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Abstract

This article investigates an event-triggered adaptive estimated inverse control scheme for a class of uncertain nonlinear systems

with hysteresis effects, parametric uncertainties and disturbances. An online estimated inverse hysteresis compensation mecha-

nism is developed, where an adaptive technique is employed to obtain the value of unknown hysteresis parameters. Compared

with the common approaches, its biggest advantage lies in that it is not necessary to obtain the hysteresis parameters by means

of experiment, which relaxes time-consuming off-line identification work.Moreover, an adaptive radial basis functions neural

network (RBFNN) is utilized to approximate the unknown disturbances, whose weight coefficients along with parametric uncer-

tainties are all estimated by the adaptive technique. Besides, the communication cost can be largely saved by introducing the

relative threshold event-triggered control (ETC). Through Lyapunov analysis, the proposed controller guarantees the bounded-

ness of all the signals and the convergence of the error signals. The results of numerical simulation illustrate the effectiveness

and superiority of the developed controller.
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Abstract
This article investigates an event-triggered adaptive estimated inverse control scheme for a class of uncertain
nonlinear systems with hysteresis effects, parametric uncertainties and disturbances. An online estimated
inverse hysteresis compensation mechanism is developed, where an adaptive technique is employed to obtain
the value of unknown hysteresis parameters. Compared with the common approaches, its biggest advantage
lies in that it is not necessary to obtain the hysteresis parameters by means of experiment, which relaxes time-
consuming off-line identification work.Moreover, an adaptive radial basis functions neural network (RBFNN)
is utilized to approximate the unknown disturbances, whose weight coefficients along with parametric
uncertainties are all estimated by the adaptive technique. Besides, the communication cost can be largely
saved by introducing the relative threshold event-triggered control (ETC). Through Lyapunov analysis, the
proposed controller guarantees the boundedness of all the signals and the convergence of the error signals.
The results of numerical simulation illustrate the effectiveness and superiority of the developed controller.
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1 INTRODUCTION

Hysteresis phenomena widely exist in practical implementations, such as piezoelectric actuators1,2 and proportional solenoids3,4.
It is quite a challenge to control such systems with hysteresis nonlinearities, as the hysteresis effect is typically unknown,
non-differentiable and multi-valued in practice. The system will tend to exhibit undesirable performance such as oscillation
or even instability5,6,7, if the hysteresis effects are not considered and compensated properly. The actual system still includes
parametric uncertainties and disturbances besides hysteresis effects, which makes the controller design quite challenging.

In the past decades, numerous advanced controllers have been proposed to handle both parametric uncertainties and dis-
turbances together. For instance, adaptive robust control (ARC) method developed in8 where the adaptive term compensates
the parametric uncertainties and the robust term suppresses the unknown disturbances, has been widely applied to plenty of
engineering applications, such as active suspension systems9, linear motors10, underwater hydraulic manipulator11, etc. Due
to the simple structure and strong robustness, the sliding mode control(SMC) scheme has been widely employed to mitigate
unknown disturbances. The adaptive sliding mode control(ASMC) obtained12 by integrating SMC with adaptive control(AC),
can also suppress parametric uncertainties and disturbances both existing in control system. Additionally, as a typical variant of
ASMC, adaptive terminal sliding mode control(ATSMC) gains increasing popularity among such systems that still demand
finite-time stability. Moreover, considering the excellent ability to estimate unknown disturbances, various disturbance observers
have attracted much attention, such as extended state observer, disturbance observer13,14, sliding mode observer15, etc. However,
such observer-based control scheme takes both parametric uncertainties and disturbances as generalized disturbances ignoring
the characteristic of parametric uncertainties. In16, the active disturbance rejection adaptive control is formulated by integrating
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2 TAYLOR ET AL.

the adaptive control and the disturbance observer, where parametric uncertainties are estimated by the adaptive technique and un-
known disturbances are approximated and compensated by the observer. In view of the universal approximation property of fuzzy
logic system and neural network, the controllers including either of them have been well studied recently. In17, the fuzzy logic
systems is developed to approximate the unknown disturbances. In18, the neural network integrated with the adaptive control is
formulated to control a DC motor with parametric uncertainties, external disturbances along with unmeasured system states.

