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the predictive prowess of PLMs, drawing parallels with techniques in natural language processing. Our strategy engages
six classifiers, embracing both conventional methodologies and a deep learning model, to segregate ICs and ITs from other
membrane proteins, as well as differentiate ICs from ITs. Furthermore, we delve into critical factors influencing our tasks,
including the implications of dataset balancing, the effect of frozen versus fine-tuned PLM representations, and the potential
variance between half and full precision floating-point computations. Our empirical results showcase superior performance in
distinguishing ITs from other membrane proteins and differentiating ICs from ITs, while the task of discriminating ICs from

other membrane proteins exhibits results commensurate with the current state-of-the-art.
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Abstract: This study presents TooT-PLM-ionCT, a holistic framework that exploits the capabilities
of six diverse Protein Language Models (PLMs) - ProtBERT, ProtBERT-BFD, ESM-1b, ESM-2 (650M
parameters), and ESM-2 (15B parameters) - for precise classification of integral membrane proteins,
specifically ion channels (ICs) and ion transporters (ITs). As these proteins play a pivotal role in the
regulation of ion movement across cellular membranes, they are integral to numerous biological
processes and overall cellular vitality. To circumvent the costly and time-consuming nature of wet
lab experiments, we harness the predictive prowess of PLMs, drawing parallels with techniques
in natural language processing. Our strategy engages six classifiers, embracing both conventional
methodologies and a deep learning model, to segregate ICs and ITs from other membrane proteins,
as well as differentiate ICs from ITs. Furthermore, we delve into critical factors influencing our tasks,
including the implications of dataset balancing, the effect of frozen versus fine-tuned PLM repre-
sentations, and the potential variance between half and full precision floating-point computations.
Our empirical results showcase superior performance in distinguishing ITs from other membrane
proteins and differentiating ICs from ITs, while the task of discriminating ICs from other membrane
proteins exhibits results commensurate with the current state-of-the-art.

Keywords: Ion channels; Ion transporters; Membrane proteins; Drug discovery; Protein language
models; Deep learning

1. Introduction
1.1. Background

Protein language models (PLMs) are a transformative development in the field of
bioinformatics, leveraging the power of machine learning to predict protein structures
and functions from their amino acid sequences [1-3]. These models, inspired by natural
language processing (NLP) techniques [4-7], treat proteins as “sentences” composed of
“words” (amino acids), enabling the prediction of protein properties based on sequence
information alone [8]. The importance of PLMs lies in their potential to revolutionize our
understanding of proteins, the building blocks of life, and to accelerate drug discovery and
design processes [9]. They provide a powerful tool for predicting protein structures, which
is crucial for understanding diseases and developing treatments [10]. Moreover, PLMs
produce comprehensive representations of protein sequences that are useful for various
applications in protein analysis, including predicting protein function, protein-protein
interactions, and protein structure [1,3,11-17]. Unsal et al. [8] review the use of natural
language models for protein representation from 2015 to the present.

The regulation of ion movement across cell membranes is a critical aspect of cellular
function, with ion channels (ICs) and ion transporters (ITs) playing key roles [18]. These
membrane proteins (MPs) are involved in maintaining ion homeostasis (the regulation
and maintenance of a stable and balanced concentration of ions), regulating transmem-
brane potential, and facilitating electrical signaling, which are essential for various cellular
processes such as proliferation, migration, apoptosis, and differentiation [19-21].
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ITs, also known as ion pumps, actively transport ions against their concentration gradi-
ent, a process that requires potential energy [22]. On the other hand, ICs are transmembrane
protein complexes located in the lipid bilayer membrane of all cells [23]. They facilitate the
passive movement of ions across cell membranes, thereby helping cells maintain electrical
properties and regulate functions [19,20].

Given their crucial role in cellular function, ICs have become a significant focus in
membrane protein research and drug discovery [23]. They serve as promising therapeutic
targets for various diseases, including neurological disorders, cardiovascular diseases, and
cancer [24-27].

In an effort to expedite the drug discovery process and circumvent the high costs
and time-consuming nature of wet lab experiments, computational methods have been
developed. These innovative techniques efficiently predict the presence and function of ion
channels, thereby accelerating the identification of potential drug targets [28,29].

Among these computational methods, PLMs have emerged as a particularly powerful
tool [3]. By learning the sequence patterns of different protein families, PLMs can accurately
classify proteins and predict their functions [17,23,30]. This capability not only streamlines
the process of protein classification but also opens up new avenues for the discovery of
therapeutic targets [31].

1.2. Review of Previous Work

There has been a significant amount of research on predicting ICs and ITs in the past,
with an emphasis on developing computational methods that can accurately differentiate
these proteins from other MPs [18,22,28,29,32-34]. These methods have often utilized
traditional machine learning techniques, such as Support Vector Machines (SVM) and
Random Forests (RF), which classify protein sequences based on features derived from
their primary, secondary, and tertiary structures. These features can include information
about the sequence itself, such as the presence of certain amino acid residues or motifs, as
well as structural features, such as secondary structure elements or solvent accessibility
[29,35]. The use of these features for ion channel prediction is thoroughly explained in
Menke et al. [29] and Ashrafuzzaman [28].

The advent of deep learning has paved the way for novel opportunities in predicting
ICs and ITs. Recent studies underscore the potential of these advanced techniques to
generate intricate representations of protein sequences, thereby enhancing the efficiency
of IC and IT prediction models [18,22]. In their respective methodologies, Taju and Ou
[18], as well as Nguyen et al. [22], utilized position-specific scoring matrices (PSSM) for
encoding proteins into feature vectors, while leveraging Convolutional Neural Networks
(CNNs) for classifying ICs and ITs from other membrane proteins (MPs). These innovative
models could discern complex patterns in protein sequences, employing this information
to augment prediction performance, potentially surpassing the constraints of conventional
machine learning approaches [18,22]. However, it is noteworthy that their work primarily
focuses on distinguishing ion channels from other membrane proteins and ion transporters
from other membrane proteins, rather than the task of differentiating ion channels from ion
transporters.

Ghazikhani et al. pioneered the introduction of TooT-BERT-T [30] and TooT-BERT-C
[23], sophisticated methods designed for distinguishing transmembrane transport proteins
from non-transport proteins, as well as differentiating ICs from non-ICs. These methods in-
corporate a Logistic Regression (LR) classifier with fine-tuned representations derived from
a PLM known as ProtBERT-BFD [3]. As the most advanced predictors for transporters and
ICs, these approaches underscore the promising potential of employing protein language
models for such tasks.

1.3. Research Overview and Objective

In this study, we conduct a comprehensive analysis of six PLMs with six different
classifiers to differentiate ion channels, ion transporters, and other membrane proteins.
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In pursuit of a deeper understanding of PLM performance in protein classification tasks, e
we scrutinize essential variables such as dataset balancing, representation tuning, and the o2
precision of floating-point calculations. 03

The overarching goal of this paper is to present a pioneering, automated method for o«
the precise categorization of ion transporters and ion channels within the expansive array of s
membrane proteins. By elucidating the complex nature of these vital biological components, o6
we seek to facilitate their identification in bioinformatics research and potentially expedite o

the discovery of novel therapeutic targets for a variety of diseases. o8
1.4. Study of Impacts 99

In this study, we embarked on a meticulous investigation of three pivotal factors that 100
could significantly influence the performance of PLMs in our tasks. These encompass: 101
*  The choice between using frozen or fine-tuned PLM representations. 102
*  The influence of balanced versus imbalanced datasets on model performance. 103

e  The implications of half-precision versus full-precision floating-point computations.  1os

Each of these elements represents a vital facet of the model’s configuration and data 10s
management, thus underscoring the importance of their potential impacts on model perfor- 106
mance. The forthcoming sections deliver a succinct synopsis of each factor, explicating the 107
fundamental concept and the rationale for its incorporation in our study. 108

1.4.1. Frozen vs. Fine-tuned Representations 100

The concept of frozen and fine-tuned representations pertains to the degree of adapta- 110
tion of pre-trained language models to a specific task. Frozen representations refer to the 11
utilization of pre-trained models in their original state, without any further task-specific 112
training. On the other hand, fine-tuned representations involve the additional step of 11
task-specific training, where the pre-existing parameters of the pre-trained models are 114
adjusted to enhance their performance on the given task. 115

The comparative study of frozen and fine-tuned versions of a PLM offers valuable 116
insights into the performance dynamics of these models. It allows us to understand the 117
inherent behavior of the original pre-trained models (as reflected in the frozen state) and  11s
to quantify the extent of improvement achievable through task-specific fine-tuning. This 11
comparison can potentially expose the limitations of the pre-training process and highlight 120
the areas where fine-tuning can yield significant benefits. 12

It is important to note that fine-tuning necessitates additional computational resources 12
compared to the use of frozen models. Consequently, if the performance enhancement 12s
achieved through fine-tuning is marginal or negligible for a specific task, it might be more 124
resource-efficient to employ the model in its frozen state. This aspect underscores the impor- 125
tance of our investigation into the relative merits of frozen and fine-tuned representations 126
in the context of our tasks. 127

1.4.2. Balanced vs. Imbalanced Datasets 128

The terms “balanced” and “imbalanced” in machine learning refer to the distribution 12e
of classes within a dataset. A balanced dataset exhibits approximately equal representation 3o
of all classes, while an imbalanced dataset is characterized by unequal representation of = 1:
classes. In the context of this study, these terms are used to describe the distribution of 112
membrane protein sequences in the DS-C dataset (Table 2). 133

Imbalanced datasets, where certain classes are underrepresented, can significantly = 1s
impact the performance of a machine learning model. The model may develop a bias to- 13s
wards the majority class, leading to suboptimal performance when predicting the minority 1z
class. In the realm of PLMs, this issue translates into a potential struggle for the model to  1s7
accurately predict protein types that are underrepresented in the training data. 138

Furthermore, the bias introduced by an imbalanced dataset can result in a model 130
that performs better for the class with greater representation in the data. For instance, 140
if the dataset contains a significantly larger number of MPs compared to ICs or ITs, the 14
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model may develop a bias towards MPs. This bias could compromise the model’s ability to
accurately predict ICs or ITs, underscoring the importance of considering the balance of
classes in the dataset.

1.4.3. Half vs. Full Precision Floating Points Calculations

Half and full precision floating-point representations pertain to the level of numerical
precision employed in model computations. Full precision, typically realized through 32-bit
floats, provides superior numerical accuracy. Conversely, half precision, utilizing 16-bit
floats, curtails memory usage and computational demands, albeit at the expense of a slight
reduction in numerical accuracy.

The use of half-precision computations can expedite the training process, but it may
also influence model performance due to the diminished numerical precision. It is crucial
to evaluate whether this reduction in precision significantly affects the model’s capacity to
learn and generalize effectively.

Additionally, investigating the impact of half versus full precision provides valuable
insights into the balance between computational efficiency and model performance. This
understanding facilitates informed decision-making, taking into account the available
computational resources and the precision requirements of the task at hand.

1.5. Paper Structure

This paper is organized as follows: Section 2 details our methodologies, including the
datasets used and the process for balancing the membrane proteins dataset. It provides
a brief overview of the employed PLMs and classifiers, elaborates on hyperparameter
optimization, and discusses the evaluation metrics used to assess model performance. In
Section 3, we present and dissect the results of our experimental analyses. This section
evaluates the performance of different PLMs and classifiers for each task, sheds light
on the impact of the three previously mentioned factors, and includes visualizations of
protein representations. Additionally, it juxtaposes our findings with current state-of-the-
art methodologies for each task. Finally, Section 4 encapsulates our contributions and
the insights gleaned from our study. It also outlines potential future research avenues,
emphasizing areas where additional exploration could enrich the understanding of protein
classification using PLMs.

2. Materials and Methods
2.1. Methodology Overview

We have undertaken a comprehensive evaluation of representations derived from six
distinct PLMs. These include ProtBERT, ProtBERT-BFD, and ProtT5 from ProtTrans project
[3], as well as ESM-1b, ESM-2, and ESM-2_15B from ESM project [2,36].

To further our analysis, we have employed six classifiers with the aim of distinguishing
ICs from other MPs, differentiating ITs from other MPs, and discriminating ICs from ITs.
These classifiers encompass traditional methodologies such as LR, k-Nearest Neighbor
(kNN), support vector machine (SVM), random forest (RF), and feed-forward neural
network (FENN). Additionally, we have incorporated a convolutional neural network
(CNN), a deep learning model, for comparative analysis.

Our study also delves into the examination of several critical factors that could poten-
tially influence the outcomes of our tasks. These include the impact of balancing the MP
dataset on the results, the influence of frozen and fine-tuned representations from PLMs,
and the potential differences between half and full precision floating-point calculations.
By investigating these factors, we aim to provide a more nuanced understanding of the
performance and applicability of PLMs in protein classification tasks. Refer to Table 1 for a
comprehensive summary of the research methodology employed in this study.
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Table 1. Comprehensive Overview of Research Methodology. This table encapsulates the various
components of the research methodology employed in this study, providing a concise summary and
brief description of each element.

Methodology Component Details

ProtBERT, ProtBERT-BFD, ProtT5 (ProtTrans project), ESM-1b,
ESM-2, ESM-2_15B (ESM project)

Protein Language Models

Discrimination of ion channels vs other membrane proteins, ion

Tasks transporters vs other membrane proteins, ion channels vs ion
transporters
Classifiers SVM, Logistic Regression (LR), Random Forest (RF), kNN, Feed-

forward Neural Network (FFNN), CNN
Grid search using scikit-learn (for SVM, LR, RF, kNN, FFNN) and

Hyperparameter Optimization

Optuna (for CNN)
Cross-Validation Technique 5-fold cross-validation
Evaluation Metrics Accuracy, MCC, Sensitivity, Specificity

Statistical Significance Analysis  Paired Student t-test, ANOVA

1) Frozen vs. fine-tuned representations from PLMs, 2) Balanced
Impacts Evaluated vs. imbalanced datasets (Downsampling of MPs dataset), 3) Half
vs. full precision floating point calculations

Tables and figures, grouped results by various aspects such as
dataset balance, classifier type, PLM, representation type (frozen
or fine-tuned), precision type (half or full), and UMAP projection
figures for each PLM, task, and representation type

Presentation of Results

Selected the best configuration for each task, ran on independent
test set, and compared results with state-of-the-art

Could not fine-tune large PLMs like ProtT5 and ESM-2_15B due
to resource constraints (GPUs, memory), could not extract full
precision floating point from these PLMs. This led to missing
values in tables and figures.

Optimal Configuration

Limitations

2.2. Dataset

In our study, we employ the same dataset used in the Deeplon [18] and MFPS_CNN
[22] projects, which was gathered from the UniProt database [37]. To ensure a diverse and
representative collection, Taju and Ou [18] applied the BLAST algorithm [38] to remove
protein sequences with more than 20% similarity. The resulting dataset comprises 4915
protein sequences, including 301 ion channels, 351 ion transporters, and 4263 (other)
membrane proteins. The dataset was split into training and test sets for assessing model
generalizability. The distribution of sequences in the dataset is presented in Table 2.

Table 2. DS-C, the ion channel and ion transporter dataset. This table displays the distribution of
sequences in the dataset used in this study, separated into the training and test sets.

Class Training Test Total
Ion channel (IC) 241 60 301
Ion transporter (IT) 281 70 351
Other membrane protein (MP) 3,413 850 4,263
Total 3,935 980 4,915

2.2.1. Balancing the Membrane Protein Dataset

As highlighted in Table 2, there exists a significant disparity in the number of mem-
brane protein sequences in comparison to ion channel or ion transporter protein sequences.

198

199

200
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For this study, our objective was to assess the performance of PLMs and classifiers employ-
ing both imbalanced and balanced datasets. To construct a balanced dataset (Figure 1),
we implemented a random selection process to draw 280 sequences from the membrane
protein training set. To enhance the accuracy of the results and mitigate potential variability,
this process was reiterated ten times, each iteration using a distinct random state.

3413

1000

1000

800 -

600 -

400

Number of sequences
Number of sequences

200 -

lon channels lon transporters Other MPs lon channels lon transporters Other MPs

Imbalanced Balanced
Figure 1. Visualization of Membrane Protein Dataset Balancing: This figure presents the distribution
of sequences in each dataset, delineated as bar plots. The training set sequences are represented by
the blue bars, whereas the red bars depict the sequences in the independent test set. The left-hand
figure portrays the distribution within the imbalanced dataset of additional membrane proteins
(MPs). Conversely, the right-hand figure exhibits the balanced dataset, which was achieved through
undersampling of MPs in the training set.

2.3. Protein Language Models (PLMs)

This study leverages six distinct Protein Language Models (PLMs) for comparative
analysis (Table 3): (1) ProtBERT [3] is an encoder-only model inspired by BERT [39], pre-
trained on UniRef100 [40]. (2) ProtBERT-BFD [3], analogous to ProtBERT, is pre-trained
on the BFD database [41] instead of UniRef100. (3) ProtT5-XL [3] (simplified to ProtT5
for convenience), is an encoder-decoder model rooted in the T5 architecture [6]. It is
initially trained on BFD and subsequently fine-tuned on Uniref50 [40]. (4) ESM-1b [2] is a
Transformer model pre-trained on UniRef50. (5) ESM-2 [36], while akin to ESM-1b, benefits
from enhanced architecture, improved training parameters, and augmented computational
resources and data. (6) ESM-2_15B [36], the largest PLM to date, is a more extensive version
of ESM-2, incorporating 15 billion parameters.

