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Abstract

This study presents TooT-PLM-ionCT, a holistic framework that exploits the capabilities of six diverse Protein Language

Models (PLMs) - ProtBERT, ProtBERT-BFD, ESM-1b, ESM-2 (650M parameters), and ESM-2 (15B parameters) - for precise

classification of integral membrane proteins, specifically ion channels (ICs) and ion transporters (ITs). As these proteins

play a pivotal role in the regulation of ion movement across cellular membranes, they are integral to numerous biological

processes and overall cellular vitality. To circumvent the costly and time-consuming nature of wet lab experiments, we harness

the predictive prowess of PLMs, drawing parallels with techniques in natural language processing. Our strategy engages

six classifiers, embracing both conventional methodologies and a deep learning model, to segregate ICs and ITs from other

membrane proteins, as well as differentiate ICs from ITs. Furthermore, we delve into critical factors influencing our tasks,

including the implications of dataset balancing, the effect of frozen versus fine-tuned PLM representations, and the potential

variance between half and full precision floating-point computations. Our empirical results showcase superior performance in

distinguishing ITs from other membrane proteins and differentiating ICs from ITs, while the task of discriminating ICs from

other membrane proteins exhibits results commensurate with the current state-of-the-art.
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Abstract: This study presents TooT-PLM-ionCT, a holistic framework that exploits the capabilities 1

of six diverse Protein Language Models (PLMs) - ProtBERT, ProtBERT-BFD, ESM-1b, ESM-2 (650M 2

parameters), and ESM-2 (15B parameters) - for precise classification of integral membrane proteins, 3

specifically ion channels (ICs) and ion transporters (ITs). As these proteins play a pivotal role in the 4

regulation of ion movement across cellular membranes, they are integral to numerous biological 5

processes and overall cellular vitality. To circumvent the costly and time-consuming nature of wet 6

lab experiments, we harness the predictive prowess of PLMs, drawing parallels with techniques 7

in natural language processing. Our strategy engages six classifiers, embracing both conventional 8

methodologies and a deep learning model, to segregate ICs and ITs from other membrane proteins, 9

as well as differentiate ICs from ITs. Furthermore, we delve into critical factors influencing our tasks, 10

including the implications of dataset balancing, the effect of frozen versus fine-tuned PLM repre- 11

sentations, and the potential variance between half and full precision floating-point computations. 12

Our empirical results showcase superior performance in distinguishing ITs from other membrane 13

proteins and differentiating ICs from ITs, while the task of discriminating ICs from other membrane 14

proteins exhibits results commensurate with the current state-of-the-art. 15

Keywords: Ion channels; Ion transporters; Membrane proteins; Drug discovery; Protein language 16

models; Deep learning 17

1. Introduction 18

1.1. Background 19

Protein language models (PLMs) are a transformative development in the field of 20

bioinformatics, leveraging the power of machine learning to predict protein structures 21

and functions from their amino acid sequences [1–3]. These models, inspired by natural 22

language processing (NLP) techniques [4–7], treat proteins as “sentences” composed of 23

“words” (amino acids), enabling the prediction of protein properties based on sequence 24

information alone [8]. The importance of PLMs lies in their potential to revolutionize our 25

understanding of proteins, the building blocks of life, and to accelerate drug discovery and 26

design processes [9]. They provide a powerful tool for predicting protein structures, which 27

is crucial for understanding diseases and developing treatments [10]. Moreover, PLMs 28

produce comprehensive representations of protein sequences that are useful for various 29

applications in protein analysis, including predicting protein function, protein-protein 30

interactions, and protein structure [1,3,11–17]. Unsal et al. [8] review the use of natural 31

language models for protein representation from 2015 to the present. 32

The regulation of ion movement across cell membranes is a critical aspect of cellular 33

function, with ion channels (ICs) and ion transporters (ITs) playing key roles [18]. These 34

membrane proteins (MPs) are involved in maintaining ion homeostasis (the regulation 35

and maintenance of a stable and balanced concentration of ions), regulating transmem- 36

brane potential, and facilitating electrical signaling, which are essential for various cellular 37

processes such as proliferation, migration, apoptosis, and differentiation [19–21]. 38
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ITs, also known as ion pumps, actively transport ions against their concentration gradi- 39

ent, a process that requires potential energy [22]. On the other hand, ICs are transmembrane 40

protein complexes located in the lipid bilayer membrane of all cells [23]. They facilitate the 41

passive movement of ions across cell membranes, thereby helping cells maintain electrical 42

properties and regulate functions [19,20]. 43

Given their crucial role in cellular function, ICs have become a significant focus in 44

membrane protein research and drug discovery [23]. They serve as promising therapeutic 45

targets for various diseases, including neurological disorders, cardiovascular diseases, and 46

cancer [24–27]. 47

In an effort to expedite the drug discovery process and circumvent the high costs 48

and time-consuming nature of wet lab experiments, computational methods have been 49

developed. These innovative techniques efficiently predict the presence and function of ion 50

channels, thereby accelerating the identification of potential drug targets [28,29]. 51

Among these computational methods, PLMs have emerged as a particularly powerful 52

tool [3]. By learning the sequence patterns of different protein families, PLMs can accurately 53

classify proteins and predict their functions [17,23,30]. This capability not only streamlines 54

the process of protein classification but also opens up new avenues for the discovery of 55

therapeutic targets [31]. 56

1.2. Review of Previous Work 57

There has been a significant amount of research on predicting ICs and ITs in the past, 58

with an emphasis on developing computational methods that can accurately differentiate 59

these proteins from other MPs [18,22,28,29,32–34]. These methods have often utilized 60

traditional machine learning techniques, such as Support Vector Machines (SVM) and 61

Random Forests (RF), which classify protein sequences based on features derived from 62

their primary, secondary, and tertiary structures. These features can include information 63

about the sequence itself, such as the presence of certain amino acid residues or motifs, as 64

well as structural features, such as secondary structure elements or solvent accessibility 65

[29,35]. The use of these features for ion channel prediction is thoroughly explained in 66

Menke et al. [29] and Ashrafuzzaman [28]. 67

The advent of deep learning has paved the way for novel opportunities in predicting 68

ICs and ITs. Recent studies underscore the potential of these advanced techniques to 69

generate intricate representations of protein sequences, thereby enhancing the efficiency 70

of IC and IT prediction models [18,22]. In their respective methodologies, Taju and Ou 71

[18], as well as Nguyen et al. [22], utilized position-specific scoring matrices (PSSM) for 72

encoding proteins into feature vectors, while leveraging Convolutional Neural Networks 73

(CNNs) for classifying ICs and ITs from other membrane proteins (MPs). These innovative 74

models could discern complex patterns in protein sequences, employing this information 75

to augment prediction performance, potentially surpassing the constraints of conventional 76

machine learning approaches [18,22]. However, it is noteworthy that their work primarily 77

focuses on distinguishing ion channels from other membrane proteins and ion transporters 78

from other membrane proteins, rather than the task of differentiating ion channels from ion 79

transporters. 80

Ghazikhani et al. pioneered the introduction of TooT-BERT-T [30] and TooT-BERT-C 81

[23], sophisticated methods designed for distinguishing transmembrane transport proteins 82

from non-transport proteins, as well as differentiating ICs from non-ICs. These methods in- 83

corporate a Logistic Regression (LR) classifier with fine-tuned representations derived from 84

a PLM known as ProtBERT-BFD [3]. As the most advanced predictors for transporters and 85

ICs, these approaches underscore the promising potential of employing protein language 86

models for such tasks. 87

1.3. Research Overview and Objective 88

In this study, we conduct a comprehensive analysis of six PLMs with six different 89

classifiers to differentiate ion channels, ion transporters, and other membrane proteins. 90
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In pursuit of a deeper understanding of PLM performance in protein classification tasks, 91

we scrutinize essential variables such as dataset balancing, representation tuning, and the 92

precision of floating-point calculations. 93

The overarching goal of this paper is to present a pioneering, automated method for 94

the precise categorization of ion transporters and ion channels within the expansive array of 95

membrane proteins. By elucidating the complex nature of these vital biological components, 96

we seek to facilitate their identification in bioinformatics research and potentially expedite 97

the discovery of novel therapeutic targets for a variety of diseases. 98

1.4. Study of Impacts 99

In this study, we embarked on a meticulous investigation of three pivotal factors that 100

could significantly influence the performance of PLMs in our tasks. These encompass: 101

• The choice between using frozen or fine-tuned PLM representations. 102

• The influence of balanced versus imbalanced datasets on model performance. 103

• The implications of half-precision versus full-precision floating-point computations. 104

Each of these elements represents a vital facet of the model’s configuration and data 105

management, thus underscoring the importance of their potential impacts on model perfor- 106

mance. The forthcoming sections deliver a succinct synopsis of each factor, explicating the 107

fundamental concept and the rationale for its incorporation in our study. 108

1.4.1. Frozen vs. Fine-tuned Representations 109

The concept of frozen and fine-tuned representations pertains to the degree of adapta- 110

tion of pre-trained language models to a specific task. Frozen representations refer to the 111

utilization of pre-trained models in their original state, without any further task-specific 112

training. On the other hand, fine-tuned representations involve the additional step of 113

task-specific training, where the pre-existing parameters of the pre-trained models are 114

adjusted to enhance their performance on the given task. 115

The comparative study of frozen and fine-tuned versions of a PLM offers valuable 116

insights into the performance dynamics of these models. It allows us to understand the 117

inherent behavior of the original pre-trained models (as reflected in the frozen state) and 118

to quantify the extent of improvement achievable through task-specific fine-tuning. This 119

comparison can potentially expose the limitations of the pre-training process and highlight 120

the areas where fine-tuning can yield significant benefits. 121

It is important to note that fine-tuning necessitates additional computational resources 122

compared to the use of frozen models. Consequently, if the performance enhancement 123

achieved through fine-tuning is marginal or negligible for a specific task, it might be more 124

resource-efficient to employ the model in its frozen state. This aspect underscores the impor- 125

tance of our investigation into the relative merits of frozen and fine-tuned representations 126

in the context of our tasks. 127

1.4.2. Balanced vs. Imbalanced Datasets 128

The terms “balanced” and “imbalanced” in machine learning refer to the distribution 129

of classes within a dataset. A balanced dataset exhibits approximately equal representation 130

of all classes, while an imbalanced dataset is characterized by unequal representation of 131

classes. In the context of this study, these terms are used to describe the distribution of 132

membrane protein sequences in the DS-C dataset (Table 2). 133

Imbalanced datasets, where certain classes are underrepresented, can significantly 134

impact the performance of a machine learning model. The model may develop a bias to- 135

wards the majority class, leading to suboptimal performance when predicting the minority 136

class. In the realm of PLMs, this issue translates into a potential struggle for the model to 137

accurately predict protein types that are underrepresented in the training data. 138

Furthermore, the bias introduced by an imbalanced dataset can result in a model 139

that performs better for the class with greater representation in the data. For instance, 140

if the dataset contains a significantly larger number of MPs compared to ICs or ITs, the 141
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model may develop a bias towards MPs. This bias could compromise the model’s ability to 142

accurately predict ICs or ITs, underscoring the importance of considering the balance of 143

classes in the dataset. 144

1.4.3. Half vs. Full Precision Floating Points Calculations 145

Half and full precision floating-point representations pertain to the level of numerical 146

precision employed in model computations. Full precision, typically realized through 32-bit 147

floats, provides superior numerical accuracy. Conversely, half precision, utilizing 16-bit 148

floats, curtails memory usage and computational demands, albeit at the expense of a slight 149

reduction in numerical accuracy. 150

The use of half-precision computations can expedite the training process, but it may 151

also influence model performance due to the diminished numerical precision. It is crucial 152

to evaluate whether this reduction in precision significantly affects the model’s capacity to 153

learn and generalize effectively. 154

Additionally, investigating the impact of half versus full precision provides valuable 155

insights into the balance between computational efficiency and model performance. This 156

understanding facilitates informed decision-making, taking into account the available 157

computational resources and the precision requirements of the task at hand. 158

1.5. Paper Structure 159

This paper is organized as follows: Section 2 details our methodologies, including the 160

datasets used and the process for balancing the membrane proteins dataset. It provides 161

a brief overview of the employed PLMs and classifiers, elaborates on hyperparameter 162

optimization, and discusses the evaluation metrics used to assess model performance. In 163

Section 3, we present and dissect the results of our experimental analyses. This section 164

evaluates the performance of different PLMs and classifiers for each task, sheds light 165

on the impact of the three previously mentioned factors, and includes visualizations of 166

protein representations. Additionally, it juxtaposes our findings with current state-of-the- 167

art methodologies for each task. Finally, Section 4 encapsulates our contributions and 168

the insights gleaned from our study. It also outlines potential future research avenues, 169

emphasizing areas where additional exploration could enrich the understanding of protein 170

classification using PLMs. 171

2. Materials and Methods 172

2.1. Methodology Overview 173

We have undertaken a comprehensive evaluation of representations derived from six 174

distinct PLMs. These include ProtBERT, ProtBERT-BFD, and ProtT5 from ProtTrans project 175

[3], as well as ESM-1b, ESM-2, and ESM-2_15B from ESM project [2,36]. 176

To further our analysis, we have employed six classifiers with the aim of distinguishing 177

ICs from other MPs, differentiating ITs from other MPs, and discriminating ICs from ITs. 178

These classifiers encompass traditional methodologies such as LR, k-Nearest Neighbor 179

(kNN), support vector machine (SVM), random forest (RF), and feed-forward neural 180

network (FFNN). Additionally, we have incorporated a convolutional neural network 181

(CNN), a deep learning model, for comparative analysis. 182

Our study also delves into the examination of several critical factors that could poten- 183

tially influence the outcomes of our tasks. These include the impact of balancing the MP 184

dataset on the results, the influence of frozen and fine-tuned representations from PLMs, 185

and the potential differences between half and full precision floating-point calculations. 186

By investigating these factors, we aim to provide a more nuanced understanding of the 187

performance and applicability of PLMs in protein classification tasks. Refer to Table 1 for a 188

comprehensive summary of the research methodology employed in this study. 189
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Table 1. Comprehensive Overview of Research Methodology. This table encapsulates the various
components of the research methodology employed in this study, providing a concise summary and
brief description of each element.

Methodology Component Details

Protein Language Models ProtBERT, ProtBERT-BFD, ProtT5 (ProtTrans project), ESM-1b,
ESM-2, ESM-2_15B (ESM project)

Tasks
Discrimination of ion channels vs other membrane proteins, ion
transporters vs other membrane proteins, ion channels vs ion
transporters

Classifiers SVM, Logistic Regression (LR), Random Forest (RF), kNN, Feed-
forward Neural Network (FFNN), CNN

Hyperparameter Optimization Grid search using scikit-learn (for SVM, LR, RF, kNN, FFNN) and
Optuna (for CNN)

Cross-Validation Technique 5-fold cross-validation

Evaluation Metrics Accuracy, MCC, Sensitivity, Specificity

Statistical Significance Analysis Paired Student t-test, ANOVA

Impacts Evaluated
1) Frozen vs. fine-tuned representations from PLMs, 2) Balanced
vs. imbalanced datasets (Downsampling of MPs dataset), 3) Half
vs. full precision floating point calculations

Presentation of Results

Tables and figures, grouped results by various aspects such as
dataset balance, classifier type, PLM, representation type (frozen
or fine-tuned), precision type (half or full), and UMAP projection
figures for each PLM, task, and representation type

Optimal Configuration Selected the best configuration for each task, ran on independent
test set, and compared results with state-of-the-art

Limitations

Could not fine-tune large PLMs like ProtT5 and ESM-2_15B due
to resource constraints (GPUs, memory), could not extract full
precision floating point from these PLMs. This led to missing
values in tables and figures.

2.2. Dataset 190

In our study, we employ the same dataset used in the DeepIon [18] and MFPS_CNN 191

[22] projects, which was gathered from the UniProt database [37]. To ensure a diverse and 192

representative collection, Taju and Ou [18] applied the BLAST algorithm [38] to remove 193

protein sequences with more than 20% similarity. The resulting dataset comprises 4915 194

protein sequences, including 301 ion channels, 351 ion transporters, and 4263 (other) 195

membrane proteins. The dataset was split into training and test sets for assessing model 196

generalizability. The distribution of sequences in the dataset is presented in Table 2. 197

Table 2. DS-C, the ion channel and ion transporter dataset. This table displays the distribution of
sequences in the dataset used in this study, separated into the training and test sets.

Class Training Test Total

Ion channel (IC) 241 60 301
Ion transporter (IT) 281 70 351
Other membrane protein (MP) 3,413 850 4,263

Total 3,935 980 4,915

2.2.1. Balancing the Membrane Protein Dataset 198

As highlighted in Table 2, there exists a significant disparity in the number of mem- 199

brane protein sequences in comparison to ion channel or ion transporter protein sequences. 200
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For this study, our objective was to assess the performance of PLMs and classifiers employ- 201

ing both imbalanced and balanced datasets. To construct a balanced dataset (Figure 1), 202

we implemented a random selection process to draw 280 sequences from the membrane 203

protein training set. To enhance the accuracy of the results and mitigate potential variability, 204

this process was reiterated ten times, each iteration using a distinct random state. 205

Figure 1. Visualization of Membrane Protein Dataset Balancing: This figure presents the distribution
of sequences in each dataset, delineated as bar plots. The training set sequences are represented by
the blue bars, whereas the red bars depict the sequences in the independent test set. The left-hand
figure portrays the distribution within the imbalanced dataset of additional membrane proteins
(MPs). Conversely, the right-hand figure exhibits the balanced dataset, which was achieved through
undersampling of MPs in the training set.