However, the above-mentioned controllers cannot guarantee the uniformity of performance if they are directly used in a
general actual system subjected to hysteresis nonlinearities, parametric uncertainties and disturbances at the same time. As
hysteresis nonlinearities are totally different from parametric uncertainties and disturbances, the controllers may malfunction
without taking hysteresis effects into account. Therefore, it is necessary to design a comprehensive controller with special
hysteresis compensation mechanism. To this end, finding proper hysteresis models is primarily significant to compensate them,
and there are plenty of models that have been developed such as Preisach model19, Prandtl-Ishlinskii hysteresis operator20,
Bouc-Wen differential model21. Based on these models, promising progresses have been made on the control schemes which
can compensate the hysteresis nonlinearities to some extent. Generally speaking, the existing control methods can be divided
into two categories. The first one is to directly divide the hysteresis model into linear and nonlinear part without constructing its
inverse model. Since it is impossible to acquire the accurate hysteresis model, the linear part is always represented by the product
of an unknown coefficient and the control signal, the nonlinear part is a unknown term constituted by hysteresis operators. It is
typical that the linear part is treated as a parametric uncertainty and the nonlinear part is simply dealt with as disturbance in many
literature6,7,22,23,24,25,26,27. These controllers fuse the nonlinear part derived from the hysteresis model with the other system
disturbances directly and compensate them together, ignoring the nature of hysteresis effects. Different from such approach, the
control schemes proposed in6,7,25,26,27 devise adaptive laws for the hysteresis operators of the nonlinear part and compensate it
via the feed-forward model-based compensation term. Nevertheless, these methods of compensating hysteresis do not figure out
the nature of hysteresis effects completely. The inverse compensation strategy is an ideal way where the hysteresis inverse model
is formulated and cascaded into the controller design. Since the precise inverse hysteresis model is hard to obtain, it is necessary
to construct the estimated hysteresis inverse model.28,29,30,31,32. Numerous estimated inverse control schemes29,30,33,34 have been
developed where the hysteresis model is replaced with its estimated inverse one based on the compensation error between them.
However, the estimated hysteresis inverse compensation have to identify th unknown hysteresis parameters through experimental
results, which incurs extra cost in implementing those controllers. In addition, it is assumed that the controller compensating
hysteresis effects may require more calculation resources23. Thus, to reduce the communication burden and maintain the system
performance, the event-triggered control(ETC) has attracted increasing interest35,36,37. So far, for general nonlinear systems
subjected to hysteresis nonlinearities, parametric uncertainties and disturbances, how to develop an applicable controller with
estimated hysteresis inverse compensation online and event-triggered control has not been adequately investigated.

Motivated by the aforementioned discussion, an event-triggered adaptive estimated inverse neural network controller is
proposed for a class of general uncertain nonlinear systems. The contributions are listed as follows.

• To our best knowledge, it is the first time to investigate the tracking control problem of general nonlinear systems subjected
to parametric uncertainties, disturbances along with unknown hysteresis effect characterized by Prandtl-Ishlinskii model.

• The direct hysteresis compensation methods do not fully consider the nature of hysteresis effect and the existing inverse
hysteresis compensation methods require tedious experimental identification work. Different from those two types of methods,
an online estimated inverse compensation scheme is proposed whose unknown hysteresis parameters are updated online.

• To decrease communication burden brought from the hysteresis compensation controller based on time-triggered mechanism,
a relative-threshold event-triggered control mechanism is incorporated into the proposed controller.

The rest parts of this paper are organized as follows. The problem formulation and preliminaries are presented in Section II.
Section III describes the detailed controller design process and gives the stability analysis. To demonstrate the feasibility of the
proposed controller, numerical simulation results are presented in Section IV. Finally, Section V shows some conclusions of this
article.
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2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 System Description

Consider the following uncertain nonlinear system
ẋi = xi+1 + θTφi(x̄i) + ∆i(x̄i, t) i = 1, 2 · · · n – 1

ẋn = u + θTφn(x) + ∆n(x, t)

y = x1, u = H[v](t)

(1)

where x̄i = [x1, · · · , xi]T ∈ <i and x = [x1, · · · , xn]T ∈ <n are the state vectors, and y ∈ < represents the system output signal.
u ∈ < is control input subjected to unknown hysteresis nonlinearities. The hysteresis model H[v](t) is represented by Prandtle-
Ishlinskii model and its specific expression will be given subsequently. θ = [θ1, θ2, ..., θp]T ∈ <p is the vector of unknown
parameters, φ1, ...,φn ∈ <p are known smooth nonlinear functions, ∆i(x̄i, t) : <i → <(i = 1, 2, · · · , n) are disturbances.

Remark 1. The considered nonlinear system model can describe plenty of actual mechanical equipment such as the piezoelectric
positioning stages studied in many literature2,30,34. Their system parameters, such as the fixed gain of the voltage power amplifier,
the equivalent internal resistance, may be unknown, which can be treated as parametric uncertainties in (1). Additionally, the
stage may be subjected to external disturbance such as nonlinear friction and unmodeled dynamics, which can be seen as
disturbances in (1). Furthermore, the inherent hysteresis nonlinearities are unavoidably in view of its structure and principle.
Thus, the nonlinear system in (1) describing the complex characteristic of such systems should be given more attention.

The subjective of this paper is to construct an event-triggered adaptive estimated inverse neural network control scheme for
the general nonlinear systems described in (1) subjected to parametric uncertainties, unknown nonlinear functions and unknown
hysteresis effects, such that the system output signal y can track a given reference trajectory x1d precisely and all the system
signals are bounded.

2.2 Radial Basis Function Neural Networks

To deal with the unknown nonlinear functions, the radial basis function neural network is employed. It has been pointed out
in many literature38,39,40 that RBFNN shows excellent universe approximation property which can be used to estimate any
continuous functions with arbitrary accuracy, it follow that

f (s) = ν∗Tζ(s) + δ (2)

where s ∈ <l is input vector and ν∗ = [ν∗1 , · · · , ν∗m]T ∈ <m is the optimal weight vector of RBFNN and ζ = [ζ1(s), · · · , ζm(s)]T ∈
<m is the activation function vector. δ is approximation error from neural network. The following Gaussian function is utilized
to denote ζi(s):

ζi(s) = exp

[
–

(s – ci)T (s – ci)
d2

i

]
i = 1, · · · , m (3)

where ci = [ci1, · · · , cil]T ∈ <l is center of the receptive field and di is the width of Gaussian functions.
The ideal weight vector of RBFNN is obtained when the following equation holds

ν∗ := arg min
ν∈<m

{sup
s∈<l

|f (s) – νTζ(s)|} (4)

Remark 2. Since it is hard to obtain the ideal weights, we usually employ νTζ(s) to estimate the unknown nonlinear functions.
ν is the estimation of the variable ν∗ and will be obtained based on the adaptive technique online. The deviation ν̃ = ν – ν∗ is
proven to be bounded in the following stability analysis.
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2.3 PI Model and its inverse model

Firstly, we give the expression of PI hysteresis model based on play operator and construct its corresponding estimated inverse
model. Subsequently, the parameterized error between hysteresis model and its estimated inverse is developed.