Table 3. Implementation details for ProtBERT [3], ProtBERT-BFD [3], ProtT5 [3], ESM-1b [2], ESM-2
[36], ESM-2_15B [36].

ProtBERT  ProtBERT-BFD ProtIT5 ESM-1b ESM-2 ESM-2_15

Parameters 420M 420M 3B 650M 650M 15B
Dataset UniRef100 BFD BFD UniRef50 UniRef50 UniRef50
Sequences 216M 2.1B 2.1B 27M 27M 27M
Embedding dim 1024 1024 1024 1280 1280 5120
Layers 30 30 24 33 33 48

To derive frozen representations, we harness feature vectors from the final layer of
the PLMs, employing mean-pooling to generate a unique representation for each protein
sequence. This process is consistent with the methodologies adopted in ProtTrans [3] and
ESM [2,36].
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For fine-tuning of the PLMs, we engage the Trainer API from the transformers library
[42]. We primarily utilize the library’s default hyperparameters but modify the number of
epochs to 5, following the guidelines of the original BERT paper [39]. To mitigate memory
constraints, we adopt a batch size of 1.

2.4. Classifiers

For our machine learning classifiers, we implement Support Vector Machine (SVM)
[43], k-Nearest Neighbors (kNN) [44], Random Forest (RF) [45], Feed-Forward Neural
Network (FFNN) [46], and Logistic Regression (LR) [47] using the scikit-learn library [48],
whereas Convolutional Neural Network (CNN) [49] using PyTorch [50]. These classi-
fiers are designed to provide a comprehensive comparison of various machine learning
approaches in combination with the PLMs.

2.5. Hyperparameter Optimization

In this investigation, we incorporated an all-encompassing strategy for hyperparame-
ter optimization, harnessing the prowess of scikit-learn grid search [48] and Optuna [51],
an advanced Python library specifically designed for hyperparameter optimization. The
primary objective was to discern the quintessential set of hyperparameters for each model
to maximize the efficacy of our classification algorithms.

With respect to conventional classifiers such as SVM, RE, kNN, LR, and FFNN, we
exploited grid search—an exhaustive technique that systematically scrutinizes a pre-defined
subset of hyperparameters. This process was executed utilizing the scikit-learn library [48].

Each classifier was assigned a unique set of hyperparameters to investigate. The
specific grids of hyperparameters tailored for each classifier were as follows:

*  SVM: The investigation included cost parameters (C) of 0.1, 1, 10, and 100; kernel
coefficients (gamma) of 0.1, 1, and 10; and kernel types (kernel) inclusive of linear, rbf,
and sigmoid.

*  RF: The search encompassed the number of trees in the forest (number of estimators)
of 50, 100, and 200; the maximum tree depth (maximum depth) of 5, 10, and None;
and the minimum samples required to split an internal node (minimum samples split)
of 2,5, and 10.

¢ kNN: The evaluation incorporated the number of considered neighbors (number of
neighbors) of 3, 5, 7, and 9; the prediction weight function (weights) of uniform and
distance; and the algorithm used for calculating the nearest neighbors (algorithm) of
ball_tree, kd_tree, and brute.

e LR: The investigation comprised various penalty types (penalty) of 11 and 12; cost
parameters (C) of 0.1, 1, 10, and 100; and optimization solvers (solver) of liblinear and
saga.

¢  Feed-Forward Neural Network (FENN): The search included the number of neurons in
the hidden layer (hidden_layer_sizes) of (512, 256, 64), (512,), and (256,); the activation
function for the hidden layer (activation) of relu and tanh; and the weight optimization
solver (solver) of adam and sgd.

For the evaluation of model performance for each hyperparameter combination, we
employed stratified 5-fold cross-validation. The optimization scoring metric was the
Matthews Correlation Coefficient (MCC).

In the case of our Convolutional Neural Network (CNN) model, we utilized Optuna
[51], a Python library adept at hyperparameter optimization. Optuna leverages a variety of
optimization algorithms to traverse the hyperparameter space with the goal of identifying
the optimal values that enhance the model’s performance.

The optimization procedure was encapsulated in an objective function, which incor-
porated the hyperparameters to be optimized. The specific hyperparameters and their
respective ranges or sets of values were as follows:
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e Kernel Sizes: The possibilities included combinations of [3, 5, 7], [3, 7, 9], [5, 7], and [7,
7,71

*  Output Channels: The combinations were [128, 64, 32].

e Dropout Probability: The range was set from 0.2 to 0.5.

*  Optimizer: The options included Adam, RMSprop, and SGD.

¢ Learning Rate: The range extended from 1le-6 to le-2 on a logarithmic scale.

The model underwent training for 10 epochs, with the performance being assessed on
the validation set using MCC as the performance metric. The pruning feature of Optuna was
harnessed to curtail trials early if they lacked promise, thereby conserving computational
resources.

Owing to the intensive computational requirements of this procedure in terms of time
and memory, the optimization was carried out singularly for each task and dataset, thereby
resulting in five distinct hyperparameter settings (IC-MP balanced, IC-MP imbalanced,
IT-MP balanced, IT-MP imbalanced, and IC-IT). For balanced datasets, one dataset was
randomly selected from a pool of 10 for consideration.

The optimization procedure was executed for 100 trials, with each trial embodying a
complete execution of the objective function with a distinct set of hyperparameters. The
Optuna study was configured to maximize the MCC, and the optimization procedure was
expedited by using a GPU for increased efficiency.

2.6. Cross-Validation and Evaluation Metrics

The technique of k-fold cross-validation, ubiquitously utilized in model evaluation,
necessitates partitioning the original dataset into k subsets or folds of equivalent size.
During each iteration, a single fold is reserved for validation, while the remaining k-1 folds
serve as the training set. This cycle is repeated k times, ensuring each fold is used precisely
once as the validation set. The model’s performance is then evaluated as the mean over the
k iterations, delivering a more robust and accurate assessment of its capability to generalize.
k-fold cross-validation plays a pivotal role in mitigating overfitting risk and curtailing bias
in model evaluation. Our experimentation was conducted using 5-fold cross-validation,
signifying the partitioning of the dataset into five subsets and repeated model training and
validation over five iterations, with each fold serving as the validation set once.

In the context of this paper, we utilized four performance metrics to assess the ef-
ficacy of our approach for the tripartite tasks of IC-MP, IT-MP, and IC-IT. These metrics
encompassed MCC, Accuracy, Sensitivity, and Specificity.

Accuracy represents an overall measure of correct classification rate, computed as the
fraction of correct predictions relative to the total number of predictions. It is expressed as
a percentage and can be determined using the following formula:

TP+TN
TP+TN+FP+FN

Sensitivity, also referred to as the true positive rate, measures the proportion of actual
positive instances that are correctly identified. Its calculation is as follows:

1)

Accuracy =

TP
TP+ FN

Specificity, alternatively known as the true negative rate, quantifies the proportion of
actual negative instances that are correctly identified. Its calculation is as follows:

()

Sensitivity =

TN
TN+ FP
MCC is esteemed as a reliable and stable evaluation metric when handling imbalanced
data [52]. The MCC values span from -1 to 1, where 1 signifies perfect prediction, 0 denotes
performance equivalent to random chance, and -1 represents a total misalignment between
predictions and observations. A high MCC value suggests a predictor demonstrating high

Specificity = ©)]
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accuracy for both positive and negative classes while maintaining a low misprediction rate
for each class. In our research, we accord greater emphasis to the MCC metric due to its
comprehensive nature and reliability.

MCC — TP-TN —FP-FN @)

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Here, TP (True Positive) denotes an instance where the classifier accurately predicts the
positive class, TN (True Negative) signifies an instance where the classifier accurately
predicts the negative class, FP (False Positive) represents an instance where the classifier
erroneously predicts the positive class, and FN (False Negative) refers to an instance where
the classifier inaccurately predicts the negative class.

2.7. Statistical Significance Analysis

The statistical significance of observed differences was tested using two methods: the
paired Student’s t-test [53] and Analysis of Variance (ANOVA) [54]. The paired Student’s
t-test, ideal for comparing means of two related groups, was employed for two sets of
related observations. Conversely, ANOVA, which assesses means across three or more
unrelated groups, was applied when more than two independent groups were to be
compared. The outcomes were expressed as a p-value, a statistical measure estimating
the probability of random chance producing the observed results. Conventionally, a p-
value below 0.05 signifies statistical significance, indicating a minimal probability that
the observed difference occurred due to random chance. In our analysis, the p-value was
computed from MCC metric, which is deemed comprehensive and reliable.

2.8. Limitation

Our study was not without its limitations, primarily due to the constraints imposed
by the available computational resources. The fine-tuning of large-scale PLMs such as
ProtT5 (with 3 billions of parameters) and ESM-2_15B (with 15 billions of parameters)
necessitates substantial computational resources and significant GPU memory, particularly
for the extraction of full-precision floating-point representations [55? ]. Given our limited
resources, which included a single GPU V100, we were unable to perform these tasks,
resulting in some missing results in Section 3 in our tables and figures.

Furthermore, the absence of results in Table 10 (ion channels vs. ion transporters) is
attributed to the fact that the corresponding studies [18,22] do not report these specific
results, and there are no readily available tools that can generate them. The primary focus
of these papers is to classify ion channels and ion transporters against other membrane
proteins, rather than against each other. However, in light of the data available to us, we
chose to conduct this experiment and compare our models in this context as well.

3. Results and Discussion

This section presents a comprehensive exploration of the findings derived from our
research, articulated through a combination of tables and figures to demonstrate and
contrast varying facets of the study. We elucidate the performance of six distinct Protein
Language Models (PLMs) as they engage with three specific tasks: differentiating ion
channels (IC) from membrane proteins (MP), distinguishing ion transporters (IT) from MPs,
and discerning IC from IT. We delve into the performance of six classifiers within these
tasks, shedding light on three pivotal factors under investigation: the influence of frozen
versus fine-tuned representations, the effect of balanced versus imbalanced datasets, and
the impact of half versus full precision floating-point calculations.

Our findings are quantified using four evaluative metrics: Matthews Correlation
Coefficient (MCC), Accuracy, Sensitivity, and Specificity. We present these results as mean +
standard deviation, obtained from a 5-fold cross-validation (CV). In our attempt to provide
an overarching view, we compute averages over tasks, PLMs and classifiers, yielding a
high-level depiction of our results. It should be noted, however, that results compared
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against the state-of-the-art are derived from an independent test set, employed solely for
this purpose, with all other evaluations conducted on the training set.

In our tables, the highest values for each column and category are highlighted in bold,
facilitating immediate recognition. Where there are more than two comparable values, the
second highest are underlined to illustrate the proximity between the best and second-best
results. In the corresponding figures, we prioritize the MCC metric, owing to its reliability
and comprehensive nature. Each bar in these figures denotes the mean MCC, with the error
bar atop indicating the standard deviation from the 5-fold CV. A A symbol highlights the
difference between pairs of bars.

To ascertain the statistical significance of our findings, we employ ANOVA [54], a
method for comparing the means of three or more groups, and the paired t-test [53], used
to compare the means of two related groups. A p-value of 0.05 or smaller indicates a
significant difference. It is important to note that this section primarily discusses general
findings; more detailed results can be found in the appendix of this paper.

3.1. Performance of PLMs for Classification Tasks

Table 4 presents a detailed evaluation of the six PLMs engaged in three distinct
classification tasks: differentiating IC from MP, distinguishing IT from MP, and discerning
IC from IT.

3.1.1. Performance of PLMs

Our findings underscore the superior performance of the ESM-1b PLM, as it eclipses
other PLMs across all evaluation metrics and tasks. The lone exception is observed in the
task of distinguishing IC from IT, where ESM-1b shares the lead position with ESM-2_15B.
This indicates that ESM-1b consistently delivers high accuracy in predicting ICs and ITs
from MPs.

However, the second-best performing model varies according to the task. ESM-2
exhibits commendable performance for differentiating IC from MP and distinguishing IT
from MP, whereas ProtT5 excels in the IC-IT classification task. The significant variations in
p-values across all PLMs further accentuate the formidable performance of ESM-1b.

In tasks pertaining to the differentiation of IC from MP and the distinction between
IC and IT, the performance variance between the highest-ranking and the runner-up
PLM:s is minimally noticeable across all evaluation metrics. However, when tasked with
discerning IT from MP, a notable performance discrepancy becomes apparent, particularly
evident in the Matthews correlation coefficient (MCC) metric. This highlights a more
substantial divergence in the proficiency of the two leading models, specifically ESM-2 and
its predecessor, ESM-1b, within this particular task.

Factors Contributing to ESM-1b’s Superior Performance Outcomes

Our study posits that the unique architectural design of ESM-1b substantially con-
tributes to its superior performance. This hypothesis is supported by our observation
that identical pretraining dataset sizes, as employed in ESM-1b, ESM-2, ESM-2_15B, and
more data in ProtBERT, ProtBERT-BFD, and ProtT5, in conjunction with model dimen-
sions varying from 650M (for ESM-1b) to 15B (for ESM-2_15B) parameters, does not affect
the performance of the corresponding PLMs significantly. We attribute the performance
differences primarily to two factors: positional encoding and dropout strategies.

Positional Encoding and Its Impact

ESM-1b [2] exhibits a unique approach to positional encoding. Diverging from the
original Transformer architecture [4], it replaces the conventional static sinusoidal encoding
with a learned encoding approach. This is markedly different from the approaches observed
in the ESM-2 [36] and ProtTrans PLM [3] families.
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Dropout Strategies and Their Influence a1

Dropout [56], a prominent regularization technique in deep learning, randomly dis- 412
ables certain neural network units during training. This strategy enforces the network to a3
develop more robust and generalizable features by reducing overfitting. a14

Distinct dropout strategies underscore a significant differentiation between ESM-1b 415
and other PLMs. For instance, ESM-2 chooses to completely forgo dropout within hidden a6
layers and attention. This pattern is also discernible in ProtBERT and ProtBERT-BFD, ar
where dropout appears to be absent from their architectures. Conversely, ESM-1b not only .
incorporates dropout in its architectural framework but also applies it across various tasks. 41
Considering the potential benefits of overfitting prevention measures, especially pertinent 2o

to the tasks investigated in our study, this difference assumes substantial significance. a2
Thus, in light of these findings, we suggest that the distinctive architectural design of a2z
ESM-1b plays a crucial role in facilitating its superior performance outcomes. 423

Table 4. Performance overview of protein language models for protein classification tasks. This
figure provides a comprehensive performance evaluation of various protein language models (PLMs),
organized in the order of their parameter count, across three distinctive protein classification tasks:
differentiating ion channels (IC) from membrane proteins (MP), distinguishing ion transporters
(IT) from MPs, and discerning IC from IT. The evaluation metrics, captured through a 5-fold cross-
validation approach, are presented as mean+standard deviation. The p-value accompanying each
result measures the statistical significance of observed differences among the PLMs. The highest
value achieved for each task and column is highlighted in bold, whereas the second highest value is
underlined to allow for comparative analysis between top-performing models.

Task PLM MCC Accuracy Sensitivity Specificity =~ P-value

ProtBERT 0.73+0.05 90.99+1.76 76.88+4.89 91.69+2.83
ProtBERT-BFD  0.74+0.05 91.46+1.63 76.18+4.82 92.27+2.60
ESM-1b 0.84+0.03 94.15+1.17 88.44+3.39 94.33+1.91

IC-MP ESM-2 0.83+0.04 93.89+1.27 85.66+4.43 94.39+1.94 1.25¢-06
ProtT5 0.79+0.05 93.12+1.38 79.68+4.98 94.35+1.81

ESM-2_15B 0.78+0.04 93.16+1.23 81.52+4.38 93.13+1.71

ProtBERT 0.71£0.05 90.75+1.41 75.66+4.69 91.58+2.34
ProtBERT-BFD  0.74+0.05 91.10£1.64 78.91+4.79 92.30+2.33
ESM-1b 0.82+0.04 93.47+1.31 85.09+3.46 94.53+2.09

IT-MP ESM-2 0.78+0.04 92.64+1.36 82.06+4.20 93.41+2.26 2:49¢-03
ProtT5 0.75£0.04 92.78+1.13 77.55+4.42 93.58+1.94

ESM-2_15B 0.72+0.04 91.58+1.46 76.12+4.26 91.90+2.32

ProtBERT 0.79+0.03 89.33+1.67 88.92+4.38 89.62+4.46
ProtBERT-BFD  0.78+0.05 88.71+2.46 88.29+5.12 89.29+4.67

IC-IT ESM-1b 0.85+0.04 92.46+2.25 92.83+3.42 92.12+4.21 2 146-06
ESM-2 0.83+0.04 91.42+2.17 91.21+£3.62 91.83+4.21
ProtT5 0.84+0.04 91.83+1.83 91.00+2.67 92.50+3.83

ESM-2_15B 0.85+0.03 92.33+1.67 91.50+2.67 92.83+3.83

3.1.2. Impact of Dataset Balance and Fine-Tuning 424

This study observes that larger models, namely ProtT5 and ESM-2_15B, despite being 425
precluded from fine-tuning due to resource constraints, managed to equal the performance s2e
of the smaller model, ESM-1b, on the balanced IC-IT dataset. Intriguingly, even with the 27
application of fine-tuning to ESM-1b, the frozen representations demonstrated their efficacy a2s
when the dataset is balanced, as evidenced in the IC-IT case. 420

This finding is substantiated by Table A5 and Figure A5, which depict superior perfor- aso
mance with frozen representation on the balanced dataset. However, the difference was a:
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not statistically significant (with a p-value > 0.05) across most of the PLMs, rendering this
observation as noteworthy, though not decisive.