2.3. Protein Language Models (PLMs) 206

This study leverages six distinct Protein Language Models (PLMs) for comparative 207

analysis (Table 3): (1) ProtBERT [3] is an encoder-only model inspired by BERT [39], pre- 208

trained on UniRef100 [40]. (2) ProtBERT-BFD [3], analogous to ProtBERT, is pre-trained 209

on the BFD database [41] instead of UniRef100. (3) ProtT5-XL [3] (simplified to ProtT5 210

for convenience), is an encoder-decoder model rooted in the T5 architecture [6]. It is 211

initially trained on BFD and subsequently fine-tuned on Uniref50 [40]. (4) ESM-1b [2] is a 212

Transformer model pre-trained on UniRef50. (5) ESM-2 [36], while akin to ESM-1b, benefits 213

from enhanced architecture, improved training parameters, and augmented computational 214

resources and data. (6) ESM-2_15B [36], the largest PLM to date, is a more extensive version 215

of ESM-2, incorporating 15 billion parameters. 216

Table 3. Implementation details for ProtBERT [3], ProtBERT-BFD [3], ProtT5 [3], ESM-1b [2], ESM-2
[36], ESM-2_15B [36].

ProtBERT ProtBERT-BFD ProtT5 ESM-1b ESM-2 ESM-2_15

Parameters 420M 420M 3B 650M 650M 15B
Dataset UniRef100 BFD BFD UniRef50 UniRef50 UniRef50
Sequences 216M 2.1B 2.1B 27M 27M 27M
Embedding dim 1024 1024 1024 1280 1280 5120
Layers 30 30 24 33 33 48

To derive frozen representations, we harness feature vectors from the final layer of 217

the PLMs, employing mean-pooling to generate a unique representation for each protein 218

sequence. This process is consistent with the methodologies adopted in ProtTrans [3] and 219

ESM [2,36]. 220
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For fine-tuning of the PLMs, we engage the Trainer API from the transformers library 221

[42]. We primarily utilize the library’s default hyperparameters but modify the number of 222

epochs to 5, following the guidelines of the original BERT paper [39]. To mitigate memory 223

constraints, we adopt a batch size of 1. 224

2.4. Classifiers 225

For our machine learning classifiers, we implement Support Vector Machine (SVM) 226

[43], k-Nearest Neighbors (kNN) [44], Random Forest (RF) [45], Feed-Forward Neural 227

Network (FFNN) [46], and Logistic Regression (LR) [47] using the scikit-learn library [48], 228

whereas Convolutional Neural Network (CNN) [49] using PyTorch [50]. These classi- 229

fiers are designed to provide a comprehensive comparison of various machine learning 230

approaches in combination with the PLMs. 231

2.5. Hyperparameter Optimization 232

In this investigation, we incorporated an all-encompassing strategy for hyperparame- 233

ter optimization, harnessing the prowess of scikit-learn grid search [48] and Optuna [51], 234

an advanced Python library specifically designed for hyperparameter optimization. The 235

primary objective was to discern the quintessential set of hyperparameters for each model 236

to maximize the efficacy of our classification algorithms. 237

With respect to conventional classifiers such as SVM, RF, kNN, LR, and FFNN, we 238

exploited grid search—an exhaustive technique that systematically scrutinizes a pre-defined 239

subset of hyperparameters. This process was executed utilizing the scikit-learn library [48]. 240

Each classifier was assigned a unique set of hyperparameters to investigate. The 241

specific grids of hyperparameters tailored for each classifier were as follows: 242

• SVM: The investigation included cost parameters (C) of 0.1, 1, 10, and 100; kernel 243

coefficients (gamma) of 0.1, 1, and 10; and kernel types (kernel) inclusive of linear, rbf, 244

and sigmoid. 245

• RF: The search encompassed the number of trees in the forest (number of estimators) 246

of 50, 100, and 200; the maximum tree depth (maximum depth) of 5, 10, and None; 247

and the minimum samples required to split an internal node (minimum samples split) 248

of 2, 5, and 10. 249

• kNN: The evaluation incorporated the number of considered neighbors (number of 250

neighbors) of 3, 5, 7, and 9; the prediction weight function (weights) of uniform and 251

distance; and the algorithm used for calculating the nearest neighbors (algorithm) of 252

ball_tree, kd_tree, and brute. 253

• LR: The investigation comprised various penalty types (penalty) of l1 and l2; cost 254

parameters (C) of 0.1, 1, 10, and 100; and optimization solvers (solver) of liblinear and 255

saga. 256

• Feed-Forward Neural Network (FFNN): The search included the number of neurons in 257

the hidden layer (hidden_layer_sizes) of (512, 256, 64), (512,), and (256,); the activation 258

function for the hidden layer (activation) of relu and tanh; and the weight optimization 259

solver (solver) of adam and sgd. 260

For the evaluation of model performance for each hyperparameter combination, we 261

employed stratified 5-fold cross-validation. The optimization scoring metric was the 262

Matthews Correlation Coefficient (MCC). 263

In the case of our Convolutional Neural Network (CNN) model, we utilized Optuna 264

[51], a Python library adept at hyperparameter optimization. Optuna leverages a variety of 265

optimization algorithms to traverse the hyperparameter space with the goal of identifying 266

the optimal values that enhance the model’s performance. 267

The optimization procedure was encapsulated in an objective function, which incor- 268

porated the hyperparameters to be optimized. The specific hyperparameters and their 269

respective ranges or sets of values were as follows: 270
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• Kernel Sizes: The possibilities included combinations of [3, 5, 7], [3, 7, 9], [5, 7], and [7, 271

7, 7]. 272

• Output Channels: The combinations were [128, 64, 32]. 273

• Dropout Probability: The range was set from 0.2 to 0.5. 274

• Optimizer: The options included Adam, RMSprop, and SGD. 275

• Learning Rate: The range extended from 1e-6 to 1e-2 on a logarithmic scale. 276

The model underwent training for 10 epochs, with the performance being assessed on 277

the validation set using MCC as the performance metric. The pruning feature of Optuna was 278

harnessed to curtail trials early if they lacked promise, thereby conserving computational 279

resources. 280

Owing to the intensive computational requirements of this procedure in terms of time 281

and memory, the optimization was carried out singularly for each task and dataset, thereby 282

resulting in five distinct hyperparameter settings (IC-MP balanced, IC-MP imbalanced, 283

IT-MP balanced, IT-MP imbalanced, and IC-IT). For balanced datasets, one dataset was 284

randomly selected from a pool of 10 for consideration. 285

The optimization procedure was executed for 100 trials, with each trial embodying a 286

complete execution of the objective function with a distinct set of hyperparameters. The 287

Optuna study was configured to maximize the MCC, and the optimization procedure was 288

expedited by using a GPU for increased efficiency. 289

2.6. Cross-Validation and Evaluation Metrics 290

The technique of k-fold cross-validation, ubiquitously utilized in model evaluation, 291

necessitates partitioning the original dataset into k subsets or folds of equivalent size. 292

During each iteration, a single fold is reserved for validation, while the remaining k-1 folds 293

serve as the training set. This cycle is repeated k times, ensuring each fold is used precisely 294

once as the validation set. The model’s performance is then evaluated as the mean over the 295

k iterations, delivering a more robust and accurate assessment of its capability to generalize. 296

k-fold cross-validation plays a pivotal role in mitigating overfitting risk and curtailing bias 297

in model evaluation. Our experimentation was conducted using 5-fold cross-validation, 298

signifying the partitioning of the dataset into five subsets and repeated model training and 299

validation over five iterations, with each fold serving as the validation set once. 300

In the context of this paper, we utilized four performance metrics to assess the ef- 301

ficacy of our approach for the tripartite tasks of IC-MP, IT-MP, and IC-IT. These metrics 302

encompassed MCC, Accuracy, Sensitivity, and Specificity. 303

Accuracy represents an overall measure of correct classification rate, computed as the 304

fraction of correct predictions relative to the total number of predictions. It is expressed as 305

a percentage and can be determined using the following formula: 306

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity, also referred to as the true positive rate, measures the proportion of actual 307

positive instances that are correctly identified. Its calculation is as follows: 308

Sensitivity =
TP

TP + FN
(2)

Specificity, alternatively known as the true negative rate, quantifies the proportion of 309

actual negative instances that are correctly identified. Its calculation is as follows: 310

Speci f icity =
TN

TN + FP
(3)

MCC is esteemed as a reliable and stable evaluation metric when handling imbalanced 311

data [52]. The MCC values span from -1 to 1, where 1 signifies perfect prediction, 0 denotes 312

performance equivalent to random chance, and -1 represents a total misalignment between 313

predictions and observations. A high MCC value suggests a predictor demonstrating high 314
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accuracy for both positive and negative classes while maintaining a low misprediction rate 315

for each class. In our research, we accord greater emphasis to the MCC metric due to its 316

comprehensive nature and reliability. 317

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

Here, TP (True Positive) denotes an instance where the classifier accurately predicts the 318

positive class, TN (True Negative) signifies an instance where the classifier accurately 319

predicts the negative class, FP (False Positive) represents an instance where the classifier 320

erroneously predicts the positive class, and FN (False Negative) refers to an instance where 321

the classifier inaccurately predicts the negative class. 322

2.7. Statistical Significance Analysis 323

The statistical significance of observed differences was tested using two methods: the 324

paired Student’s t-test [53] and Analysis of Variance (ANOVA) [54]. The paired Student’s 325

t-test, ideal for comparing means of two related groups, was employed for two sets of 326

related observations. Conversely, ANOVA, which assesses means across three or more 327

unrelated groups, was applied when more than two independent groups were to be 328

compared. The outcomes were expressed as a p-value, a statistical measure estimating 329

the probability of random chance producing the observed results. Conventionally, a p- 330

value below 0.05 signifies statistical significance, indicating a minimal probability that 331

the observed difference occurred due to random chance. In our analysis, the p-value was 332

computed from MCC metric, which is deemed comprehensive and reliable. 333

2.8. Limitation 334

Our study was not without its limitations, primarily due to the constraints imposed 335

by the available computational resources. The fine-tuning of large-scale PLMs such as 336

ProtT5 (with 3 billions of parameters) and ESM-2_15B (with 15 billions of parameters) 337

necessitates substantial computational resources and significant GPU memory, particularly 338

for the extraction of full-precision floating-point representations [55? ]. Given our limited 339

resources, which included a single GPU V100, we were unable to perform these tasks, 340

resulting in some missing results in Section 3 in our tables and figures. 341

Furthermore, the absence of results in Table 10 (ion channels vs. ion transporters) is 342

attributed to the fact that the corresponding studies [18,22] do not report these specific 343

results, and there are no readily available tools that can generate them. The primary focus 344

of these papers is to classify ion channels and ion transporters against other membrane 345

proteins, rather than against each other. However, in light of the data available to us, we 346

chose to conduct this experiment and compare our models in this context as well. 347

3. Results and Discussion 348

This section presents a comprehensive exploration of the findings derived from our 349

research, articulated through a combination of tables and figures to demonstrate and 350

contrast varying facets of the study. We elucidate the performance of six distinct Protein 351

Language Models (PLMs) as they engage with three specific tasks: differentiating ion 352

channels (IC) from membrane proteins (MP), distinguishing ion transporters (IT) from MPs, 353

and discerning IC from IT. We delve into the performance of six classifiers within these 354

tasks, shedding light on three pivotal factors under investigation: the influence of frozen 355

versus fine-tuned representations, the effect of balanced versus imbalanced datasets, and 356

the impact of half versus full precision floating-point calculations. 357

Our findings are quantified using four evaluative metrics: Matthews Correlation 358

Coefficient (MCC), Accuracy, Sensitivity, and Specificity. We present these results as mean ± 359

standard deviation, obtained from a 5-fold cross-validation (CV). In our attempt to provide 360

an overarching view, we compute averages over tasks, PLMs and classifiers, yielding a 361

high-level depiction of our results. It should be noted, however, that results compared 362
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against the state-of-the-art are derived from an independent test set, employed solely for 363

this purpose, with all other evaluations conducted on the training set. 364

In our tables, the highest values for each column and category are highlighted in bold, 365

facilitating immediate recognition. Where there are more than two comparable values, the 366

second highest are underlined to illustrate the proximity between the best and second-best 367

results. In the corresponding figures, we prioritize the MCC metric, owing to its reliability 368

and comprehensive nature. Each bar in these figures denotes the mean MCC, with the error 369

bar atop indicating the standard deviation from the 5-fold CV. A ∆ symbol highlights the 370

difference between pairs of bars. 371

To ascertain the statistical significance of our findings, we employ ANOVA [54], a 372

method for comparing the means of three or more groups, and the paired t-test [53], used 373

to compare the means of two related groups. A p-value of 0.05 or smaller indicates a 374

significant difference. It is important to note that this section primarily discusses general 375

findings; more detailed results can be found in the appendix of this paper. 376

3.1. Performance of PLMs for Classification Tasks 377

Table 4 presents a detailed evaluation of the six PLMs engaged in three distinct 378

classification tasks: differentiating IC from MP, distinguishing IT from MP, and discerning 379

IC from IT. 380

3.1.1. Performance of PLMs 381

Our findings underscore the superior performance of the ESM-1b PLM, as it eclipses 382

other PLMs across all evaluation metrics and tasks. The lone exception is observed in the 383

task of distinguishing IC from IT, where ESM-1b shares the lead position with ESM-2_15B. 384

This indicates that ESM-1b consistently delivers high accuracy in predicting ICs and ITs 385

from MPs. 386

However, the second-best performing model varies according to the task. ESM-2 387

exhibits commendable performance for differentiating IC from MP and distinguishing IT 388

from MP, whereas ProtT5 excels in the IC-IT classification task. The significant variations in 389

p-values across all PLMs further accentuate the formidable performance of ESM-1b. 390

In tasks pertaining to the differentiation of IC from MP and the distinction between 391

IC and IT, the performance variance between the highest-ranking and the runner-up 392

PLMs is minimally noticeable across all evaluation metrics. However, when tasked with 393

discerning IT from MP, a notable performance discrepancy becomes apparent, particularly 394

evident in the Matthews correlation coefficient (MCC) metric. This highlights a more 395

substantial divergence in the proficiency of the two leading models, specifically ESM-2 and 396

its predecessor, ESM-1b, within this particular task. 397

Factors Contributing to ESM-1b’s Superior Performance Outcomes 398

Our study posits that the unique architectural design of ESM-1b substantially con- 399

tributes to its superior performance. This hypothesis is supported by our observation 400

that identical pretraining dataset sizes, as employed in ESM-1b, ESM-2, ESM-2_15B, and 401

more data in ProtBERT, ProtBERT-BFD, and ProtT5, in conjunction with model dimen- 402

sions varying from 650M (for ESM-1b) to 15B (for ESM-2_15B) parameters, does not affect 403

the performance of the corresponding PLMs significantly. We attribute the performance 404

differences primarily to two factors: positional encoding and dropout strategies. 405

Positional Encoding and Its Impact 406

ESM-1b [2] exhibits a unique approach to positional encoding. Diverging from the 407

original Transformer architecture [4], it replaces the conventional static sinusoidal encoding 408

with a learned encoding approach. This is markedly different from the approaches observed 409

in the ESM-2 [36] and ProtTrans PLM [3] families. 410
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Dropout Strategies and Their Influence 411

Dropout [56], a prominent regularization technique in deep learning, randomly dis- 412

ables certain neural network units during training. This strategy enforces the network to 413

develop more robust and generalizable features by reducing overfitting. 414

Distinct dropout strategies underscore a significant differentiation between ESM-1b 415

and other PLMs. For instance, ESM-2 chooses to completely forgo dropout within hidden 416

layers and attention. This pattern is also discernible in ProtBERT and ProtBERT-BFD, 417

where dropout appears to be absent from their architectures. Conversely, ESM-1b not only 418

incorporates dropout in its architectural framework but also applies it across various tasks. 419

Considering the potential benefits of overfitting prevention measures, especially pertinent 420

to the tasks investigated in our study, this difference assumes substantial significance. 421

Thus, in light of these findings, we suggest that the distinctive architectural design of 422

ESM-1b plays a crucial role in facilitating its superior performance outcomes. 423

Table 4. Performance overview of protein language models for protein classification tasks. This
figure provides a comprehensive performance evaluation of various protein language models (PLMs),
organized in the order of their parameter count, across three distinctive protein classification tasks:
differentiating ion channels (IC) from membrane proteins (MP), distinguishing ion transporters
(IT) from MPs, and discerning IC from IT. The evaluation metrics, captured through a 5-fold cross-
validation approach, are presented as mean±standard deviation. The p-value accompanying each
result measures the statistical significance of observed differences among the PLMs. The highest
value achieved for each task and column is highlighted in bold, whereas the second highest value is
underlined to allow for comparative analysis between top-performing models.