The definition of play operator6 is given by

Fr[v](0) =fr(v(0), 0)

Fr[v](t) =fr(v(t), Fr[v](ti))

for ti < t < ti+1; 0 ≤ i ≤ N – 1

(5)

where fr(v, u) = max{v – r, min{v + r, u}}, 0 = t0 < t1 < · · · < tN = tE is a partition of [0, tE] guaranteeing that the signal function
v(t) is monotone on each of the sub-intervals (ti, ti+1].

According to the play operator Fr[v](t), PI hysteresis model H[v](t) can be defined as:

u(t) = H[v](t) = p0sv(t) –
∫ R

0
p(r)Fr[v](t)dr (6)

where p0s is a positive constant and p(r) denotes density function holding with p(r) ≥ 0. The upper bound of integration is set as
R instead of∞ as p(r) will vanish to zero for large values of r.

To facilitate the control design and implementation, the corresponding hysteresis discrete expression HL[v](t) is applied.

u(t) =H[v](t) = HL[v](t) + ε(t)

=p0sv(t) –
m∑

i=1

p(ri)Fri [v](t)∆ri + ε(t)
(7)

where m denotes the number of the discrete intervals and ∆ri is the length of the interval, ε(t) denotes the approximation error
between continuous model and discrete model.

Due to the length of the discrete intervals ∆ri is often set as a fixed constant, we can define a new variable θi = pi∆ri to
simplify the expression

HL[v](t) = p0sv(t) –
m∑

i=1

θiFri [v](t) (8)

Remark 3. Noting that the p0s and θi are unknown since they are related to the density function that is hard to obtain in practical
application. According to the definition of play operator in (5), Fr[v](t) is a certain function where the hysteresis threshold r is
also set artificially, and the output signal and the input signal of the play operator can also be obtained.

Since it is quite difficult to acquire the accurate density function, the estimated hysteresis model is introduced

ud(t) = p̂0sv(t) –
m∑

i=1

θ̂iFri [v](t) (9)

where p̂0s and θ̂i are the estimation of p0s and θi, respectively, ud is the desired control signal.
According to the estimated hysteresis model (9), the expression of estimated hysteresis inverse model can be defined as

v(t) = H–1
L [ud](t) = p

′

0sud(t) –
m∑

i=1

θ̂
′

i Fr′i
[ud](t) (10)
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where

p
′

0s =
1

p̂0s

θ̂
′

i = –
θ̂i

(p̂0s +
∑i

j=1 θ̂i)(p̂0s +
∑i–1

j=1 θ̂j)

r
′

i = p̂0sri +
i–1∑
j=1

θ̂j(ri – rj)

p̂0s =
m∑

i=1

θ̂
′

i

(11)

Remark 4. By observing the inverse model (10) and (11), it is can be found that the variable p
′

0s and θ̂
′

i are defined by p0s and θ̂i

essentially. Thus, we just employ the adaptive law to estimate p0s and θ̂i on which p
′

0s and θ̂
′

i can be calculated based.

The control scheme of estimated hysteresis inverse compensation is depicted in Fig. 1. It should be mentioned that there
are four control signals in the whole process, namely the desired control signal ud(t), the intermediate control signal v(t) ,the
event-triggered output control signal ω(t) and the actual control signal u(t). From the blue line and block, we can know that the
core of estimated inverse compensation lies in that the signal experiencing estimated inverse hysteresis model and hysteresis
model successively will exhibit almost free-hysteresis performance, which results in an excellent hysteresis compensation effect.

F I G U R E 1 Estimated inverse compensation scheme of hysteresis.

Remark 5. Actually, the controller includes two part: the designed controller and the estimated inverse hysteresis model. The
desired control signal ud(t) experiences the estimated inverse hysteresis model generating the intermediate control signal v(t).
The adaptive technique is utilized to obtain the unknown parameters of inverse model, which relaxes the requirements on
parameter identification. To save the communication resource, the relative threshold event-triggered law is introduced. It should
be mentioned that the event-triggered output control signal ω(t) is the eventual designed control signal and the actual control
signal u(t) is not the result of the control design. The hysteresis model is fused with the nonlinear system as the plant to be
controlled. It is worth noting that the hysteresis model is completely unknown, and the control signal u(t) after it is the actual
control signal acting on the actuator system.