The observed phenomenon intriguingly suggests a potential connection between
dataset balance and the concepts of frozen and fine-tuned representations. Rather than
treating these concepts as mutually exclusive, our study proposes that different tasks
may warrant exploration of varying combinations of these methodologies, indicating the
necessity for a more nuanced approach in their application.

3.1.3. Size of PLMs and Performance

Our findings challenge the prevailing notion that the performance of PLMs invariably
scales in direct proportion to their size. Interestingly, we did not identify a clear linear
correlation between the dimensionality of a PLM and its ensuing performance. As a case
in point, ESM-1b, with its 650 million parameters, consistently outperformed ESM-2_15B,
which boasts 15 billion parameters, even when dealing with frozen representations (refer
to Table Al. This observation underscores the conclusion that the performance efficacy
of a PLM does not hinge exclusively on its size. Instead, it is shaped by a more intricate
interplay of factors, with architectural design playing a significant role.

3.2. Comparative Performance Analysis of Classifiers

Table 5 presents performance results grouped by various classifiers utilized for three
distinct protein classification tasks: distinguishing IC from MP, differentiating IT from MP,
and discerning IC from IT.

Table 5. Performance overview of classifiers across protein classification tasks. This table offers a
comprehensive performance evaluation of each classifier across three distinct protein classification
tasks: differentiating ion channels (IC) from membrane proteins (MP), distinguishing ion transporters
(IT) from MPs, and discerning IC from IT. The results, captured via a 5-fold cross-validation approach,
are represented as meanzstandard deviation. An accompanying p-value quantifies the statistical
significance of observed differences among the classifiers. The highest value achieved for each task
and column is marked in bold, while the second highest value is underlined to facilitate a comparison
between the top-performing models.

Task Classifier MCC Accuracy  Sensitivity = Specificity = P-value
LR 0.82+0.04 93.99+£1.30 85.53+4.03 94.69+1.97
kNN 0.68+0.05 87.52+1.71 82.96+4.62 82.13+2.68
SVM 0.84+0.04 94.51+1.13 85.76+3.69 95.66+1.71
ICMP RE 0694005 92004138 63.96£450 96862152 2 ¢
FFNN 0.83+£0.04 94.10+1.19 86.66+£3.93 94.66+1.82
CNN 0.83+£0.05 93.96+1.93 85.07+£5.63 95.40+3.84
LR 0.80+0.04 93.12+1.34 83.71+3.74 94.19+2.21
kNN 0.69+0.05 88.54+1.76 80.58+4.21 85.93+2.56
SVM 0.81+£0.04 93.17£1.21 84.28+4.47 94.62+1.96
I-MP RF 0.65+0.05 90.33+1.62 64.35+4.47 93.57+2.14 4.77e-11
FFNN 0.81+0.04 93.19+1.41 84.61+4.04 94.03+2.43
CNN 0.81+0.04 93.70+1.15 82.66+4.80 95.23+2.14
LR 0.82+0.03 91.22+1.61 91.00+£3.11 91.44+3.44
kNN 0.74+0.06 86.44+3.22 89.83+4.33 83.56+5.56
SVM 0.85+0.04 92.28+1.67 91.67+£3.61 93.00+3.56
ICIT RF 0.79+0.04 89.28+2.22 86.28+6.06 91.72+6.06 1.38e-17
FFNN 0.84+0.04 92.06+2.17 92.11+3.56 92.11+3.94
CNN 0.86+£0.03 92.67+£1.67 91.61+3.17 93.78+3.39




Version August 31, 2023 submitted to Journal Not Specified 13 0f 48

Our comprehensive investigation across distinct protein classification tasks, employing
various classifiers, revealed a number of compelling insights.

3.2.1. Prominence of SVM and CNN Classifiers

Both the Support Vector Machine (SVM) and Convolutional Neural Network (CNN)
classifiers consistently delivered superior performance across all tasks. These classifiers
effectively navigate high-dimensional data and unravel complex patterns, contributing
to their consistent performance. The CNN employs convolutional layers to identify local
patterns in the representations and nonlinear relationships inherent in neural network
layers, while the SVM excels at linear classification by distinguishing between classes
efficiently by maximizing margins.

3.2.2. Comparison of Simple and Complex Models

Interestingly, a comparison of simple models, such as Logistic Regression (LR), and
complex ones, like CNNSs, indicated comparable performance levels. This observation
counters the prevalent assumption that increasing model complexity necessarily results in
superior performance. The consistent trend across all tasks and evaluation metrics suggests
that in predicting IC and IT from MP, simpler models may deliver effectiveness on par with
their more complex counterparts.

3.2.3. Less Effective Classifiers

However, not all classifiers showcased this level of effectiveness. Classifiers such as the
k-Nearest Neighbors (kNN) and Random Forest (RF) were identified as the least effective
across these tasks and representations derived from PLMs. This finding suggests that these
classifiers may not align well with the specific nature of these tasks or the representations
provided by the PLMs.

3.2.4. Performance Parallels Among Classifiers

Furthermore, our analysis disclosed an intriguing parallel in the performance metrics
of LR and Feed-Forward Neural Networks (FFNN), and those of SVM and CNN. This
pattern suggests that, despite inherent differences in their complexity and structure, these
models can achieve similar results in these specific tasks.

3.2.5. Significance of Classifier Selection

Finally, the p-value analysis highlighted significant performance differences across
the classifiers for all three tasks, emphasizing the crucial role of classifier selection in the
outcomes of these prediction tasks. The observed variation implies that the effectiveness of
a specific classifier may vary based on the unique characteristics of the task, underscoring
the importance of thoughtful classifier selection.

3.3. Effects of Various Experimental Conditions

In this section, we delve deeper into our findings and their implications. We have
conducted three distinct assessments to elucidate their impacts on the results and overall
performance. The following subsections offer a comprehensive discussion on these critical
areas of impact, namely, the implications of frozen vs. fine-tuned representations, the
influence of balanced vs. imbalanced datasets, and the effects of half vs. full precision
floating-point computations.

3.3.1. Frozen vs. Fine-tuned PLM Representations

Table 6 presents the impact of frozen and fine-tuned representations across the three
tasks under consideration - IC-MP, IT-MP, and IC-IT. Additionally, Figure 2 underscores the
performance, specifically focusing on the MCC metric across the three tasks. Note that a
comprehensive analysis concerning the influence of frozen and fine-tuned representations
is available in Section A.
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Table 6. Comparison and evaluation of frozen and fine-tuned representations across diverse protein
language models (PLMs). This table delineates the impact of utilizing both frozen and fine-tuned
representations on three distinct tasks: differentiating Ion Channels (IC) from Membrane Proteins
(MP), segregating Ion Transporters (IT) from MPs, and discriminating IC from IT, utilizing a range
of PLMs. Four evaluation metrics have been computed using 5-fold cross-validation, presented
as meansstandard deviation. The p-value is provided as a metric of the statistical significance of
observed discrepancies among the models. Notably, the highest performance value for each task and
each column is highlighted in boldface.

Task Representation MCC Accuracy  Sensitivity =~ Specificity = P-value

frozen 0.75+0.05 90.54+2.10 90.52+4.04 90.65+4.33
IC-MP finetuned 0.83£0.04 90.75:2.08 90.33+3.92 91.17+432 1°/¢08
frozen 0.70+0.05 93.11+1.41 86.71+3.93 93.44+2.25
IT-MP finetuned 0.83+0.04 92.33+1.47 77.61+4.80 93.06+2.26 2.33e-12
IC-IT frozen 0.82£0.04 92.81+137 88.2243.56 93.24+2.16 .. ..

finetuned 0.81+0.04 91.37+1.45 73.48+4.87 92.68+2.31

A =0.08 A=0.12 A = -0.00

0.8 1

0.6 -

MCC

0.4

0.2 9 Representation
B frozen
m finetuned

0.0 -

IC-MP IT-MP IC-IT
Task

Figure 2. Graphical representation of the impact of frozen vs. fine-tuned representations on various
tasks across different Protein Language Models (PLMs). This figure elucidates the impact of employ-
ing frozen and fine-tuned representations across a range of Protein Language Models (PLMs) for
three distinct tasks: differentiating Ion Channels (IC) from Membrane Proteins (MP), distinguishing
Ion Transporters (IT) from MPs, and discriminating IC from IT. The results are portrayed using the
mean Matthew’s Correlation Coefficient (MCC) values derived from 5-fold cross-validation. Each bar
represents the mean MCC calculated across five cross-validation runs, while the error bars indicate
the associated standard deviation. The symbol A is employed to denote the disparity between the
corresponding pair of bars.

Our investigation has uncovered noteworthy disparities in the performance of fine-
tuned and frozen representations across various tasks, underscored by their responses
to task-specific conditions, dataset sizes, classifier choices, and the underlying PLM’s
architecture.

Task-specific Performance Variations and the Impact of Dataset Imbalances

On differentiating IC from MP and IT from MP, fine-tuned representations have
consistently outperformed frozen ones. This pattern, however, becomes less clear-cut
in the IC-IT task. Statistical analysis further supports this pattern, revealing substantial
performance discrepancies between frozen and fine-tuned representations in the IC-MP
and IT-MP tasks. However, the IC-IT task showed no significant difference.
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This relative performance convergence in the IC-IT task can be attributed to the soo
balanced nature of its dataset, contrasting with potential imbalances in the MP dataset. This sz
highlights the role of dataset balance in performance trends and suggests that evaluation s
metrics may capture varying aspects of model performance, particularly under conditions s
of dataset imbalance. 513

A case in point is the sensitivity metric for the IT-MP task. Here, frozen representations s
notably outshine their fine-tuned counterparts, contrasting with the general trend of fine- s
tuned superiority. This demonstrates the sensitivity metric’s specific susceptibility to s
the effects of dataset imbalance. Whereas MCC metric, which accounts for all types of =7
prediction errors, demonstrated equivalent performance for both representation types. s18

Influence of Dataset Size on Performance 510

Our analysis points towards a significant influence of dataset size on the performance szo
of fine-tuned representations. The larger, albeit imbalanced, MP dataset, comprising 3,413 sz
training sequences, rendered richer fine-tuned representations compared to the balanced  sz:
dataset of 280 sequences (see Section 3.3.2). Consequently, the benefits of fine-tuning s2s
appear more distinct with larger datasets, underscoring the potential of using extensive szs
data resources to enhance fine-tuned PLM representation performance. 525

The observed pattern suggests that larger models, such as ProtT5 and ESM-2_15B—currends
unexplored due to computational limitations—could potentially exhibit improved perfor- szr
mance given the feasibility of fine-tuning. 528

Performance Across Different Classifiers 520

A further probe into performance across all classifiers, as represented in Table A2 s30
and Figure A2, demonstrated the consistent outperformance of fine-tuned over frozen s
representations. This observation reinforces the role of fine-tuning as a potent strategy to  ss2
optimize PLM effectiveness across varied classifier architectures. 533

Performance across Diverse PLMs 534

Our findings, as showcased in Table Al and Figure Al, reveal that performance sss
remains relatively stable between diverse PLM sizes when using frozen representations. sss
However, ESM-1b, a larger model with 650M parameters, outperformed smaller-sized s
PLMs like ProtBERT with 420M parameters. This observation suggests that the size of the s3s
underlying PLM can exert influence on the performance of frozen representations. 530

3.3.2. Balanced vs. Imbalanced Datasets 540

Table 7 and Figure 3 present the performance of the six PLMs when applied to either = sa
a balanced or imbalanced MP dataset. Our analysis suggests a profound effect of dataset sa2
balance on the performance of different representations across PLMs, classifiers, and tasks. sas

Performance Across PLMs 544

Our results, as presented in Table 7 and Figure 3, indicate that representations from  sss
imbalanced datasets outperform those from balanced datasets across six PLMs, with the sas
exception of ProtT5 and ESM-2_15B. This inconsistency may arise from the lack of fine- sar
tuned representations for these specific PLMs. Given the feasibility of fine-tuning, we sas
expect that these PLMs would align with the overall trend, affirming the performance s
advantage of imbalanced datasets. 550

However, the reported p-value in Table 7 suggests no significant difference between ss
balanced and imbalanced datasets for ProtBERT, ProtT5, and ESM-2_15B PLMs. As ProtT5 ss:
and ESM-2_15B were not fine-tuned, the observed p-value primarily reflects the impact of  sss
dataset balance on the performance of frozen representations for these PLMs. 554
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Table 7. Performance of Protein Language Models (PLMs) on Balanced vs. Imbalanced Membrane
Protein Datasets. This comprehensive evaluation examines the performance of various Protein
Language Models (PLMs) on both balanced and imbalanced datasets of membrane proteins. The
results, computed using 5-fold cross-validation, are represented as mean+standard deviation for the
evaluation metrics. The p-value quantifies the statistical significance of observed differences amongst
the classifiers. The highest values for each task and column are highlighted in bold. The PLMs are
sorted based on their number of parameters.

PLM Dataset MCC Accuracy Sensitivity = Specificity ~ P-value

balanced 0702006 8914242 89.00+3.33 89.27+3.89
ProtBERT imbalanced  0.74+0.04 98.48+0.06 8452:352 99.58+0.10 2201

balanced 0.71+0.06 88.55+2.45 88.94+3.61 88.24+4.12
ProtBERT-BFD . 1 lanced  0.77+0.03 97.98+0.19 78.79:5.02 99.56+0.08 °/¢02

balanced  0.79+0.05 87.83+2.52 89.81+3.38 85.87+3.78
ESM-1b imbalanced  0.8740.02 96.92+0.17 67.83+525 99.17+0.25 o0c 04

ESM-2 balanced  0.78+0.05 84.82+2.94 85.83+4.14 83.87+5.04 9956-03
imbalanced 0.83+0.03 96.92+0.23 66.71+5.44 99.40+0.12

ProtT5 balanced 0.79+0.05 85.31+3.19 85.59+4.54 85.07+4.77 433e-01
imbalanced 0.75+0.04 97.25+0.08 69.50+5.06 99.50+0.17 ’

balanced  0.7740.05 89.084235 89.32+3.48 88.773.67
ESM-215B . balanced 0.73+0.03 96.83+0.17 67.92:5.92 99.17+0.08 ©0°¢01

A=-0
A =-0.06
0.8
0.6
O
o
=
0.4
0.2 A Dataset
E balanced
B imbalanced

0.0 T
ProtBERT ProtBERT-BFD ESM-1b ESM-2 ProtT5 ESM-2_15B

PLM (parameter size)

Figure 3. Evaluation of PLMs on balanced and imbalanced datasets of membrane proteins. This figure
showcases a comprehensive evaluation of various protein language models (PLMs) on both balanced
and imbalanced datasets of membrane proteins. The evaluation results are depicted as the mean
Matthews Correlation Coefficient (MCC) calculated over five cross-validation runs, with error bars
denoting the standard deviation. The symbol A indicates the difference between the corresponding
pair of bars, providing insights into the performance disparities across the evaluated PLMs.

Task-specific Performance Variations

Evidence from Table A3 and Figure A3 indicates a superior performance of imbalanced
datasets in the IC-MP and IT-MP tasks. These findings underscore the impact of dataset
balance on model performance across these specific tasks.

Performance Across Different Classifiers

The comparison of classifier performances presented in Table A6 and Figure A6
suggests that imbalanced datasets outshine balanced datasets across all classifiers, except
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for the RF classifier. This exception implies a particular sensitivity of the RF classifier to
dataset balance, potentially explaining its performance divergence from the other classifiers.

Fine-Tuned vs. Frozen Representations

The performance patterns as seen in Table A4 and Figure A4 demonstrate that imbal-
anced datasets exhibit superior performance when employing fine-tuned representations
across all fine-tuned PLMs. In contrast, balanced datasets perform better when using frozen
representations, except for ProtBERT, where the p-value of 8.66e-02 indicates a statistically
significant difference. These findings emphasize the significant impact of dataset balance on
model performance, dependent on the choice of representation type (fine-tuned or frozen).

3.3.3. Half vs. Full Precision Floating Point Calculations

Table 8 and Figure 4 present the outcomes obtained from employing half and full preci-
sion floating-point calculations across the classifiers. Our analysis explores the influence of
numerical precision—specifically half versus full precision floating-point calculations—on
the performance of different tasks, classifiers, and PLMs.

Performance Across Different Classifiers

As evidenced by the results presented in Table 8 and Figure 4, the performance remains
consistent across all classifiers, irrespective of whether half or full precision floating-point
calculations are employed. This suggests that the level of numerical precision does not
significantly affect classifier performance in the evaluated tasks.

Task-specific Performance Variations

Performance consistency extends to specific tasks as well. As shown in Table A7
and Figure A7, the IC-MP, IT-MP, and IC-IT tasks exhibit comparable performance levels
regardless of the employed floating-point precision. These findings reinforce the notion
that the numerical precision choice for the floating-point calculations does not materially
affect model performance across these tasks.

Table 8. Performance of half vs. full precision floating-point across six classifiers. This table
provides an overview of the performance of each classifier using half and full precision floating-point
calculations. The results are presented using evaluation metrics on the 5-fold cross-validation, with
the mean and standard deviation shown. The p-value indicates the statistical significance of the
observed differences among the classifiers. The highest value for each task and each column is
highlighted in bold.