Task PLM MCC Accuracy Sensitivity Specificity P-value

IC-MP

ProtBERT 0.73±0.05 90.99±1.76 76.88±4.89 91.69±2.83

1.25e-06

ProtBERT-BFD 0.74±0.05 91.46±1.63 76.18±4.82 92.27±2.60
ESM-1b 0.84±0.03 94.15±1.17 88.44±3.39 94.33±1.91
ESM-2 0.83±0.04 93.89±1.27 85.66±4.43 94.39±1.94
ProtT5 0.79±0.05 93.12±1.38 79.68±4.98 94.35±1.81

ESM-2_15B 0.78±0.04 93.16±1.23 81.52±4.38 93.13±1.71

IT-MP

ProtBERT 0.71±0.05 90.75±1.41 75.66±4.69 91.58±2.34

2.49e-03

ProtBERT-BFD 0.74±0.05 91.10±1.64 78.91±4.79 92.30±2.33
ESM-1b 0.82±0.04 93.47±1.31 85.09±3.46 94.53±2.09
ESM-2 0.78±0.04 92.64±1.36 82.06±4.20 93.41±2.26
ProtT5 0.75±0.04 92.78±1.13 77.55±4.42 93.58±1.94

ESM-2_15B 0.72±0.04 91.58±1.46 76.12±4.26 91.90±2.32

IC-IT

ProtBERT 0.79±0.03 89.33±1.67 88.92±4.38 89.62±4.46

2.14e-06

ProtBERT-BFD 0.78±0.05 88.71±2.46 88.29±5.12 89.29±4.67
ESM-1b 0.85±0.04 92.46±2.25 92.83±3.42 92.12±4.21
ESM-2 0.83±0.04 91.42±2.17 91.21±3.62 91.83±4.21
ProtT5 0.84±0.04 91.83±1.83 91.00±2.67 92.50±3.83

ESM-2_15B 0.85±0.03 92.33±1.67 91.50±2.67 92.83±3.83

3.1.2. Impact of Dataset Balance and Fine-Tuning 424

This study observes that larger models, namely ProtT5 and ESM-2_15B, despite being 425

precluded from fine-tuning due to resource constraints, managed to equal the performance 426

of the smaller model, ESM-1b, on the balanced IC-IT dataset. Intriguingly, even with the 427

application of fine-tuning to ESM-1b, the frozen representations demonstrated their efficacy 428

when the dataset is balanced, as evidenced in the IC-IT case. 429

This finding is substantiated by Table A5 and Figure A5, which depict superior perfor- 430

mance with frozen representation on the balanced dataset. However, the difference was 431
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not statistically significant (with a p-value > 0.05) across most of the PLMs, rendering this 432

observation as noteworthy, though not decisive. 433

The observed phenomenon intriguingly suggests a potential connection between 434

dataset balance and the concepts of frozen and fine-tuned representations. Rather than 435

treating these concepts as mutually exclusive, our study proposes that different tasks 436

may warrant exploration of varying combinations of these methodologies, indicating the 437

necessity for a more nuanced approach in their application. 438

3.1.3. Size of PLMs and Performance 439

Our findings challenge the prevailing notion that the performance of PLMs invariably 440

scales in direct proportion to their size. Interestingly, we did not identify a clear linear 441

correlation between the dimensionality of a PLM and its ensuing performance. As a case 442

in point, ESM-1b, with its 650 million parameters, consistently outperformed ESM-2_15B, 443

which boasts 15 billion parameters, even when dealing with frozen representations (refer 444

to Table A1. This observation underscores the conclusion that the performance efficacy 445

of a PLM does not hinge exclusively on its size. Instead, it is shaped by a more intricate 446

interplay of factors, with architectural design playing a significant role. 447

3.2. Comparative Performance Analysis of Classifiers 448

Table 5 presents performance results grouped by various classifiers utilized for three 449

distinct protein classification tasks: distinguishing IC from MP, differentiating IT from MP, 450

and discerning IC from IT. 451

Table 5. Performance overview of classifiers across protein classification tasks. This table offers a
comprehensive performance evaluation of each classifier across three distinct protein classification
tasks: differentiating ion channels (IC) from membrane proteins (MP), distinguishing ion transporters
(IT) from MPs, and discerning IC from IT. The results, captured via a 5-fold cross-validation approach,
are represented as mean±standard deviation. An accompanying p-value quantifies the statistical
significance of observed differences among the classifiers. The highest value achieved for each task
and column is marked in bold, while the second highest value is underlined to facilitate a comparison
between the top-performing models.

Task Classifier MCC Accuracy Sensitivity Specificity P-value

IC-MP

LR 0.82±0.04 93.99±1.30 85.53±4.03 94.69±1.97

2.29e-14

kNN 0.68±0.05 87.52±1.71 82.96±4.62 82.13±2.68
SVM 0.84±0.04 94.51±1.13 85.76±3.69 95.66±1.71
RF 0.69±0.05 92.00±1.38 63.96±4.59 96.86±1.52

FFNN 0.83±0.04 94.10±1.19 86.66±3.93 94.66±1.82
CNN 0.83±0.05 93.96±1.93 85.07±5.63 95.40±3.84

IT-MP

LR 0.80±0.04 93.12±1.34 83.71±3.74 94.19±2.21

4.77e-11

kNN 0.69±0.05 88.54±1.76 80.58±4.21 85.93±2.56
SVM 0.81±0.04 93.17±1.21 84.28±4.47 94.62±1.96
RF 0.65±0.05 90.33±1.62 64.35±4.47 93.57±2.14

FFNN 0.81±0.04 93.19±1.41 84.61±4.04 94.03±2.43
CNN 0.81±0.04 93.70±1.15 82.66±4.80 95.23±2.14

IC-IT

LR 0.82±0.03 91.22±1.61 91.00±3.11 91.44±3.44

1.38e-17

kNN 0.74±0.06 86.44±3.22 89.83±4.33 83.56±5.56
SVM 0.85±0.04 92.28±1.67 91.67±3.61 93.00±3.56
RF 0.79±0.04 89.28±2.22 86.28±6.06 91.72±6.06

FFNN 0.84±0.04 92.06±2.17 92.11±3.56 92.11±3.94
CNN 0.86±0.03 92.67±1.67 91.61±3.17 93.78±3.39



Version August 31, 2023 submitted to Journal Not Specified 13 of 48

Our comprehensive investigation across distinct protein classification tasks, employing 452

various classifiers, revealed a number of compelling insights. 453

3.2.1. Prominence of SVM and CNN Classifiers 454

Both the Support Vector Machine (SVM) and Convolutional Neural Network (CNN) 455

classifiers consistently delivered superior performance across all tasks. These classifiers 456

effectively navigate high-dimensional data and unravel complex patterns, contributing 457

to their consistent performance. The CNN employs convolutional layers to identify local 458

patterns in the representations and nonlinear relationships inherent in neural network 459

layers, while the SVM excels at linear classification by distinguishing between classes 460

efficiently by maximizing margins. 461

3.2.2. Comparison of Simple and Complex Models 462

Interestingly, a comparison of simple models, such as Logistic Regression (LR), and 463

complex ones, like CNNs, indicated comparable performance levels. This observation 464

counters the prevalent assumption that increasing model complexity necessarily results in 465

superior performance. The consistent trend across all tasks and evaluation metrics suggests 466

that in predicting IC and IT from MP, simpler models may deliver effectiveness on par with 467

their more complex counterparts. 468

3.2.3. Less Effective Classifiers 469

However, not all classifiers showcased this level of effectiveness. Classifiers such as the 470

k-Nearest Neighbors (kNN) and Random Forest (RF) were identified as the least effective 471

across these tasks and representations derived from PLMs. This finding suggests that these 472

classifiers may not align well with the specific nature of these tasks or the representations 473

provided by the PLMs. 474

3.2.4. Performance Parallels Among Classifiers 475

Furthermore, our analysis disclosed an intriguing parallel in the performance metrics 476

of LR and Feed-Forward Neural Networks (FFNN), and those of SVM and CNN. This 477

pattern suggests that, despite inherent differences in their complexity and structure, these 478

models can achieve similar results in these specific tasks. 479

3.2.5. Significance of Classifier Selection 480

Finally, the p-value analysis highlighted significant performance differences across 481

the classifiers for all three tasks, emphasizing the crucial role of classifier selection in the 482

outcomes of these prediction tasks. The observed variation implies that the effectiveness of 483

a specific classifier may vary based on the unique characteristics of the task, underscoring 484

the importance of thoughtful classifier selection. 485

3.3. Effects of Various Experimental Conditions 486

In this section, we delve deeper into our findings and their implications. We have 487

conducted three distinct assessments to elucidate their impacts on the results and overall 488

performance. The following subsections offer a comprehensive discussion on these critical 489

areas of impact, namely, the implications of frozen vs. fine-tuned representations, the 490

influence of balanced vs. imbalanced datasets, and the effects of half vs. full precision 491

floating-point computations. 492

3.3.1. Frozen vs. Fine-tuned PLM Representations 493

Table 6 presents the impact of frozen and fine-tuned representations across the three 494

tasks under consideration - IC-MP, IT-MP, and IC-IT. Additionally, Figure 2 underscores the 495

performance, specifically focusing on the MCC metric across the three tasks. Note that a 496

comprehensive analysis concerning the influence of frozen and fine-tuned representations 497

is available in Section A. 498
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Table 6. Comparison and evaluation of frozen and fine-tuned representations across diverse protein
language models (PLMs). This table delineates the impact of utilizing both frozen and fine-tuned
representations on three distinct tasks: differentiating Ion Channels (IC) from Membrane Proteins
(MP), segregating Ion Transporters (IT) from MPs, and discriminating IC from IT, utilizing a range
of PLMs. Four evaluation metrics have been computed using 5-fold cross-validation, presented
as mean±standard deviation. The p-value is provided as a metric of the statistical significance of
observed discrepancies among the models. Notably, the highest performance value for each task and
each column is highlighted in boldface.

Task Representation MCC Accuracy Sensitivity Specificity P-value

IC-MP frozen 0.75±0.05 90.54±2.10 90.52±4.04 90.65±4.33 1.57e-08finetuned 0.83±0.04 90.75±2.08 90.33±3.92 91.17±4.32

IT-MP frozen 0.70±0.05 93.11±1.41 86.71±3.93 93.44±2.25 2.33e-12finetuned 0.83±0.04 92.33±1.47 77.61±4.80 93.06±2.26

IC-IT frozen 0.82±0.04 92.81±1.37 88.22±3.56 93.24±2.16 7.15e-01finetuned 0.81±0.04 91.37±1.45 73.48±4.87 92.68±2.31

Figure 2. Graphical representation of the impact of frozen vs. fine-tuned representations on various
tasks across different Protein Language Models (PLMs). This figure elucidates the impact of employ-
ing frozen and fine-tuned representations across a range of Protein Language Models (PLMs) for
three distinct tasks: differentiating Ion Channels (IC) from Membrane Proteins (MP), distinguishing
Ion Transporters (IT) from MPs, and discriminating IC from IT. The results are portrayed using the
mean Matthew’s Correlation Coefficient (MCC) values derived from 5-fold cross-validation. Each bar
represents the mean MCC calculated across five cross-validation runs, while the error bars indicate
the associated standard deviation. The symbol ∆ is employed to denote the disparity between the
corresponding pair of bars.

Our investigation has uncovered noteworthy disparities in the performance of fine- 499

tuned and frozen representations across various tasks, underscored by their responses 500

to task-specific conditions, dataset sizes, classifier choices, and the underlying PLM’s 501

architecture. 502

Task-specific Performance Variations and the Impact of Dataset Imbalances 503

On differentiating IC from MP and IT from MP, fine-tuned representations have 504

consistently outperformed frozen ones. This pattern, however, becomes less clear-cut 505

in the IC-IT task. Statistical analysis further supports this pattern, revealing substantial 506

performance discrepancies between frozen and fine-tuned representations in the IC-MP 507

and IT-MP tasks. However, the IC-IT task showed no significant difference. 508
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This relative performance convergence in the IC-IT task can be attributed to the 509

balanced nature of its dataset, contrasting with potential imbalances in the MP dataset. This 510

highlights the role of dataset balance in performance trends and suggests that evaluation 511

metrics may capture varying aspects of model performance, particularly under conditions 512

of dataset imbalance. 513

A case in point is the sensitivity metric for the IT-MP task. Here, frozen representations 514

notably outshine their fine-tuned counterparts, contrasting with the general trend of fine- 515

tuned superiority. This demonstrates the sensitivity metric’s specific susceptibility to 516

the effects of dataset imbalance. Whereas MCC metric, which accounts for all types of 517

prediction errors, demonstrated equivalent performance for both representation types. 518

Influence of Dataset Size on Performance 519

Our analysis points towards a significant influence of dataset size on the performance 520

of fine-tuned representations. The larger, albeit imbalanced, MP dataset, comprising 3,413 521

training sequences, rendered richer fine-tuned representations compared to the balanced 522

dataset of 280 sequences (see Section 3.3.2). Consequently, the benefits of fine-tuning 523

appear more distinct with larger datasets, underscoring the potential of using extensive 524

data resources to enhance fine-tuned PLM representation performance. 525

The observed pattern suggests that larger models, such as ProtT5 and ESM-2_15B—currently526

unexplored due to computational limitations—could potentially exhibit improved perfor- 527

mance given the feasibility of fine-tuning. 528

Performance Across Different Classifiers 529

A further probe into performance across all classifiers, as represented in Table A2 530

and Figure A2, demonstrated the consistent outperformance of fine-tuned over frozen 531

representations. This observation reinforces the role of fine-tuning as a potent strategy to 532

optimize PLM effectiveness across varied classifier architectures. 533

Performance across Diverse PLMs 534

Our findings, as showcased in Table A1 and Figure A1, reveal that performance 535

remains relatively stable between diverse PLM sizes when using frozen representations. 536

However, ESM-1b, a larger model with 650M parameters, outperformed smaller-sized 537

PLMs like ProtBERT with 420M parameters. This observation suggests that the size of the 538

underlying PLM can exert influence on the performance of frozen representations. 539

3.3.2. Balanced vs. Imbalanced Datasets 540

Table 7 and Figure 3 present the performance of the six PLMs when applied to either 541

a balanced or imbalanced MP dataset. Our analysis suggests a profound effect of dataset 542

balance on the performance of different representations across PLMs, classifiers, and tasks. 543

Performance Across PLMs 544

Our results, as presented in Table 7 and Figure 3, indicate that representations from 545

imbalanced datasets outperform those from balanced datasets across six PLMs, with the 546

exception of ProtT5 and ESM-2_15B. This inconsistency may arise from the lack of fine- 547

tuned representations for these specific PLMs. Given the feasibility of fine-tuning, we 548

expect that these PLMs would align with the overall trend, affirming the performance 549

advantage of imbalanced datasets. 550

However, the reported p-value in Table 7 suggests no significant difference between 551

balanced and imbalanced datasets for ProtBERT, ProtT5, and ESM-2_15B PLMs. As ProtT5 552

and ESM-2_15B were not fine-tuned, the observed p-value primarily reflects the impact of 553

dataset balance on the performance of frozen representations for these PLMs. 554
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Table 7. Performance of Protein Language Models (PLMs) on Balanced vs. Imbalanced Membrane
Protein Datasets. This comprehensive evaluation examines the performance of various Protein
Language Models (PLMs) on both balanced and imbalanced datasets of membrane proteins. The
results, computed using 5-fold cross-validation, are represented as mean±standard deviation for the
evaluation metrics. The p-value quantifies the statistical significance of observed differences amongst
the classifiers. The highest values for each task and column are highlighted in bold. The PLMs are
sorted based on their number of parameters.

PLM Dataset MCC Accuracy Sensitivity Specificity P-value

ProtBERT balanced 0.70±0.06 89.14±2.42 89.00±3.33 89.27±3.89 2.52e-01imbalanced 0.74±0.04 98.48±0.06 84.52±3.52 99.58±0.10

ProtBERT-BFD balanced 0.71±0.06 88.55±2.45 88.94±3.61 88.24±4.12 1.57e-02imbalanced 0.77±0.03 97.98±0.19 78.79±5.02 99.56±0.08

ESM-1b balanced 0.79±0.05 87.83±2.52 89.81±3.38 85.87±3.78 1.38e-04imbalanced 0.87±0.02 96.92±0.17 67.83±5.25 99.17±0.25

ESM-2 balanced 0.78±0.05 84.82±2.94 85.83±4.14 83.87±5.04 9.25e-03imbalanced 0.83±0.03 96.92±0.23 66.71±5.44 99.40±0.12

ProtT5 balanced 0.79±0.05 85.31±3.19 85.59±4.54 85.07±4.77 4.33e-01imbalanced 0.75±0.04 97.25±0.08 69.50±5.06 99.50±0.17

ESM-2_15B balanced 0.77±0.05 89.08±2.35 89.32±3.48 88.77±3.67 6.05e-01imbalanced 0.73±0.03 96.83±0.17 67.92±5.92 99.17±0.08

Figure 3. Evaluation of PLMs on balanced and imbalanced datasets of membrane proteins. This figure
showcases a comprehensive evaluation of various protein language models (PLMs) on both balanced
and imbalanced datasets of membrane proteins. The evaluation results are depicted as the mean
Matthews Correlation Coefficient (MCC) calculated over five cross-validation runs, with error bars
denoting the standard deviation. The symbol ∆ indicates the difference between the corresponding
pair of bars, providing insights into the performance disparities across the evaluated PLMs.