Remark 6. As for the yellow line and block in Fig. 1, this part does not participate in the practical control process directly. If
we observe the estimated hysteresis inverse model H–1

d [·](t) block and the estimated hysteresis model Hd[·](t), it is easy for us to
understand the inverse compensation nature. Since the actual hysteresis model is unknown, the inverse model is constructed
based on the estimated model.
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From (7) and (9), the deviation is given as

u(t) – ud(t) = p̃0sv(t) –
m∑

i=1

θ̃iFri [v](t) + ε(t) (12)

where p̃0s = p0s – p̂0s and θ̃i = θi – θ̂i. Rearrange (12) into a parameterized form, which is more conducive to controller design.

u(t) – ud(t) = ϑ̃TF + ε(t) (13)

where ϑ̃ = [p̃0s, –θ̃1, –θ̃2, · · · , –θ̃m]T and ϑ̃ = ϑ – ϑ̂, ϑ = [p0s, –θ1, –θ2, · · · , –θm]T , ϑ̂ = [p̂0s, –θ̂1, –θ̂2, · · · , –θ̂m]T , F =
[v(t), Fr1 [v](t), Fr2 [v](t), · · · , Frm [v](t)]T .

Before carrying out the controller design, the following assumptions and inequalities are necessary for the design of the
controller.

Assumption 1. The desired trajectory x1d(t) and its (n + 1)th order derivatives are certain and bounded.

Assumption 2. The approximation error from neural network δ and error from discrete model ε(t) are both bounded, satisfying
|δ| ≤ ι and ε(t) < ε̄ where ι and ε are positive constants.

Assumption 3. System disturbances ∆i(x̄i, t) are continuous and smooth.

According to Young’s inequality, the upper boundedness of δ, the upper boundedness of ε(t) and the definition of ν̃, the
following inequality holds:

ziδi ≤
1
2

z2
i +

1
2
ι2i (14)

znε(t) ≤
1
2

z2
n +

1
2
ε̄2 (15)

ν̃T
i νi ≤ –

1
2
ν̃T

i ν̃i +
1
2
ν∗Ti ν

∗
i (16)

3 EVENT-TRIGGERED ADAPTIVE INVERSE CONTROL DESIGN AND STABILITY
ANALYSIS

3.1 Controller design

First, the following the error variables are defined as:{
z1 = x1 – x1d

zi = xi – αi–1 – x(i–1)
1d i = 2, 3, · · · , n

(17)

where αi–1 is the virtual control law and zi is the error variable.
Step 1: By (1) and (17), the derivative of z1 can be given as

ż1 = z2 + α1 + θTφ1(x1) + ∆1(x1, t) (18)

The RBFNN is utilized to approximate the nonlinear function ∆1(x1, t), that is

ż1 = z2 + α1 + θTφ1(x1) + ν∗T1 ζ1(x1) + δ1 (19)

Therefore, the virtual control law α1, the tuning function τ1 and the adaptive law ν̇1 for weights of RBFNN are given as
α1 = –k1z1 – θ̂Tφ1(x1) – νT

1 ζ1(x1)

τ1 = φ1(x1)z1

ν̇1 = P1ζ1(x1)z1 – b1P1ν1

(20)
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where k1 > 0, b1 > 0 are positive constants, θ̂ is the estimator of θ and P1 is a positive definite matrix.
Substituting (20) into (19), results in

ż1 = z2 – k1z1 + θ̃Tφ1(x1) + ν̃T
1 ζ1(x1) + δ1 (21)

Choose the Lyapunov function candidate V1 as

V1 =
1
2

z2
1 +

1
2
θ̃TΓ–1

θ θ̃ +
1
2
ν̃T

1 P–1
1 ν̃1 (22)

where Γθ is a positive definite matrix.
Invoking (14), (16) and (21), the derivative of V1 yields

V̇1 =z1(z2 – k1z1 + θ̃Tφ1(x1) + ν̃T
1 ζ1(x1) + δ1) – θ̃TΓ–1

θ
˙̂
θ – ν̃T

1 P–1
1 ν̇1

≤z1z2 – k1z2
1 + ν̃T

1 (z1ζ1(x1) – P–1
1

˙̂ν1) + θ̃T (τ1 – Γ–1
θ θ̇) + z1δ1

≤ – (k1 –
1
2

)z2
1 + z1z2 –

b1

2
ν̃T

1 ν̃1 + θ̃T (τ1 – Γ–1
θ

˙̂
θ) + η1

(23)

where η1 = 1
2 ι

2
1 + b1

2 ν
∗T
1 ν

∗
1

Step 2: Differentiating z2 yields

ż2 =z3 + α2 + θTφ2(x̄2) + ∆2(x̄2, t) –
∂α1

∂x1

(
x2 + θTφ1(x̄1) + ∆1(x̄1, t)

)
–
∂α1

∂x1d
ẋ1d –

∂α1

∂νT
1
ν̇1 –

∂α1

∂θ̂T

˙̂
θ (24)

An RBFNN ν∗T2 ζ2(x̄2) + δ2 is employed to estimate ∆2(x̄2, t) – ∂α1
∂x1

∆1(x1, t), that is

∆2(x̄2, t) –
∂α1

∂x1
∆1(x1, t) = ν∗T2 ζ2(x̄2) + δ2 (25)

Then the virtual control law α2, the tuning function τ2 and the adaptive law ν̇2 are proposed as
α2 = –k2z2 – z1 +