Classifier ~Precision MCC Accuracy  Sensitivity = Specificity =~ P-value

IR half 0.82+0.04 93.56+1.62 85.54+5.08 94.99+3.04 9 696-01
full 0.81+£0.04 93.62+1.53 85.32+4.58 95.02+3.10
half 0.69+0.05 93.20+1.50 86.95+3.90 93.78+2.56

kNN full 0.70£0.05 93.43+1.45 86.92+3.90 93.99+2.44 9-01e-01
half 0.83£0.04 92.93+1.42 85.91+3.80 93.65+2.44

SVM full 0.83£0.04 93.22+1.35 85.88+3.68 94.00%2.29 9-22¢-01

RF half 0.69+0.05 90.81+1.73 70.20+£5.09 94.31+2.76 9 64e-01
full 0.70+0.05 90.77+1.58 67.29+4.63 94.68+2.61
half 0.82+0.04 93.40+1.28 86.41+3.98 94.59+2.24

FENN full 0.82+0.04 93.63+1.26 86.30+3.99 94.81+2.13 9.27¢-01
half 0.83£0.04 87.85+2.04 83.29+4.37 84.35+3.19

CNN full 0.83£0.04 87.60+2.03 83.46+4.42 83.60+3.22 8.09-01
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Figure 4. Half vs. full precision evaluation across classifiers. This evaluation compares the perfor-
mance of different protein language models (PLMs) using both half and full precision floating-point
calculations. The results are presented as the mean Matthews Correlation Coefficient (MCC) calcu-
lated across five cross-validation runs, with error bars indicating the standard deviation. The symbol
A represents the difference between the corresponding pair of bars, providing insights into the impact
of numerical precision on classifier performance.

Performance Across PLMs

The performance comparison among the six PLMs, as displayed in Table A8 and
Figure A8, reveals minor performance variations when using both half and full precision
floating-point calculations. This observation implies that the selection of floating-point
precision has minimal impact on the performance of the evaluated PLMs.

Influence on Evaluation Metrics and Statistical Significance

An overarching analysis of evaluation metrics and p-values reveals no statistically
significant differences between the usage of half and full precision floating-point calcula-
tions across varied tasks, classifiers, and PLMs. These findings underscore that the choice
of floating-point precision does not exert a considerable influence on the outcomes of the
prediction tasks assessed in this study.

3.4. Visualization of Representations: Insights and Implications

The UMAP projection matrix of representations derived from the ESM-1b PLM, pre-
sented in Figure 5, provides a compelling visualization of both frozen and fine-tuned
representations for balanced and imbalanced datasets within the context of the IC-MP task
on the training set. It is crucial to note that the representation shown for the balanced
dataset is randomly selected from one of the ten available balanced datasets.

3.4.1. Fine-tuned Representations in Imbalanced Dataset

The Figure 5 visualization underscores the distinct clusters and patterns within the
fine-tuned representations for the imbalanced dataset. The evident separation between
ion channels and membrane proteins signifies the highly discriminative capability of fine-
tuned representations, demonstrating their efficacy in this task. This insight underscores
the prowess of fine-tuned representations in capturing the unique and distinguishable
characteristics of ion channels, fostering precise classification and analysis.

3.4.2. Frozen Representations in Imbalanced Dataset

Notably, the visualization also indicates that the next best level of clarity is achieved
using frozen representations with the imbalanced dataset. This suggests that the imbalanced
dataset, enriched with a broader spectrum of other membrane proteins, enhances the
performance of the frozen representations. This may be due to the diversity and complexity

606

607

608

609

612

613

614



Version August 31, 2023 submitted to Journal Not Specified 19 of 48

of the other membrane proteins, requiring a larger dataset for effective representation and
discrimination. Hence, this highlights the advantage of employing imbalanced datasets
with frozen representations for capturing the intricacies of diverse membrane protein
structures.

Balanced Imbalanced

Frozen

membraneproteins membraneproteins
fonchannels fonchannels

Fine-tuned

1 2 3 a 5 6 7 8 50 -25 0o 25 50 75 100 125 150

Figure 5. UMAP projection of representations from top PLM for ion channel discrimination. The
figure showcases a UMAP projection of representations derived from ESM-1b, the highest-performing
Protein Language Model (PLM) in the task of discriminating ion channels (IC) from membrane pro-
teins (MP). The representations are visualized in four variations: frozen and fine-tuned representation
types, along with balanced and imbalanced datasets. In the visualization, membrane protein repre-
sentations are depicted in yellow, while ion channel protein representations are depicted in blue.

3.4.3. Impact of Undersampling on Classification Task

Our results accentuate the potential adverse consequences of undersampling the
dataset on the classification task performance. Undersampling, which reduces the dataset
size, can impair the model’s ability to classify proteins accurately, underscoring the need for
a sufficiently large dataset to ensure effective protein classification. A substantial dataset en-
sures the model’s exposure to diverse and representative examples, facilitating the learning
of robust, discriminative patterns that generalize well to unseen data. Consequently, secur-
ing a substantial dataset is of paramount importance for achieving optimal performance in
protein classification tasks.

3.4.4. Implications for Balanced Dataset Representations

Examining the visualization of frozen and fine-tuned representations with balanced
datasets, we find a lack of clear patterns. This signifies a less distinct characterization of
ion channels compared to other membrane proteins, suggesting these representations may
not effectively differentiate ion channels from other membrane proteins. This lack of clear
patterns implies that the representations derived from balanced datasets may fail to capture
unique features or discriminative information vital for robust ion channel classification.
Hence, alternative representation strategies or dataset balancing techniques may warrant
consideration to enhance model effectiveness.

3.4.5. Comprehensive Visualization of PLMs

The representation visualizations for all six PLMs, including both frozen and fine-
tuned representations for the IC-MP, IT-MP, and IC-IT tasks, are provided in Section D. As
shown in Figure A9, Figure A10, and Figure Al1, these visualizations offer a holistic view
of the performance and discriminative abilities of various PLMs and representations for
these tasks. These comprehensive visualizations allow for an in-depth understanding of
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how different PLMs capture the characteristics and separability of ion channels and other
membrane proteins, illuminating their respective strengths and weaknesses.

3.5. Overview of Top Cross-Validation Results

Table 9. Top 5-fold CV results for each task and classifier, along with independent test set results.
This table presents the best 5-fold cross-validation (CV) results for each task and classifier, as well as
the corresponding results on the independent test set for comparison purposes. The tasks include
discriminating ion channels (IC) from other membrane proteins (MP), ion transporters (IT) from MP,
and IC against IT. The table displays the mean and standard deviation of the 5-fold CV results for
each metric. The results for the IC-MP and IT-MP tasks are obtained from imbalanced datasets, while
the dataset for the IC-IT task remains balanced. The best values for each task are shown in bold, and
the second-best values are underlined. It is important to note that the independent test set results
are provided solely for evaluating the models based on the CV results and not for selecting the best
model, as the best models are chosen based on the CV results.

. . MCC
Task Representation Representer Dataset Classifier v Independent
SVM 0.99+0.01 0.85
RF 0.98+0.01 0.84
. kNN 0.99+0.01 0.83
IC-MP finetuned ESM-1b Imbalanced IR 1.00£0.00 0.85
FFNN 1.00+0.01 0.85
CNN 0.99+0.01 0.85
SVM 1.00£0.00 0.68
RF 0.99+0.01 0.67
. kNN 0.99+0.01 0.70
IT-MP flnetuned ESM-lb Imbalanced LR m 0.69
FFNN 1.00£0.01 0.67
CNN 0.99+0.01 0.69
frozen ESM-2_15B SVM 0.88+0.03 0.88
finetuned ESM-1b RF 0.84+0.03 0.79
frozen ProtT5 kNN 0.81+0.03 0.75
ICIT finetuned ESM-1b Balanced LR 0.88+0.05 0.79
frozen ESM-2 FENN 0.88+0.05 0.74
finetuned ESM-2 CNN 0.89+0.03 0.87

The top results obtained from the 5-fold cross-validation (CV) for each task are detailed
in Table 9. Results are stratified by classifier and presented in the CV column, showing
the mean and standard deviation over the five folds. While independent test set results
are provided for comparative purposes, they do not contribute to the selection of the best
model, ensuring a robust and unbiased evaluation of classifier performance.

3.5.1. Superior Performance of ESM-1b PLM in IC-MP and IT-MP Tasks

As outlined in Table 9, the ESM-1b PLM, combined with fine-tuned representations
and an imbalanced dataset, exhibits superior performance in the IC-MP and IT-MP tasks.
The LR and FFNN classifiers, in particular, achieve a perfect MCC of 1.00, indicating
flawless prediction on 5-fold CV. Other classifiers also present highly competitive results,
with MCC values reaching 0.99, thereby emphasizing the exceptional efficacy of the ESM-1b
PLM with fine-tuning and an imbalanced dataset.

3.5.2. Results from Multiple PLMs in IC-IT Task

The IC-IT task, employing a balanced dataset, sees a range of PLMs delivering notable
results. The top-performing classifier, CNN, leverages the ESM-2 PLM with fine-tuned
representations, yielding an impressive MCC of 0.89. Notably, larger PLMs like ProtT5 and
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ESM-2_15B produce comparable results to their smaller counterparts such as ESM-1b and
ESM-2. This suggests that the size of the PLM does not necessarily influence performance
enhancement for the IC-IT task.

3.5.3. Comparative Performance of Classifiers for IC-IT Task

While the CNN classifier utilizing the ESM-2 PLM’s fine-tuned representations achieves
the top result for the IC-IT task, other classifiers also demonstrate comparable performances.
The SVM classifier with frozen representations from ESM-2_15B, the LR classifier with fine-
tuned representations from ESM-1b, and the FENN classifier with frozen representations
from ESM-2 deliver similar results to the CNN classifier. This suggests that a diverse set of
classifiers can deliver equivalent performance levels, depending on the selected PLM and
representation type.

3.5.4. Comprehensive Analysis of Results

A detailed examination of the results for each task - IC-MP, IT-MP, and IC-IT - is pro-
vided in Section E. Here, the evaluation metrics are delineated in detail across various tables
for each task. This thorough breakdown offers an exhaustive and nuanced understanding
of the performance of the employed models, classifiers, and representations. Delving into
the evaluation metrics’ specifics enables readers to gain deeper insights into the results,
providing valuable information for future research in the prediction of ion channels and
ion transporters from other membrane proteins.

3.6. Performance Comparison with State-of-the-Art Projects

A detailed comparison of TooT-PLM-ionCT’s performance against state-of-the-art
projects is provided in Table 10 and Figure 6 for the IC-MP, IT-MP, and IC-IT tasks. This
analysis includes established methodologies such as Deeplon [18], MFPS_CNN [22], and
TooT-BERT-C [23], providing a comprehensive assessment of TooT-PLM-ionCT’s relative
performance.

As shown in Table 10 and Figure 6, TooT-PLM-ionCT outperforms its counterparts in
the IT-MP and IC-IT tasks. However, in the IC-MP task, its performance aligns closely with
TooT-BERT-C. These results underscore the capability of TooT-PLM-ionCT to accurately
predict ion channels and ion transporters from other membrane proteins, demonstrating its
superiority or competitive performance.

It’s worth noting that Deeplon [18] and MFPS_CNN [22] do not report specific results
for the IC-IT task, as they focus predominantly on differentiating ion channels and ion trans-
porters from other membrane proteins. This further underscores the unique contribution
of our study in exploring the IC-IT task and offering crucial insights into the categorization
of ion channels and ion transporters from other membrane proteins.

Model Selection Process

The model selection was driven by the top-performing models in our experiments,
as detailed in Table 9. In instances where multiple classifiers achieved the same MCC, we
favored the simpler and more straightforward classifier for the IC-MP and IT-MP tasks.
However, for the IC-IT task, despite the SVM classifier’s marginally better performance
on the independent test set, the CNN classifier was selected based on superior CV results.
This decision balanced the need for performance with model simplicity, while considering
the unique demands and constraints of each task.
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Table 10. Comparative performance of TooT-PLM-ionCT with state-of-the-art. This table provides a
comparative analysis of the performance of TooT-PLM-ionCT with the state-of-the-art methods on
the independent test set. The performance is evaluated for classifying membrane proteins (MP), ion

"

channels (IC), and ion transporters (IT). The absence of results is denoted by a “-” when corresponding
studies and tools do not report ion channel and ion transporter classification against each other. The
boldface highlights the highest values in the accuracy and Matthews Correlation Coefficient (MCC)

columns, while the underline indicates the second-highest values.

Task Project Encoder Classifier Accuracy MCC
Deeplon [18] PSSM CNN 86.53 0.37
IC-MP MFPS_CNN [22] PSSM CNN 94.60 0.62
TooT-BERT-C [23] ProtBERT-BFD LR 98.24 0.85
TooT-PLM-ionCT ESM-1b LR 98.24 0.85
Deeplon [18] PSSM CNN 83.78 0.37
T-MP MFPS_CNN [22] PSSM CNN 93.30 0.59
TooT-BERT-C [23] ProtBERT-BFD LR 95.43 0.64
TooT-PLM-ionCT ESM-1b LR 95.98 0.69
Deeplon [18] - - - -
IC-IT MFPS_CNN [22] - - - -
TooT-BERT-C [23] ProtBERT-BFD LR 85.38 0.71
TooT-PLM-ionCT ESM-2 CNN 93.07 0.87

Deeplon MFPS_CNN TooT-BERT-C TooT-PLM-ionCT

Figure 6. Comparative performance with state-of-the-art. This figure presents the comparative
performance of TooT-PLM-ionCT on the independent test set, showcasing the classification results for
membrane proteins (MP), ion channels (IC), and ion transporters (IT). The absence of bars indicates
studies that focused on classifying ion channels and ion transporters against membrane proteins,
rather than against each other, resulting in no available results from either publications or tools. The
horizontal dashed lines represent two baselines, while the vertical dashed line distinguishes between
traditional and PLM-based representations.

4. Conclusions 706

This study presented TooT-PLM-ionCT, a framework developed for distinguishing 707
ion channels (IC) from other membrane proteins (MP), ion transporters (IT) from MP, and  7oe
IC from IT. Six Protein Language Models (PLMs) were utilized: ProtBERT, ProtBERT-BFD, 70
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and ProtT5 from the ProtTrans project, along with ESM-1b, ESM-2 (650M parameters), and
ESM-2 (15B parameters) from the ESM project. These were employed alongside a range
of traditional (Logistic Regression, kNN, Random Forest (RF), SVM, and Feed-Forward
Neural Network) and deep learning (Convolutional Neural Network) classifiers.

The study scrutinized the effects of dataset balance, the comparison of frozen and
fine-tuned representations, and the performance difference between half-precision and
full-precision floating-point calculations. The significant findings from our analysis are
discussed below:

¢  PLM Performance: ESM-1b PLM outshone its peers in most metrics and tasks, with
the exception of distinguishing IC from IT, where it shared the top spot with ESM-
2_15B. The second-best performing model, however, varied with the task at hand.
ESM-2 proved effective in differentiating IC from MP and IT from MP, while ProtT5
excelled in IC-IT classification. The substantial variation in p-values of statistical
analysis across all PLMs further emphasized ESM-1b’s formidable performance.

e  Dataset Balance: Our study found that imbalanced datasets outperformed balanced
datasets across most PLMs, except for ProtT5 and ESM-2_15B, where we saw inconsis-
tency due to the absence of fine-tuned representations. Additionally, a comparison
of classifier performance revealed that imbalanced datasets outperformed balanced
datasets across all classifiers. The sole exception was the RF classifier, which exhibited
a heightened sensitivity to balanced datasets and therefore yielded superior results
with them.

*  Fine-Tuned Representations: Fine-tuned representations consistently performed
better than frozen ones for differentiating IC from MP and IT from MP, while for
the IC-IT task, the performance was equivocal. The size of the dataset appeared to
significantly influence the performance of fine-tuned representations. Thus, larger
datasets, despite their imbalanced nature, seemed to benefit more from fine-tuning.

*  Floating-Point Precision: Our study found negligible performance variations between
half and full precision floating-point calculations across tasks, classifiers, and PLMs.
This suggests that the numerical precision choice does not considerably impact the
performance in the prediction tasks examined in this study.

¢ Impact of Undersampling: Results highlighted the potential detrimental effects of
undersampling, emphasizing the need for larger, more representative datasets for
accurate protein classification.

*  Comparison of PLM Sizes: Our analysis showed an intriguing pattern where a 650M-
parameter PLM exhibited comparable performance to a 15B-parameter PLM and
surpassed a 450M-parameter model in terms of frozen representation.

¢  Computational Cost vs. Improvement: The improvement in performance for the
IC-IT task justified the associated computational cost, a contrast to the IC-MP and
IT-MP tasks where the benefit did not outweigh the cost.

In our future endeavors, we aspire to probe the feasibility of augmenting the represen-
tations produced by PLMs with additional sources of knowledge. Concurrently, we aim to
assess more sophisticated techniques for sequence representation, pushing the boundaries
of current methodologies to further enhance the depth and breadth of our protein analysis.

We are also committed to expanding the scope of our approach, testing its efficacy
on larger and more diverse protein datasets. By doing so, we aim not only to validate our
methodology’s robustness but also to potentially broaden its range of applicability.
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FFNN  Feed-Forward Neural Network
CNN Convolutional Neural Network
MCC  Matthews Correlation Coefficient

P True Positive
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FP False Positive

FN False Negative
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Appendix A. Frozen vs. Fine-tuned Representations

Table Al. Frozen vs. fine-tuned representations across protein language models. This table presents
a comparison and evaluation of frozen versus fine-tuned representations across a range of protein
language models (PLMs). The assessment is based on four evaluation metrics computed using a
5-fold cross-validation procedure and is presented as the mean + standard deviation. Statistical
significance of observed discrepancies among the models is denoted by the provided p-value. Please
note, instances of "None” indicate that due to resource constraints, we were unable to fine-tune larger
PLMs such as ProtT5 and ESM-2 with 15 billion parameters.

