh(Vh⊤

i,j )}∑J
j=1 exp{w⊤ tanh(Vh⊤

i,j )}
. (4)

w ∈ RL×1 and V ∈ RL×I represent parameters. tanh(·) is adopted to comprise of both positive and negative values, ensur-
ing appropriate flow of gradients. Our introduced approach enables the identification of similarities and differences among
instances.

Gated attention mechanism tanh(·) exhibits near-linearity within the interval x ∈ [–1, 1], potentially leading to limited
efficacy in capturing intricate relationships. In this work, we propose to also utilize gating mechanism as well as tanh(·)
non-linearity, generating:

ai,j =
exp{w⊤(tanh(Vh⊤

i,j ) ⊙ sigm(Uh⊤
i,j ))}∑J

j=1 exp{w⊤(tanh(Vh⊤
i,j ) ⊙ sigm(Uh⊤

i,j ))}
. (5)

⊙ denotes an element-wise multiplication and U ∈ RL×I are parameters. sigm(·) denotes the sigmoid non-linearity. Given the
attention-driven MIL pooling strategy suggested, the bag-level model could benefit from a potentially richer bag representation,
as it enables the assignment of distinct weights to individual instances within the bag. Ideally, large attention weights should be
directed towards crucial instances associated with the positive label (Yi = 1). Then key instances in the bag can be more easily
discovered. Therefore, the proposed attention-based MIL pooling narrows the disparity and establishes a connection between
the instance-level method and the bag-level method.
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3.4 Loss Function

Training the model with the aim of optimizing the objective according to the maximum value across image labels in Eq. (2)
can present two potential issues. Firstly, gradient-based approaches may encounter problems with vanishing gradients, which
can hinder effective learning. Secondly, this formulation is applicable only when the instance-level classifier is employed.
For addressing these challenges and simplify the learning process, we propose an alternative approach. We optimize the log-
likelihood function to train the MIL network, in which the labels of bags follow the Bernoulli distribution:

Lbag = –(1 – Yi) log(1 – Y′
i) – Yi log(Y′

i). (6)

Here, Y′
i signifies the likelihood of a specific bag being positive, while Yi represents the label assigned to the input bag.

The benefit of employing this bag-level loss function lies in its ability to establish a unified representation of a bag without
introducing extra bias to the bag model. Nevertheless, given the absence of instance labels, the instance-level model may be
learned inadequately, contributing extra error to the ultimate prediction. Therefore, we suggest incorporating an additional loss
function at the instance level. The naive negative Bernoulli loss is:

Linstance =
1
J

J∑
j=1

(–(1 – yi,j) log(1 – ai,j) – yi,j log(ai,j)), (7)

where ai,j represents the attention mechanism weights as delineated in Eq. (4) and Eq. (5). From our experimental findings, it’s
evident that the classical negative Bernoulli instance-level loss’s effectiveness falls short of expectations. By analyzing the the
gathered web instances’ distributions, we find a significant disparity between the counts of positive and negative samples within
each bag. Specifically, there are a lot more positive instances than negative ones. The significant imbalance problem may result
in substantial performance degradation of the model in the process of training. Therefore, we introduce an innovative weighted
focal loss function to serve as the final instance-level loss:

Linstance =
1
J

J∑
j=1

(–yi,j · α(1 – ai,j)γ log(ai,j)

– (1 – yi,j) · (1 – α)aγ
i,j log(1 – ai,j)),

(8)

in which α ∈ [0, 1] is a weighting parameter for alleviating the imbalance problem. To be specific, we assign α to class 1 and
its complementary 1 – α to class 0. The attention mechanism weights in Eq. (4) are ai,j and the tunable focusing parameter is
γ ≥ 0. Subsequently, our ultimate loss function can be derived as follows:

L = λ1Lbag + λ2Linstance, (9)

in which λ1 and λ2 denote two parameters for regulating the impact of the bag-level loss and the instance-level loss, respectively.

3.5 How to Formulate Noise Removal as a MIL Problem?

MIL represents a cluster of learning techniques applicable to scenarios with significant levels of labeling noise. Instances,
referred to as elements within the MIL framework, are organized into collections known as bags, with a singular label associated
with each bag. The bag encompassing all negative examples is deemed a negative bag (Yi =

∑
j yi,j = 0, yi,j denotes the label of

j-th instance within the bag i and Yi stands for the label of bag i), otherwise it is positive.
MIL has two levels including bag-level and instance-level. The primary objective of bag-level MIL involves training a model

to forecast a label for a bag (e.g., Yi). In contrast, instance-level MIL aims to instruct a model in forecasting labels for individual
instances (e.g., yi,j). In our work, we first predict the bag’s label. Upon obtaining a negative label, we subsequently categorize
all instances within the bag as noisy images. When the bag’s label is positive, our focus shifts to predicting the instances’ labels
among the bag and treat those samples which have negative labels as noisy images.
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T A B L E 1 The ACA (%) performance on CUB200-2011. "Box/Part" stands for using bounding box or part annotation
during training. The term "Data" indicates whether the training dataset has undergone manual annotation (referred to as "anno.")
or if it has been sourced from the internet (referred to as "web").