Task-specific Performance Variations 555

Evidence from Table A3 and Figure A3 indicates a superior performance of imbalanced 556

datasets in the IC-MP and IT-MP tasks. These findings underscore the impact of dataset 557

balance on model performance across these specific tasks. 558

Performance Across Different Classifiers 559

The comparison of classifier performances presented in Table A6 and Figure A6 560

suggests that imbalanced datasets outshine balanced datasets across all classifiers, except 561
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for the RF classifier. This exception implies a particular sensitivity of the RF classifier to 562

dataset balance, potentially explaining its performance divergence from the other classifiers. 563

Fine-Tuned vs. Frozen Representations 564

The performance patterns as seen in Table A4 and Figure A4 demonstrate that imbal- 565

anced datasets exhibit superior performance when employing fine-tuned representations 566

across all fine-tuned PLMs. In contrast, balanced datasets perform better when using frozen 567

representations, except for ProtBERT, where the p-value of 8.66e-02 indicates a statistically 568

significant difference. These findings emphasize the significant impact of dataset balance on 569

model performance, dependent on the choice of representation type (fine-tuned or frozen). 570

3.3.3. Half vs. Full Precision Floating Point Calculations 571

Table 8 and Figure 4 present the outcomes obtained from employing half and full preci- 572

sion floating-point calculations across the classifiers. Our analysis explores the influence of 573

numerical precision—specifically half versus full precision floating-point calculations—on 574

the performance of different tasks, classifiers, and PLMs. 575

Performance Across Different Classifiers 576

As evidenced by the results presented in Table 8 and Figure 4, the performance remains 577

consistent across all classifiers, irrespective of whether half or full precision floating-point 578

calculations are employed. This suggests that the level of numerical precision does not 579

significantly affect classifier performance in the evaluated tasks. 580

Task-specific Performance Variations 581

Performance consistency extends to specific tasks as well. As shown in Table A7 582

and Figure A7, the IC-MP, IT-MP, and IC-IT tasks exhibit comparable performance levels 583

regardless of the employed floating-point precision. These findings reinforce the notion 584

that the numerical precision choice for the floating-point calculations does not materially 585

affect model performance across these tasks. 586

Table 8. Performance of half vs. full precision floating-point across six classifiers. This table
provides an overview of the performance of each classifier using half and full precision floating-point
calculations. The results are presented using evaluation metrics on the 5-fold cross-validation, with
the mean and standard deviation shown. The p-value indicates the statistical significance of the
observed differences among the classifiers. The highest value for each task and each column is
highlighted in bold.

Classifier Precision MCC Accuracy Sensitivity Specificity P-value

LR half 0.82±0.04 93.56±1.62 85.54±5.08 94.99±3.04 9.69e-01full 0.81±0.04 93.62±1.53 85.32±4.58 95.02±3.10

kNN half 0.69±0.05 93.20±1.50 86.95±3.90 93.78±2.56 9.01e-01full 0.70±0.05 93.43±1.45 86.92±3.90 93.99±2.44

SVM half 0.83±0.04 92.93±1.42 85.91±3.80 93.65±2.44 9.22e-01full 0.83±0.04 93.22±1.35 85.88±3.68 94.00±2.29

RF half 0.69±0.05 90.81±1.73 70.20±5.09 94.31±2.76 9.64e-01full 0.70±0.05 90.77±1.58 67.29±4.63 94.68±2.61

FFNN half 0.82±0.04 93.40±1.28 86.41±3.98 94.59±2.24 9.27e-01full 0.82±0.04 93.63±1.26 86.30±3.99 94.81±2.13

CNN half 0.83±0.04 87.85±2.04 83.29±4.37 84.35±3.19 8.09e-01full 0.83±0.04 87.60±2.03 83.46±4.42 83.60±3.22
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Figure 4. Half vs. full precision evaluation across classifiers. This evaluation compares the perfor-
mance of different protein language models (PLMs) using both half and full precision floating-point
calculations. The results are presented as the mean Matthews Correlation Coefficient (MCC) calcu-
lated across five cross-validation runs, with error bars indicating the standard deviation. The symbol
∆ represents the difference between the corresponding pair of bars, providing insights into the impact
of numerical precision on classifier performance.

Performance Across PLMs 587

The performance comparison among the six PLMs, as displayed in Table A8 and 588

Figure A8, reveals minor performance variations when using both half and full precision 589

floating-point calculations. This observation implies that the selection of floating-point 590

precision has minimal impact on the performance of the evaluated PLMs. 591

Influence on Evaluation Metrics and Statistical Significance 592

An overarching analysis of evaluation metrics and p-values reveals no statistically 593

significant differences between the usage of half and full precision floating-point calcula- 594

tions across varied tasks, classifiers, and PLMs. These findings underscore that the choice 595

of floating-point precision does not exert a considerable influence on the outcomes of the 596

prediction tasks assessed in this study. 597

3.4. Visualization of Representations: Insights and Implications 598

The UMAP projection matrix of representations derived from the ESM-1b PLM, pre- 599

sented in Figure 5, provides a compelling visualization of both frozen and fine-tuned 600

representations for balanced and imbalanced datasets within the context of the IC-MP task 601

on the training set. It is crucial to note that the representation shown for the balanced 602

dataset is randomly selected from one of the ten available balanced datasets. 603

3.4.1. Fine-tuned Representations in Imbalanced Dataset 604

The Figure 5 visualization underscores the distinct clusters and patterns within the 605

fine-tuned representations for the imbalanced dataset. The evident separation between 606

ion channels and membrane proteins signifies the highly discriminative capability of fine- 607

tuned representations, demonstrating their efficacy in this task. This insight underscores 608

the prowess of fine-tuned representations in capturing the unique and distinguishable 609

characteristics of ion channels, fostering precise classification and analysis. 610

3.4.2. Frozen Representations in Imbalanced Dataset 611

Notably, the visualization also indicates that the next best level of clarity is achieved 612

using frozen representations with the imbalanced dataset. This suggests that the imbalanced 613

dataset, enriched with a broader spectrum of other membrane proteins, enhances the 614

performance of the frozen representations. This may be due to the diversity and complexity 615
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of the other membrane proteins, requiring a larger dataset for effective representation and 616

discrimination. Hence, this highlights the advantage of employing imbalanced datasets 617

with frozen representations for capturing the intricacies of diverse membrane protein 618

structures. 619

Figure 5. UMAP projection of representations from top PLM for ion channel discrimination. The
figure showcases a UMAP projection of representations derived from ESM-1b, the highest-performing
Protein Language Model (PLM) in the task of discriminating ion channels (IC) from membrane pro-
teins (MP). The representations are visualized in four variations: frozen and fine-tuned representation
types, along with balanced and imbalanced datasets. In the visualization, membrane protein repre-
sentations are depicted in yellow, while ion channel protein representations are depicted in blue.

3.4.3. Impact of Undersampling on Classification Task 620

Our results accentuate the potential adverse consequences of undersampling the 621

dataset on the classification task performance. Undersampling, which reduces the dataset 622

size, can impair the model’s ability to classify proteins accurately, underscoring the need for 623

a sufficiently large dataset to ensure effective protein classification. A substantial dataset en- 624

sures the model’s exposure to diverse and representative examples, facilitating the learning 625

of robust, discriminative patterns that generalize well to unseen data. Consequently, secur- 626

ing a substantial dataset is of paramount importance for achieving optimal performance in 627

protein classification tasks. 628

3.4.4. Implications for Balanced Dataset Representations 629

Examining the visualization of frozen and fine-tuned representations with balanced 630

datasets, we find a lack of clear patterns. This signifies a less distinct characterization of 631

ion channels compared to other membrane proteins, suggesting these representations may 632

not effectively differentiate ion channels from other membrane proteins. This lack of clear 633

patterns implies that the representations derived from balanced datasets may fail to capture 634

unique features or discriminative information vital for robust ion channel classification. 635

Hence, alternative representation strategies or dataset balancing techniques may warrant 636

consideration to enhance model effectiveness. 637

3.4.5. Comprehensive Visualization of PLMs 638

The representation visualizations for all six PLMs, including both frozen and fine- 639

tuned representations for the IC-MP, IT-MP, and IC-IT tasks, are provided in Section D. As 640

shown in Figure A9, Figure A10, and Figure A11, these visualizations offer a holistic view 641

of the performance and discriminative abilities of various PLMs and representations for 642

these tasks. These comprehensive visualizations allow for an in-depth understanding of 643
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how different PLMs capture the characteristics and separability of ion channels and other 644

membrane proteins, illuminating their respective strengths and weaknesses. 645

3.5. Overview of Top Cross-Validation Results 646

Table 9. Top 5-fold CV results for each task and classifier, along with independent test set results.
This table presents the best 5-fold cross-validation (CV) results for each task and classifier, as well as
the corresponding results on the independent test set for comparison purposes. The tasks include
discriminating ion channels (IC) from other membrane proteins (MP), ion transporters (IT) from MP,
and IC against IT. The table displays the mean and standard deviation of the 5-fold CV results for
each metric. The results for the IC-MP and IT-MP tasks are obtained from imbalanced datasets, while
the dataset for the IC-IT task remains balanced. The best values for each task are shown in bold, and
the second-best values are underlined. It is important to note that the independent test set results
are provided solely for evaluating the models based on the CV results and not for selecting the best
model, as the best models are chosen based on the CV results.

Task Representation Representer Dataset Classifier MCC
CV Independent

IC-MP finetuned ESM-1b Imbalanced

SVM 0.99±0.01 0.85
RF 0.98±0.01 0.84

kNN 0.99±0.01 0.83
LR 1.00±0.00 0.85

FFNN 1.00±0.01 0.85
CNN 0.99±0.01 0.85

IT-MP finetuned ESM-1b Imbalanced

SVM 1.00±0.00 0.68
RF 0.99±0.01 0.67

kNN 0.99±0.01 0.70
LR 1.00±0.00 0.69

FFNN 1.00±0.01 0.67
CNN 0.99±0.01 0.69

IC-IT

frozen ESM-2_15B

Balanced

SVM 0.88±0.03 0.88
finetuned ESM-1b RF 0.84±0.03 0.79

frozen ProtT5 kNN 0.81±0.03 0.75
finetuned ESM-1b LR 0.88±0.05 0.79

frozen ESM-2 FFNN 0.88±0.05 0.74
finetuned ESM-2 CNN 0.89±0.03 0.87

The top results obtained from the 5-fold cross-validation (CV) for each task are detailed 647

in Table 9. Results are stratified by classifier and presented in the CV column, showing 648

the mean and standard deviation over the five folds. While independent test set results 649

are provided for comparative purposes, they do not contribute to the selection of the best 650

model, ensuring a robust and unbiased evaluation of classifier performance. 651

3.5.1. Superior Performance of ESM-1b PLM in IC-MP and IT-MP Tasks 652

As outlined in Table 9, the ESM-1b PLM, combined with fine-tuned representations 653

and an imbalanced dataset, exhibits superior performance in the IC-MP and IT-MP tasks. 654

The LR and FFNN classifiers, in particular, achieve a perfect MCC of 1.00, indicating 655

flawless prediction on 5-fold CV. Other classifiers also present highly competitive results, 656

with MCC values reaching 0.99, thereby emphasizing the exceptional efficacy of the ESM-1b 657

PLM with fine-tuning and an imbalanced dataset. 658

3.5.2. Results from Multiple PLMs in IC-IT Task 659

The IC-IT task, employing a balanced dataset, sees a range of PLMs delivering notable 660

results. The top-performing classifier, CNN, leverages the ESM-2 PLM with fine-tuned 661

representations, yielding an impressive MCC of 0.89. Notably, larger PLMs like ProtT5 and 662
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ESM-2_15B produce comparable results to their smaller counterparts such as ESM-1b and 663

ESM-2. This suggests that the size of the PLM does not necessarily influence performance 664

enhancement for the IC-IT task. 665

3.5.3. Comparative Performance of Classifiers for IC-IT Task 666

While the CNN classifier utilizing the ESM-2 PLM’s fine-tuned representations achieves 667

the top result for the IC-IT task, other classifiers also demonstrate comparable performances. 668

The SVM classifier with frozen representations from ESM-2_15B, the LR classifier with fine- 669

tuned representations from ESM-1b, and the FFNN classifier with frozen representations 670

from ESM-2 deliver similar results to the CNN classifier. This suggests that a diverse set of 671

classifiers can deliver equivalent performance levels, depending on the selected PLM and 672

representation type. 673

3.5.4. Comprehensive Analysis of Results 674

A detailed examination of the results for each task - IC-MP, IT-MP, and IC-IT - is pro- 675

vided in Section E. Here, the evaluation metrics are delineated in detail across various tables 676

for each task. This thorough breakdown offers an exhaustive and nuanced understanding 677

of the performance of the employed models, classifiers, and representations. Delving into 678

the evaluation metrics’ specifics enables readers to gain deeper insights into the results, 679

providing valuable information for future research in the prediction of ion channels and 680

ion transporters from other membrane proteins. 681

3.6. Performance Comparison with State-of-the-Art Projects 682

A detailed comparison of TooT-PLM-ionCT’s performance against state-of-the-art 683

projects is provided in Table 10 and Figure 6 for the IC-MP, IT-MP, and IC-IT tasks. This 684

analysis includes established methodologies such as DeepIon [18], MFPS_CNN [22], and 685

TooT-BERT-C [23], providing a comprehensive assessment of TooT-PLM-ionCT’s relative 686

performance. 687

As shown in Table 10 and Figure 6, TooT-PLM-ionCT outperforms its counterparts in 688

the IT-MP and IC-IT tasks. However, in the IC-MP task, its performance aligns closely with 689

TooT-BERT-C. These results underscore the capability of TooT-PLM-ionCT to accurately 690

predict ion channels and ion transporters from other membrane proteins, demonstrating its 691

superiority or competitive performance. 692

It’s worth noting that DeepIon [18] and MFPS_CNN [22] do not report specific results 693

for the IC-IT task, as they focus predominantly on differentiating ion channels and ion trans- 694

porters from other membrane proteins. This further underscores the unique contribution 695

of our study in exploring the IC-IT task and offering crucial insights into the categorization 696

of ion channels and ion transporters from other membrane proteins. 697

Model Selection Process 698

The model selection was driven by the top-performing models in our experiments, 699

as detailed in Table 9. In instances where multiple classifiers achieved the same MCC, we 700

favored the simpler and more straightforward classifier for the IC-MP and IT-MP tasks. 701

However, for the IC-IT task, despite the SVM classifier’s marginally better performance 702

on the independent test set, the CNN classifier was selected based on superior CV results. 703

This decision balanced the need for performance with model simplicity, while considering 704

the unique demands and constraints of each task. 705
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Table 10. Comparative performance of TooT-PLM-ionCT with state-of-the-art. This table provides a
comparative analysis of the performance of TooT-PLM-ionCT with the state-of-the-art methods on
the independent test set. The performance is evaluated for classifying membrane proteins (MP), ion
channels (IC), and ion transporters (IT). The absence of results is denoted by a “-” when corresponding
studies and tools do not report ion channel and ion transporter classification against each other. The
boldface highlights the highest values in the accuracy and Matthews Correlation Coefficient (MCC)
columns, while the underline indicates the second-highest values.

Task Project Encoder Classifier Accuracy MCC

IC-MP

DeepIon [18] PSSM CNN 86.53 0.37
MFPS_CNN [22] PSSM CNN 94.60 0.62
TooT-BERT-C [23] ProtBERT-BFD LR 98.24 0.85
TooT-PLM-ionCT ESM-1b LR 98.24 0.85

IT-MP

DeepIon [18] PSSM CNN 83.78 0.37
MFPS_CNN [22] PSSM CNN 93.30 0.59
TooT-BERT-C [23] ProtBERT-BFD LR 95.43 0.64
TooT-PLM-ionCT ESM-1b LR 95.98 0.69

IC-IT

DeepIon [18] - - - -
MFPS_CNN [22] - - - -
TooT-BERT-C [23] ProtBERT-BFD LR 85.38 0.71
TooT-PLM-ionCT ESM-2 CNN 93.07 0.87

Figure 6. Comparative performance with state-of-the-art. This figure presents the comparative
performance of TooT-PLM-ionCT on the independent test set, showcasing the classification results for
membrane proteins (MP), ion channels (IC), and ion transporters (IT). The absence of bars indicates
studies that focused on classifying ion channels and ion transporters against membrane proteins,
rather than against each other, resulting in no available results from either publications or tools. The
horizontal dashed lines represent two baselines, while the vertical dashed line distinguishes between
traditional and PLM-based representations.