PLM Representation MCC Accuracy Sensitivity = Specificity = P-value
frozen 0.69+0.05 94.14+1.48 93.8042.65 94.17+2.42

FrotBERT finetuned  078+0.04 92.94+141 8216+420 93761246 2 0¢00
frozen 0.70+0.05 93.35+1.40 90.32+3.55 93.62+2.46

ProtBERT-BED ¢ tined 0794005 92.44+157 8035:4.81 93361258 120606
frozen 0.79+0.04 92.36+1.41 81.36+3.99 92.58+2.38

ESM-1b finetuned ~ 0.88:0.03 91.09+151 83564447 9145:284 >o1€07
frozen 0.77+0.05 90.04+1.69 74.04+4.94 91.0123.08

ESM-2 finetuned 0.85:0.04 91.34:174 84.63:456 91974280 °20607

ProtT5 frozen 0.78+0.04 90.19+1.86 74.76+5.17 91.41+3.02 None

ESM-2_15B frozen 0.77+0.04 92.73+1.37 81.09+4.29 93.67+2.27  None

0.8 1

0.6 1

MCC

0.4 4

0.2 1 Representation
m frozen
mm finetuned

0.0 -
ProtBERT ProtBERT-BFD ESM-1b ESM-2 ProtT5 ESM-2_15B

PLM (parameter size)

Figure A1. This figure provides a graphical display of the differential impact of employing frozen
and fine-tuned representations across various Protein Language Models (PLMs). The comparison is
made using the mean Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold
cross-validation. Each bar signifies the mean MCC obtained across the cross-validation sets, with
error bars representing the standard deviation. The delta symbol (A) illustrates the difference between
the associated pair of bars. Absent bars denote the inability to fine-tune large PLMs such as ProtT5
and ESM-2, each containing 15 billion parameters, due to resource limitations.
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Table A2. Frozen vs. fine-tuned representations across classifiers. This table presents a comparison
and evaluation of frozen versus fine-tuned representations across a range of classifiers. The assess-
ment is based on four evaluation metrics computed using a 5-fold cross-validation procedure and is
presented as the mean + standard deviation. Statistical significance of observed discrepancies among
the models is denoted by the provided p-value.

Classifier Representation MCC Accuracy Sensitivity Specificity = P-value
frozen 0.79+£0.04 93.94+153 89.42+3.84 95.08+2.97

LR finetuned  0.84:0.04 9332+1.60 82.21+558 94.95:316 2000
frozen 0652005 93.62:147 89.93:349 94.0142.49

KNN finetuned  0.75:0.05 93.09+148 84.53:424 93.81s249 11300
frozen 0812004 9335:136 89284335 93.94:2.34

SVM finetuned  0.85:0.03 92.88+139 83.18+4.03 93.77+238 20705

. frozen 061:005 9174161 82225470 94432266 . o
finetuned  0.80:0.04 90.03:1.67 57.67+44.94 9458:2.69 O 02€
frozen 0.80:0.04 93.73£125 89.67+348 94.69:2.21

FFNN finetuned  0.85:0.04 93.36:1.28 83.69+439 9474:2.15 °°/¢05

NN frozen 081:004 88474197 87945398 84672311 , o

finetuned 0.86+0.04 87.10+2.09 79.74+4.74 83.35+3.28

0.8 1

0.6 1

MCC

0.4

0.2 1 Representation
B frozen
mm finetuned

0.0 -

LR kNN SVM RF FFNN CNN
Classifier

Figure A2. This figure provides a graphical display of the differential impact of employing frozen
and fine-tuned representations across various classifiers. The comparison is made using the mean
Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold cross-validation. Each
bar signifies the mean MCC obtained across the cross-validation sets, with error bars representing
the standard deviation. The delta symbol (A) illustrates the difference between the associated pair of
bars.
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Appendix B. Balanced vs. Imbalanced Datasets

Table A3. Balanced vs. imbalanced dataset performance across tasks. This table presents a comparison
and evaluation of balanced versus imbalanced dataset peformance across the tasks of ion channels
vs. other membrane proteins (MP) and ion transporters vs. MP. The assessment is based on four
evaluation metrics computed using a 5-fold cross-validation procedure and is presented as the mean
+ standard deviation. Statistical significance of observed discrepancies among the models is denoted
by the provided p-value.

Task Dataset MCC Accuracy  Sensitivity ~ Specificity =~ P-value
balanced 0.76+0.05 87.47+2.73 88.10+4.03 86.88+4.42
IC-MP imbalanced 0.81+0.03 97.89+0.16 75.21+4.80 99.58+0.09 5.50e-04
balanced 0.74+0.05 86.77£2.70 87.07+3.67 86.50+4.32
IEMP - balanced  0.78:0.03 97.25:013 72994491 99.36+0.16 L +4€02
A =0.05
0.8 1
0.6 1
o}
= 0.4+
0.2 Dataset
m balanced
B imbalanced
0.0

IC-MP

IT-MP
Task

Figure A3. This figure provides a graphical display of the differential impact of employing balanced
and imbalanced dataset across various tasks of ion channels (IC) vs. other membrane proteins (MP)
and ion transporters (IT) vs. MP. The comparison is made using the mean Matthew’s Correlation
Coefficient (MCC) values, as determined from 5-fold cross-validation. Each bar signifies the mean

MCC obtained across the cross-validation sets, with error bars representing the standard deviation.

The delta symbol (A) illustrates the difference between the associated pair of bars.
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Table A4. Balanced vs. imbalanced dataset performance across fine-tuned protein language models.

This table presents a comparison and evaluation of balanced versus imbalanced dataset peformance

across the fine-tuned protein language models. The assessment is based on four evaluation metrics

computed using a 5-fold cross-validation procedure and is presented as the mean + standard deviation.

Statistical significance of observed discrepancies among the models is denoted by the provided p-

value.
PLM Dataset MCC Accuracy  Sensitivity  Specificity =~ P-value
ProtBERT balanced  0.7120.06 89212240 89.00+3.33 89.39+3.89  1.55e-08
ro imbalanced  0.85:0.03 100.00£0.00 99.12+1.29 100.00+0.00 1.55¢-08
balanced  0.7120.06 88.57+2.42 88.96+3.66 88.26+4.03 3.27e-10
ProtBERT-BED ;  alanced  0.87+0.03  99.0410.04 9117350 99.88:0.04 3.27e-10
ESM.1b balanced  0.79+0.05 84.96+2.86 85.95+4.00 84.05:4.93 1.43e-14
imbalanced 0.99+0.01 98.00£0.21 78.29+5.17 99.83+0.04 1.43e-14
ESM.2 balanced  0.78+0.05 85.48+3.18 85.66+4.57 85.41+4.66 6.96e-10
imbalanced 0.93+0.02 98.42+0.00 81.58+4.46 99.92+0.04  6.96e-10
1.0 A
0.8 1
0 0.6
O
=
0.4
0.2 1 Dataset
B balanced
B imbalanced
0.0 -

ProtBERT

ProtBERT-BFD

ESM-1b
PLM (parameter size)

ESM-2

Figure A4. Balanced vs. imbalanced dataset performance across fine-tuned PLMs. This figure

provides a graphical display of the differential impact of employing balanced and imbalanced

datasets across various fine-tuned Protein Language Models (PLMs). The comparison is made

using the mean Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold cross-

validation. Each bar signifies the mean MCC obtained across the cross-validation sets, with error

bars representing the standard deviation. The delta symbol (A) illustrates the difference between the

associated pair of bars.
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Table A5. Balanced vs. imbalanced dataset performance across frozen protein language models. This

table presents a comparison and evaluation of balanced versus imbalanced dataset peformance across

the frozen protein language models. The assessment is based on four evaluation metrics computed

using a 5-fold cross-validation procedure and is presented as the mean + standard deviation. Statistical

significance of observed discrepancies among the models is denoted by the provided p-value.

ProtBERT

ProtBERT-BFD

ESM-1b
PLM (parameter size)

ESM-2

ProtT5

PLM Dataset MCC Accuracy  Sensitivity = Specificity = P-value
balanced  0.70+0.06 89.0742.45 89.0123.34 89.15+3.89
ProtBERT imbalanced 0.63:0.04 96.96:012 69.92+5.75 99.17:021 o06€:02
balanced  0.7120.06 88.5242.47 88.9143.56 88.22+4.20
ProtBERT-BED 1 lanced  0.66:0.04 96.92+033 66424654 9925:012 13401
balanced  0.79+0.05 87.83+2.52 89.8123.38 85.87+3.78
ESM-1b imbalanced 0.75:0.04 96.92+017 67.83+525 99.17:025 201
balanced  0.78+0.05 84.67+3.02 85.712428 83.70+5.16
ESM-2 imbalanced 0.74:0.04 95.83:025 55.12+571 98.96:021 2 16€-01
ProtT5 balanced  0.79+0.05 85.14+320 85524452 8473+487 .. o
imbalanced 0.75+0.04 96.08+0.17 57.4245.67 99.0840.29
balanced  0.77+0.05 89.0842.35 89.3243.48 88.77+3.67
ESM-2_15B imbalanced  0.73:0.03 96.83:0.17 67.92:5.92 99.17:0.08 ©-02¢-01
1.0
=0.03 A =0.04 =0.04 A =0.04
0.8 1
0.6
3
=
0.4
0.2 1 Dataset
B balanced
B imbalanced
0.0

ESM-2_15B

Figure A5. Balanced vs. imbalanced dataset performance across frozen PLMs. This figure provides a

graphical display of the differential impact of employing balanced and imbalanced dataset across

various frozen Protein Language Models (PLMs). The comparison is made using the mean Matthew’s
Correlation Coefficient (MCC) values, as determined from 5-fold cross-validation. Each bar signifies
the mean MCC obtained across the cross-validation sets, with error bars representing the standard
deviation. The delta symbol (A) illustrates the difference between the associated pair of bars.
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Table A6. Balanced vs. imbalanced dataset performance across classifiers. This table presents a

comparison and evaluation of balanced versus imbalanced dataset peformance across classifiers. The

assessment is based on four evaluation metrics computed using a 5-fold cross-validation procedure

and is presented as the mean + standard deviation. Statistical significance of observed discrepancies

among the models is denoted by the provided p-value.

Classifier Dataset MCC Accuracy  Sensitivity ~ Specificity =~ P-value
LR balanced  0.78+0.05 89.49+2.81 87.85+4.74  91.07+5.68 591e-04
imbalanced 0.84+0.03 98.17+0.28 79.89+5.69 99.56+0.31 7 °©
balanced  0.60+0.06 89.32+2.55 89.38+3.31  89.27+4.17
kNN imbalanced 0.77+£0.03 97.97+0.06 81.89+4.67  99.42+0.08 1.99e-07
balanced  0.79+0.05 89.14+2.53 88.71+3.35 89.47+4.18
SVM imbalanced 0.85+0.03 97.97+0.11 80.53+4.42  99.42+0.00 1.83¢-04
RE balanced  0.73+0.06 86.14+2.92 81.34+4.81  90.43+3.66 1.136-02
imbalanced 0.62+0.04 96.19+0.08 46.97+4.25 100.00+0.00 ¢
balanced  0.79+0.05 89.60+2.31 88.34+3.21  90.76+3.56
FENN imbalanced  0.85+0.03 98.08+0.03 81.69+4.94  99.53+0.11 1.28e-04
balanced  0.80+0.05 79.03£3.17 89.90+3.69  69.14+4.99
CNN imbalanced 0.85+0.03 97.03+0.31 73.64+5.14  98.92+0.25 8.20e-04
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Figure A6. Balanced vs. imbalanced dataset performance across classifiers. This figure provides a

graphical display of the differential impact of employing balanced and imbalanced dataset across
various classifiers. The comparison is made using the mean Matthew’s Correlation Coefficient (MCC)
values, as determined from 5-fold cross-validation. Each bar signifies the mean MCC obtained across

the cross-validation sets, with error bars representing the standard deviation. The delta symbol (A)

illustrates the difference between the associated pair of bars.
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Appendix C. Half vs. Full Precision Floating Point Calculations

Table A7. Half vs. full precision floating point calculations across tasks. This table presents a
comparison and evaluation of half versus full precision floating-point across the tasks of ion channels
(IC) vs. other membrane proteins (MP), ion transporter (IT) vs. MP, and IC vs. IT. The assessment is
based on four evaluation metrics computed using a 5-fold cross-validation procedure and is presented
as the mean + standard deviation. Statistical significance of observed discrepancies among the models

is denoted by the provided p-value.

Task Precision MCC Accuracy  Sensitivity =~ Specificity =~ P-value
half 0.78+0.04 90.46+2.17 90.21+4.19 90.73+4.44
IC-MP full 0.78+0.04 90.82+2.03 90.58+3.80 91.10+4.23 9.75e-01
half 0.76+0.04 92.65+1.46 81.89+4.43 93.18+2.29
IT-MP full 076£0.04 92714142 81474440 93274223 481
half 0.82+0.04 92.03+1.45 80.62+4.40 92.99+2.25
ICIT full 0.81+0.04 92.00+1.39 79.56+4.20 92.88+2.23 9.34e-01
A =0.00 A=001 A=-001 Precision
0.8 = half
- full
0.6
S
= 0.4
0.2
0.0
IC-MP IT-MP IC-IT
Task

Figure A7. Half vs. full precision floating point calculations across tasks. This figure provides a
graphical display of the differential impact of employing half and full precision floating-point calcu-
lation across various tasks of ion channels (IC) vs. other membrane proteins (MP), ion transporters
(IT) vs. MP and IC vs. IT. The comparison is made using the mean Matthew’s Correlation Coefficient
(MCC) values, as determined from 5-fold cross-validation. Each bar signifies the mean MCC obtained
across the cross-validation sets, with error bars representing the standard deviation. The delta symbol
(A) illustrates the difference between the associated pair of bars.
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Table A8. Half vs. full precision floating point calculations across protein language models. This
table presents a comparison and evaluation of half versus full precision floating-point across protein
language models (PLMs). The assessment is based on four evaluation metrics computed using a
5-fold cross-validation procedure and is presented as the mean + standard deviation. Statistical
significance of observed discrepancies among the models is denoted by the provided p-value. Please
note, instances of "None” indicate that due to resource constraints, we were unable to fine-tune larger
PLMs such as ProtT5 and ESM-2 with 15 billion parameters.

PLM Precision MCC Accuracy Sensitivity = Specificity —P-value

half 0.73+£0.04 93.52+1.45 87.91+£3.57 93.98+2.46
ProtBERT full 0.74+0.05 93.56+1.44 88.05+£3.28 93.96+2.42 741e-01

half  0.75£0.05 92944148 85.44+4.09 93.55+2.46
ProtBERT-BFD full 0750005 92.85:149 8523426 93431258 22000l

half 0.83+0.04 92.36+1.41 81.36+£3.99 92.58+2.38
ESM-1b full 0.83+0.04 90.60+1.65 79.20+4.87 91.23+2.98 9-13e-01

half 0.81+£0.04 90.52+1.55 78.39+4.54 91.24+294

ESM-2 full 0.81+£0.04 90.78+1.80 79.65+4.95 91.71+2.92 8.09¢-01
ProtT5 half 0.78+0.04 90.75+1.80 79.74+4.78 91.67+2.89  None
ESM-2_15B half 0.77+£0.04 92.73+1.37 81.09+4.29 93.67+2.27  None

0.8 A

0.6 -

McC

0.4 A

0.2 Pprecision
half
e full

0.0 -
ProtBERT ProtBERT-BFD ESM-1b ESM-2 ProtT5 ESM-2_15B

PLM (parameter size)

Figure A8. Half vs. full precision floating point calculations across PLMs. This figure provides
a graphical display of the differential impact of employing half and full precision floating-point
calculation across various Protein Language Models (PLMs). The comparison is made using the mean
Matthew’s Correlation Coefficient (MCC) values, as determined from 5-fold cross-validation. Each
bar signifies the mean MCC obtained across the cross-validation sets, with error bars representing
the standard deviation. The delta symbol (A) illustrates the difference between the associated pair
of bars. Absent bars denote the inability to fine-tune large PLMs such as ProtT5 and ESM-2, each
containing 15 billion parameters, due to resource limitations.
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Appendix D. Protein visualization

Frozen Fine-tuned

ProtBERT

membraneproteins
- fonchannels

ProtBERT-BFD °

8 2

membraneproteins -2
fonchannelz

ProtT5
.
2
u
.
w
4 N
. .
ESM-1b , - .
- 4
o
2
u
"
o
. 8
.
ESM-2 ‘ ST
3 2
.
’ -2
u
"
ESM-2_15B ¢

Figure A9. This figure illustrates a UMAP projection visualizing the separation of ion channels and
an imbalanced dataset of other membrane proteins. The visualization encompasses all six protein
language models and includes both frozen and fine-tuned representation types. Membrane proteins
are represented by yellow points, while ion channels are depicted in blue.
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Figure A10. This figure illustrates a UMAP projection visualizing the separation of ion transporters
and an imbalanced dataset of other membrane proteins. The visualization encompasses all six protein
language models and includes both frozen and fine-tuned representation types. Membrane proteins
are represented by red points, while ion transporters are depicted in grey.
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Figure A11. This figure illustrates a UMAP projection visualizing the separation of ion channels and
ion transporters. The visualization encompasses all six protein language models and includes both
frozen and fine-tuned representation types. Ion channels are represented by yellow points, while ion
transporters are depicted in green.
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Appendix E. Detailed five-fold cross-validation results