Method CUB200-2011
Box/Part Data ACA(%)

†

Part-CNN 26 ✓ anno. 76.37
Normalized CNNs 58 ✓ anno. 75.70

Deep LAC 28 ✓ anno. 80.30
Part-Stacked CNN 27 ✓ anno. 76.60

Mask-CNN 25 ✓ anno. 85.70

‡

Two-level attention 38 anno. 69.70
Simon et al. 39 anno. 81.01
Zhang et al. 40 anno. 80.26

Multi-attention 42 anno. 86.50
Vision + Language 44 anno. 85.55

Bilinear 37 anno. 84.10
RA-CNN 36 anno. 85.30

Filter-bank 41 anno. 86.70
TASN 59 anno. 89.10

DCL 60 anno. 87.80
Com-Parts Model 61 anno. 90.40

§

Xu et al. 12 ✓ anno.+web 84.6
Cui et al. 8 ✓ anno.+web 80.7

Niu et al. 11 anno.+web 76.47
Cui et al. 43 anno.+iNat 89.29

$

Bergamo et al. 24 web 70.13
NEIL 62 web 69.08

WSDG 63 web 70.61
Sukhbaatar et al. 64 web 70.47

Xiao et al. 65 web 70.92
Decoupling 20 web 70.56
Co-teaching 21 web 73.85

Update-Drop 66 web 77.22
Ours web 79.92

† : strongly ‡ : weakly § : semi $ : webly

3.6 Why takes advantage of two MIL networks?

Classifiers trained directly from web images often face a significant degradation in performance as a result of noisy labels and
domain discrepancies. To solve these issues, numerous proposed solutions have emerged individually. However, addressing
either issue in isolation typically proved ineffective in substantially enhancing the efficacy of learning from the web. Hence,
our approach focuses on addressing both challenges simultaneously. The strength of our approach lies in the fusion of the bag-
level MIL model and the instance-level MIL model that operates through attention mechanisms, enabling us to address the dual
challenges of label noise and domain mismatch concurrently. Specifically, we solve the label noise by predicting the labels of
the bag and instance. We alleviate the domain mismatch by assigning varied weights to specific instances within a bag. This is
the primary reason why our approach outperforms other webly supervised methods.

3.7 Datasets and Evaluation Metric

We assess our approach on two widely employed benchmark datasets known as CUB200-20111 and Stanford Dogs67. Specifi-
cally, CUB200-2011 is a challenging fine-grained dataset, meticulously labeled with 200 distinct avian categories. The dataset
was designed to facilitate research on subordinate classifications, a task unattainable using other well-known datasets that
emphasize primary level categories. These images were sourced from the online platform Flickr and subsequently refined
through evaluation by contributors on Amazon’s Mechanical Turk platform. The Stanford Dogs dataset comprises photographs
of 120 distinct canine breeds originating from various global regions. This dataset was constructed with pictures and annota-
tions sourced from ImageNet, designed for fine-grained visual classification. The assessment metric employed is the Average
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T A B L E 2 The ACA (%) performance on Stanford Dogs. "Box/Part" stands for using bounding box or part annotation
during training. The term "Data" indicates whether the training dataset has undergone manual annotation (referred to as "anno.")
or if it has been sourced from the internet (referred to as "web").

Method
Stanford Dogs

Box/Part Data ACA(%)

†

Yang et al. 29 ✓ anno. 38.01
Chai et al. 30 ✓ anno. 45.60

Gavves et al. 32 ✓ anno. 57.00
Kanan 31 ✓ anno. 47.70

HAR-CNN 34 ✓ anno. 49.40
Chen et al. 33 ✓ anno. 52.00

FOAF 35 ✓ anno. 53.50

‡

RA-CNN 36 anno. 87.30
FCAN 68 anno. 84.20

Simon et al. 39 anno. 68.61
PDFS 40 anno. 71.96

Cui et al. 43 anno. 84.19
DVAN 69 anno. 81.50

§ Niu et al. 11 anno.+web 85.16

$

Bergamo et al. 24 web 78.64
NEIL 62 web 80.16

WSDG 63 web 80.20
Sukhbaatar et al. 64 web 81.15

Xiao et al. 65 web 81.67
Ours web 85.47

† : strongly ‡ : weakly § : semi $ : webly

T A B L E 3 Influence of different domains.