4. Conclusions 706

This study presented TooT-PLM-ionCT, a framework developed for distinguishing 707

ion channels (IC) from other membrane proteins (MP), ion transporters (IT) from MP, and 708

IC from IT. Six Protein Language Models (PLMs) were utilized: ProtBERT, ProtBERT-BFD, 709
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and ProtT5 from the ProtTrans project, along with ESM-1b, ESM-2 (650M parameters), and 710

ESM-2 (15B parameters) from the ESM project. These were employed alongside a range 711

of traditional (Logistic Regression, kNN, Random Forest (RF), SVM, and Feed-Forward 712

Neural Network) and deep learning (Convolutional Neural Network) classifiers. 713

The study scrutinized the effects of dataset balance, the comparison of frozen and 714

fine-tuned representations, and the performance difference between half-precision and 715

full-precision floating-point calculations. The significant findings from our analysis are 716

discussed below: 717

• PLM Performance: ESM-1b PLM outshone its peers in most metrics and tasks, with 718

the exception of distinguishing IC from IT, where it shared the top spot with ESM- 719

2_15B. The second-best performing model, however, varied with the task at hand. 720

ESM-2 proved effective in differentiating IC from MP and IT from MP, while ProtT5 721

excelled in IC-IT classification. The substantial variation in p-values of statistical 722

analysis across all PLMs further emphasized ESM-1b’s formidable performance. 723

• Dataset Balance: Our study found that imbalanced datasets outperformed balanced 724

datasets across most PLMs, except for ProtT5 and ESM-2_15B, where we saw inconsis- 725

tency due to the absence of fine-tuned representations. Additionally, a comparison 726

of classifier performance revealed that imbalanced datasets outperformed balanced 727

datasets across all classifiers. The sole exception was the RF classifier, which exhibited 728

a heightened sensitivity to balanced datasets and therefore yielded superior results 729

with them. 730

• Fine-Tuned Representations: Fine-tuned representations consistently performed 731

better than frozen ones for differentiating IC from MP and IT from MP, while for 732

the IC-IT task, the performance was equivocal. The size of the dataset appeared to 733

significantly influence the performance of fine-tuned representations. Thus, larger 734

datasets, despite their imbalanced nature, seemed to benefit more from fine-tuning. 735

• Floating-Point Precision: Our study found negligible performance variations between 736

half and full precision floating-point calculations across tasks, classifiers, and PLMs. 737

This suggests that the numerical precision choice does not considerably impact the 738

performance in the prediction tasks examined in this study. 739

• Impact of Undersampling: Results highlighted the potential detrimental effects of 740

undersampling, emphasizing the need for larger, more representative datasets for 741

accurate protein classification. 742

• Comparison of PLM Sizes: Our analysis showed an intriguing pattern where a 650M- 743

parameter PLM exhibited comparable performance to a 15B-parameter PLM and 744

surpassed a 450M-parameter model in terms of frozen representation. 745

• Computational Cost vs. Improvement: The improvement in performance for the 746

IC-IT task justified the associated computational cost, a contrast to the IC-MP and 747

IT-MP tasks where the benefit did not outweigh the cost. 748

In our future endeavors, we aspire to probe the feasibility of augmenting the represen- 749

tations produced by PLMs with additional sources of knowledge. Concurrently, we aim to 750

assess more sophisticated techniques for sequence representation, pushing the boundaries 751

of current methodologies to further enhance the depth and breadth of our protein analysis. 752

We are also committed to expanding the scope of our approach, testing its efficacy 753

on larger and more diverse protein datasets. By doing so, we aim not only to validate our 754

methodology’s robustness but also to potentially broaden its range of applicability. 755
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Appendix A. Frozen vs. Fine-tuned Representations 773

Table A1. Frozen vs. fine-tuned representations across protein language models. This table presents
a comparison and evaluation of frozen versus fine-tuned representations across a range of protein
language models (PLMs). The assessment is based on four evaluation metrics computed using a
5-fold cross-validation procedure and is presented as the mean ± standard deviation. Statistical
significance of observed discrepancies among the models is denoted by the provided p-value. Please
note, instances of ’None’ indicate that due to resource constraints, we were unable to fine-tune larger
PLMs such as ProtT5 and ESM-2 with 15 billion parameters.

PLM Representation MCC Accuracy Sensitivity Specificity P-value

ProtBERT frozen 0.69±0.05 94.14±1.48 93.80±2.65 94.17±2.42 2.78e-06finetuned 0.78±0.04 92.94±1.41 82.16±4.20 93.76±2.46

ProtBERT-BFD frozen 0.70±0.05 93.35±1.40 90.32±3.55 93.62±2.46 1.40e-06finetuned 0.79±0.05 92.44±1.57 80.35±4.81 93.36±2.58

ESM-1b frozen 0.79±0.04 92.36±1.41 81.36±3.99 92.58±2.38 5.31e-07finetuned 0.88±0.03 91.09±1.51 83.56±4.47 91.45±2.84

ESM-2 frozen 0.77±0.05 90.04±1.69 74.04±4.94 91.01±3.08 5.40e-07finetuned 0.85±0.04 91.34±1.74 84.63±4.56 91.97±2.80

ProtT5 frozen 0.78±0.04 90.19±1.86 74.76±5.17 91.41±3.02 None

ESM-2_15B frozen 0.77±0.04 92.73±1.37 81.09±4.29 93.67±2.27 None

Figure A1. This figure provides a graphical display of the differential impact of employing frozen
and fine-tuned representations across various Protein Language Models (PLMs). The comparison is
made using the mean Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold
cross-validation. Each bar signifies the mean MCC obtained across the cross-validation sets, with
error bars representing the standard deviation. The delta symbol (∆) illustrates the difference between
the associated pair of bars. Absent bars denote the inability to fine-tune large PLMs such as ProtT5
and ESM-2, each containing 15 billion parameters, due to resource limitations.
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Table A2. Frozen vs. fine-tuned representations across classifiers. This table presents a comparison
and evaluation of frozen versus fine-tuned representations across a range of classifiers. The assess-
ment is based on four evaluation metrics computed using a 5-fold cross-validation procedure and is
presented as the mean ± standard deviation. Statistical significance of observed discrepancies among
the models is denoted by the provided p-value.

Classifier Representation MCC Accuracy Sensitivity Specificity P-value

LR frozen 0.79±0.04 93.94±1.53 89.42±3.84 95.08±2.97 2.56e-05finetuned 0.84±0.04 93.32±1.60 82.21±5.58 94.95±3.16

kNN frozen 0.65±0.05 93.62±1.47 89.93±3.49 94.01±2.49 1.13e-05finetuned 0.75±0.05 93.09±1.48 84.53±4.24 93.81±2.49

SVM frozen 0.81±0.04 93.35±1.36 89.28±3.35 93.94±2.34 2.67e-05finetuned 0.85±0.03 92.88±1.39 83.18±4.03 93.77±2.38

RF frozen 0.61±0.05 91.74±1.61 82.22±4.70 94.43±2.66 3.02e-06finetuned 0.80±0.04 90.03±1.67 57.67±4.94 94.58±2.69

FFNN frozen 0.80±0.04 93.73±1.25 89.67±3.48 94.69±2.21 3.97e-05finetuned 0.85±0.04 93.36±1.28 83.69±4.39 94.74±2.15

CNN frozen 0.81±0.04 88.47±1.97 87.94±3.98 84.67±3.11 4.68e-06finetuned 0.86±0.04 87.10±2.09 79.74±4.74 83.35±3.28

Figure A2. This figure provides a graphical display of the differential impact of employing frozen
and fine-tuned representations across various classifiers. The comparison is made using the mean
Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold cross-validation. Each
bar signifies the mean MCC obtained across the cross-validation sets, with error bars representing
the standard deviation. The delta symbol (∆) illustrates the difference between the associated pair of
bars.
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Appendix B. Balanced vs. Imbalanced Datasets 774

Table A3. Balanced vs. imbalanced dataset performance across tasks. This table presents a comparison
and evaluation of balanced versus imbalanced dataset peformance across the tasks of ion channels
vs. other membrane proteins (MP) and ion transporters vs. MP. The assessment is based on four
evaluation metrics computed using a 5-fold cross-validation procedure and is presented as the mean
± standard deviation. Statistical significance of observed discrepancies among the models is denoted
by the provided p-value.

Task Dataset MCC Accuracy Sensitivity Specificity P-value

IC-MP balanced 0.76±0.05 87.47±2.73 88.10±4.03 86.88±4.42 5.50e-04imbalanced 0.81±0.03 97.89±0.16 75.21±4.80 99.58±0.09

IT-MP balanced 0.74±0.05 86.77±2.70 87.07±3.67 86.50±4.32 1.44e-02imbalanced 0.78±0.03 97.25±0.13 72.99±4.91 99.36±0.16

Figure A3. This figure provides a graphical display of the differential impact of employing balanced
and imbalanced dataset across various tasks of ion channels (IC) vs. other membrane proteins (MP)
and ion transporters (IT) vs. MP. The comparison is made using the mean Matthew’s Correlation
Coefficient (MCC) values, as determined from 5-fold cross-validation. Each bar signifies the mean
MCC obtained across the cross-validation sets, with error bars representing the standard deviation.
The delta symbol (∆) illustrates the difference between the associated pair of bars.



Version August 31, 2023 submitted to Journal Not Specified 28 of 48

Table A4. Balanced vs. imbalanced dataset performance across fine-tuned protein language models.
This table presents a comparison and evaluation of balanced versus imbalanced dataset peformance
across the fine-tuned protein language models. The assessment is based on four evaluation metrics
computed using a 5-fold cross-validation procedure and is presented as the mean ± standard deviation.
Statistical significance of observed discrepancies among the models is denoted by the provided p-
value.

PLM Dataset MCC Accuracy Sensitivity Specificity P-value

ProtBERT balanced 0.71±0.06 89.21±2.40 89.00±3.33 89.39±3.89 1.55e-08
imbalanced 0.85±0.03 100.00±0.00 99.12±1.29 100.00±0.00 1.55e-08

ProtBERT-BFD balanced 0.71±0.06 88.57±2.42 88.96±3.66 88.26±4.03 3.27e-10
imbalanced 0.87±0.03 99.04±0.04 91.17±3.50 99.88±0.04 3.27e-10

ESM-1b balanced 0.79±0.05 84.96±2.86 85.95±4.00 84.05±4.93 1.43e-14
imbalanced 0.99±0.01 98.00±0.21 78.29±5.17 99.83±0.04 1.43e-14

ESM-2 balanced 0.78±0.05 85.48±3.18 85.66±4.57 85.41±4.66 6.96e-10
imbalanced 0.93±0.02 98.42±0.00 81.58±4.46 99.92±0.04 6.96e-10

Figure A4. Balanced vs. imbalanced dataset performance across fine-tuned PLMs. This figure
provides a graphical display of the differential impact of employing balanced and imbalanced
datasets across various fine-tuned Protein Language Models (PLMs). The comparison is made
using the mean Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold cross-
validation. Each bar signifies the mean MCC obtained across the cross-validation sets, with error
bars representing the standard deviation. The delta symbol (∆) illustrates the difference between the
associated pair of bars.
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Table A5. Balanced vs. imbalanced dataset performance across frozen protein language models. This
table presents a comparison and evaluation of balanced versus imbalanced dataset peformance across
the frozen protein language models. The assessment is based on four evaluation metrics computed
using a 5-fold cross-validation procedure and is presented as the mean ± standard deviation. Statistical
significance of observed discrepancies among the models is denoted by the provided p-value.

PLM Dataset MCC Accuracy Sensitivity Specificity P-value

ProtBERT balanced 0.70±0.06 89.07±2.45 89.01±3.34 89.15±3.89 8.66e-02imbalanced 0.63±0.04 96.96±0.12 69.92±5.75 99.17±0.21

ProtBERT-BFD balanced 0.71±0.06 88.52±2.47 88.91±3.56 88.22±4.20 1.34e-01imbalanced 0.66±0.04 96.92±0.33 66.42±6.54 99.25±0.12

ESM-1b balanced 0.79±0.05 87.83±2.52 89.81±3.38 85.87±3.78 2.34e-01imbalanced 0.75±0.04 96.92±0.17 67.83±5.25 99.17±0.25

ESM-2 balanced 0.78±0.05 84.67±3.02 85.71±4.28 83.70±5.16 2.46e-01imbalanced 0.74±0.04 95.83±0.25 55.12±5.71 98.96±0.21

ProtT5 balanced 0.79±0.05 85.14±3.20 85.52±4.52 84.73±4.87 4.33e-01imbalanced 0.75±0.04 96.08±0.17 57.42±5.67 99.08±0.29

ESM-2_15B balanced 0.77±0.05 89.08±2.35 89.32±3.48 88.77±3.67 6.05e-01imbalanced 0.73±0.03 96.83±0.17 67.92±5.92 99.17±0.08

Figure A5. Balanced vs. imbalanced dataset performance across frozen PLMs. This figure provides a
graphical display of the differential impact of employing balanced and imbalanced dataset across
various frozen Protein Language Models (PLMs). The comparison is made using the mean Matthew’s
Correlation Coefficient (MCC) values, as determined from 5-fold cross-validation. Each bar signifies
the mean MCC obtained across the cross-validation sets, with error bars representing the standard
deviation. The delta symbol (∆) illustrates the difference between the associated pair of bars.
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Table A6. Balanced vs. imbalanced dataset performance across classifiers. This table presents a
comparison and evaluation of balanced versus imbalanced dataset peformance across classifiers. The
assessment is based on four evaluation metrics computed using a 5-fold cross-validation procedure
and is presented as the mean ± standard deviation. Statistical significance of observed discrepancies
among the models is denoted by the provided p-value.

Classifier Dataset MCC Accuracy Sensitivity Specificity P-value

LR balanced 0.78±0.05 89.49±2.81 87.85±4.74 91.07±5.68 5.91e-04imbalanced 0.84±0.03 98.17±0.28 79.89±5.69 99.56±0.31

kNN balanced 0.60±0.06 89.32±2.55 89.38±3.31 89.27±4.17 1.99e-07imbalanced 0.77±0.03 97.97±0.06 81.89±4.67 99.42±0.08

SVM balanced 0.79±0.05 89.14±2.53 88.71±3.35 89.47±4.18 1.83e-04imbalanced 0.85±0.03 97.97±0.11 80.53±4.42 99.42±0.00

RF balanced 0.73±0.06 86.14±2.92 81.34±4.81 90.43±3.66 1.13e-02imbalanced 0.62±0.04 96.19±0.08 46.97±4.25 100.00±0.00

FFNN balanced 0.79±0.05 89.60±2.31 88.34±3.21 90.76±3.56 1.28e-04imbalanced 0.85±0.03 98.08±0.03 81.69±4.94 99.53±0.11

CNN balanced 0.80±0.05 79.03±3.17 89.90±3.69 69.14±4.99 8.20e-04imbalanced 0.85±0.03 97.03±0.31 73.64±5.14 98.92±0.25

Figure A6. Balanced vs. imbalanced dataset performance across classifiers. This figure provides a
graphical display of the differential impact of employing balanced and imbalanced dataset across
various classifiers. The comparison is made using the mean Matthew’s Correlation Coefficient (MCC)
values, as determined from 5-fold cross-validation. Each bar signifies the mean MCC obtained across
the cross-validation sets, with error bars representing the standard deviation. The delta symbol (∆)
illustrates the difference between the associated pair of bars.
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Appendix C. Half vs. Full Precision Floating Point Calculations 775

Table A7. Half vs. full precision floating point calculations across tasks. This table presents a
comparison and evaluation of half versus full precision floating-point across the tasks of ion channels
(IC) vs. other membrane proteins (MP), ion transporter (IT) vs. MP, and IC vs. IT. The assessment is
based on four evaluation metrics computed using a 5-fold cross-validation procedure and is presented
as the mean ± standard deviation. Statistical significance of observed discrepancies among the models
is denoted by the provided p-value.

Task Precision MCC Accuracy Sensitivity Specificity P-value

IC-MP half 0.78±0.04 90.46±2.17 90.21±4.19 90.73±4.44 9.75e-01full 0.78±0.04 90.82±2.03 90.58±3.80 91.10±4.23

IT-MP half 0.76±0.04 92.65±1.46 81.89±4.43 93.18±2.29 7.48e-01full 0.76±0.04 92.71±1.42 81.47±4.40 93.27±2.23

IC-IT half 0.82±0.04 92.03±1.45 80.62±4.40 92.99±2.25 9.34e-01full 0.81±0.04 92.00±1.39 79.56±4.20 92.88±2.23

Figure A7. Half vs. full precision floating point calculations across tasks. This figure provides a
graphical display of the differential impact of employing half and full precision floating-point calcu-
lation across various tasks of ion channels (IC) vs. other membrane proteins (MP), ion transporters
(IT) vs. MP and IC vs. IT. The comparison is made using the mean Matthew’s Correlation Coefficient
(MCC) values, as determined from 5-fold cross-validation. Each bar signifies the mean MCC obtained
across the cross-validation sets, with error bars representing the standard deviation. The delta symbol
(∆) illustrates the difference between the associated pair of bars.
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Table A8. Half vs. full precision floating point calculations across protein language models. This
table presents a comparison and evaluation of half versus full precision floating-point across protein
language models (PLMs). The assessment is based on four evaluation metrics computed using a
5-fold cross-validation procedure and is presented as the mean ± standard deviation. Statistical
significance of observed discrepancies among the models is denoted by the provided p-value. Please
note, instances of ’None’ indicate that due to resource constraints, we were unable to fine-tune larger
PLMs such as ProtT5 and ESM-2 with 15 billion parameters.