∂α1

∂x1
x2 – νT

2 ζ2(x̄2) – θ̂T (φ2(x̄2) –
∂α1

∂x1
φ1(x1)) +

∂α1

∂x1d
ẋ1d +

∂α1

∂θ̂T
Γθ(τ2 – σθ̂) +

∂α1

∂νT
1
ν̇1

τ2 = τ1 + (φ2(x̄2) –
∂α1

∂x1
φ1(x1))z2

ν̇2 = P2ζ2(x̄2)z2 – b2P2ν2

(26)

where k2 > 0, b2 > 0 are positive constants to be designed, P2 is a positive definite matrix.
Substituting (25) and (26) into (24), we have

ż2 =z3 – k2z2 – z1 + ν̃T
2 ζ2(x̄2) + θ̃T (φ2(x̄2) –

∂α1

∂x1
φ1(x1)) +

∂α1

∂θ̂T
Γθ(τ2 – σθ̂ – Γ–1

θ
˙̂
θ) + δ2 (27)

Choose the Lyapunov function V2 as

V2 = V1 +
1
2

z2
2 +

1
2
ν̃T

2 P–1
2 ν̃2 (28)

where ν̃2 = ν∗2 – ν2.
Considering (14), (16), (23) and (27),the derivative of V2 satisfies the following inequality

V̇2 =z1z2 – (k1 –
1
2

)z2
1 + θ̃T (τ1 – Γ–1

θ
˙̂
θ) –

b1

2
ν̃T

1 ν̃1 + z2

(
z3 – k2z2 – z1 + ν̃T

2 ζ2(x̄2) + δ2

+ θ̃T(φ2(x̄2) –
∂α1

∂x1
φ1(x1)

)
+
∂α1

∂θ̂T
Γ(τ2 – σθ̂) –

∂α1

∂θ̂T

˙̂
θ

)
–ν̃T

2 P–1
2 ν̇2 + η1

≤ – (k1 –
1
2

)z2
1 – (k2 –

1
2

)z2
2 + z2z3 –

b1

2
ν̃T

1 ν̃1 –
b2

2
ν̃T

2 ν̃2 + θ̃T (τ2 – Γ–1
θ

˙̂
θ) + z2

∂α1

∂θ̂T
Γθ(τ2 – σθ̂ – Γ–1

θ
˙̂
θ) + η2

(29)

where η2 =
∑2

j=1

( bj

2 ν
∗T
j ν

∗
j + 1

2 ι
2
j

)
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Step i:(3 ≤ i ≤ n – 1) The derivative of zi is defined as

żi =zi+1 + αi + θTφi(x̄i) + ∆i(x̄i, t) –
i–1∑
j=1

∂αi–1

∂xj

(
xj+1 + θTφj(x̄j) + ∆j(x̄j, t)

)
–

i–1∑
j=1

∂αi–1

∂x(j–1)
1d

x(j)
1d –

i–1∑
j=1

∂αj–1

∂ν̂T
j

˙̂νj –
∂αi–1

∂θ̂T

˙̂
θ (30)

An RBFNN ν∗Ti ζi(x̄i) + δi is utilized to approximate ∆i(x̄i, t) –
∑i–1

j=1
∂αi–1
∂xj

∆j(x̄j, t), that is

∆i(x̄i, t) –
i–1∑
j=1

∂αi–1

∂xj
∆j(x̄j, t) = ν∗Ti ζi(x̄i) + δi (31)

Now, virtual control law αi, the tuning function τi and the adaptive law ν̇i are developed as

αi = – kizi – zi–1 +
i–1∑
j=1

∂αi–1

∂xj
xj+1 – νT

i ζi(x̄i) – θ̂T (φi(x̄i –
i–1∑
j=1

∂αi–1

∂xj
φj(x̄j)) +

i–1∑
j=1

∂αi–1

∂x(j–1)
1d

x(j)
1d

+
∂αi–1

∂θ̂T
Γθ(τi – σθ̂) +

i–1∑
j=1

∂αj–1

∂νT
j
ν̇j

τi =τi–1+
(
φi(x̄i) –

i–1∑
j=1

∂αi–1

∂xj
φj(x̄j)

)
zi

˙̂νi =Piζi(x̄i)zi – biPiνi

(32)

where ki > 0, bi > 0 are positive constants to be designed, Pi is a positive definite matrix.
Substituting (31) and (32) into (30), one has

żi =zi+1 – kizi – zi–1 + ν̃T
i ζi(x̄i) + δi + θ̃T(φi(x̄i) –

i–1∑
j=1

∂αi–1

∂xj
φj(x̄j)

)
+
∂αi–1

∂θ̂T
Γθ(τi – σθ̂ – Γ–1

θ
˙̂
θ) (33)

Consider the following Lyapunov function candidate Vi as

Vi = Vi–1 +
1
2

z2
i +

1
2
ν̃T

i P–1
i ν̃i (34)

Invoking (14), (16) and (33), the derivative of Vi yields

V̇i =V̇i–1 + ziżi – ν̃T
i P–1

i ν̇i

≤ –
i–1∑
j=1

(kj –
1
2

)z2
j + zi–1zi –

i–1∑
j=1

bj

2
ν̃T

j ν̃j + θ̃T (τi–1 – Γ–1
θ

˙̂
θ) + ηi–1 –

i–1∑
j=2

zj
∂αj–1

∂θ̂T
Γθ(τi–1 – σθ̂ – Γ–1

θ
˙̂
θ)