Test data Training data source ACA (%)

CUB200
Flickr 81.4

Google Image Search Engine 79.9

Stanford Dogs
Flickr 86.5

Google Image Search Engine 85.4

T A B L E 4 Influence of different attention mechanisms.

Test data Attention mechanisms ACA (%)

CUB200
Attention 79.9

Gated attention 79.2

Stanford Dogs
Attention 85.4

Gated attention 86.7

Classification Accuracy (ACA), a broadly utilized measure for evaluating the efficacy of fine-grained image recognition
techniques.

3.8 Experimental Setting

Web Data Collection: To learn our proposed deep neural network model for mitigating issues related to inaccurate labels and
domain discrepancies within web images, we employing imprecise search terms, such as "bird maps", to gather noisy web
instances as the negative training data. To be specific, we obtain 556 noisy images for the CUB200-2011 dataset and 483 for
the Stanford Dogs dataset. The retrieved web images are subsequently utilized as the positive samples for training.

Overlap Removing Strategy: For web images crawled from Google or other search engines, there are many duplications
intra the sub-classes due to the same search keywords. Apart from this, for fine-grained category recognition task, the repeti-
tions also exists inter different sub-classes on account of the similarities of images belong to the same species. To combat the
redundancies, we choose the image fingerprinting algorithm to address this problem. This method is often referred to as "image
hashing". In practice, image hashing involves analyzing image content and generating a distinct value that serves to uniquely
represent an image according to its visual attributes. Hashes for akin images should exhibit resemblance. The utilization of im-
age hashing algorithms considerably simplifies the task of conducting near-duplicate image recognition. Finally, the "different
hash" emerges within our scope of consideration, because it analyzes variances between neighboring pixel values to produce
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F I G U R E 3 The ACA (%) performance of different parameter groups (Ltrain, Ltest) and (λ1, λ2).

its unique identifier (i.e., image fingerprint). Now that we have the hash values of all images in web dataset, the process then
contains 2 steps. First is to detect replicate in same sub-class, in this case, we retain only one image from each near-duplicate
group so as to reduce redundancy. As for different sub-class, the image appearing in two or more categories means one sample
owns many labels at the same time, which will confuse the training model. So the second step is to remove all those images
considered to be noise. When evaluate the similarity of hash values, we adopt Hamming distance to compute the quantity of dif-
fering bits within a hash. Two images with Hamming distance less than 2-bit are identified as duplicate, of course, the threshold
can be adjusted.

Bags Generation: When training data is prepared, we subsequently generate Ltrain and Ltest bags with a variance of θ and
a mean of η. Instances are clustered within each bag, accompanied by their respective instance labels and bag label. During
the experimentation, the values of Ltrain and Ltest are chosen from {2000, 5000, 10000, 15000, 20000} and {1500, 2500, 5000,
10000, 20000}, respectively. Additionally, we search the parameter η from {15, 16, 18, 20, 25} and θ from {1, 2, 3, 4, 5}. We
finally set Ltrain = Ltest = 10000, η = 16, and θ = 2 as the default value in our experiments.

Deep Model Learning: Following, we send the generated bags into our model for fine-grained visual recognition. The
backbone of our proposed model relies upon a a pre-trained VGG-16. We eliminate the layers subsequent to the final pooling
layer, yielding a feature map with a resolution of 7×7. Subsequently, a fully connected (FC) layer comprising 4096 neurons and
a ReLU layer are incorporated. Additionally, we apply a sigmoid function to the probability vector of instance and normalize
its value to [0, 1) for calculating the Attentive Focal Loss. Through experiments, we ultimately select α = 0.25, γ = 2, λ1 = 1,
λ2 = 2 as the default value. Furthermore, we conduct training for the deep model over 30 epochs. The starting learning rate is
established at 10–5 and the weight decay parameter is set to 10–5.

Fine-Grained Model Learning: Once we obtain the selected images using our model, we proceed to utilize these images
as the training data to train a Bilinear CNN (BCNN)37. For the BCNN, we use the default parameter values as specified in
Reference 37.

3.9 Baselines

To demonstrate the effectiveness of our methodology, we incorporate four distinct groups of fine-grained SOTA approaches in
baseline comparisons.