PLM Precision MCC Accuracy Sensitivity Specificity P-value

ProtBERT half 0.73±0.04 93.52±1.45 87.91±3.57 93.98±2.46 7.41e-01full 0.74±0.05 93.56±1.44 88.05±3.28 93.96±2.42

ProtBERT-BFD half 0.75±0.05 92.94±1.48 85.44±4.09 93.55±2.46 9.59e-01full 0.75±0.05 92.85±1.49 85.23±4.26 93.43±2.58

ESM-1b half 0.83±0.04 92.36±1.41 81.36±3.99 92.58±2.38 9.13e-01full 0.83±0.04 90.60±1.65 79.20±4.87 91.23±2.98

ESM-2 half 0.81±0.04 90.52±1.55 78.39±4.54 91.24±2.94 8.09e-01full 0.81±0.04 90.78±1.80 79.65±4.95 91.71±2.92

ProtT5 half 0.78±0.04 90.75±1.80 79.74±4.78 91.67±2.89 None

ESM-2_15B half 0.77±0.04 92.73±1.37 81.09±4.29 93.67±2.27 None

Figure A8. Half vs. full precision floating point calculations across PLMs. This figure provides
a graphical display of the differential impact of employing half and full precision floating-point
calculation across various Protein Language Models (PLMs). The comparison is made using the mean
Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold cross-validation. Each
bar signifies the mean MCC obtained across the cross-validation sets, with error bars representing
the standard deviation. The delta symbol (∆) illustrates the difference between the associated pair
of bars. Absent bars denote the inability to fine-tune large PLMs such as ProtT5 and ESM-2, each
containing 15 billion parameters, due to resource limitations.
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Appendix D. Protein visualization 776

Figure A9. This figure illustrates a UMAP projection visualizing the separation of ion channels and
an imbalanced dataset of other membrane proteins. The visualization encompasses all six protein
language models and includes both frozen and fine-tuned representation types. Membrane proteins
are represented by yellow points, while ion channels are depicted in blue.
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Figure A10. This figure illustrates a UMAP projection visualizing the separation of ion transporters
and an imbalanced dataset of other membrane proteins. The visualization encompasses all six protein
language models and includes both frozen and fine-tuned representation types. Membrane proteins
are represented by red points, while ion transporters are depicted in grey.
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Figure A11. This figure illustrates a UMAP projection visualizing the separation of ion channels and
ion transporters. The visualization encompasses all six protein language models and includes both
frozen and fine-tuned representation types. Ion channels are represented by yellow points, while ion
transporters are depicted in green.
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Appendix E. Detailed five-fold cross-validation results 777

Appendix E.1. Ion channels vs. other membrane proteins 778

Table A9. Comparison of representations and classifiers performance for discriminating ion channels
from membrane proteins on Accuracy metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ESM-2_15B

frozen

imbalanced half 99.00±0.00 99.00±1.00 95.00±0.00 96.00±0.00 99.00±0.00 99.00±0.00
balanced half 92.20±2.20 93.10±1.90 89.80±2.30 68.90±3.20 93.50±2.00 93.40±2.20

imbalanced full - - - - - -
balanced full - - - - - -

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

ProtBERT

frozen

imbalanced half 98.00±0.00 97.00±0.00 94.00±0.00 95.00±1.00 98.00±0.00 97.00±0.00
balanced half 86.60±4.60 87.80±3.10 86.20±2.40 72.50±4.10 86.70±3.40 87.60±2.70

imbalanced full 98.00±1.00 97.00±0.00 94.00±0.00 95.00±1.00 98.00±0.00 97.00±0.00
balanced full 86.78±3.56 87.70±3.10 86.30±2.70 72.50±4.20 86.70±3.40 87.50±2.60

finetuned

imbalanced half 98.00±0.00 98.00±0.00 97.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00
balanced half 86.90±3.60 87.70±2.90 86.50±2.60 73.20±3.90 87.30±2.80 87.70±2.50

imbalanced full 99.00±1.00 99.00±0.00 98.00±1.00 98.00±0.00 98.00±1.00 98.00±1.00
balanced full 86.50±3.80 87.80±3.20 86.10±2.50 72.90±4.30 87.30±2.80 87.70±2.70

ESM-2

frozen

imbalanced half 99.00±1.00 99.00±0.00 95.00±0.00 97.00±1.00 98.00±0.00 98.00±0.00
balanced half 91.00±3.40 92.40±1.70 88.10±3.00 80.50±2.90 91.80±2.00 91.90±2.00

imbalanced full 99.00±1.00 99.00±0.00 95.00±0.00 97.00±1.00 98.00±0.00 98.00±0.00
balanced full 91.90±3.00 92.40±1.70 88.00±2.90 80.30±2.80 91.90±2.00 92.00±1.90

finetuned

imbalanced half 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced half 91.60±2.80 92.30±2.00 88.00±3.00 80.40±2.40 91.80±2.00 91.70±2.00

imbalanced full 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced full 91.90±2.50 92.30±1.80 88.20±2.90 80.50±2.60 91.90±2.00 92.00±1.80

ESM-1b

frozen

imbalanced half 98.00±1.00 99.00±0.00 96.00±0.00 97.00±0.00 98.00±0.00 98.00±0.00
balanced half 90.40±4.00 92.80±1.80 88.50±2.70 80.70±2.70 92.00±1.70 91.90±1.80

imbalanced full 98.00±0.00 99.00±0.00 96.00±0.00 97.00±0.00 98.00±0.00 98.00±0.00
balanced full 91.00±2.30 92.80±1.80 88.70±2.60 80.70±2.70 91.90±1.80 91.90±1.80

finetuned

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced half 90.70±3.90 92.80±1.70 88.30±2.70 81.20±2.80 91.80±1.70 91.70±1.80

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 91.20±2.50 92.80±1.50 88.50±2.50 81.40±2.70 91.80±1.80 91.70±1.90

ProtT5

frozen

imbalanced half 98.00±1.00 98.00±0.00 95.00±0.00 97.00±1.00 98.00±0.00 98.00±0.00
balanced half 91.00±2.90 92.00±2.20 88.80±2.30 80.10±3.10 90.70±1.80 90.90±2.30

imbalanced full - - - - - -
balanced full - - - - - -

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

ProtBERT-BFD

frozen

imbalanced half 97.00±1.00 97.00±0.00 94.00±0.00 96.00±0.00 97.00±0.00 97.00±0.00
balanced half 87.50±3.80 88.30±2.20 86.30±2.90 77.60±3.20 86.40±3.60 87.40±2.90

imbalanced full 97.00±1.00 97.00±0.00 94.00±0.00 96.00±0.00 97.00±0.00 97.00±0.00
balanced full 86.20±4.30 88.30±2.20 86.30±3.30 77.60±3.10 86.70±3.50 87.50±3.10

finetuned

imbalanced half 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00
balanced half 87.40±4.40 88.60±2.50 86.20±2.50 78.30±2.90 87.20±3.70 88.10±2.80

imbalanced full 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00
balanced full 87.67±4.00 88.60±2.40 86.20±2.90 78.30±3.10 87.30±3.70 88.00±3.20
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Table A10. Comparison of representations and classifiers performance for discriminating ion chan-
nels from membrane proteins on MCC metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ESM-1b

finetuned

imbalanced half 0.99±0.01 0.99±0.01 0.98±0.01 0.99±0.01 1.00±0.00 1.00±0.01
balanced half 0.82±0.07 0.85±0.04 0.77±0.05 0.66±0.05 0.84±0.04 0.83±0.04

imbalanced full 0.99±0.01 0.99±0.01 0.97±0.01 0.98±0.01 0.99±0.01 0.99±0.01
balanced full 0.83±0.04 0.85±0.04 0.77±0.05 0.66±0.05 0.84±0.04 0.83±0.04

frozen

imbalanced half 0.83±0.07 0.88±0.03 0.58±0.03 0.78±0.03 0.83±0.04 0.85±0.04
balanced half 0.81±0.07 0.85±0.04 0.78±0.05 0.65±0.05 0.84±0.04 0.84±0.04

imbalanced full 0.87±0.04 0.88±0.03 0.59±0.04 0.78±0.03 0.83±0.04 0.85±0.04
balanced full 0.82±0.04 0.85±0.04 0.78±0.05 0.65±0.05 0.84±0.04 0.84±0.04

ESM-2

finetuned

imbalanced half 0.97±0.02 0.95±0.03 0.90±0.01 0.90±0.03 0.95±0.02 0.95±0.02
balanced half 0.84±0.05 0.85±0.04 0.76±0.05 0.64±0.05 0.83±0.04 0.84±0.04

imbalanced full 0.97±0.01 0.95±0.01 0.91±0.02 0.90±0.02 0.95±0.02 0.95±0.03
balanced full 0.84±0.05 0.84±0.03 0.77±0.06 0.64±0.05 0.83±0.04 0.84±0.04

frozen

imbalanced half 0.88±0.05 0.88±0.03 0.51±0.05 0.75±0.05 0.87±0.04 0.86±0.04
balanced half 0.83±0.06 0.85±0.04 0.76±0.06 0.64±0.06 0.84±0.04 0.84±0.04

imbalanced full 0.87±0.05 0.88±0.03 0.52±0.06 0.75±0.05 0.87±0.04 0.86±0.04
balanced full 0.84±0.05 0.85±0.04 0.77±0.06 0.63±0.06 0.84±0.04 0.84±0.04

ESM-2_15B

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

frozen

imbalanced half 0.88±0.03 0.88±0.05 0.40±0.03 0.72±0.03 0.89±0.03 0.88±0.03
balanced half 0.85±0.04 0.86±0.04 0.80±0.05 0.47±0.06 0.87±0.04 0.87±0.04

imbalanced full - - - - - -
balanced full - - - - - -

ProtBERT

finetuned

imbalanced half 0.87±0.02 0.86±0.03 0.73±0.02 0.79±0.03 0.83±0.03 0.84±0.03
balanced half 0.75±0.06 0.76±0.06 0.73±0.06 0.51±0.07 0.75±0.06 0.75±0.05

imbalanced full 0.88±0.05 0.88±0.04 0.80±0.06 0.84±0.04 0.85±0.05 0.87±0.05
balanced full 0.74±0.07 0.76±0.06 0.72±0.05 0.50±0.08 0.74±0.06 0.75±0.05

frozen

imbalanced half 0.81±0.02 0.78±0.03 0.31±0.05 0.54±0.05 0.79±0.03 0.79±0.03
balanced half 0.75±0.08 0.75±0.06 0.72±0.05 0.49±0.08 0.73±0.07 0.75±0.05

imbalanced full 0.81±0.05 0.78±0.03 0.30±0.04 0.54±0.06 0.79±0.03 0.78±0.04
balanced full 0.75±0.06 0.76±0.06 0.73±0.06 0.49±0.08 0.74±0.07 0.75±0.05

ProtT5

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

frozen

imbalanced half 0.87±0.05 0.86±0.03 0.54±0.07 0.76±0.06 0.82±0.04 0.84±0.03
balanced half 0.83±0.06 0.84±0.04 0.78±0.05 0.64±0.06 0.82±0.04 0.82±0.05

imbalanced full - - - - - -
balanced full - - - - - -

ProtBERT-BFD

finetuned

imbalanced half 0.82±0.02 0.87±0.04 0.86±0.03 0.84±0.03 0.86±0.04 0.85±0.04
balanced half 0.76±0.08 0.77±0.05 0.72±0.05 0.60±0.05 0.75±0.08 0.76±0.05

imbalanced full 0.82±0.03 0.83±0.03 0.82±0.05 0.81±0.04 0.83±0.04 0.82±0.04
balanced full 0.77±0.07 0.77±0.04 0.73±0.06 0.59±0.06 0.75±0.07 0.76±0.06

frozen

imbalanced half 0.78±0.05 0.75±0.04 0.34±0.04 0.63±0.03 0.72±0.03 0.74±0.03
balanced half 0.76±0.07 0.77±0.04 0.73±0.06 0.58±0.07 0.73±0.07 0.75±0.06

imbalanced full 0.80±0.04 0.75±0.04 0.33±0.07 0.63±0.03 0.72±0.03 0.74±0.01
balanced full 0.74±0.07 0.77±0.04 0.72±0.06 0.58±0.06 0.73±0.07 0.75±0.06
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Table A11. Comparison of representations and classifiers performance for discriminating ion chan-
nels from membrane proteins on Sensitivity metric as m±d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ESM-1b

finetuned

imbalanced half 100.00±1.00 99.00±2.00 98.00±2.00 98.00±2.00 100.00±1.00 100.00±1.00
balanced half 89.50±3.60 90.50±2.70 80.70±4.80 95.00±3.20 91.20±2.40 92.00±2.60

imbalanced full 99.00±2.00 99.00±2.00 98.00±2.00 98.00±2.00 100.00±1.00 100.00±1.00
balanced full 89.30±4.20 90.50±2.70 80.90±4.40 94.80±3.10 91.20±2.80 92.10±2.50

frozen

imbalanced half 82.00±7.00 81.00±6.00 36.00±4.00 82.00±6.00 84.00±5.00 84.00±5.00
balanced half 89.30±5.10 90.70±2.70 80.20±4.50 95.20±2.80 91.90±2.20 92.10±2.60

imbalanced full 82.00±7.00 81.00±6.00 36.00±5.00 82.00±6.00 84.00±5.00 85.00±5.00
balanced full 88.80±3.90 90.70±2.70 81.10±4.00 95.30±2.70 91.80±2.20 92.20±2.40

ESM-2

finetuned

imbalanced half 97.00±3.00 93.00±4.00 83.00±2.00 85.00±6.00 93.00±3.00 93.00±3.00
balanced half 90.20±4.50 91.40±2.60 81.10±6.20 92.20±4.20 91.60±2.60 92.00±3.00

imbalanced full 96.00±3.00 94.00±3.00 85.00±3.00 86.00±4.00 94.00±4.00 94.00±4.00
balanced full 89.90±4.90 91.30±2.80 81.60±6.20 92.00±4.10 91.30±2.70 92.40±2.60

frozen

imbalanced half 81.00±8.00 83.00±6.00 28.00±6.00 71.00±6.00 84.00±6.00 85.00±6.00
balanced half 89.00±6.50 91.40±2.40 81.60±5.90 92.40±4.40 91.40±2.70 92.20±2.80

imbalanced full 81.00±8.00 83.00±6.00 29.00±6.00 71.00±6.00 84.00±6.00 85.00±7.00
balanced full 90.10±4.70 91.40±2.40 81.60±5.80 92.30±4.30 91.40±2.60 92.10±2.80

ESM-2_15B

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

frozen

imbalanced half 85.00±6.00 87.00±6.00 17.00±3.00 78.00±7.00 85.00±5.00 84.00±5.00
balanced half 88.10±4.90 92.00±2.60 80.80±4.40 95.90±2.80 92.80±2.90 92.70±2.90

imbalanced full - - - - - -
balanced full - - - - - -

ProtT5

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

frozen

imbalanced half 84.00±6.00 79.00±6.00 31.00±7.00 73.00±9.00 79.00±5.00 80.00±4.00
balanced half 87.90±6.80 88.30±4.00 79.40±3.90 93.70±2.80 90.00±2.40 90.90±2.80

imbalanced full - - - - - -
balanced full - - - - - -

ProtBERT-BFD

finetuned

imbalanced half 76.00±2.00 80.00±3.00 76.00±4.00 75.00±5.00 78.00±6.00 80.00±7.00
balanced half 85.20±9.00 87.40±3.20 79.80±4.60 90.90±3.20 87.20±4.80 88.40±3.30

imbalanced full 70.00±3.00 74.00±5.00 72.00±5.00 70.00±7.00 74.00±5.00 73.00±5.00
balanced full 87.67±7.67 87.90±3.20 80.10±5.00 90.40±3.20 87.00±4.80 88.50±3.30

frozen

imbalanced half 71.00±9.00 67.00±3.00 13.00±2.00 53.00±6.00 64.00±5.00 70.00±6.00
balanced half 86.00±8.90 87.40±2.70 80.60±5.90 90.70±3.60 86.70±4.30 88.40±3.40

imbalanced full 75.00±8.00 67.00±3.00 13.00±5.00 53.00±6.00 64.00±5.00 69.00±4.00
balanced full 86.00±7.90 87.30±2.70 80.50±6.30 90.70±3.20 86.70±4.50 88.00±3.60

ProtBERT

finetuned

imbalanced half 81.00±2.00 81.00±7.00 56.00±4.00 68.00±5.00 77.00±5.00 80.00±5.00
balanced half 85.80±7.00 87.20±3.40 78.00±3.80 89.50±3.80 87.00±3.80 87.50±3.70

imbalanced full 85.00±6.00 84.00±4.00 68.00±9.00 80.00±5.00 80.00±8.00 83.00±6.00
balanced full 82.90±8.60 87.20±3.40 77.50±4.40 89.10±3.70 87.00±3.50 87.70±3.70

frozen

imbalanced half 68.00±4.00 74.00±4.00 11.00±4.00 52.00±8.00 73.00±5.00 77.00±7.00
balanced half 83.90±8.70 87.40±3.10 78.40±4.20 89.10±3.70 86.40±4.30 87.40±3.70

imbalanced full 76.00±2.00 74.00±4.00 10.00±3.00 53.00±8.00 73.00±5.00 74.00±5.00
balanced full 84.11±8.89 87.50±3.50 78.70±5.00 89.30±3.60 86.50±4.40 87.30±3.90
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Table A12. Comparison of representations and classifiers performance for discriminating ion chan-
nels from membrane proteins on Specificity metric as m±d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ProtBERT-BFD

frozen

imbalanced half 99.00±1.00 99.00±0.00 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced half 88.80±8.70 89.00±3.80 90.90±3.80 66.20±4.90 86.20±4.60 86.70±4.40

imbalanced full 99.00±1.00 99.00±0.00 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced full 86.50±10.30 89.10±3.90 90.70±3.90 66.40±5.10 86.30±4.70 87.10±4.30

finetuned

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced half 89.20±8.70 89.70±4.10 91.50±3.70 67.70±4.70 87.30±4.90 87.80±4.20