Appendix E.1. Ion channels vs. other membrane proteins

Table A9. Comparison of representations and classifiers performance for discriminating ion channels

from membrane proteins on Accuracy metric as m+d, where m is the mean and d is the standard

deviation across the five runs of the cross-validation. The symbo

1 “_r

indicates that results are

unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which

could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced half 99.00+0.00  99.00+£1.00  95.00+£0.00  96.00+£0.00  99.00+0.00  99.00+0.00
balanced half 92204220  93.10+1.90  89.80+2.30  68.90+3.20  93.50+2.00  93.40+2.20
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
ESM-2_15B imbalanced half - - - - - -
finetuned ) balanced half - - - - - -
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 98.00+0.00  97.00+0.00  94.00+0.00  95.00+1.00  98.00+0.00  97.00+0.00
frozen balanced half 86.60+4.60  87.80+3.10  86.20+2.40  72.50+4.10  86.70+£3.40  87.60+2.70
imbalanced full 98.00+1.00  97.00+0.00  94.00+0.00  95.00+1.00  98.00+0.00  97.00+0.00
ProtBERT balanced full 86.78+3.56  87.70+3.10  86.30+2.70  72.50+4.20  86.70+£3.40  87.50+2.60
imbalanced half 98.00+0.00  98.00+0.00  97.00+£0.00  98.00+£0.00  98.00+0.00  98.00+0.00
finetuned ) balanced half 86.90+3.60  87.70+2.90  86.50+2.60  73.20+3.90  87.30+2.80  87.70+2.50
imbalanced full 99.00+£1.00  99.00£0.00  98.00+1.00  98.00£0.00  98.00+1.00  98.00+1.00
balanced full 86.50+3.80  87.80+320  86.10+2.50  72.90+4.30  87.30+2.80  87.70+2.70
imbalanced half 99.00+1.00  99.00+0.00  95.00+£0.00  97.00+1.00  98.00+0.00  98.00+0.00
frozen ) balanced half 91.00+3.40 92.40+1.70 88.10+3.00 80.50+2.90 91.80+2.00 91.90+2.00
imbalanced full 99.00+1.00  99.00+0.00  95.00+0.00  97.00+1.00  98.00+0.00  98.00+0.00
ESM-2 balanced full 91.90+3.00 92.40+1.70 88.00+2.90 80.30+2.80 91.90+2.00 92.00+1.90
imbalanced half 100.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
finetuned balanced half 91.60+2.80  92.30+2.00  88.00+3.00  80.40+2.40  91.80+2.00  91.70+2.00
imbalanced full 100.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
balanced full 91.90+2.50  92.30+1.80  88.20+2.90  80.50+2.60  91.90+2.00  92.00+1.80
imbalanced half 98.00£1.00  99.00£0.00  96.00+0.00  97.00£0.00  98.00+0.00  98.00+0.00
frozen balanced half 90.40+4.00 92.80+1.80  88.50+2.70  80.70+2.70  92.00+1.70  91.90+1.80
imbalanced full 98.00+0.00  99.00+0.00  96.00+0.00  97.00+0.00  98.00+0.00  98.00+0.00
ESM-1b ] balanced full 91.00+2.30  92.80+1.80  88.70+2.60  80.70+2.70  91.90+1.80  91.90+1.80
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00
finetuned ) balanced half 90.70+3.90 92.80+1.70 88.30+2.70 81.20+2.80 91.80+1.70 91.70+1.80
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
balanced full 91.20+2.50 92.80+1.50 88.50+2.50 81.40+2.70 91.80+1.80 91.70+1.90
imbalanced half 98.00+1.00  98.00+0.00  95.00+0.00  97.00+1.00  98.00+0.00  98.00+0.00
balanced half 91.00+2.90  92.00+2.20  88.80+2.30  80.10+3.10  90.70+1.80  90.90+2.30
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
ProtT5 imbalanced half - - - - - -
finetuned ) balanced half - - - - - -
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 97.00+1.00  97.00+0.00  94.00+0.00  96.00+0.00  97.00+0.00  97.00+0.00
frozen balanced half 87.50+3.80 88.30+2.20 86.30+2.90 77.60+3.20 86.40+3.60 87.40+2.90
imbalanced full 97.00+1.00  97.00+0.00  94.00+0.00  96.00+0.00  97.00+0.00  97.00+0.00
ProtBERT-BFD balanced full 86.20+4.30  88.30+220  86.30+3.30  77.60+3.10  86.70+3.50  87.50+3.10
imbalanced half 98.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00
finetuned balanced half 87.40+4.40  88.60+2.50  86.20+2.50  78.30+2.90  87.20+£3.70  88.10+2.80
imbalanced full 98.00+0.00  98.00+0.00  98.00+0.00  98.00+£0.00  98.00+0.00  98.00+0.00
balanced full 87.67+4.00  88.60+2.40  86.20+2.90  78.30+3.10  87.30+£3.70  88.00+3.20

778
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Table A10. Comparison of representations and classifiers performance for discriminating ion chan-

nels from membrane proteins on MCC metric as m+d, where m is the mean and d is the standard

deviation across the five runs of the cross-validation. The symbol “-” indicates that results are

unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which

could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced half 0.99+0.01 0.99+0.01 0.98+0.01 0.99+0.01 1.00+0.00 1.00+0.01
finetuned balanced half 0.82+£0.07 0.85+0.04 0.77+0.05 0.66+0.05 0.84+0.04 0.83+0.04
imbalanced full 0.99+0.01 0.99+0.01 0.97+0.01 0.98+0.01 0.99+0.01 0.99+0.01
ESM-1b ) balanced full 0.83+0.04 0.85+0.04 0.77+0.05 0.66+0.05 0.84+0.04 0.83+0.04
imbalanced half 0.83+0.07 0.88+0.03 0.58+0.03 0.78+0.03 0.83+0.04 0.85+0.04
frozen balanced half 0.81+0.07 0.85+0.04 0.78+0.05 0.65+0.05 0.84+0.04 0.84+0.04
imbalanced full 0.87+0.04 0.88+0.03 0.59+0.04 0.78+0.03 0.83+0.04 0.85+0.04
balanced full 0.82+0.04 0.85+0.04 0.78+0.05 0.65+0.05 0.84+0.04 0.84+0.04
imbalanced half 0.97+0.02 0.95+0.03 0.90+0.01 0.90+0.03 0.95+0.02 0.95+0.02
finetuned ' balanced half 0.84+0.05 0.85+0.04 0.76+0.05 0.64+0.05 0.83+0.04 0.84+0.04
imbalanced full 0.97£0.01 0.95+0.01 0.91+0.02 0.90+0.02 0.95+0.02 0.95+0.03
ESM-2 balanced full 0.84+0.05 0.84+0.03 0.77+0.06 0.64+0.05 0.83+0.04 0.84+0.04
imbalanced half 0.88+£0.05 0.88+0.03 0.51+0.05 0.75+0.05 0.87+0.04 0.86+0.04
frozen . balanced half 0.83+0.06 0.85+0.04 0.76+0.06 0.64+0.06 0.84+0.04 0.84+0.04
imbalanced full 0.87+0.05 0.88+0.03 0.52+0.06 0.75+0.05 0.87+0.04 0.86+0.04
balanced full 0.84+0.05 0.85+0.04 0.77+0.06 0.63+0.06 0.84+0.04 0.84+0.04
imbalanced half - - - - - -
finetuned ) balanced half - - - - - -
imbalanced full - - - - - -
balanced full - - - - - -
ESM-2_158 imbalanced  half  0.88:0.03 0.88:0.05 0404003 072:0.03 0.89:0.03 0.88£0.03
balanced half 0.85+0.04 0.86+0.04 0.80+0.05 0.47+0.06 0.87+0.04 0.87+0.04
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 0.87+0.02 0.86+0.03 0.73+0.02 0.79+0.03 0.83+0.03 0.84+0.03
finetuned . balanced half 0.75+£0.06 0.76£0.06 0.73+0.06 0.51+0.07 0.75+0.06 0.75+0.05
imbalanced full 0.88+0.05 0.88+0.04 0.80+0.06 0.84+0.04 0.85+0.05 0.87+0.05
ProtBERT . balanced full 0.74+0.07  0.76£0.06 0.72+0.05 0.50+0.08 0.74+0.06 0.75+0.05
imbalanced half 0.81+0.02 0.78+0.03 0.31+0.05 0.54+0.05 0.79+0.03 0.79+0.03
frozen ) balanced half 0.75+£0.08 0.75+0.06 0.72+0.05 0.49+0.08 0.73+0.07 0.75+0.05
imbalanced full 0.81+0.05 0.78+0.03 0.30+0.04 0.54+0.06 0.79+0.03 0.78+0.04
balanced full 0.75£0.06 0.76+0.06 0.73+0.06 0.49+0.08 0.74+0.07 0.75+0.05
imbalanced half - - - - - -
X balanced half - - - - - -
finetuned imbalanced full - - - - - -
ProtT5 ) balanced full - - - - - -
imbalanced half 0.87+0.05 0.86+0.03 0.54+0.07 0.76+0.06 0.82+0.04 0.84+0.03
balanced half 0.83+0.06 0.84+0.04 0.78+0.05 0.64+0.06 0.82+0.04 0.82+0.05
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 0.82+£0.02 0.87+0.04 0.86+0.03 0.84+0.03 0.86+0.04 0.85+0.04
finetuned A balanced half 0.76+0.08 0.77+0.05 0.72+0.05 0.60+0.05 0.75+0.08 0.76+0.05
imbalanced full 0.82+0.03 0.83+0.03 0.82+0.05 0.81+0.04 0.83+0.04 0.82+0.04
ProtBERT-BFD ) balanced full 0.77+0.07 0.77+0.04 0.73+£0.06 0.59+0.06 0.75+0.07 0.76+0.06
imbalanced half 0.78+0.05 0.75+0.04 0.34+0.04 0.63+0.03 0.72+0.03 0.74+0.03
frozen balanced half 0.76+0.07 0.77+0.04 0.73+0.06 0.58+0.07 0.73+0.07 0.75+0.06
imbalanced full 0.80+0.04 0.75+0.04 0.33+0.07 0.63+0.03 0.72+0.03 0.74+0.01
balanced full 0.74+0.07 0.77+0.04 0.72+£0.06 0.58+0.06 0.73+0.07 0.75+0.06
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Table A11. Comparison of representations and classifiers performance for discriminating ion chan-

nels from membrane proteins on Sensitivity metric as m+d, where m is the mean and d is the

standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results

are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,

which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced half 100.00£1.00  99.00+£2.00 98.00+2.00 98.00+2.00 100.00+1.00 100.00+1.00
finetuned ) balanced half 89.50+3.60 90.50+2.70 80.70+4.80 95.00+£3.20 91.20+2.40  92.00+2.60
imbalanced full 99.00+£2.00  99.00+£2.00 98.00+2.00 98.00+2.00 100.00+1.00 100.00+1.00
ESM-1b balanced full 89.30+4.20  90.50+2.70 80.90+4.40 94.80+3.10 91.20+£2.80  92.10+2.50
imbalanced half 82.00+7.00  81.00+6.00 36.00+4.00 82.00+6.00 84.00+5.00  84.00+5.00
frozen balanced half 89.30+5.10  90.70+2.70 80.20+4.50 95.20+2.80 91.90+2.20  92.10+2.60
imbalanced full 82.00+£7.00  81.00+£6.00 36.00+5.00 82.00+£6.00 84.00+£5.00  85.00+5.00
balanced full 88.80+£3.90 90.70+2.70 81.10+4.00 95.30+2.70 91.80+2.20  92.20+2.40
imbalanced half 97.00+£3.00  93.00+4.00 83.00+2.00 85.00+£6.00 93.00+£3.00  93.00+3.00
finetuned balanced half 90.20+4.50 91.40+2.60 81.10+6.20 92.20+420 91.60+2.60  92.00+3.00
imbalanced full 96.00+3.00  94.00+3.00 85.00+3.00 86.00+4.00 94.00+4.00  94.00+4.00
ESM-2 balanced full 89.90+4.90  91.30+2.80 81.60+6.20 92.00+4.10 91.30+2.70  92.40+2.60
imbalanced half 81.00+8.00  83.00+6.00 28.00+6.00 71.00+6.00 84.00+6.00  85.00+6.00
frozen balanced half 89.00+£6.50 91.40+2.40 81.60+5.90 92.40+4.40 91.40+2.70  92.20+2.80
imbalanced full 81.00+£8.00  83.00+£6.00 29.00+6.00 71.00+£6.00 84.00+6.00  85.00+7.00
balanced full 90.10+4.70  91.40+2.40 81.60+5.80 92.30+4.30 91.40+2.60  92.10+2.80
imbalanced half - - - - - -
X balanced half - - - - - -
finetuned imbalanced full - - - - - -
ESM-2 15B balanced full - - - - - -
- imbalanced half 85.00£6.00  87.00+£6.00 17.00+£3.00 78.00£7.00 85.00+5.00  84.00+5.00
balanced half 88.10+4.90  92.00+2.60 80.80+4.40 95.90+2.80 92.80+2.90  92.70+2.90
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half - - - - - -
X balanced half - - - - - -
finetuned imbalanced full - - - - - -
ProtT5 ) balanced full - - - - - -
imbalanced half 84.00+6.00  79.00+6.00 31.00+£7.00 73.00£9.00  79.00+5.00  80.00+4.00
balanced half 87.90+£6.80  88.30+4.00 79.40+3.90 93.70+2.80 90.00+2.40  90.90+2.80
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 76.00+£2.00  80.00+3.00 76.00+4.00 75.00+£5.00 78.00+6.00  80.00+7.00
finetuned ) balanced half 85.20+9.00 87.40+3.20 79.80+4.60 90.90+3.20  87.20+4.80  88.40+3.30
imbalanced full 70.00+3.00  74.00+5.00 72.00+5.00 70.00+7.00  74.00+5.00  73.00+5.00
ProtBERT-BFD balanced full 87.67+£7.67 87.90+£3.20 80.10+5.00 90.40+3.20 87.00+4.80  88.50+3.30
imbalanced half 71.00£9.00  67.00+£3.00 13.00+£2.00 53.00+6.00  64.00+5.00  70.00+6.00
frozen balanced half 86.00£8.90 87.40+2.70 80.60+5.90 90.70+£3.60 86.70+4.30  88.40+3.40
imbalanced full 75.00+£8.00  67.00+3.00 13.00+5.00 53.00+6.00 64.00+5.00  69.00+4.00
balanced full 86.00+7.90  87.30+2.70 80.50+6.30 90.70+3.20  86.70+4.50  88.00+3.60
imbalanced half 81.00+£2.00 81.00+7.00 56.00+4.00 68.00+£5.00 77.00+£5.00  80.00+5.00
finetuned balanced half 85.80+7.00 87.20+3.40 78.00+3.80 89.50+3.80 87.00+£3.80  87.50+3.70
imbalanced full 85.00+£6.00  84.00+4.00 68.00£9.00 80.00+£5.00 80.00+8.00  83.00+6.00
ProtBERT balanced full 82.90+8.60 87.20+£3.40 77.50+4.40 89.10+£3.70 87.00+£3.50  87.70+3.70
imbalanced half 68.00+4.00  74.00+4.00 11.00+4.00 52.00+8.00 73.00+5.00  77.00+7.00
frozen balanced half 83.90+8.70  87.40+3.10 78.40+4.20 89.10+£3.70 86.40+4.30  87.40+3.70
imbalanced full 76.00+2.00  74.00+4.00 10.00+£3.00 53.00+8.00  73.00+5.00  74.00+5.00
balanced full 84.11+£8.89  87.50+3.50 78.70+5.00 89.30+3.60 86.50+4.40  87.30+3.90
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Table A12. Comparison of representations and classifiers performance for discriminating ion chan-
nels from membrane proteins on Specificity metric as m+d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced half 99.00+1.00  99.00+0.00  100.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
frozen balanced half 88.80+8.70  89.00+3.80  90.90+3.80  66.20+4.90  86.20+4.60  86.70+4.40
imbalanced full 99.00+1.00  99.00+0.00  100.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
ProtBERT-BFD balanced full 86.50+£10.30  89.10+3.90 90.70+3.90 66.40+5.10 86.30+4.70 87.10+4.30
imbalanced half 100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
finetuned balanced half 89.20+8.70  89.70+4.10  91.50+3.70  67.70+4.70  87.30+4.90  87.80+4.20
imbalanced full 100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
balanced full 88.11+8.56  89.30+4.30  91.50+3.60  67.80+4.70  87.60+4.60  87.40+4.40
imbalanced half 99.00+1.00  100.00+0.00  100.00+0.00  98.00+£0.00  99.00+0.00  99.00+0.00
frozen balanced half 91.10+6.60  94.40+2.30  95.60+2.70  68.40+4.60  91.80+3.50  91.40+3.20
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00  98.00+0.00  99.00+0.00  99.00+0.00
ESM-1b ) balanced full 93.00+5.20  94.40+2.30  9520+£2.70  68.30+4.60  91.80+3.60  91.60+3.20
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
finetuned ) balanced half 91.80+7.50 94.60+2.50 94.90+2.70 69.10+4.90 92.30+3.40 91.40+3.30
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00
balanced full 92.50+5.10 94.50+2.50 95.40+2.70 69.80+4.60 92.20+3.40 91.20+3.60
imbalanced half 100.00+0.00  99.00+1.00  100.00+0.00  98.00+1.00  99.00+0.00  99.00+0.00
frozen balanced half 89.20+10.00 87.80+4.50  92.70+3.10  58.20+6.50  87.00+5.20  87.80+4.10
imbalanced full 99.00+1.00  99.00+1.00  100.00£0.00  98.00+1.00  99.00+0.00  99.00+0.00
ProtBERT balanced full 89.22+9.56  87.80+4.50  92.80+3.30  57.80+6.40  87.10+£5.30  87.70+4.20
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  99.00+0.00
finetuned balanced half 88.00£9.50  88.20+5.00  93.50+3.20  59.10+6.10  87.50+4.30  87.50+4.10
imbalanced full 100.00+1.00  100.00+0.00  100.00+0.00  99.00+0.00  100.00+0.00  100.00+0.00
balanced full 89.70+8.00  88.20+4.90  93.10+2.90  58.90+6.90  87.60+4.50  87.80+4.00
imbalanced half 99.00+0.00  100.00+0.00  100.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
balanced half 93.80+4.90  95.20+2.40  96.70+250  68.30+5.70  91.40+3.10  90.80+3.10
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
ProtT5 imbalanced half - - - - - -
finetuned balanced half - - - - - -
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
frozen balanced half 92.50+7.80  93.30+2.60  93.70£2.90  70.20+4.90  91.90+3.40  91.80+3.00
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00  99.00+0.00 ~ 99.00+0.00  99.00+0.00
ESM-2 balanced full 93.50+6.50  93.30+2.50  93.70+£3.30  70.00+4.60  92.00+3.40  92.00+3.00
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
finetuned balanced half 93.10+6.30  93.10+2.60  93.90+£3.50  70.50+4.60  91.90+3.10  91.80+3.40
imbalanced full 100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
balanced full 93.70+5.40 93.10+2.60 93.80+2.70 70.40+4.50 92.00+3.20 91.70+3.20
imbalanced half 100.00+0.00  99.00+0.00  100.00+0.00  98.00+1.00  100.00+0.00 100.00+0.00
balanced half 95.50+4.80  93.90+2.30  97.40+1.60  45.50+5.10  94.10+2.80  94.20+2.90
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
ESM-2_15B imbalanced half - - - - - -
finetuned ) balanced half - - - - - -
imbalanced full - - - - - -

balanced full - - - - - -
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Appendix E.2. lon transporters vs. other membrane proteins