Strongly Supervised Methods: In this group, bounding boxes of objects or annotations indicating specific parts are required
in the process of training. The baseline methods include Chen et al.33, Mask-CNN25, Part-Stacked CNN27, Deep LAC28, Pose
Normalized CNNs58, HAR-CNN34, Chai et al.30, Part-CNN26, Yang et al.29, Kanan31, Gavves et al.32, and FOAF35.

Weakly Supervised Methods: This set needs image-level labels. Specifically, the baselines consist of RA-CNN36, FCAN68,
Bilinear37, DCL60, Two-level attention38, TASN59, Simon et al.39, Filter-bank41, Multi-attention42, Vision + Language44,
Zhang et al.40, and Complementary Parts Model61.
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T A B L E 5 Influence of denoising and augmenting.

Test data Training data ACA (%)

CUB200

Initial web instances 72.9

cleansed web instances 79.9

cleansed web instances + CUB200 85.1

Stanford Dogs

Initial web instances 76.3

cleansed web instances 85.4

cleansed web instances + Stanford Dogs 89.3

Semi-supervised Methods: This group requires a degree of human annotation involvement. The baselines contain Niu et
al.11, Cui et al.43, Xu et al.12, and Cui et al.8.

Webly Supervised Methods: This set needs no human annotation. The method in11 reproduced nearly all of the prominent
techniques for fine-grained classification using webly supervised learning: NEIL62, WSDG63, Sukhbaatar et al.64, Bergamo et
al.24, Xiao et al.65. In addition, we also directly utilize the performances of Decoupling20 and Co-teaching21 on CUB200-2011
dataset from Reference 66.

3.10 Evaluations on Fine-grained Classification

Table 1 presents the outcomes of fine-grained approaches on the CUB200-2011 dataset, while Table 2 presents the outcomes for
the Stanford Dogs dataset. A noticeable observation from these tables is that our approach has successfully surpassed other we-
bly supervised methods. This improvement can be credited to the effectiveness of our method in addressing both the disparity
between noisy web-derived data and labeled test data in terms of domains, and the diminishment of noise within the web data.
It is worth mentioning that each webly supervised method is based on 100 web images per category, while strongly and weakly
supervised methods have around 30 labeled images. Despite these efforts, webly supervised approaches still exhibit relatively
lower performance compared to strongly, weakly, and semi-supervised approaches. The primary reason for this discrepancy
may lie in the inherent label noise and domain inconsistencies found in web images. Despite employing different strategies
within web-supervised approaches to mitigate the impact of these challenges, their performance remains unsatisfactory. How-
ever, this observation has inspired our conviction that substantial opportunities for enhancing web-supervised fine-grained
techniques still remain untapped.
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F I G U R E 5 The misclassification confusion matrix (50 categories) sampled on the CUB200 dataset. The training data is
(a) original web images and (b) purified web images, respectively.

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

 I n s t a n c e s
 B a g s

R e c a l l

Pr
ec

isi
on

0 . 9 6 8 2 0 . 9 7 8 8 0 . 9 9 1 0 0 . 9 9 1 4 0 . 9 9 3 0 0 . 9 9 3 4 0 . 9 9 8 3 0 . 9 9 8 4
0 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

 B a g s
 I n s t a n c e s

E p o c h

F1
 Sc

ore

1 3 7 9 1 3 1 5 1 7 1 9

F I G U R E 6 The Precision-Recall curve and F1 Score curve of our proposed deep neural network model.

4 ABLATION STUDIES

We conduct comprehensive ablation studies to systematically examine our denoising model under web-supervised conditions.
Subsequently, unless explicitly specified otherwise, we utilize CUB200-2011 as a representative case.

4.1 Different Domains

To assess the impact of utilizing web data from various domains, we gather web instances for search keywords from two
sources: Google and Flickr. Table 3 shows that the effectiveness of web pictures sourced from Flickr is slightly superior to those
from Google. A potential rationale for this observation could be attributed to the origin of CUB200-2011 and Stanford Dogs
datasets, both of which stem from Flickr. This convergence leads to a diminished domain disparity between the web-based
images sourced from Flickr and the evaluation dataset.

4.2 Different Attention Mechanisms

To analyze the effectiveness of different attention mechanisms stated in Section 3.3, we perform a comparative experiment
about ai,j in Eq. (4) and Eq. (5). Table 4 provides a comparison of the efficacy of distinct attention mechanisms across two
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datasets. The data in Table 4 indicates that, in the case of the CUB200 dataset, the attention mechanism outperforms gated
attention mechanism; however, this scenario is reversed when considering the Stanford Dogs dataset.