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 88.11±8.56 89.30±4.30 91.50±3.60 67.80±4.70 87.60±4.60 87.40±4.40

ESM-1b

frozen

imbalanced half 99.00±1.00 100.00±0.00 100.00±0.00 98.00±0.00 99.00±0.00 99.00±0.00
balanced half 91.10±6.60 94.40±2.30 95.60±2.70 68.40±4.60 91.80±3.50 91.40±3.20

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 98.00±0.00 99.00±0.00 99.00±0.00
balanced full 93.00±5.20 94.40±2.30 95.20±2.70 68.30±4.60 91.80±3.60 91.60±3.20

finetuned

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced half 91.80±7.50 94.60±2.50 94.90±2.70 69.10±4.90 92.30±3.40 91.40±3.30

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 92.50±5.10 94.50±2.50 95.40±2.70 69.80±4.60 92.20±3.40 91.20±3.60

ProtBERT

frozen

imbalanced half 100.00±0.00 99.00±1.00 100.00±0.00 98.00±1.00 99.00±0.00 99.00±0.00
balanced half 89.20±10.00 87.80±4.50 92.70±3.10 58.20±6.50 87.00±5.20 87.80±4.10

imbalanced full 99.00±1.00 99.00±1.00 100.00±0.00 98.00±1.00 99.00±0.00 99.00±0.00
balanced full 89.22±9.56 87.80±4.50 92.80±3.30 57.80±6.40 87.10±5.30 87.70±4.20

finetuned

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.00±0.00
balanced half 88.00±9.50 88.20±5.00 93.50±3.20 59.10±6.10 87.50±4.30 87.50±4.10

imbalanced full 100.00±1.00 100.00±0.00 100.00±0.00 99.00±0.00 100.00±0.00 100.00±0.00
balanced full 89.70±8.00 88.20±4.90 93.10±2.90 58.90±6.90 87.60±4.50 87.80±4.00

ProtT5

frozen

imbalanced half 99.00±0.00 100.00±0.00 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced half 93.80±4.90 95.20±2.40 96.70±2.50 68.30±5.70 91.40±3.10 90.80±3.10

imbalanced full - - - - - -
balanced full - - - - - -

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

ESM-2

frozen

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced half 92.50±7.80 93.30±2.60 93.70±2.90 70.20±4.90 91.90±3.40 91.80±3.00

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced full 93.50±6.50 93.30±2.50 93.70±3.30 70.00±4.60 92.00±3.40 92.00±3.00

finetuned

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced half 93.10±6.30 93.10±2.60 93.90±3.50 70.50±4.60 91.90±3.10 91.80±3.40

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 93.70±5.40 93.10±2.60 93.80±2.70 70.40±4.50 92.00±3.20 91.70±3.20

ESM-2_15B

frozen

imbalanced half 100.00±0.00 99.00±0.00 100.00±0.00 98.00±1.00 100.00±0.00 100.00±0.00
balanced half 95.50±4.80 93.90±2.30 97.40±1.60 45.50±5.10 94.10±2.80 94.20±2.90

imbalanced full - - - - - -
balanced full - - - - - -

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -
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Table A13. Comparison of representations and classifiers performance for discriminating ion trans-
porters from membrane proteins on Accuracy metric as m±d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ProtBERT-BFD

finetuned

imbalanced full 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced full 87.70±2.90 86.70±3.00 82.80±4.00 80.60±3.30 86.40±3.10 86.30±3.00

imbalanced half 98.00±0.00 99.00±0.00 99.00±0.00 98.00±0.00 99.00±0.00 99.00±0.00
balanced half 87.60±2.80 86.40±2.90 82.60±3.90 80.10±3.20 86.20±3.20 86.30±2.90

frozen

imbalanced full 97.00±0.00 96.00±0.00 94.00±0.00 95.00±1.00 96.00±0.00 97.00±0.00
balanced full 87.40±3.10 86.30±2.70 82.50±3.90 79.90±3.40 86.30±3.20 86.40±2.90

imbalanced half 96.00±0.00 97.00±0.00 94.00±0.00 95.00±1.00 96.00±0.00 97.00±0.00
balanced half 87.50±2.90 86.40±2.60 82.10±4.40 79.70±3.30 86.40±3.30 86.30±2.90

ESM-2

finetuned

imbalanced full 100.00±0.00 99.00±0.00 98.00±0.00 99.00±0.00 99.00±0.00 99.00±0.00
balanced full 91.11±1.78 89.60±2.20 85.80±2.70 80.60±3.70 89.80±1.90 89.90±2.80

imbalanced half 100.00±0.00 99.00±0.00 98.00±0.00 98.00±1.00 99.00±0.00 99.00±0.00
balanced half 91.30±2.00 89.40±2.20 85.60±2.90 80.60±3.50 89.70±1.90 89.70±2.80

frozen

imbalanced full 97.00±0.00 97.00±0.00 94.00±1.00 95.00±0.00 97.00±1.00 97.00±1.00
balanced full 91.20±1.70 89.30±2.40 85.70±2.50 80.80±3.40 89.60±2.00 89.70±3.00

imbalanced half 97.00±0.00 97.00±0.00 94.00±0.00 95.00±0.00 97.00±1.00 97.00±0.00
balanced half 91.10±1.90 89.40±2.30 85.70±2.60 80.70±3.40 89.50±2.00 89.70±2.70

ProtBERT

finetuned

imbalanced full 99.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00
balanced full 88.20±1.90 86.90±2.30 82.80±3.10 77.90±3.30 87.50±2.70 87.50±2.30

imbalanced half 98.00±0.00 98.00±0.00 97.00±0.00 97.00±0.00 98.00±1.00 98.00±0.00
balanced half 88.20±2.10 86.90±2.20 82.90±3.40 78.00±3.30 87.10±2.10 87.60±2.30

frozen

imbalanced full 96.00±1.00 96.00±0.00 93.00±0.00 94.00±1.00 96.00±0.00 96.00±0.00
balanced full 88.10±2.00 86.50±2.60 82.30±3.50 77.50±3.20 87.10±2.40 87.20±2.80

imbalanced half 96.00±0.00 96.00±0.00 93.00±0.00 94.00±1.00 96.00±0.00 96.00±0.00
balanced half 88.20±1.70 86.50±2.50 82.30±3.80 77.30±2.90 87.10±2.30 87.20±2.80

ESM-1b

finetuned

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 90.80±2.20 90.70±2.10 87.40±2.50 84.50±2.90 90.00±2.60 89.90±2.90

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced half 90.80±1.90 90.80±2.10 87.60±2.40 84.50±2.80 90.10±2.60 90.10±3.00

frozen

imbalanced full 96.00±1.00 97.00±0.00 94.00±1.00 96.00±0.00 97.00±0.00 97.00±0.00
balanced full 90.90±2.10 90.40±2.10 87.00±2.70 84.20±2.90 89.90±2.70 90.00±2.40

imbalanced half 97.00±0.00 97.00±0.00 94.00±0.00 96.00±0.00 97.00±0.00 97.00±0.00
balanced half 90.56±2.67 90.40±2.20 86.90±3.10 84.20±2.80 89.90±2.60 90.00±2.80

ESM-2_15B

finetuned

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half - - - - - -
balanced half - - - - - -

frozen

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half 97.00±0.00 97.00±0.00 93.00±0.00 95.00±1.00 97.00±0.00 97.00±0.00
balanced half 90.80±2.10 90.70±2.70 86.00±2.70 74.00±3.30 91.00±2.80 90.50±2.90

ProtT5

finetuned

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half - - - - - -
balanced half - - - - - -

frozen

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half 97.00±0.00 97.00±0.00 94.00±0.00 96.00±0.00 97.00±0.00 97.00±0.00
balanced half 91.80±1.70 91.70±2.40 88.00±2.30 82.40±2.70 90.80±2.00 90.70±2.50
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Table A14. Comparison of representations and classifiers performance for discriminating ion trans-
porters from membrane proteins on MCC metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ESM-1b

finetuned

imbalanced full 0.99±0.01 1.00±0.00 0.99±0.01 0.99±0.01 1.00±0.00 1.00±0.01
balanced full 0.82±0.04 0.82±0.04 0.75±0.05 0.70±0.05 0.80±0.05 0.80±0.06

imbalanced half 0.99±0.01 0.99±0.01 0.98±0.01 0.99±0.01 1.00±0.00 1.00±0.00
balanced half 0.82±0.04 0.82±0.04 0.75±0.05 0.69±0.05 0.80±0.05 0.80±0.06

frozen

imbalanced full 0.74±0.04 0.77±0.04 0.42±0.10 0.74±0.02 0.77±0.03 0.79±0.03
balanced full 0.82±0.04 0.81±0.04 0.74±0.06 0.69±0.06 0.80±0.05 0.80±0.05

imbalanced half 0.77±0.03 0.77±0.04 0.45±0.03 0.74±0.02 0.78±0.04 0.79±0.03
balanced half 0.82±0.05 0.81±0.04 0.74±0.06 0.69±0.05 0.80±0.05 0.80±0.05

ESM-2

finetuned

imbalanced full 0.98±0.01 0.95±0.01 0.86±0.04 0.90±0.03 0.95±0.02 0.94±0.02
balanced full 0.83±0.04 0.80±0.04 0.72±0.06 0.62±0.07 0.80±0.04 0.80±0.06

imbalanced half 0.97±0.01 0.94±0.03 0.88±0.04 0.87±0.03 0.93±0.03 0.93±0.03
balanced half 0.83±0.04 0.79±0.04 0.72±0.06 0.62±0.07 0.80±0.04 0.79±0.06

frozen

imbalanced full 0.77±0.02 0.77±0.04 0.44±0.07 0.65±0.03 0.75±0.04 0.76±0.04
balanced full 0.83±0.04 0.79±0.05 0.72±0.05 0.63±0.07 0.80±0.04 0.80±0.06

imbalanced half 0.74±0.04 0.77±0.04 0.43±0.07 0.65±0.03 0.74±0.05 0.76±0.03
balanced half 0.82±0.04 0.79±0.04 0.72±0.05 0.63±0.07 0.79±0.04 0.80±0.06

ProtBERT

finetuned

imbalanced full 0.92±0.03 0.89±0.04 0.81±0.03 0.86±0.04 0.89±0.03 0.88±0.03
balanced full 0.76±0.04 0.74±0.04 0.66±0.06 0.57±0.07 0.75±0.05 0.75±0.05

imbalanced half 0.88±0.02 0.87±0.03 0.76±0.02 0.81±0.04 0.87±0.04 0.87±0.03
balanced half 0.77±0.04 0.74±0.05 0.66±0.07 0.57±0.07 0.74±0.04 0.75±0.05

frozen

imbalanced full 0.64±0.14 0.72±0.04 0.22±0.07 0.51±0.06 0.68±0.03 0.71±0.04
balanced full 0.76±0.04 0.73±0.05 0.65±0.07 0.56±0.06 0.74±0.05 0.75±0.06

imbalanced half 0.69±0.03 0.72±0.04 0.23±0.05 0.52±0.05 0.68±0.03 0.71±0.03
balanced half 0.77±0.04 0.73±0.05 0.65±0.07 0.56±0.06 0.74±0.05 0.75±0.06

ProtBERT-BFD

finetuned

imbalanced full 0.90±0.03 0.92±0.03 0.92±0.03 0.92±0.02 0.92±0.02 0.92±0.02
balanced full 0.76±0.06 0.73±0.06 0.66±0.08 0.61±0.07 0.73±0.06 0.73±0.06

imbalanced half 0.89±0.03 0.90±0.02 0.90±0.01 0.88±0.01 0.90±0.01 0.90±0.01
balanced half 0.75±0.06 0.73±0.05 0.66±0.08 0.61±0.07 0.73±0.06 0.73±0.06

frozen

imbalanced full 0.74±0.03 0.74±0.04 0.41±0.03 0.62±0.06 0.71±0.02 0.75±0.01
balanced full 0.75±0.06 0.73±0.06 0.65±0.08 0.60±0.07 0.72±0.06 0.73±0.06

imbalanced half 0.71±0.05 0.74±0.04 0.43±0.05 0.62±0.06 0.72±0.01 0.75±0.02
balanced half 0.75±0.06 0.73±0.05 0.65±0.09 0.60±0.07 0.73±0.07 0.73±0.06

ProtT5

finetuned

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half - - - - - -
balanced half - - - - - -

frozen

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half 0.76±0.03 0.80±0.01 0.42±0.05 0.73±0.03 0.79±0.02 0.79±0.04
balanced half 0.83±0.03 0.83±0.05 0.76±0.05 0.66±0.06 0.82±0.04 0.82±0.05

ESM-2_15B

finetuned

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half - - - - - -
balanced half - - - - - -

frozen

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half 0.79±0.03 0.78±0.03 0.27±0.03 0.66±0.06 0.80±0.03 0.79±0.02
balanced half 0.82±0.04 0.82±0.05 0.72±0.06 0.53±0.06 0.81±0.06 0.81±0.06
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Table A15. Comparison of representations and classifiers performance for discriminating ion trans-
porters from membrane proteins on Sensitivity metric as m±d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ESM-1b

finetuned

imbalanced half 99.00±1.00 99.00±1.00 98.00±2.00 99.00±1.00 99.00±1.00 100.00±1.00
balanced half 88.50±3.70 88.20±3.50 85.50±3.10 87.60±4.00 89.30±2.90 90.00±2.90

imbalanced full 99.00±1.00 100.00±1.00 99.00±1.00 99.00±1.00 100.00±0.00 99.00±1.00
balanced full 88.50±2.90 88.00±3.50 85.70±4.00 87.60±4.20 89.40±3.10 89.90±3.10

frozen

imbalanced half 72.00±6.00 76.00±7.00 23.00±4.00 69.00±4.00 74.00±5.00 77.00±5.00
balanced half 89.22±3.67 88.20±3.60 84.40±4.40 87.40±3.90 89.20±2.80 90.10±3.00

imbalanced full 72.00±11.00 76.00±7.00 21.00±8.00 69.00±4.00 74.00±5.00 76.00±5.00
balanced full 89.00±3.40 88.20±3.50 84.70±4.30 87.40±3.90 89.10±2.80 90.10±3.00

ESM-2

finetuned

imbalanced half 98.00±2.00 95.00±3.00 81.00±6.00 89.00±3.00 93.00±4.00 93.00±3.00
balanced half 89.00±3.20 89.10±2.90 82.50±4.30 88.60±3.90 89.30±3.20 90.20±3.40

imbalanced full 98.00±2.00 95.00±3.00 77.00±7.00 89.00±4.00 94.00±2.00 93.00±3.00
balanced full 89.00±2.67 89.20±2.70 82.60±4.40 88.80±4.30 89.30±3.10 90.40±3.30

frozen

imbalanced half 64.00±7.00 72.00±7.00 22.00±6.00 61.00±7.00 69.00±6.00 72.00±7.00
balanced half 89.30±2.90 88.90±2.80 82.70±3.70 88.80±3.90 88.90±2.90 89.90±3.60

imbalanced full 71.00±5.00 72.00±7.00 24.00±7.00 61.00±7.00 69.00±6.00 72.00±8.00
balanced full 89.80±2.50 88.80±2.90 82.50±2.80 88.80±3.80 89.00±2.90 89.60±3.40

ESM-2_15B

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

frozen

imbalanced half 71.00±8.00 77.00±5.00 8.00±2.00 70.00±7.00 77.00±4.00 75.00±5.00
balanced half 87.80±2.80 90.00±3.40 83.40±4.10 94.80±2.60 89.50±3.60 89.90±3.60

imbalanced full - - - - - -
balanced full - - - - - -

ProtT5

finetuned

imbalanced half - - - - - -
balanced half - - - - - -

imbalanced full - - - - - -
balanced full - - - - - -

frozen

imbalanced half 69.00±8.00 74.00±4.00 19.00±5.00 75.00±6.00 76.00±5.00 76.00±6.00
balanced half 91.60±2.30 90.30±3.40 85.40±3.50 92.30±3.60 91.00±2.80 91.00±3.50

imbalanced full - - - - - -
balanced full - - - - - -

ProtBERT-BFD

finetuned

imbalanced half 87.00±4.00 87.00±5.00 86.00±2.00 86.00±4.00 88.00±3.00 87.00±2.00
balanced half 86.10±3.80 84.70±4.30 78.70±6.80 85.10±4.40 85.90±4.10 85.70±3.80

imbalanced full 85.00±7.00 91.00±5.00 91.00±5.00 91.00±4.00 90.00±5.00 91.00±4.00
balanced full 87.00±3.50 85.40±4.50 79.40±6.80 85.20±4.20 86.20±3.90 86.00±4.30

frozen

imbalanced half 60.00±11.00 71.00±10.00 21.00±5.00 61.00±5.00 67.00±3.00 69.00±4.00
balanced half 86.00±3.20 85.30±3.80 78.60±6.40 84.70±4.40 86.00±4.00 85.90±4.10

imbalanced full 64.00±8.00 70.00±11.00 20.00±3.00 61.00±5.00 66.00±4.00 69.00±5.00
balanced full 85.90±3.30 85.40±4.00 78.90±5.60 84.70±4.70 86.10±3.80 86.00±4.10