+ zi

(
zi+1 – kizi – zi–1 + ν̃T

i ζi(x̄i) + δi + θ̃T(φi(x̄i) –
i–1∑
j=1

∂αi–1

∂xj
φj(x̄j)

)
+
∂αi–1

∂θ̂T
Γ(τi – σθ̂) –

∂αi–1

∂θ̂T

˙̂
θ

)
–ν̃T

i P–1
i

˙̂νi

(35)

V̇i ≤ –
i∑

j=1

(kj –
1
2

)z2
j + zizi+1 –

i∑
j=1

bj

2
ν̃T

j ν̃j + θ̃T (τi – Γ–1
θ

˙̂
θ) –

i∑
j=2

zj
∂αj–1

∂θ̂T
Γθ(τi – σθ̂ – Γ–1

θ
˙̂
θ) + ηi (36)

where ηi =
∑i

j=1

( bj

2 ν
∗T
j ν

∗
j + 1

2 ι
2
j

)
Step n: Furthermore, to alleviate the communication burden, the following relative threshold event-triggered control is

introduced {
ω(t) = v(tk) ∀t ∈ [tk, tk+1)

tk+1 = {t ∈ <||e(t)| ≥ $|ω(t)| + m1}
(37)
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where e(t) = v(t) – ω(t) represents the measurement error and $, m1 are design parameters with 0 < $ < 1, m1 > 0. If the
inequality in (36) holds, the moment is updated as tk+1 and the actual control signal is equal to ω(tk+1). Otherwise, the desired
control signal v(t) maintains the input control signal ω(tk) with t ∈ [tk, tk+1).

Invoking (13), the state space equation of the considered system can be rewritten as:
ẋi = xi+1 + θTφi(x̄i) + ∆i(x̄i, t) i = 1, 2 · · · n – 1

ẋn = ud(t) + ϑ̃TF + ε(t) + θTφn(x) + ∆n(x, t)

y = x1

(38)

By (17) and (38), the derivative of zn can be given as

żn =ud(t) + ϑ̃TF + ε(t) + θTφn(x) + ∆n(x, t) – x(n)
1d –

n–1∑
j=1

∂αn–1

∂xj

(
xj+1 + θTφj(x̄j) + ∆j(x̄j, t)

)
–

n–1∑
j=1

∂αn–1

∂x(j–1)
1d

x(j)
1d –

n–1∑
j=1

∂αj–1

∂ν̂T
j

˙̂νj –
∂αn–1

∂θ̂T

˙̂
θ

(39)

An RBFNN ν∗Tn ζn(x) + δn is used to approximate ∆i(x, t) –
∑i–1

j=1
∂αn–1
∂xj

∆j(x̄j, t), that is

∆i(x, t) –
n–1∑
j=1

∂αi–1

∂xj
∆j(x̄j, t) = ν∗Tn ζn(x) + δn (40)

Now, the desired control signal ud(t), the tuning function τn, the adaptive law ˙̂
θ for unknown system parameters, the adaptive

law ˙̂
ϑ for unknown hysteresis parameters and the adaptive law ν̇n for weights of RBFNN are constructed as

ud(t) = – knzn – zn–1 + x(n)
1d +

n–1∑
j=1

∂αn–1

∂xj
xj+1 – νT

n ζn(x) – θ̂T (φn(x) –
n–1∑
j=1

∂αn–1

∂xj
φj(x̄j))

+
n–1∑
j=1

∂αn–1

∂x(j–1)
1d

x(j)
1d +

n–1∑
j=1

∂αj–1

∂νT
j
ν̇j +

∂αn–1

∂θ̂T
Γθ(τn – σθ̂)

τn = τn–1+
(
φn(x) –

n–1∑
j=1

∂αn–1

∂xj
φj(x̄j)

)
zn

˙̂
θ = Γθτn – Γθσθ̂

˙̂
ϑ = ΓϑFzn – Γϑςϑ̂

ν̇n = Pnζn(x)zn – bnPnνn

(41)

where kn > 0,σ > 0, ς > 0 and bn > 0 are positive constants, Γθ, Γϑ and Pn are all positive definite matrices.

Remark 7. It is notable that the desired control signal ud(t) will experience the estimated inverse hysteresis model(10), the
event-triggered mechanism (37), and the hysteresis model successively to generate the actual control signal u(t).

Substituting (40) and (41) into (39), one has

żn ≤ – knzn – zn–1 + ν̃T
n ζn(x) + ϑ̃TF + ε(t) + δn + θ̃T (φn(x) –

n–1∑
j=1

∂αn–1

∂xj
φj(x̄j)) +

∂αn–1

∂θ̂T
Γθ(τn – σθ̂ – Γ–1

θ
˙̂
θ) (42)

Consider the following Lyapunov function Vn as

Vn = Vn–1 +
1
2

z2
n +

1
2
ν̃T

n P–1
n ν̃n +

1
2
ϑ̃TΓ–1

ϑ ϑ̃ (43)
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By (42), the derivative of Vn is given by

V̇n =V̇n–1 + znżn – ν̃T
n P–1

n ν̇n – ϑ̃TΓ–1
ϑ

˙̂
ϑ

≤ –
n–1∑
j=1

(kj –
1
2

)z2
j – knz2

n –
n–1∑
j=1

bj

2
ν̃T

j ν̃j + ηn–1 –
n∑

j=2

zj
∂αj–1

∂θ̂T
Γθ(τn–1 – σθ̂ – Γ–1

θ
˙̂
θ)