Table A13. Comparison of representations and classifiers performance for discriminating ion trans-
porters from membrane proteins on Accuracy metric as m+d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced full 99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
finetuned balanced full 87.70+2.90  86.70+3.00  82.80+4.00  80.60+3.30  86.40+3.10  86.30+3.00
imbalanced half 98.00+0.00  99.00+0.00  99.00+0.00  98.00+0.00  99.00+0.00  99.00+0.00
ProtBERT-BFD ) balanced half 87.60+2.80  86.40+2.90  82.60+3.90  80.10+3.20  86.20+3.20  86.30+2.90
imbalanced full 97.00£0.00  96.00+0.00  94.00+0.00  95.00£1.00  96.00+0.00  97.00+0.00
frozen ) balanced full 87.40+3.10  86.30+2.70  82.50+3.90  79.90+3.40  86.30+3.20  86.40+2.90
imbalanced half 96.00+£0.00  97.00£0.00  94.00+0.00  95.00£1.00  96.00+0.00  97.00+0.00
balanced half 87.50+2.90  86.40+2.60  82.10+4.40  79.70+£3.30  86.40+3.30  86.30+2.90
imbalanced full 100.00+0.00  99.00+0.00  98.00+0.00  99.00+0.00  99.00+0.00  99.00+0.00
finetuned ) balanced full 91.11+1.78 89.60+2.20 85.80+2.70 80.60+3.70 89.80+1.90 89.90+2.80
imbalanced half 100.00+0.00  99.00+0.00  98.00+0.00  98.00+1.00  99.00+0.00  99.00+0.00
ESM-2 balanced half 91.30£2.00  89.40+2.20  85.60+2.90  80.60+3.50  89.70+1.90  89.70+2.80
imbalanced full 97.00+0.00  97.00+0.00  94.00+1.00  95.00+0.00  97.00+1.00  97.00+1.00
frozen balanced full 91.20+1.70  89.30+2.40  85.70+2.50  80.80+3.40  89.60+2.00  89.70+3.00
imbalanced half 97.00+0.00  97.00+0.00  94.00+0.00  95.00+0.00  97.00+1.00  97.00+0.00
balanced half 91.10+1.90  89.40+2.30  85.70+2.60  80.70+3.40  89.50+2.00  89.70+2.70
imbalanced full 99.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00
finetuned ) balanced full 88.20+1.90  86.90+2.30  82.80+3.10  77.90«£3.30  87.50+2.70  87.50+2.30
imbalanced half 98.00+0.00  98.00+0.00  97.00+0.00  97.00+0.00  98.00+1.00  98.00+0.00
ProtBERT ) balanced half 88.20+2.10 86.90+2.20 82.90+3.40 78.00+3.30 87.10+2.10 87.60+2.30
imbalanced full 96.00+1.00  96.00+0.00  93.00+£0.00  94.00£1.00  96.00+0.00  96.00+0.00
frozen ) balanced full 88.10+2.00 86.50+2.60 82.30+3.50 77.50+3.20 87.10+2.40 87.20+2.80
imbalanced half 96.00+0.00  96.00+0.00  93.00+0.00  94.00+1.00  96.00+0.00  96.00+0.00
balanced half 88.20+1.70 86.50+2.50 82.30+3.80 77.30£2.90 87.10+2.30 87.20+2.80
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00
finetuned balanced full 90.80+220  90.70+2.10  87.40+£2.50  84.50£2.90  90.00+2.60  89.90+2.90
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00  100.00+0.00
ESM-1b ) balanced half 90.80+1.90  90.80+2.10  87.60+2.40  84.50+2.80  90.10+2.60  90.10+3.00
imbalanced full 96.00£1.00  97.00+0.00  94.00+1.00  96.00£0.00  97.00+0.00  97.00+0.00
frozen ) balanced full 90.90+2.10  90.40+2.10  87.00+2.70  84.20£2.90  89.90+2.70  90.00+2.40
imbalanced half 97.00+0.00  97.00+0.00  94.00+£0.00  96.00+0.00  97.00+0.00  97.00+0.00
balanced half 90.56+2.67  90.40+2.20  86.90+3.10  84.20+2.80  89.90+2.60  90.00+2.80
imbalanced full - - - - - -
finetuned ) balanced full - - - - - -
imbalanced half - - - - - -
balanced half - - - - - -
ESM-2_15B imbalanced full - - - - - -
frozen balanced full - - - - - -
imbalanced half 97.00+0.00  97.00+0.00  93.00+0.00  95.00+1.00  97.00+0.00  97.00+0.00
balanced half 90.80+2.10  90.70+2.70  86.00+2.70  74.00+3.30  91.00+2.80  90.50+2.90
imbalanced full - - - - - -
finetuned ] balanced full - - - - - -
imbalanced half - - - - - -
balanced half - - - - - -
ProtT5 imbalanced full - - - - - -
balanced full - - - - - -
frozen

imbalanced half 97.00+0.00  97.00+0.00  94.00+£0.00  96.00+0.00  97.00+0.00  97.00+0.00
balanced half 91.80+1.70  91.70+2.40  88.00+£2.30  82.40+2.70  90.80+2.00  90.70+2.50
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Table A14. Comparison of representations and classifiers performance for discriminating ion trans-

porters from membrane proteins on MCC metric as m+d, where m is the mean and d is the standard

deviation across the five runs of the cross-validation. The symbol “-” indicates that results are

unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which

could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced full 0.99+0.01 1.00£0.00 0.99+0.01 0.99+0.01 1.00+0.00 1.00+0.01
finetuned ) balanced full 0.82+0.04 0.82+0.04 0.75+0.05 0.70+0.05 0.80+0.05 0.80+0.06
imbalanced half 0.99+0.01 0.99+0.01 0.98+0.01 0.99+0.01 1.00+0.00 1.00+0.00
ESM-1b ) balanced half 0.82+0.04 0.82+0.04 0.75+0.05 0.69+0.05 0.80+0.05 0.80+0.06
imbalanced full 0.74+0.04 0.77+0.04 0.42+0.10 0.74+0.02 0.77+0.03 0.79+0.03
frozen balanced full 0.82+0.04 0.81+0.04 0.74+0.06 0.69+0.06 0.80+0.05 0.80+0.05
imbalanced half 0.77+0.03 0.77+0.04 0.45+0.03 0.74+0.02 0.78+0.04 0.79+0.03
balanced half 0.82+0.05 0.81+0.04 0.74+0.06 0.69+0.05 0.80+0.05 0.80+0.05
imbalanced full 0.98+0.01 0.95+0.01 0.86+0.04 0.90+0.03 0.95+0.02 0.94+0.02
finetuned ) balanced full 0.83+0.04 0.80+0.04 0.72+0.06 0.62+0.07 0.80+0.04 0.80+0.06
imbalanced half 0.97£0.01 0.94+0.03 0.88+0.04 0.87+0.03 0.93+0.03 0.93+0.03
ESM-2 balanced half 0.83+0.04 0.79+0.04 0.72+0.06 0.62+0.07 0.80+0.04 0.79+0.06
imbalanced full 0.77£0.02 0.77+0.04 0.44+0.07 0.65+0.03 0.75+0.04 0.76+0.04
frozen ) balanced full 0.83+0.04 0.79+0.05 0.72+0.05 0.63+0.07 0.80+0.04 0.80+0.06
imbalanced half 0.74£0.04 0.77+0.04 0.43+0.07 0.65+0.03 0.74+0.05 0.76+0.03
balanced half 0.82+0.04 0.79+0.04 0.72+0.05 0.63+0.07 0.79+0.04 0.80+0.06
imbalanced full 0.92+0.03 0.89+0.04 0.81+0.03 0.86+0.04 0.89+0.03 0.88+0.03
finetuned ) balanced full 0.76+0.04 0.74+0.04 0.66+0.06 0.57+0.07 0.75+0.05 0.75+0.05
imbalanced half 0.88+0.02 0.87+0.03 0.76+0.02 0.81+0.04 0.87+0.04 0.87+0.03
ProtBERT balanced half 0.77+£0.04 0.74+0.05 0.66+0.07 0.57+0.07 0.74+0.04 0.750.05
imbalanced full 0.64+0.14 0.72+0.04 0.22+0.07 0.51+0.06 0.68+0.03 0.71+0.04
frozen ' balanced full 0.76+0.04 0.73x0.05 0.65+0.07 0.56+0.06 0.74+0.05 0.75+0.06
imbalanced half 0.69+0.03 0.72+0.04 0.23+0.05 0.52+0.05 0.68+0.03 0.71+0.03
balanced half 0.77+0.04 0.73+0.05 0.65+0.07 0.56+0.06 0.74+0.05 0.75+0.06
imbalanced full 0.90+£0.03 0.92+0.03 0.92+0.03 0.92+0.02 0.92+0.02 0.92+0.02
finetuned ) balanced full 0.76+0.06 0.73+0.06 0.66+0.08 0.61+0.07 0.73+0.06 0.73+0.06
imbalanced half 0.89+0.03 0.90+0.02 0.90+0.01 0.88+0.01 0.90+0.01 0.90+0.01
ProtBERT-BED ) balanced half 0.75+0.06 0.73+0.05 0.66+0.08 0.61+0.07 0.73+0.06 0.73+0.06
imbalanced full 0.74+0.03 0.74+0.04 0.41+0.03 0.62+0.06 0.71+0.02 0.75+0.01
frozen ) balanced full 0.75+0.06 0.73+0.06 0.65+0.08 0.60+0.07 0.72+0.06 0.73+0.06
imbalanced half 0.71+0.05 0.74+0.04 0.43+0.05 0.62+0.06 0.72+0.01 0.75+0.02
balanced half 0.75£0.06  0.73x0.05 0.65+0.09 0.60+0.07 0.73+0.07 0.73+0.06
imbalanced full - - - - - -
X balanced full - - - - - -
finetuned imbalanced half - - - - - -
balanced half - - - - - -
ProtT5 imbalanced full - - - - - -
frozen ) balanced full - - - - - -
imbalanced half 0.76+0.03 0.80+0.01 0.42+0.05 0.73+0.03 0.79+0.02 0.79+0.04
balanced half 0.83+0.03 0.83+0.05 0.76+0.05 0.66+0.06 0.82+0.04 0.82+0.05
imbalanced full - - - - - -
finetuned ) balanced full - - - - - -
imbalanced half - - - - - -
balanced half - - - - - -
ESM-2_15B imbalanced full - - - - - -
frozen balanced full - - - - - -
imbalanced half 0.79+0.03 0.78+0.03 0.27+0.03 0.66+0.06 0.80+0.03 0.79+0.02
balanced half 0.82+£0.04 0.82+0.05 0.72+0.06 0.53+0.06 0.81+0.06 0.81+0.06
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Table A15. Comparison of representations and classifiers performance for discriminating ion trans-

porters from membrane proteins on Sensitivity metric as m+d, where m is the mean and d is the

standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results

are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,

which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FENN
imbalanced half 99.00£1.00  99.00£1.00  98.00+2.00 99.00+1.00  99.00+1.00  100.00+1.00
finetuned ) balanced half 88.50+3.70  88.20+3.50 85.50+3.10 87.60+4.00 89.30+2.90  90.00+2.90
imbalanced full 99.00+£1.00  100.00+1.00 99.00+1.00 99.00+1.00 100.00+0.00  99.00+1.00
ESM-1b balanced full 88.50+2.90  88.00+3.50 85.70+4.00 87.60+4.20 89.40+3.10  89.90+3.10
imbalanced half 72.00+6.00  76.00+7.00 23.00+4.00 69.00+4.00 74.00+5.00  77.00+5.00
frozen balanced half 89.22+3.67  88.20+3.60 84.40+4.40 87.40+3.90 89.20+2.80  90.10+3.00
imbalanced full 72.00+11.00 76.00+7.00 21.00+8.00 69.00+4.00 74.00+5.00  76.00+5.00
balanced full 89.00£3.40  88.20+3.50  84.70+4.30 87.40+3.90  89.10+2.80  90.10+3.00
imbalanced half 98.00£2.00  95.00+£3.00  81.00+6.00 89.00+3.00 93.00+£4.00  93.00+3.00
finetuned ) balanced half 89.00£3.20  89.10+2.90  82.50+4.30 88.60+3.90  89.30+3.20  90.20+3.40
imbalanced full 98.00£2.00  95.00+3.00 77.00+7.00 89.00+4.00 94.00+2.00  93.00+3.00
ESM-2 balanced full 89.00+£2.67  89.20+2.70  82.60+4.40 88.80+4.30  89.30+3.10  90.40+3.30
imbalanced half 64.00+7.00  72.00+7.00 22.00+6.00 61.00+7.00 69.00+6.00  72.00+7.00
frozen balanced half 89.30+2.90  88.90+2.80 82.70+3.70 88.80+3.90 88.90+2.90  89.90+3.60
imbalanced full 71.00+5.00  72.00+7.00 24.00+7.00 61.00+7.00 69.00+6.00  72.00+8.00
balanced full 89.80+2.50  88.80+2.90 82.50+2.80 88.80+3.80 89.00+2.90  89.60+3.40
imbalanced half - - - - - -
finetuned balanced half - - - - - -
imbalanced full - - - - - -
ESM-2 15B ) balanced full - - - - - -
- imbalanced half 71.00£8.00  77.00+5.00  8.00+2.00 70.00+7.00  77.00+4.00  75.00+5.00
balanced half 87.80+£2.80  90.00+3.40  83.40+4.10 94.80+2.60 89.50+3.60  89.90+3.60
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half - - - - - -
finetuned ) balanced half - - - - - -
imbalanced full - - - - - -
ProtT5 balanced full - - - - - -
imbalanced half 69.00+8.00  74.00+4.00 19.00+5.00 75.00+6.00 76.00+5.00  76.00+6.00
balanced half 91.60+2.30  90.30£3.40 85.40+3.50 92.30+3.60 91.00+2.80  91.00+3.50
frozen .
imbalanced full - - - - - -
balanced full - - - - - -
imbalanced half 87.00+4.00  87.00+5.00  86.00+2.00 86.00+4.00  88.00+3.00  87.00+2.00
finetuned ) balanced half 86.10+£3.80  84.70+4.30 78.70+6.80 85.10+4.40  85.90+4.10  85.70+3.80
imbalanced full 85.00£7.00  91.00+5.00  91.00+5.00 91.00+4.00  90.00+5.00  91.00+4.00
ProtBERT-BFD balanced full 87.00£3.50  85.40+4.50 79.40+6.80 85.20+4.20 86.20+3.90  86.00+4.30
imbalanced half 60.00+11.00 71.00+10.00 21.00+£5.00 61.00+5.00 67.00+3.00  69.00+4.00
frozen balanced half 86.00+3.20  85.30+3.80 78.60+6.40 84.70+4.40 86.00+4.00  85.90+4.10
imbalanced full 64.00+8.00  70.00+11.00 20.00+3.00 61.00+5.00 66.00+4.00  69.00+5.00
balanced full 85.90+3.30  85.40+4.00 78.90+5.60 84.70+4.70 86.10+3.80  86.00+4.10
imbalanced half 83.00+5.00  85.00+5.00 61.00+3.00 75.00+6.00 82.00+5.00  82.00+6.00
finetuned balanced half 88.50+2.90  85.80+3.50 83.10+4.90 86.90+4.30 86.60+3.50  87.70+3.60
imbalanced full 88.00+5.00  85.00+5.00 68.00+5.00 78.00+4.00 85.00+4.00  84.00+5.00
ProtBERT ) balanced full 87.90+£2.50  86.20+3.10  82.40+4.30 86.70+3.40  86.90+3.90  87.70+3.30
imbalanced half 59.00+8.00  68.00+6.00  6.00£2.00 45.00+4.00 63.00+6.00  68.00+6.00
frozen balanced half 88.00+2.70  85.60+3.80  82.40+520 86.20+3.70  86.30+3.70  87.00+3.70
imbalanced full 48.00£19.00  68.00+6.00  6.00+4.00 45.00+5.00 63.00+6.00  69.00+6.00
balanced full 87.80+2.80  85.60+3.70  82.60+5.30 86.40+3.40 86.40+3.80  86.80+3.90
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Table A16. Comparison of representations and classifiers performance for discriminating ion trans-
porters from membrane proteins on Specificity metric as m+d, where m is the mean and d is the
standard deviation across the five runs of the cross-validation. The symbol “-” indicates that results
are unavailable due to the extensive computational resources needed for fine-tuning large PLMs,
which could not be accommodated by our limited resources.