ProtBERT

finetuned

imbalanced half 83.00±5.00 85.00±5.00 61.00±3.00 75.00±6.00 82.00±5.00 82.00±6.00
balanced half 88.50±2.90 85.80±3.50 83.10±4.90 86.90±4.30 86.60±3.50 87.70±3.60

imbalanced full 88.00±5.00 85.00±5.00 68.00±5.00 78.00±4.00 85.00±4.00 84.00±5.00
balanced full 87.90±2.50 86.20±3.10 82.40±4.30 86.70±3.40 86.90±3.90 87.70±3.30

frozen

imbalanced half 59.00±8.00 68.00±6.00 6.00±2.00 45.00±4.00 63.00±6.00 68.00±6.00
balanced half 88.00±2.70 85.60±3.80 82.40±5.20 86.20±3.70 86.30±3.70 87.00±3.70

imbalanced full 48.00±19.00 68.00±6.00 6.00±4.00 45.00±5.00 63.00±6.00 69.00±6.00
balanced full 87.80±2.80 85.60±3.70 82.60±5.30 86.40±3.40 86.40±3.80 86.80±3.90
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Table A16. Comparison of representations and classifiers performance for discriminating ion trans-
porters from membrane proteins on Specificity metric as m±d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN

ESM-2

frozen

imbalanced full 99.00±1.00 99.00±0.00 100.00±0.00 98.00±0.00 99.00±0.00 99.00±1.00
balanced full 92.90±3.50 90.20±4.20 89.40±4.30 72.80±4.60 90.30±4.30 89.60±5.40

imbalanced half 99.00±0.00 99.00±0.00 100.00±0.00 98.00±0.00 99.00±0.00 99.00±1.00
balanced half 92.80±4.50 90.10±4.10 88.90±4.10 72.80±4.70 90.10±4.20 89.50±5.00

finetuned

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 99.00±0.00 100.00±0.00 100.00±0.00
balanced full 93.33±3.33 90.20±4.20 88.90±3.90 72.40±4.80 90.10±4.30 89.40±5.10

imbalanced half 100.00±0.00 99.00±0.00 100.00±0.00 99.00±1.00 100.00±0.00 100.00±0.00
balanced half 93.80±3.60 90.30±4.20 88.80±4.10 72.50±5.00 90.10±4.00 89.30±5.10

ProtBERT-BFD

frozen

imbalanced full 99.00±0.00 99.00±1.00 100.00±0.00 98.00±1.00 99.00±0.00 99.00±0.00
balanced full 89.10±4.60 87.20±4.00 85.80±4.90 74.80±4.30 86.30±4.90 86.80±4.70

imbalanced half 99.00±1.00 99.00±1.00 100.00±0.00 98.00±1.00 99.00±0.00 99.00±0.00
balanced half 88.80±4.90 87.30±3.80 85.80±4.20 74.70±4.20 86.50±5.10 86.50±4.90

finetuned

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 89.00±4.50 88.00±3.80 86.20±4.40 75.70±4.30 86.70±4.60 86.90±4.80

imbalanced half 99.00±1.00 100.00±0.00 100.00±0.00 99.00±0.00 100.00±0.00 100.00±0.00
balanced half 89.20±4.40 87.90±3.70 86.80±3.90 75.30±4.00 86.30±4.60 87.00±4.40

ESM-1b

frozen

imbalanced full 98.00±1.00 99.00±0.00 100.00±0.00 99.00±1.00 99.00±0.00 99.00±0.00
balanced full 93.00±3.80 92.90±2.80 89.20±4.60 81.00±4.70 90.70±4.20 89.80±3.80

imbalanced half 99.00±1.00 99.00±0.00 100.00±0.00 99.00±1.00 99.00±0.00 99.00±0.00
balanced half 92.22±4.67 92.90±2.60 89.30±4.50 81.10±4.70 90.70±4.20 89.70±4.40

finetuned

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 93.40±3.40 93.40±2.70 89.20±3.90 81.60±4.70 90.50±4.30 90.00±5.00

imbalanced half 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced half 92.90±3.50 93.30±2.40 89.50±3.80 81.30±4.40 90.60±4.30 90.00±4.80

ESM-2_15B

frozen

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half 99.00±0.00 99.00±0.00 100.00±0.00 97.00±1.00 99.00±0.00 99.00±1.00
balanced half 93.90±3.10 91.30±4.10 88.80±4.10 53.00±6.30 91.70±3.90 91.10±4.40

finetuned

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half - - - - - -
balanced half - - - - - -

ProtT5

frozen

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half 99.00±1.00 99.00±0.00 100.00±0.00 98.00±0.00 99.00±0.00 99.00±0.00
balanced half 91.90±3.40 92.90±3.60 90.60±3.60 72.50±4.40 90.80±3.40 90.30±3.90

finetuned

imbalanced full - - - - - -
balanced full - - - - - -

imbalanced half - - - - - -
balanced half - - - - - -

ProtBERT

frozen

imbalanced full 100.00±0.00 99.00±0.00 100.00±0.00 98.00±0.00 98.00±0.00 98.00±0.00
balanced full 88.40±4.00 87.40±4.70 82.40±4.40 68.10±5.40 87.80±4.90 87.60±4.80

imbalanced half 99.00±0.00 99.00±0.00 100.00±0.00 98.00±0.00 98.00±0.00 99.00±0.00
balanced half 88.30±4.00 87.50±4.60 82.60±5.20 68.20±5.30 87.90±5.10 87.40±4.80

finetuned

imbalanced full 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
balanced full 88.40±3.90 87.70±4.70 83.30±4.80 69.10±5.40 88.10±4.60 87.60±4.70

imbalanced half 100.00±0.00 99.00±0.00 100.00±0.00 99.00±0.00 100.00±0.00 100.00±0.00
balanced half 88.00±4.10 88.00±4.30 83.00±4.40 69.50±4.90 87.70±4.60 87.60±4.50
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Appendix E.3. Ion channels vs. ion transporters 780

Table A17. Comparison of representations and classifiers performance for discriminating ion chan-
nels from ion transporters on Accuracy metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN

ESM-1b
finetuned half 93.00±1.00 93.00±2.00 92.00±2.00 89.00±3.00 94.00±2.00 94.00±3.00

full 91.00±5.00 93.00±2.00 91.00±3.00 89.00±3.00 94.00±2.00 94.00±3.00

frozen half 93.00±2.00 94.00±2.00 92.00±2.00 90.00±2.00 94.00±2.00 93.00±2.00
full 93.00±1.00 94.00±2.00 92.00±2.00 90.00±2.00 94.00±2.00 93.00±2.00

ESM-2
finetuned half 93.00±1.00 93.00±2.00 90.00±1.00 87.00±5.00 92.00±1.00 94.00±2.00

full 94.00±1.00 93.00±2.00 90.00±2.00 87.00±4.00 92.00±1.00 93.00±3.00

frozen half 92.00±2.00 93.00±2.00 89.00±2.00 87.00±5.00 92.00±1.00 94.00±2.00
full 94.00±1.00 93.00±2.00 89.00±2.00 87.00±5.00 92.00±1.00 94.00±2.00

ESM-2_15B
finetuned half - - - - - -

full - - - - - -

frozen half 94.00±1.00 94.00±1.00 90.00±1.00 89.00±4.00 94.00±1.00 93.00±2.00
full - - - - - -

ProtT5
finetuned half - - - - - -

full - - - - - -

frozen half 93.00±1.00 93.00±2.00 89.00±2.00 90.00±2.00 93.00±2.00 93.00±2.00
full - - - - - -

ProtBERT
finetuned half 93.00±1.00 92.00±0.00 89.00±2.00 82.00±4.00 90.00±1.00 91.00±1.00

full 93.00±0.00 92.00±0.00 89.00±2.00 82.00±4.00 90.00±1.00 91.00±1.00

frozen half 92.00±0.00 92.00±1.00 88.00±3.00 82.00±3.00 90.00±2.00 91.00±2.00
full 92.00±1.00 92.00±1.00 88.00±3.00 82.00±3.00 90.00±2.00 91.00±2.00

ProtBERT-BFD
finetuned half 92.00±3.00 90.00±2.00 87.00±3.00 86.00±2.00 89.00±2.00 90.00±2.00

full 92.00±3.00 90.00±3.00 88.00±2.00 85.00±2.00 88.00±2.00 90.00±2.00

frozen half 92.00±3.00 90.00±2.00 87.00±3.00 86.00±2.00 87.00±2.00 89.00±4.00
full 92.00±3.00 90.00±2.00 87.00±3.00 86.00±3.00 87.00±2.00 89.00±2.00

Table A18. Comparison of representations and classifiers performance for discriminating ion chan-
nels from ion transporters on MCC metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN

ESM-2
finetuned full 0.89±0.03 0.87±0.04 0.80±0.03 0.74±0.08 0.84±0.03 0.86±0.05

half 0.86±0.03 0.87±0.04 0.80±0.01 0.75±0.09 0.84±0.01 0.87±0.05

frozen full 0.88±0.02 0.87±0.04 0.78±0.03 0.74±0.09 0.84±0.02 0.88±0.05
half 0.85±0.04 0.87±0.04 0.77±0.03 0.74±0.09 0.85±0.02 0.87±0.04

ESM-2_15B
finetuned full - - - - - -

half - - - - - -

frozen full - - - - - -
half 0.89±0.02 0.88±0.03 0.80±0.03 0.79±0.07 0.87±0.03 0.87±0.03

ESM-1b
finetuned full 0.83±0.08 0.86±0.05 0.83±0.06 0.79±0.05 0.88±0.05 0.87±0.06

half 0.87±0.02 0.87±0.05 0.84±0.03 0.80±0.05 0.88±0.04 0.87±0.06

frozen full 0.85±0.02 0.87±0.04 0.83±0.05 0.80±0.05 0.88±0.03 0.87±0.04
half 0.87±0.03 0.87±0.04 0.84±0.03 0.80±0.05 0.88±0.03 0.87±0.04

ProtT5
finetuned full - - - - - -

half - - - - - -

frozen full - - - - - -
half 0.85±0.03 0.86±0.04 0.79±0.05 0.81±0.03 0.86±0.03 0.85±0.04

ProtBERT
finetuned full 0.86±0.01 0.84±0.01 0.78±0.04 0.66±0.08 0.80±0.02 0.81±0.02

half 0.86±0.02 0.84±0.01 0.78±0.05 0.66±0.08 0.80±0.02 0.81±0.02

frozen full 0.85±0.02 0.84±0.02 0.77±0.06 0.65±0.06 0.81±0.03 0.82±0.04
half 0.84±0.00 0.84±0.02 0.77±0.05 0.65±0.06 0.80±0.03 0.82±0.04

ProtBERT-BFD
finetuned full 0.84±0.06 0.81±0.05 0.76±0.05 0.71±0.04 0.76±0.04 0.81±0.05

half 0.84±0.06 0.81±0.04 0.75±0.06 0.71±0.05 0.77±0.03 0.81±0.04

frozen full 0.84±0.07 0.81±0.04 0.75±0.05 0.72±0.05 0.74±0.05 0.79±0.05
half 0.84±0.06 0.81±0.04 0.75±0.06 0.72±0.05 0.75±0.04 0.78±0.08
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Table A19. Comparison of representations and classifiers performance for discriminating ion chan-
nels from ion transporters on Sensitivity metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN

ESM-1b
frozen full 91.00±1.00 93.00±2.00 89.00±6.00 95.00±3.00 93.00±3.00 95.00±2.00

half 93.00±1.00 93.00±2.00 90.00±6.00 95.00±3.00 93.00±3.00 95.00±2.00

finetuned full 88.00±13.00 94.00±3.00 88.00±5.00 95.00±3.00 95.00±2.00 94.00±3.00
half 93.00±2.00 94.00±3.00 88.00±6.00 95.00±3.00 95.00±2.00 94.00±3.00

ESM-2
frozen full 93.00±2.00 93.00±2.00 85.00±4.00 90.00±7.00 92.00±3.00 93.00±3.00

half 93.00±3.00 93.00±2.00 85.00±7.00 90.00±7.00 93.00±3.00 93.00±3.00

finetuned full 92.00±2.00 93.00±2.00 87.00±4.00 91.00±6.00 92.00±2.00 93.00±3.00
half 93.00±3.00 93.00±2.00 87.00±5.00 91.00±6.00 90.00±2.00 94.00±4.00

ESM-2_15B
frozen full - - - - - -

half 94.00±2.00 92.00±2.00 85.00±5.00 92.00±3.00 93.00±2.00 93.00±2.00

finetuned full - - - - - -
half - - - - - -

ProtT5
frozen full - - - - - -

half 91.00±2.00 90.00±4.00 86.00±4.00 94.00±1.00 92.00±2.00 93.00±3.00

finetuned full - - - - - -
half - - - - - -

ProtBERT-BFD
frozen full 92.00±4.00 88.00±8.00 85.00±7.00 85.00±4.00 88.00±5.00 90.00±5.00

half 91.00±3.00 88.00±8.00 86.00±8.00 85.00±3.00 88.00±5.00 89.00±6.00

finetuned full 91.00±3.00 88.00±7.00 87.00±7.00 87.00±3.00 88.00±4.00 90.00±5.00
half 91.00±2.00 90.00±6.00 86.00±8.00 86.00±4.00 88.00±4.00 92.00±4.00

ProtBERT
frozen full 91.00±5.00 92.00±3.00 85.00±7.00 85.00±6.00 89.00±4.00 90.00±4.00

half 89.00±4.00 92.00±3.00 85.00±7.00 85.00±6.00 89.00±4.00 90.00±4.00

finetuned full 91.00±2.00 92.00±3.00 84.00±7.00 88.00±5.00 90.00±3.00 90.00±4.00
half 92.00±3.00 92.00±3.00 85.00±6.00 88.00±5.00 90.00±3.00 90.00±4.00

Table A20. Comparison of representations and classifiers performance for discriminating ion chan-
nels from ion transporters on Specificity metric as m±d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN

ESM-2
finetuned full 96.00±2.00 94.00±4.00 92.00±5.00 83.00±7.00 92.00±4.00 94.00±4.00

half 93.00±3.00 94.00±4.00 92.00±5.00 84.00±7.00 94.00±3.00 94.00±2.00

frozen full 96.00±2.00 94.00±3.00 91.00±5.00 84.00±7.00 93.00±3.00 95.00±3.00
half 92.00±6.00 94.00±3.00 92.00±5.00 84.00±7.00 92.00±4.00 95.00±3.00

ESM-1b
finetuned full 93.00±6.00 92.00±5.00 95.00±6.00 84.00±5.00 93.00±4.00 94.00±4.00

half 94.00±3.00 93.00±4.00 95.00±3.00 85.00±5.00 93.00±3.00 94.00±4.00

frozen full 94.00±2.00 94.00±3.00 94.00±5.00 85.00±5.00 94.00±5.00 92.00±4.00
half 94.00±3.00 94.00±3.00 94.00±5.00 85.00±5.00 94.00±5.00 92.00±4.00

ESM-2_15B
finetuned full - - - - - -

half - - - - - -

frozen full - - - - - -
half 94.00±3.00 95.00±3.00 94.00±5.00 86.00±7.00 94.00±2.00 94.00±3.00

ProtT5
finetuned full - - - - - -

half - - - - - -

frozen full - - - - - -
half 94.00±2.00 95.00±3.00 93.00±6.00 87.00±4.00 94.00±3.00 92.00±5.00

ProtBERT
finetuned full 94.00±3.00 92.00±3.00 92.00±7.00 78.00±7.00 90.00±3.00 91.00±3.00

half 94.00±2.00 92.00±3.00 92.00±7.00 78.00±7.00 90.00±3.00 91.00±3.00

frozen full 93.00±4.00 91.00±4.00 91.00±7.00 80.00±7.00 91.00±2.00 91.00±4.00
half 95.00±3.00 91.00±4.00 91.00±8.00 80.00±7.00 91.00±3.00 92.00±3.00

ProtBERT-BFD
finetuned full 93.00±4.00 93.00±3.00 88.00±7.00 84.00±4.00 88.00±4.00 90.00±6.00

half 93.00±4.00 90.00±4.00 88.00±8.00 85.00±3.00 89.00±3.00 89.00±5.00

frozen full 93.00±4.00 93.00±4.00 89.00±8.00 86.00±3.00 87.00±4.00 89.00±5.00
half 93.00±5.00 93.00±4.00 88.00±7.00 86.00±3.00 87.00±4.00 89.00±6.00
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