+ θ̃T (τn – Γ–1
θ

˙̂
θ) + ν̃T

n P–1
n (Pnζn(x)zn – ν̇n) + ϑ̃TΓ–1

ϑ (ΓϑFzn – ˙̂
ϑ) + znε(t) + δnzn

(44)

Invoking (14)-(16), (35) and the three adaptive laws ˙̂
θ, ˙̂
ϑ, and ν̇n in (41), one has

V̇n ≤ –
n–1∑
j=1

(kj –
1
2

)z2
j – (kn – 1)z2

n –
σ

2
θ̃T θ̃ –

n∑
j=1

bj

2
ν̃T

j ν̃j –
ς

2
ϑ̃T ϑ̃ +

σ

2
θ̂T θ̂ +

bn

2
νT

n νn +
ς

2
ϑ̂T ϑ̂ +

1
2
ε̄2 +

1
2
ι2n + ηn (45)

where ηn =
∑n

j=1

( bj

2 ν
∗T
j ν

∗
j + 1

2 ι
2
j

)
3.2 System Stability Analysis

Theorem 1. For nonlinear system (1) under Assumptions 1,3 and ??, the control scheme developed in (26), (32), (41), it can be
guaranteed that the nonlinear system suffered with parametric uncertainties, the uncertain nonlinear functions and the unknown
hysteresis nonlinearity is ultimately bounded and the communication cost is reduced effectively. All the system signals are
bounded and the tracking error, the estimation errors all converge to a bounded compact set.

Proof of Theorem 1. Denote the following equations

Ξ =
σ

2
θ̂T θ̂ +

bn

2
νT

n νn +
ς

2
ϑ̂T ϑ̂ +

1
2
ε̄2 +

1
2
ι2n + ηn–1 (46)

κ = min
{

2k1 – 1, · · · , 2kn – 2, · · · ,
σ

λmax(Γ–1
θ )

,
b1

λmax(P–1
1 )

, · · · ,
bn

λmax(P–1
n )

,
ς

λmax(Γ–1
ϑ )

}
(47)

where λmax(·) represents maximum eigenvalue of a matrix.
From (45)-(47), it could be obtained that

V̇n ≤ –κVn + Ξ (48)

Integrating inequality (48), we have

Vn ≤ e–κtVn(0) +
Ξ

κ
(49)

Then,
lim

t→∞
Vn(t) ≤ Ξ

κ
(50)

which implies limt→∞ ‖z‖ ≤
√

2Ξ
κ with z = [z1, · · · , zn]T . The estimation error of parametric uncertainties θ̃, the estimation

error of unknown hysteresis parameter ϑ̃ and the estimation error of RBFNN weights ν̃i can also have the upper bound.
That means the boundedness of z, θ̃, ϑ̃ and ν̃i is ensured. From the control signal αi in (20), (26), (32) is also bounded for
i = 1, · · · , n – 1. The boundedness of the desired control signal ω(t) can also be deduced based on (41), (37) and (10). From (17)
and Assumption 1,it is concluded that all the closed-loop system signals x are bounded. Moreover, by observing the inequality in
(50), the range of compact set depends on Ξ and κ related to the adjustable variables.
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4 SIMULATION RESULTS

To verify the effectiveness of the developed control algorithm, the second-order system described by the following expressions,
is considered:

ẋ1 = x2 + θTφ1(x1) + ∆1(x1, t)

ẋ2 = H[v](t) + θTφ2(x) + ∆2(x, t)

y = x1

(51)

where φ1(x1) = x1 and φ2(x̄2) = x2 + x1 are known for control design. x1, x2 denote the system states and x = [x1, x2]T , while y is
the output signal. ∆1(x1, t) = sin(x1), ∆2(x, t) = sin(x1x2). H[v](t) denotes the unknown hysteresis effect and v is the intermediate
control signal. In the simulation, the discrete model is employed to depict the hysteresis phenomenon.

u(t) = H[v](t) = p0sv(t) –
m∑

i=1

pi(ri)Fri [v](t)∆ri (52)

where p0s = 3.2, m = 100, ri = 0.1i, pi(ri) = 0.8e–0.002(ri)2
and ∆ri = 1 for i = 1, · · · , m. The curve of the hysteresis is depicted in

Fig. 2, where the input signal is chosen as v = sin 2t.

F I G U R E 2 Tracking errors of the comparative controllers.

To illustrate the effectiveness of the developed controller, the following two controllers need to be compared. In simulated
software, the sampling interval time is 0.001s.