Representer Representation Dataset Precision CNN SVM RF kNN LR FFNN
imbalanced full 99.00+1.00  99.00+0.00  100.00+0.00  98.00+0.00  99.00+0.00  99.00+1.00
frozen ) balanced full 92.90+3.50  90.20+4.20  89.40+4.30  72.80+4.60  90.30+4.30  89.60+5.40
imbalanced half 99.00£0.00  99.00+0.00  100.00+0.00  98.00+0.00  99.00+0.00  99.00+1.00
ESM-2 balanced half 92.80+4.50  90.10+4.10  88.90+4.10  72.80+4.70  90.10+4.20  89.50+5.00
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00 ~ 99.00+0.00  100.00+0.00  100.00+0.00
finetuned ) balanced full 93.33+3.33  90.20+4.20  88.90+3.90  72.40+4.80  90.10+4.30  89.40+5.10
imbalanced half 100.00£0.00  99.00+0.00  100.00+0.00  99.00+1.00  100.00+0.00  100.00+0.00
balanced half 93.80+£3.60  90.30+4.20  88.80+4.10  72.50+5.00  90.10+4.00  89.30+5.10
imbalanced full 99.00£0.00  99.00+1.00  100.00+0.00  98.00+1.00  99.00+0.00  99.00+0.00
frozen balanced full 89.10+4.60  87.20+4.00  85.80+4.90  74.80+4.30  86.30+4.90  86.80+4.70
imbalanced half 99.00£1.00  99.00+1.00  100.00+0.00  98.00+1.00  99.00+0.00  99.00+0.00
ProtBERT-BED balanced half 88.80+4.90  87.30+£3.80  85.80+4.20  74.70+4.20  86.50+£5.10  86.50+4.90
imbalanced full 100.00£0.00  100.00£0.00  100.00+0.00  100.00+0.00 100.00+0.00  100.00+0.00
finetuned balanced full 89.00+4.50  88.00+3.80  86.20+4.40  75.70+4.30  86.70+4.60  86.90+4.80
imbalanced half 99.00+1.00  100.00£0.00  100.00+0.00  99.00+0.00  100.00+0.00  100.00+0.00
balanced half 89.20+4.40  87.90+3.70  86.80+£3.90  75.30+4.00  86.30+4.60  87.00+4.40
imbalanced full 98.00£1.00  99.00£0.00  100.00+0.00  99.00+1.00  99.00+0.00  99.00+0.00
frozen balanced full 93.00+3.80  92.90+2.80  89.20+4.60  81.00+4.70  90.70+4.20  89.80+3.80
imbalanced half 99.00+1.00  99.00+0.00  100.00+0.00  99.00+1.00  99.00+£0.00  99.00+0.00
ESM-1b _ balanced half 92224467  92.90+2.60  89.30+4.50  81.10+4.70  90.70+4.20  89.70+4.40
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00  100.00+0.00
finetuned balanced full 93.40+3.40  93.40+2.70  89.20+3.90  81.60+4.70  90.50+4.30  90.00+5.00
imbalanced half 100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00  100.00+0.00
balanced half 92.90+3.50  93.30+2.40  89.50+3.80  81.30+4.40  90.60+4.30  90.00+4.80
imbalanced full - - - - - -
frozen ) balanced full - - - - - -
imbalanced half 99.00+£0.00  99.00+0.00  100.00+0.00  97.00+1.00  99.00+0.00  99.00+1.00
balanced half 93.90+3.10  91.30+4.10  88.80+4.10  53.00+6.30  91.70+3.90  91.10+4.40
ESM-2_15B .
imbalanced full - - - - - -
finetuned ) balanced full - - - - - -
imbalanced half - - - - - -
balanced half - - - - - -
imbalanced full - - - - - -
frozen balanced full - - - - - -
imbalanced half 99.00£1.00  99.00+0.00  100.00+0.00  98.00+0.00  99.00+0.00  99.00+0.00
balanced half 91.90+£3.40  92.90+3.60  90.60+3.60  72.50+4.40  90.80+3.40  90.30+3.90
ProtT5 .
imbalanced full - - - - - -
. balanced full - - - - - -
finetuned imbalanced half - - - - - -
balanced half - - - - - -
imbalanced full 100.00£0.00  99.00+£0.00  100.00+0.00  98.00+0.00  98.00+0.00  98.00+0.00
frozen balanced full 88.40+4.00  87.40+4.70  82.40+4.40  68.10+£5.40  87.80+4.90  87.60+4.80
imbalanced half 99.00+0.00  99.00+0.00  100.00+0.00  98.00+0.00  98.00+0.00  99.00+0.00
ProtBERT balanced half 88.30+4.00  87.50+4.60  82.60+5.20  68.20+5.30  87.90+5.10  87.40+4.80
imbalanced full 100.00+0.00  100.00+0.00  100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00
finetuned balanced full 88.40+3.90  87.70+4.70  83.30+4.80  69.10£540  88.10+4.60  87.60+4.70

imbalanced half 100.00+0.00  99.00+0.00  100.00+0.00  99.00+0.00  100.00+0.00 100.00+0.00
balanced half 88.00+4.10  88.00+4.30  83.00+4.40  69.50+4.90  87.70+4.60  87.60+4.50
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Appendix E.3. lon channels vs. ion transporters

Table A17. Comparison of representations and classifiers performance for discriminating ion chan-
nels from ion transporters on Accuracy metric as m+d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN
half 93.00+1.00 93.00+2.00 92.00+2.00 89.00+3.00 94.00+2.00 94.00+3.00

ESM-1b finetuned full  91.00£5.00 93.00£2.00 91.00+3.00 89.00£3.00 94.00+2.00 94.00+3.00
frozen half  93.00£2.00 94.00:2.00 92.00:2.00 90.00+2.00 94.00£2.00 93.00+2.00
full  93.00£1.00 94.00£2.00 92.002.00 90.00+2.00 94.00+2.00 93.00:+2.00
finetuned half  93.00+1.00 93.00+2.00 90.00:1.00 87.00£5.00 92.00+1.00 94.00+2.00
ESM.2 full  94.00£1.00 93.00£2.00 90.00+2.00 87.00£4.00 92.00+1.00 93.00:+3.00
frozen half  92.00£2.00 93.00+2.00 89.00+2.00 87.00£5.00 92.00+1.00 94.00+2.00
full  94.00£1.00 93.00+2.00 89.00:2.00 87.005.00 92.00+1.00 94.002.00

finetuned half ) ] ) ) ) ]

ESM-2_15B full y - ' - ’ y
- half  94.00£1.00 94.00+1.00 90.00+1.00 89.00+4.00 94.00+1.00 93.00+2.00

frozen

full - - - ; - _

finetuned hat - : - - - -
ProtT> half  93.00+100 93.00:2.00 89.0042.00 90.0042.00 93.00+2.00 93.00+2.00

frozen

full - - - - - -
finetuned half  93.00+1.00 92.00:0.00 89.00:2.00 82.00+4.00 90.00+1.00 91.00+1.00
ProtBERT full  93.00:0.00 92.00:0.00 89.002.00 82.00£4.00 90.00+1.00 91.00+1.00
frozen half  92.00£0.00 92.00+1.00 88.00+3.00 82.00£3.00 90.00+2.00 91.00+2.00
full 92004100 92.00£1.00 88.00£3.00 82.00£3.00 90.00+2.00 91.00:+2.00
finetuned half  92.00£3.00 90.00+2.00 87.00:3.00 86.00+2.00 89.00£2.00 90.00+2.00
ProtBERT-BFD full  92.00£3.00 90.00£3.00 88.00:2.00 85.00+2.00 88.00+2.00 90.00:+2.00
frozen half  92.00£3.00 90.00:2.00 87.00:3.00 86.00+2.00 87.00+2.00 89.00+4.00

full 92.00+£3.00 90.00+2.00 87.00+£3.00 86.00+3.00 87.00+2.00 89.00+2.00

Table A18. Comparison of representations and classifiers performance for discriminating ion chan-
nels from ion transporters on MCC metric as m+d, where m is the mean and d is the standard
deviation across the five runs of the cross-validation. The symbol “-” indicates that results are
unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which
could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN
full 0.89+0.03 0.87+0.04 0.80+0.03 0.74+0.08 0.84+0.03 0.86+0.05

ESM.2 finetuned half  0.86£0.03 0.87:0.04 0.80£0.01 0.75:0.09 0.84x0.01 0.87+0.05
frozen full  0.88£0.02 0.87+0.04 0.78:0.03 0.74+0.09 0.84+0.02 0.880.05
half  0.85:0.04 0.87£0.04 0.77£0.03 0.74:0.09 0.85:0.02 0.87+0.04
finetuned full - - - - - J
ESM-2_15B fjll i i i i i i
frozen half  0.89+0.02 0.88£0.03 0.80:0.03 0.79+0.07 0.87+0.03 0.870.03
finetuned full  0.83x0.08 0.86x0.05 0.83:0.06 0.79:0.05 0.88+0.05 0.87+0.06
ESM-1b half  0.87+0.02 0.87+0.05 0.84:0.03 0.80=0.05 0.88+0.04 0.87+0.06
frozen full  0.85:0.02 0.87+0.04 0.83:0.05 0.80:0.05 0.8820.03 0.87+0.04
half  0.87x0.03 0.87£0.04 0.84:0.03 0.80:0.05 0.88+0.03 0.87+0.04
finetuned }f;ﬁ : : : : : :
ProtT5
frozen full - - - . - .
half  0.85:0.03 0.8620.04 0.79:0.05 0.81:0.03 0.8620.03 0.85:0.04
finetuncd full  0.86£0.01 084001 078:0.04 0.66=0.08 0.80£0.02 0.810.02
ProtBERT half  0.86£0.02 0.84£0.01 0.78£0.05 0.66:0.08 0.80£0.02 0.81:0.02
frogen full  0.85:0.02 0.84£0.02 0.77:0.06 0.65:0.06 0.81x0.03 0.82:0.04
half  0.84+0.00 0.84:0.02 0.77+0.05 0.65:0.06 0.80£0.03 0.82+0.04
finetuned full  0.84:0.06 0.81x0.05 0.76x0.05 0.71x0.04 0.76:0.04 0.81+0.05
ProtBERT-BED half  0.84+0.06 081004 075:0.06 0.71x0.05 0.77£0.03 0.810.04
fropen full  0.84+0.07 0.81x0.04 0.75:0.05 0.72:0.05 0.74£0.05 0.79+0.05

half 0.84+0.06 0.81+0.04 0.75+0.06 0.72+0.05 0.75+0.04 0.78+0.08
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Table A19. Comparison of representations and classifiers performance for discriminating ion chan-

nels from ion transporters on Sensitivity metric as m+d, where m is the mean and d is the standard

deviation across the five runs of the cross-validation. The symbol “-” indicates that results are

unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which

could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN
fropen full 91.00+1.00  93.00:2.00 89.00+6.00 95.00+3.00 93.00+3.00 95.00+2.00
ESM1b oze half 93.00+1.00  93.00:2.00 90.00£6.00 95.00+3.00 93.00+3.00 95.00+2.00
finetuned full  88.00+13.00 94.00+3.00 88.00£5.00 95.00+3.00 95.00+2.00 94.00+3.00
half 93.00£2.00 94.00+3.00 88.00£6.00 95.00£3.00 95.00£2.00 94.003.00
fropen full 93.00£2.00 93.00£2.00 85.004.00 90.00£7.00 92.00£3.00 93.00+3.00
ESM.2 half 93.00+3.00 93.00:2.00 85.00+7.00 90.00:7.00 93.00+3.00 93.003.00
finetuned full 92.00+2.00 93.00:2.00 87.0024.00 91.00+6.00 92.00+2.00 93.00+3.00
netune half 93.00+3.00 93.00+2.00 87.00+5.00 91.00+6.00 90.00+2.00 94.00+4.00
f full B B - - B B
rozen half 94.00£2.00 92.00+2.00 85.00£5.00 92.00+3.00 93.00+£2.00 93.002.00
ESM-2_15B ol § § : : § :
finetuned half R R } } R }
] full - - - - - -
ProfT rozen half 91.00+2.00  90.00:4.00 86.00+4.00 94.00+1.00 92.00+2.00 93.00+3.00
) full - - - - - -
finetuned half R R : : R }
; full 92.00+4.00 88.00:8.00 85.00+7.00 85.00+4.00 88.00+5.00 90.00+5.00
ProtBERT-BFD rozen half 91.00+3.00 88.00:8.00 86.00+8.00 85.00+3.00 88.00+5.00 89.00+6.00
finetuned full 91.00£3.00  88.00+7.00 87.00£7.00 87.00£3.00 88.00£4.00 90.005.00
etune half 91.00+2.00  90.00:6.00 86.00+8.00 86.00+4.00 88.00+4.00 92.00+4.00
frozen full 91.00+5.00 92.00+3.00 85.00+7.00 85.00:6.00 89.00+4.00 90.00+4.00
ProtBERT half 89.00+4.00 92.00£3.00 85.00+7.00 85.0046.00 89.00+4.00 90.00+4.00
finetuned full 91.00£2.00  92.00+3.00 84.00:7.00 88.00£5.00 90.00+3.00 90.00+4.00
half 92.00+3.00 92.00+3.00 85.00+6.00 88.00+5.00 90.00+3.00 90.004.00

Table A20. Comparison of representations and classifiers performance for discriminating ion chan-

nels from ion transporters on Specificity metric as m+d, where m is the mean and d is the standard

deviation across the five runs of the cross-validation. The symbol “-” indicates that results are

unavailable due to the extensive computational resources needed for fine-tuning large PLMs, which

could not be accommodated by our limited resources.

Representer Representation Precision CNN SVM RF kNN LR FFNN
finetuned full 96.00£2.00 94.00:4.00 92.00:5.00 83.00:7.00 92.00+4.00 94.00+4.00
ESML half  93.00+3.00 94.00£4.00 92.00+5.00 84.00+7.00 94.00+3.00 94.00+2.00
frogen full 96.00+2.00 94.00+3.00 91.00£5.00 84.00£7.00 93.00£3.00 95.00+3.00
half  92.00:6.00 94.00£3.00 92.00£5.00 84.00£7.00 92.00£4.00 95.00+3.00
finetuned full 93.00£6.00 92.00£5.00 95.00£6.00 84.00£5.00 93.00£4.00 94.00:+4.00
ESM1b mnetu half  94.00£3.00 93.00:4.00 95.00£3.00 85.00£5.00 93.00£3.00 94.00+4.00
; full 94.00+2.00 94.00£3.00 94.00£5.00 85.00£5.00 94.00£5.00 92.00:+4.00
rozen half  94.00+3.00 94.00+3.00 94.00+5.00 85.00+5.00 94.00+5.00 92.00+4.00

finetuned fut - : - - - :

ESM-2_15B e i i ) ) ) i
frozen half  94.00+3.00 95.00:3.00 94.00+5.00 86.00+7.00 94.00£2.00 94.00+3.00

finetuned ful ) - - ; : -

ProtT5 ol i i ] ] i i
frozen half  94.00+2.00 95.00+3.00 93.00+6.00 87.00+4.00 94.00+3.00 92.00+5.00
finetuned full 94.00+3.00 92.00+3.00 92.00£7.00 78.00£7.00 90.00£3.00 91.00+3.00
ProtBERT half  94.00£2.00 92.00£3.00 92.00+7.00 78.00+7.00 90.00+3.00 91.00+3.00
frogen full 93.0024.00 91.00£4.00 91.00£7.00 80.00£7.00 91.00£2.00 91.00:4.00
“ half  95.00£3.00 91.00:4.00 91.00+8.00 80.00+7.00 91.00£3.00 92.00+3.00
finetuned full 93.00+4.00 93.00+3.00 88.00=7.00 84.00+4.00 88.00£4.00 90.00+6.00
ProtBERT-BFD half  93.00:4.00 90.00:4.00 88.00+8.00 85.00+3.00 89.00£3.00 89.00%5.00
; full 93.00+4.00 93.00+4.00 89.00£8.00 86.00£3.00 87.00£4.00 89.00+5.00
rozen half  93.00:5.00 93.00+4.00 88.00+7.00 86.00+3.00 87.00+4.00 89.00:6.00
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