4.3 Hyper-parameters

We conduct a parameters analysis focusing on the parameters Ltrain, Ltest, η, θ in bags generating and α, γ, λ1, λ2 in our deep
neural network learning. In particular, our analysis delves into the interplay between parameter pairs, namely Ltrain and Ltest, as
they influence the process of bag generation. Additionally, we scrutinize the roles played by λ1 and λ2 in the context of Eq.
(9). Furthermore, we visually examine the sensitivities of the remaining parameters. Fig. 3 illustrates the stable and consistent
changing tendency of ACA concerning (Ltrain, Ltest) and (λ1, λ2). Moreover, Fig. 4 showcases the sensitivities of the parameters
η, θ, α, and γ concerning ACA.

4.4 Denoising and Augmenting

Our work serves as a preliminary measure prior to direct web-based learning. To substantiate this assertion, we gather the
top 100 web instances using the Google Image Search Engine to compose each distinct category. Subsequently, our model
is employed to cleanse the label noise and alleviate domain disparity. The cleansed internet pictures are then utilized as the
training dataset for the application of BCNN algorithm37. Furthermore, BCNN trained with the initial noisy web images is
used to establish the baseline for comparison. Fig. 5 presents the misclassification confusion matrix by using the original web
images (a) and purified web images (b). By comparing (a) and (b), we notice that directly leveraging web images for training
tend to result in a relatively high misclassification probability. By performing our proposed deep neural network model and set
the purified images as the training set for learning usually obtain a relatively small misclassification probability. In other words,
the proposed deep neural network model has a realistic necessity before learning from the web.

Additionally, we combine the selected web data and the training set in the CUB200-2011 dataset to form the training data
for learning the Bilinear model. Subsequently, we evaluate the model’s performance on the CUB200-2011 test data. The
experimental results are presented in Table 5. By observing Table 5, we can notice that the selected web images greatly improve
the baseline performance, which demonstrates that the selected web data can enhance existing manually labeled datasets,
leading to the development of a more robust model.

4.5 Analysis for Bags and Instances

To assess the effectiveness of our deep denoising network model, we plot the Precision-Recall (PR) and F1 Score curves of for
both bags and instances in Fig. 6. It can be observed that the area under PR curve for both bags and instances are relatively
large. For the F1 Score curve, we notice that both bags and instances reach nearly 1 after 9 epochs.
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F I G U R E 7 The influence of different deep neural network architectures.
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F I G U R E 8 Accurate removal of noise and the unintentional removal of positive samples by our approach (top). Illustration
of the successful retention of positive samples and erroneous preservation of noise by our method (bottom).

4.6 Different Backbones

The impact of using various backbones on visual classification performance is widely recognized. To analyze this aspect, we
replace the VGG-16 backbone in our denoising model with VGG-19 and ResNet-5070. The outcomes are presented in Fig. 7,
revealing that the performance of the three backbone networks on CUB200-2011 is notably similar. However, when it comes to
the Stanford Dogs dataset, the VGG-19 backbone network outperforms the other two choices, exhibiting the most impressive
performance.

4.7 Success and Failure Cases

We also analyze the success and failure cases of our deep denoising model. Specifically, we concentrate on two primary aspects:
(1) the precise identification of noisy web images and the inadvertent exclusion of valuable images through our advanced deep
learning framework, and (2) the accurate retention of positive images and the unintended omission of noisy instances by the
proposed deep neural network model. The findings from the experiment are displayed in Fig. 8. Analyzing the upper part of
Figure 8, it becomes evident that our advanced deep neural network architecture successfully eliminate incorrect labels. Mean-
while, our method erroneously removes a few positive instances (marked in blue boxes). This can be attributed to the distant
positioning of the objects in the images, which makes it challenging to accurately capture the relevant features. Furthermore,
when observing Fig. 8 (bottom), we notice that the selected web images exhibit relatively high accuracy, but a few noisy sam-
ples remain (i.e., red boxes). Upon observing the remaining noise, it becomes apparent that there exists a comparable visual
structure with the positive instances, contributing to the difficulty in distinguishing them accurately.

5 CONCLUSIONS

In this study, we explored the issue of webly supervised fine-grained visual recognition tasks. Our main idea is to remove noisy
labels and bridge domain gap between training set collected from web and test dataset, simultaneously. To be specific, we
proposed an end-to-end deep neural network model to achieve this goal. Our method can also serves as a preprocessing step.
Experimental results demonstrate that our method has attained the highest level of performance within the realm of fine-grained
visual recognition under web-based supervision.
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