1) HIETC-ANNRC: This is the proposed event-triggered adaptive estimated inverse neural network controller, described in
Section III. To fulfill the control goal, the adjustable coefficients are obtained via trial-and-error method. The gain coefficients are
chosen as k1 = 20, k2 = 10, the parameter adaptation gains of parametric uncertainties are set as Γθ = diag{10, 20}, σ = 1× 10–2.
It should be mentioned that we find that it is not necessary to set the number of discrete intervals of hysteresis inverse (10) as the
same as it in hysteresis model (52). The distinct effect can be obtained by the hysteresis inverse mechanism when the number m
is chosen as 2. In other words, there are three unknown parameters of hysteresis inverse model needing estimating by the adaptive
law, then ϑ̂ = [p̂0s, –θ̂1, –θ̂2]T , F = [v(t), Fr1 [v](t), Fr2 [v](t)]T , the parameter adaptation gains are set as Γϑ = diag{50, 50, 100}
and ς = 1× 10–2. The parameters in the event-triggered mechanism is set as $ = 0.1 and m1 = 0.01. There are two RBFNN in
the simulation, the nodes of the first one is 3, the weight adaption rate is chosen as P1 = diag{5, 5, 5} and b1 = 1× 10–4. The
nodes of the other is 5 and the weight adaption rate is set as P2 = diag{10, 10, 10, 10, 10} and b2 = 10. The width values of
Gaussian functions are set as d1 = 3 and d2 = 2, respectively. Finally, the initial values are all zero. The specific expressions of
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T A B L E 1 Performance indices for the last 10 seconds.

Indexes ME ATD STD

HIETC-ANNRC 0.0038 0.0013 0.0009
ANNRC 0.0127 0.0060 0.0026

the control scheme are given as follows: 
α1 = –k1z1 – θ̂Tφ1(x1) – νT

1 ζ1(x1)

τ1 = φ1(x1)z1

ν̇1 = P1ζ1(x1)z1 – b1P1ν1

(53)



ud(t) = – k2z2 – z1 +
∂α1

∂x1
x2 + x(2)

1d

– νT
2 ζ2(x) – θ̂T (φ2(x) –

∂α1

∂x1
φ1(x1))

+
∂α1

∂x1d
x(1)

1d +
∂α1

∂νT
1
ν̇1 +

∂α1

∂θ̂T
Γτ1

τ2 = τ1+
(
φ2(x) –

∂α1

∂x1
φ1(x1)

)
z2

˙̂
θ = Γθτ2 – Γθσθ̂

˙̂
ϑ = ΓϑFz2 – Γϑςϑ̂

ν̇2 = P2ζ2(x)z2 – b2P2ν2

(54)

2) ANNRC: Compared with the proposed HIETC-ANNRC, ANNRC lacks both event-triggered law and the estimated
hysteresis inverse model. We just need to connect the desired control signal ud(t) directly to the plant without experiencing other
loops, the controller of ANNRC can be realized.

To further assess the performances of above four controller in a quantified way,the following three performance indices, i.e.,
maximum ME, average ATD, and standard deviation STD of tracking error are employed whose expressions have been defined
in41.

To illustrate the superiority of the developed controller, the following four controllers are tested for a smooth enough sinusoidal-
like reference trajectory x1d(t) = sin(t)(1 – e–0.5t). The simulation results are shown in Fig. 3-Fig. 8. The tracking performances
of them are presented in Fig. 3. The trajectory output of the proposed controller HIETC-ARNNC is almost identical with the
desired motion signal. It is more apparent to analyze the performance of the two controllers based on the tracking errors of
them depicted in Fig. 4 and the performance indices for the last 10 seconds of them given in Table 1. The HIETC-ARNNC
and ARNNC controllers lead to the STD errors of 0.0009 and 0.0026, respectively. The tracking accuracy of HIETC-ARNNC
has been improved by 65.3% over ARNNC scheme. From these analysis, it can be evidently found that the proposed HIETC-
ANNRC exhibits an excellent performance where the hysteresis nonlinearity has been suppressed to a negligible level by the
hysteresis inverse compensation scheme. The estimations of the unknown hysteresis parameters and the system parametric
uncertainties are presented in Fig. 5 and Fig. 6, and both of them exhibit the convergent trend.

Finally, the controller signal after ETC is utilized to control the plant, which can reduce the communication resource and
calculation resource. Fig. 7 reveals that the ETC generates the control signal ω(t), which is only updated when the condition
of event-trigger holds. The time interval of event triggered is depicted in Fig. 8. Different from the traditional time-triggered
control scheme, the time interval is not equal to the sampling time 0.001s. The maximum of the time interval is 1.062s, which
means the control signal remains unchanged during this period. Comparing with the number of sampling 40000, the number of
event triggered is 555 during the whole control period 40s.
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F I G U R E 3 Tracking performances of the four comparative controllers.

F I G U R E 4 Tracking errors of the comparative controllers.

F I G U R E 5 Hysteresis parameter estimations ϑ̂1,ϑ̂2,ϑ̂3.
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F I G U R E 6 System parameter estimations θ̂1, θ̂2.

F I G U R E 7 Control signal before and after the ETC.

F I G U R E 8 Time interval of event triggered.

5 CONCLUSION

This paper develops an event-triggered adaptive estimated inverse controller for a class of uncertain nonlinear system subjected
to parametric uncertainties, unknown nonlinear functions and the Prandtl–Ishlinskii(PI) hysteresis input, simultaneously. The
radial basis functions neural network is applied to compensate the uncertain nonlinear functions whose weights are obtained
by the adaptive technique. Moreover, the parametric uncertainties are also suppressed through the adaptive law. The distinct
novelty of this paper lies in that the adaptive estimated hysteresis inverse model is developed, which is utilized to make up for
the unknown hysteresis effect online. Furthermore, an event-triggered adaptive estimated inverse neural network control strategy
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is proposed through the backsteppting technique. Finally, the results of the numerical simulation verify the superiority of the
developed controller with the communication resource saved.
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